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CIRCUIT COMPLEXITY

Circuit complexity is discussed in section 9.3 of the textbook.

Above we have discussed complexity measures that limit the resources used by an algo-

rithm (a Turing machine). The algorithmic approach has allowed us to obtain significant

results and characterizations. However, it has the following drawbacks or limitations:

• The algorithmic method “makes sense” only when dealing with infinite sets. Any

finite set can be decided by finite table-lookup, and would be considered trivial in this

framework.

• (Related to above:) The algorithmic approach measures only asymptotic complexity,

that is, what happens when inputs become arbitrarily large. Due to finite speed-up and

tape compression results, it seems necessary to omit constant factors when measuring

time or space.

• There are reasons to believe that the standard techniques1 available in the algorithmic

method are not sufficient to solve certain important questions like P =? NP. (This is

discussed further in section 9.2 in the textbook.)

We can deal better with complexity issues of finite sets if, instead of measuring resources

used by an algorithm, we measure the size of the algorithm deciding a finite set.

With an infinite set B we can then associate a function describing the rate of growth of

the sizes of algorithms needed to decide membership in B for inputs of length n.

An above type of complexity measure is called descriptional complexity or non-uniform

complexity. We consider here one particular non-uniform complexity measure: Boolean

circuit complexity.

1That is, simulation to prove inclusion of complexity classes and diagonalization to prove strict inclusion.
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For the definitions of the notions: Boolean circuit, circuit family, size complexity and

depth complexity of a circuit family, see section 9.3.

The standard examples of circuits usually compute some function on Boolean values

(parity etc.). Below we illustrate how circuits can be used for more general computational

tasks.

Example. We recall the definition of the graph reachability problem encoded as a language:

PATH = {< G, s, t > | G is a directed graph that has

a directed path from node s to node t}

We show that PATH has polynomial circuit size complexity.

We assume that the input graph has nodes 1, . . . , n and we want to determine whether

there is a path from 1 to n (this does not lose generality since, if necessary, we can rename

the nodes).

The graph G is represented as an n× n binary matrix giving the adjacency matrix of G.

• For each m = n2 we construct a Boolean circuit Cm that accepts (outputs the value

1) exactly those strings in {0, 1}m that represent an adjacency matrix of a graph for

which there is a path from node 1 to node n.

• For values m that are not a square, we choose Cm to be a circuit that always outputs

zero.

In the following, we consider only the case m = n2. The gates (and input elements) of

Cm are:

gi,j,k, 1 ≤ i, j ≤ n, 0 ≤ k ≤ n,
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hi,j,k, 1 ≤ i, j, k ≤ n.

The intuitive meaning of the gates is as follows:

1. gi,j,k gets the value true if and only if

there is a path from i to j not using any intermediate node larger than k.(1)

2. hi,j,k gets the value true if and only if

there is a path from i to j using k as an intermediate node,(2)

and using no node larger than k.

The input elements, constants and variables are gi,j,0, 1,≤ i, j ≤ n:

• gi,i,0, 1 ≤ i ≤ n, is a constant 1,

• gi,j,0, i 6= j, is a variable that gets the value of the (i, j) entry of the adjacency matrix.

The above is in accordance with property (1).

• The function symbol of hi,j,k is ∧ (AND) and its inputs are gi,k,k−1 and gk,j,k−1.

• The function symbol of gi,j,k, 1 ≤ k ≤ n, is ∨ (OR) and its inputs are gi,j,k−1 and hi,j,k.

By induction on k (the third subindex of the gate names) we see that the above definitions

guarantee that all gates have values as specified in (1) and (2). (To be explained in class.)

The output gate is g1,n,n and it has value 1 if and only if the graph has a path from node

1 to node n. Also, we observe that the size of Cm (with m = n2) is 2n3 + n2.

Note: Cm, m ≥ 1, is a so called uniform circuit family: the circuit Cm can be constructed

using logarithmic space when given 1m as input.
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• It can be shown that any language decided by a polynomial size uniform circuit family

is in P. On the other hand, general polynomial size circuit families can define languages

that are even undecidable.

• Conversely, any language in P can be decided by a uniform polynomial size circuit

family. This follows from Theorem 9.30 by additionally observing that the circuit

family used for the proof of the theorem can be constructed in logarithmic space (on

input 1m the m’th circuit Cm is constructed in log space).

Theorem. The class P consists of exactly languages that have a uniform circuit family of

polynomial size.

If one shows that an NP-complete problem can be decided by a uniform polynomial size

circuit family, this implies P 6= NP. In fact, NP-complete problems are not known to have

even general polynomial size circuits (not necessarily uniform). Note that it is easy to give

an example of an undecidable language with polynomial size circuits (naturally the circuits

cannot be uniform).

On the other hand, it is very hard to prove lower bounds for the size of circuits deciding

any concrete NP-complete problem. The best known lower bounds are linear c ·n with small

constants c.


