1. Define:

\[A_{DFA} = \{ < M, w > \mid M \text{ is a DFA that accepts input string } w \} \]

\[EQ_{DFA,NFA} = \{ < M, N > \mid M \text{ is a DFA, } N \text{ is an NFA, and } L(M) = L(N) \} \]

![Diagram of finite automata M1 and M2](image)

Figure 1: A finite automaton M1 and a finite automaton M2.

Let M1 and M2 be the finite automata with alphabet \{a, b\} given in the above figure. Recall that DFA (respectively, NFA) stands for deterministic (respectively, nondeterministic) finite automaton.

Answer the following questions and give reasons for your answers.

(a) Is < M1, abb > ∈ A_{DFA}? Yes. M1 accepts abb.

(b) Is < M2, aa > ∈ A_{DFA}? No. M2 is not a DFA.

(c) Is < M1, M2 > ∈ EQ_{DFA,NFA}? No. L(M1) ≠ L(M2).

(d) Is < M2, M1 > ∈ EQ_{DFA,NFA}? No. M2 is not a DFA.

(e) Is < M1, M1 > ∈ EQ_{DFA,NFA}? Yes. L(M1) = L(M1).

(f) Is < M2, M2 > ∈ EQ_{DFA,NFA}? No. M2 is not a DFA.
(a) (7 marks) Let \(T = \{ (i, k, m) \mid i, k, m \in \mathbb{N} \} \). Show that the set \(T \) is countable.

All elements of \(T \) can be listed as follows:

1. List \((1, 1, 1)\)
2. List triples \((i, k, m)\) where \(i + k + m = 4\)
3. List triples \((i, k, m)\) where \(i + k + m = 5\)

Stage \(x\): List triples \((i, k, m)\) where \(i + k + m = x + 2\)

All elements of \(T \) appear on above list.

(b) (3 marks) Are the following sets countable? For each case circle the correct answer — no explanation needed. If you circle both YES and NO, it is considered a wrong answer.

- The set \(\{0, 1\}^* \). [YES] [NO]
- The set of all subsets of \(\{0, 1\}^* \). [YES] [NO]
- The set of all finite subsets of \(\{0, 1\}^* \). [YES] [NO]
Give an implementation-level description of a deterministic Turing machine that decides the following language over the alphabet $\Sigma = \{b, c, d\}$:

$$\{ w \in \Sigma^+ | w \text{ contains an equal number of } b\text{'s and } c\text{'s, or } w \text{ contains an equal number of } c\text{'s and } d\text{'s } \}. $$

$$M = \{\text{On input } w:\}$$

1. Repeat the following as long as new b's and c's are found:
 - Scan the input and mark one b and one c.

2. If in the last scan no unmarked b's and no unmarked c's were found, accept.
 Else continue from 3.

3. Remove the masks from all the c's.

4. Repeat the following as long as new unmarked c's and d's are found:
 - Scan the input and mark one c and one d.

5. If in the last scan no unmarked c's and no unmarked d's were found, accept.
 Else reject.
We define

\[\text{NEVERHALTS}_{\text{TM}} = \{ <M> \mid M \text{ is a deterministic Turing machine and the computation of } M \text{ does not halt on any input} \} \]

Without using Rice’s theorem show that \text{NEVERHALTS}_{\text{TM}} is undecidable.

We reduce \text{A}_{\text{TM}} to \text{NEVERHALTS}. Suppose \text{TM} P decides \text{NEVERHALTS}. Construct a decider for \text{A}_{\text{TM}}:

\[Q = "\text{On input } <M,w> \text{ where } M \text{ is a TM} \]

1. Construct \text{TM} N:

\[N = "\text{On input } x \text{ } \star \text{ignore this input } \star \]

1. Run M on w

2. If M accepts, accept.
 If M rejects, enter into an infinite loop.
 \(* M \text{ accepts } w \text{ if } N \text{ halts on some input } *\)

2. Run P on <N>.
 If P accepts, reject.
 If P rejects, accept"
(a) (4 marks) Does the following instance of the Post Correspondence Problem have a match (= solution). Justify your answer.

\[
\{ \begin{array}{c}
\frac{a}{ba}, \frac{aa}{abbb}, \frac{b}{baaa}, \frac{abb}{ab} \\
\end{array} \}
\]

\[
\text{Match: } \begin{bmatrix}
\frac{abb}{ab} \\
\frac{a}{bq}
\end{bmatrix}
\]

(b) (6 marks) We define the following language

\[
PCP = \{ < P > | P \text{ is an instance of the Post correspondence problem with a match } \}
\]

Answer the following questions and justify your answers.

i. Does there exist a decidable language \(A \) such that \(PCP \leq_m A \)?

\[\text{No. } PCP \text{ is undecidable and } B \leq_m A \text{ implies that } B \text{ is decidable (when } A \text{ is decidable)}\]

ii. Does there exist an undecidable language \(B \) such that \(PCP \leq_m B \)?

\[\text{Yes. } PCP \text{ is undecidable and } PCP \leq_m PCP \text{ via the identity mapping.}\]

iii. Does there exist a decidable language \(C \) such that \(C \leq_m PCP \)?

\[\text{Yes. } \text{Let } w_1 \text{ be an encoding of } PCP \text{ instance in 4(a), and } w_2 \text{ is an encoding of instance } \{ \frac{aa}{a} \} \text{ (with no match). Define } f : \{0,1\}^* \rightarrow \{0,1\}^* \text{ by } f(x) = \begin{cases}
w_1 & \text{if } x = 0 \\
w_2 & \text{if } x \neq 0
\end{cases}
\]

\[\text{Now } \{0\} \leq_m PCP \text{ via the function } f.\]