1. Define:

\[A_{DFA} = \{ < M, w > \mid M \text{ is a DFA, } w \text{ is a string and } w \in L(M) \} \]

\[EQ_{DFA} = \{ < M, N > \mid M \text{ and } N \text{ are DFAs, and } L(M) = L(N) \} \]

\[INCL_{DFA} = \{ < M, N > \mid M \text{ and } N \text{ are DFAs, and } L(M) \subseteq L(N) \} \]

Figure 1: (i) DFA A (on left); and (ii) DFA B (on right).

Answer the following questions and give reasons for your answers.

(a) Is \(< A, aab > \in A_{DFA} \)? No. \(A \) does not accept \(aab \)

(b) Is \(< A, abb > \in A_{DFA} \)? Yes. \(A \) accepts \(abb \)

(c) Is \(< B, bbaabbaab > \in A_{DFA} \)? No. \(B \) does not accept \(bbaabbaab \)

(d) Is \(< A, B > \in EQ_{DFA} \)? No. \(L(A) \neq L(B) \) (\(ab \notin L(B) - L(A) \))

(e) Is \(< A, A > \in EQ_{DFA} \)? Yes. \(L(A) = L(A) \)

(f) Is \(< B, A > \in EQ_{DFA} \)? No. \(L(B) \neq L(A) \)

(g) Is \(< A, B > \in INCL_{DFA} \)? No. \(abab \notin L(A) - L(B) \)

(h) Is \(< B, A > \in INCL_{DFA} \)? No. \(ab \in L(B) - L(A) \)

(i) Is \(< A, A > \in INCL_{DFA} \)? Yes. \(L(A) \subseteq L(A) \)
2. (a) Consider the language

\[C = \{ < M, w > \mid M \text{ is a DFA, and some string of } L(M) \text{ contains string } w \text{ as a substring} \} \]

Is the language \(C \) decidable or undecidable? Prove your answer.

\[\text{C is decidable. \text{Decider for } C:} \]

- On input \(< M, w > \):
 1. Construct DFA \(B \) for \(\Sigma^* w \Sigma^* \)
 2. Construct DFA \(D \) for \(L(M) \cap L(B) \) // reg. \\
 \(\text{Languages closed under intersection} \)
 3. Decide whether \(L(D) = \emptyset. \)
 If yes, reject. If no, accept."

(b) Consider the language

\[D = \{ < M > \mid M \text{ is a Turing machine and there exists a DFA } A \text{ such that } L(M) \subseteq L(A) \} \]

Is the language \(D \) decidable or undecidable? Prove your answer.

\[\text{D is decidable. If } \Sigma \text{ is the input alphabet of } M, \]
\[\Sigma^* \text{ is a regular language, and } L(M) \subseteq \Sigma^* \]

Hence

\[D = \{ < M > \mid M \text{ is a Turing machine} \} \]

A decider for \(D \) needs only to check whether the input is a correct encoding of a Turing machine.
3. (a) Does the following instance of the Post Correspondence Problem have a match (that is, a solution). Justify your answer.

\[
\{ \begin{bmatrix} 1001 \\ 01 \end{bmatrix}, \begin{bmatrix} 101 \\ 1001 \end{bmatrix}, \begin{bmatrix} 1001 \\ 10001 \end{bmatrix}, \begin{bmatrix} 01 \\ 0110 \end{bmatrix} \}
\]

Match: \[
\begin{bmatrix} 01 \\ 0110 \end{bmatrix} \begin{bmatrix} 1001 \\ 01 \end{bmatrix}
\]

(b) Let \(\Sigma = \{a, b\} \). We denote \(\text{finite}(\Sigma) = \{ L \subseteq \Sigma^* \mid L \text{ is finite} \} \). The elements of the set \(\text{finite}(\Sigma) \) are the finite languages over \(\Sigma \).

Show that the set \(\text{finite}(\Sigma) \) is countable.

We list elements of \(\text{finite}(\Sigma) \) in stages.

Stage 0: list \(\emptyset \)

For \(i \geq 1 \): list all sets of size at most \(i \) consisting of strings of length at most \(i \). Exclude sets that were listed on some previous stage.

An arbitrary finite set \(A \in \text{finite}(\Sigma) \) is listed in stage \(k \) where \(k \) is the maximum of the cardinality of \(A \) and the length of the longest string of \(A \).
4. Give a complete construction, that is, a state transition diagram of a single-tape deterministic Turing machine M that decides the language

$$\{ a^i b^k \mid 0 \leq i \leq k \}$$

- Give also the sequence of configurations that your Turing machine M enters when started on input string abb.

Sequence of configurations:

1. $a b b$
2. $u 2 b b$
3. $u b 2 b$
4. $u b b 2 u$
5. $u b 3 b u$
6. $u b 4 b u$
7. $u 4 b u$
8. $u 6 b u$
9. $u 1 b 5 u$
10. $u 6 5 u$
11. $u 6 5 6 u$
12. $u 6 6 5 u$
13. $u 6 6 6 5 u$
14. $u 6 6 6 6 5 u$
15. $u 6 6 6 6 6 5 u$

ALL UNDEFINED TRANSITIONS GO TO THE REJECT STATE.
5. Given an example of a non-context-free language A such that A is in the class $L (= \text{SPACE}(\log n))$. You should briefly explain how a logarithmic space deterministic TM decides your language A. You do not need to prove that A is non-context-free.

\[A = \{ a^ib^ic^i \mid i \geq 0 \} \]

Deterministic TM M for A:

1. First scan the input and check that it is in $a^*b^*c^*$
2. Return the tape head to left end.
3. Count the number of a's and store the result in binary on the work tape.

 Similarly, count the number of b's and c's.

4. When M has the three counts stored on the work tape, by zig-zagging check that they are all equal.

M needs to store 3 binary numbers, each at most logarithmic length.

6. Let B be a Turing-recognizable language and assume that $B \leq_m \overline{B}$. (\overline{B} is the complement of B.)

Prove that B is decidable.

$B \leq_m \overline{B}$ implies $\overline{B} \leq_m B$ (use the same mapping reduction)

Since B is Turing recognizable, so is \overline{B} (Th. 5.28)

Since B and \overline{B} are Turing recognizable, B is decidable (Th. 4.22)
7. What is the relationship (equal "="; strict inclusion "⊂" or "⊃"; inclusion that is not known to be strict "⩽" or "⩾") between the following pairs of complexity classes. **Justify** your answers.

(a) \(\text{TIME}(n^3 \cdot \log n + n \cdot (\log n)^3)\) and \(\text{TIME}(n^3 + n^2 \cdot (\log n)^5)\)

\[t_1(n) = n^3 + n^2 \cdot (\log n)^5, \quad t_2(n) = n^3 \log n + n \cdot (\log n)^2 \]

\[t_1(n) = \Omega(t_2(n)) \quad \text{and time-hierarchy theorem does not apply.} \]

(b) \(\text{SPACE}(2^{n^2})\) and \(\text{SPACE}(2^{n^2 + n})\)

\[2^{n^2} \subset \text{SPACE}(2^{n^2 + n}) \quad \text{and strictness follow from space hierarchy theorem.} \]

(c) \(\text{TIME}(2^{n^2})\) and \(\text{TIME}(n^3 \cdot 2^n)\)

\[n^3 \cdot 2^n = \Omega\left(\frac{2^{n^2}}{n^2}\right) \quad \text{and use time hierarchy theorem} \]

(d) \(\text{NSPACE}(n^2 \cdot (\log n)^3)\) and \(\text{SPACE}(n^5)\)

\[\text{NSPACE}(n^2 (\log n)^3) \subset \text{SPACE}(n^4 (\log n)^6) \subset \text{SPACE}(n^5) \]

\[\text{Switch} \quad \text{space hierarchy} \]

(e) \(\text{NTIME}(n^2 \cdot \log n)\) and \(\text{SPACE}(n^5)\)

\[\text{NTIME}(n^2 \cdot \log n) \subset \text{NSPACE}(n^2 \log n) \subset \text{SPACE}(n^4 (\log n)^9) \]

\[\subset \text{SPACE}(n^5) \quad \text{Switch} \quad \text{space hierarchy} \]
8. Define \(E_{CFG} = \{ <G> \mid G \text{ is a context-free grammar and } L(G) = \emptyset \} \).

Answer the following questions and \textit{justify} your answers.

(a) Does there exist a \textbf{decidable} language \(A \) such that \(A \leq_m E_{CFG} \)?

\textbf{Yes.} \(E_{CFG} \) \textit{is decidable and we can choose}
\[A = E_{CFG}. \]

(b) Does there exist a \textbf{decidable} language \(B \) such that \(E_{CFG} \leq_m B \)?

\textbf{Yes.} \textit{Choose} \(B = E_{CFG} \).

(c) Does there exist an \textbf{undecidable} language \(C \) such that \(C \leq_m E_{CFG} \)?

\textbf{No.} \textit{Since} \(E_{CFG} \) \textit{is decidable,} \(C \leq_m E_{CFG} \) \textit{would imply that} \(C \) \textit{is decidable.}

(d) Does there exist an \textbf{undecidable} language \(D \) such that \(E_{CFG} \leq_m D \)?

\textbf{Yes.} \textit{Let} \(M_0 \) \textit{be a TM such that} \(a \in L(M_0), b \notin L(M_0). \)
\textbf{We define} \(f \) \textbf{by setting:}
\[f(w) = \left\{ \begin{array}{ll}
\langle M_0, a \rangle & \text{if } w \text{ is an encoding of } G \text{ and } L(G) = \emptyset \\
\langle M_0, b \rangle & \text{if } \langle M_0, a \rangle \text{ is a grammar, } L(G) \neq \emptyset \\
\langle M_0, b \rangle & \text{if } w \text{ does not encode a grammar.}
\end{array} \right. \]
\(f \) \textit{is computable because} \(E_{CFG} \) \textit{is decidable.}
\(E_{CFG} \leq_m \text{ATM via function} f. \)
9. We define

\[P_{TM} = \{ <M, w> \mid M \text{ is a Turing machine and } w \text{ is a string and } M \text{ accepts } w^k \text{ for all positive integers } k \}. \]

Without using Rice's theorem show that \(P_{TM} \) is undecidable.

We reduce \(A_{TM} \) to \(P_{TM} \).

Suppose \(TM \ Q \) decides \(P_{TM} \).

Construct following
decider for \(A_{TM} \):

\[D = " \text{On input } <M, w> \text{ where } M \text{ is a } TM, w \text{ is a string} \]

1. Construct \(TM \ X \) as follows:

\[X = " \text{On input } y \]

1. Run \(M \) on \(w \).

2. If \(M \) accepts, accept.

 If \(M \) rejects, reject."

2. Run decider \(Q \) on input \(<X, w> \)

3. If \(Q \) accepts, accept.

 If \(Q \) rejects, reject."

\(D \) decides \(A_{TM} \) correctly because:

- \(M \) accepts \(w \) implies \(X \) accepts \(w^k \) for all \(k \)
- \(M \) does not accept \(w \) implies \(L(X) = \emptyset \)
10. What is the relationship between the following pairs of classes of languages. In each case insert the correct symbol on the dotted line between each pair: equal ("="); strict inclusion in one direction ("\(\text{STRICT} \subset\)" or "\(\supset\text{STRICT}\)"); inclusion that is not known to be strict ("\(\subseteq\)" or "\(\supseteq\)"); or incomparable/not known ("OTHER"). The last option includes cases where the classes are incomparable or no inclusion relation is known.

- In order to avoid ambiguity between strict and non-strict inclusions, please write "\(\text{STRICT} \subset\)" or "\(\supset\text{STRICT}\)" for the strict inclusions.

In addition to standard notations for complexity classes from our textbook, we denote:

REGULAR = the class of regular languages

LBA = the class of languages decided by deterministic linear bounded automata

You do not need to explain the answers.

(a) NP PSPACE
\(\subseteq\)

(b) REGULAR \(\text{STRICT} \subset\) NL

(c) L \(\subseteq\) NP

(d) P \(\subseteq\) PSPACE

(e) LBA \(\supset\text{STRICT}\) REGULAR

(f) LBA \(\subseteq\) SPACE(n)

(g) LBA \(\supset\text{STRICT}\) NL

(h) coNP \(\text{OTHER}\) NP

(i) coNL \(=\) NL

(j) coNL \(\subseteq\) NP
11. Here \(\leq_P \) denotes the polynomial time reducibility relation. Note: To show that a particular implication does not hold, you need to give a counter-example.

(a) If \(A \leq_P B \) and \(B \) is a regular language, does that imply that \(A \) is in \(P \)?
Justify your answer: why or why not?

Yes. \(B \) is regular implies that \(B \in P \) and claim follows from Th. 7.31

(b) If \(A \leq_P B \) and \(B \) is a regular language, does that imply that \(A \) is regular?
Justify your answer: why or why not?

\[\text{No. Let } A = \{ a^i b^i \mid i \geq 0 \} \text{ and define } \]
\[f(w) = \begin{cases} a & \text{if } w = a^i b^i, i \geq 0 \\ a a & \text{otherwise.} \end{cases} \]
\(f \) is computable in pol. time and \(A \leq_P B \) via \(f \).

(c) If \(A \leq_P B \) and \(A \) is a regular language, does that imply that \(B \) is context-free?
Justify your answer: why or why not?

\[\text{No. Choose } A = \{ a^i \} \text{, } B = \text{ATM and let } M_0 \text{ be a TM} \]
that decides \(\{ a^i \} \). Define \(f(a) = \langle M_0, a \rangle \) and
\[f(w) = \langle M_0, a a \rangle \text{ otherwise. } f \text{ can be computed in pol.time} \]
and \(\{ a^i \} \leq_P \text{ATM via function } f \).

(d) If \(A \leq_P B \) and \(A \) is a regular language, does that imply that \(B \) is decidable?
Justify your answer: why or why not?

\[\text{No. Use the same example as above.} \]