School of Computing, Queen's University CISC-462 Practice Midterm, fall 2018

INSTRUCTIONS

- You have 50 minutes time. This is a <u>closed book test</u>. You can bring with you one standard size $(8.5 \times 11 \text{ inch})$ sheet of notes and use it during the test. The sheet can be written on both sides.
- Answer each question in the space provided (on the question paper). There is an extra page at the end of the exam if more space is needed. Please write legibly.
- Each question is worth 10 marks. The exam is marked out of 40 possible marks and your mark is calculated as the sum of your 4 best answers. If you wish, you can answer all five questions, however, only the 4 best answers are used to compute your mark.

NAME (optional):

STUDENT NUMBER: ______(REQUIRED)

MARKS

Problem 1	/10
Problem 2	/10
Problem 3	/10
Problem 4	/10
Problem 5	/10
Total*:	/40

*The total mark is calculated as the sum of your 4 best answers.

Figure 1: A finite automaton M_1 (on left) and a finite automaton M_2 (on right).

1. Define:

 $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \},$ $EQ_{DFA} = \{ \langle B, C \rangle \mid B, C \text{ are DFAs and } L(B) = L(C) \}.$

Recall that DFA (respectively, NFA) stands for deterministic (respectively, nondeterministic) finite automaton. Answer the following questions (for M_1 and M_2 given in the above figure) and give <u>reasons</u> for your asswers.

(a) Is
$$\langle M_1, babb \rangle \in A_{NFA}$$
?

- (b) Is $\langle M_1, abba \rangle \in A_{NFA}$?
- (c) Is $\langle M_2, abb \rangle \geq A_{NFA}$?
- (d) Is $\langle M_2, aaabb \rangle \geq A_{NFA}$?
- (e) Is $< M_1, M_2 > \in EQ_{DFA}$?
- (f) Is $< M_1, M_1 > \in EQ_{DFA}$?

(g) Is
$$\langle M_2, M_2 \rangle \in EQ_{DFA}$$
?

2. (a) Consider the language

 $C = \{ \langle M, w \rangle \mid M \text{ is a DFA, and some string of } L(M) \text{ contains string } w \text{ as a substring } \}.$ Is the language C decidable or undecidable? Prove your answer.

(b) Consider the language

 $D = \{ \langle M \rangle | M \text{ is a Turing machine and there exists a DFA A such that } L(M) = L(A) \}.$ Is the language D decidable or undecidable? Prove your answer. 3. Give an <u>implementation-level</u> description of a <u>deterministic</u> one tape Turing machine that decides the following language A over the alphabet $\Sigma = \{c, d\}$. The number of occurrences of symbol c (respectively, d) in a string w is denoted $|w|_c$ (respectively, $|w|_d$).

$$A = \{ w \in \Sigma^* \mid |w|_c \le |w|_d \le 2 \cdot |w|_c \}.$$

That is, in strings of A the number of occurrences of d is at least the number of occurrences of c and at most 2 times the number of occurrences of c.

4. Let

 $\label{eq:TWO_TM} \text{TWO}_{\text{TM}} = \{ < M > \mid M \text{ is a deterministic Turing machine and} \\ L(M) \text{ consists of exactly two strings } \}.$

Without using Rice's theorem show that TWO_{TM} is *undecidable*.

5. (a) (7 marks) Let $T = \{ (i, k, m) \mid i, k, m \in \mathbb{N} \}$. Show that the set T is countable.

- (b) (3 marks) Are the following sets countable? For each case circle the correct answer – no explanation needed. If you circle both YES and NO, it is considered a wrong answer.
 - The set $\{0,1\}^*$. YES NO
 - The set of all subsets of $\{0, 1\}^*$. YES NO
 - The set of all <u>finite</u> subsets of $\{0, 1\}^*$. YES NO

CISC-462 midterm, Fall 2017

(Extra page)