
CISC462, Fall 2018 1

COMPUTABILITY: Some history

David Hilbert (1862–1943) wanted to clarify the methods of mathematical reasoning by

creating a consistent and complete formal axiomatic proof system for all of mathematics.

• A formal axiomatic proof system is a precisely defined set of rules consisting of pos-

tulates and methods of inference. Here “precisely defined” means that the rules can

be defined similarly as the syntax of a programming language (for example, using a

grammar).

• Consistence means that it is not possible to prove an assertion and the negation of

the same assertion. (Note that in an inconsistent system you can prove any assertion!

Why?)

• Completeness means that if you take any meaningful assertion A, within the system

you can prove either A or (notA).

To the surprise of everyone, Kurt Gödel showed in 1931 that the so called “Hilbert’s

program” cannot be realised. In fact, Gödel showed that any formal axiomatic proof system

dealing just with elementary number theory (the natural numbers with addition and multi-

plication) cannot be both consistent and complete. That is, in any consistent system there

must be true statements that are not provable. Consistency is a minimum requirement since

otherwise the system could prove anything!

The fundamental idea of Gödel’s result is self-reference. Gödel’s proof involves arithme-

tization of logical statements and is not easy to follow.

Alan Turing used in 1936 a completely different approach to prove unsolvability of

certain algorithmic problems. However, the fundamental idea of self-reference remains the

same. Turing’s result is much more transparent, mainly because he uses a nice formal model

for algorithms. This is the model later named as Turing machines. The impossibility of

Hilbert’s goal follows also from Turing’s argument.



CISC462, Fall 2018 2

The Turing machine model is by no means the only theoretical “general purpose” model

for algorithms. It is, perhaps, the most commonly used and, from a theoretical point of

view, the most convenient model to be used both in computability theory and in complexity

theory. The reasons for the above claims will be discussed during the course.

More information on the history can be found in

• G.J. Chaitin: Thinking about Gödel and Turing, Essays on Complexity, World Scien-

tific, 2007.

Turing machines

Alan Turing developed the model now called Turing machine in 1935–36, that is, about 10

years before first electronic computers were built. Turing used the model to study the limits

of what he called “mechanical computation”.

In spite of it’s simplicity, the Turing machine model is very powerful: according to

the Church-Turing thesis every algorithmically computable function can be computed by

a Turing machine. However, the Church-Turing thesis is a “thesis” and not a “theorem”

because it is impossible to prove to be correct due to the fact that the notion “algorithmically

computable function” is only intuitive and does not have a formal definition.1

TM’s can be viewed as an extension of finite automata or pushdown automata:

1. The read-write head can move in either direction.

2. The head can change symbols (“write”) on the tape.

Turing machines are used as a model for general-purpose computers. We will go through

the formal definition of a TM in the coming week.

1When discussing the Church-Turing thesis we should be careful to restrict consideration to computational

problems that are defined simply as a function that associates an output to a set of inputs that are all given

at the start of the computation. We will return to this issue later during the course.



CISC462, Fall 2018 3

or "cells"
The tape is divided into "squares"

one-way infinite

Read-write head

control
Finite

Input/work tape

Figure 1: Turing machine (basic) model

On the other hand, TM’s are quite clumsy as a practical model of an algorithm and it is

cuite cumbersome to give precise descriptions of TM’s that solve non-trivial problems. We

will go through several TM implementations of various algorithms. This is done mainly to get

ourselves acquainted with the TM model. The textbook has good and readable descriptions

of TM implementations of algorithms that perform some (relatively) non-trivial tasks.

In some sense, TM’s can be viewed as a very low-level programming language. The fact

that the model is very simple makes it hard to explicitly construct machines that solve prob-

lems of interest, however, the simple definition makes the analysis of TMs more manageable.

COMPUTATIONAL COMPLEXITY

Computability theory wants to determine which algorithmic problems are solvable, in prin-

ciple, on a computer. Computability is not concerned with time (or other resources) used

by an algorithm. As long as we have an algorithm that eventually terminates with the cor-

rect answer, the problem is considered “solvable” in computability – it does not make any

difference if running the algorithm already on inputs of small size to longer than the age of

the universe. When we want a more realistic answer whether or not an algorithmic problem

has a feasible solution, we need to consider the computational complexity of problems.

The goal of complexity theory is to determine the computational resources required to



CISC462, Fall 2018 4

solve important computational problems and to classify problems according to their inherent

difficulty. The resources typically considered include computational time (that is, number

of computation steps), space (that is, the amount of memory used) and circuit size (that is,

available hardware).

When we are given a specific algorithm for a computational problem, this naturally gives

an upper bound for the time or space complexity of the problem. The main challenge in

computational complexity is to prove lower bounds, that is, to prove that certain problems

cannot be solved without expending large amounts of resources. It is possible to prove

that inherently difficult problems exist. That is, we can prove that certain problems have

arbitrarily “bad” time/space complexity. However, the proof involves (resource bounded)

diagonalization and the problems are artificially constructed. It turns out to be much more

difficult to prove complexity lower bounds for naturally defined and useful problems.

In many cases we can provide strong evidence of intractability using notions of reducibility

and completeness. Important computational models include nondeterministic and probabilis-

tic machines. A nondeterministic machine can be viewed as a deterministic machine that

only needs to verify the correctness of solutions, instead of finding the solutions. It seems

reasonable to expect (at least when thinking of natural hard combinatorial search problems)

that it is more difficult to find a solution to a problem than it is to check the correctness

of a proposed solution. Or, when thinking of mathematical theorems the same question can

be formulated as follows: is it more difficult to find a proof of a theorem than it is to verify

that a given proof is correct. Showing nondeterministic algorithms to be more powerful than

corresponding deterministic algorithms using the same amout of time/space, would confirm

this “intuitive feeling” as a fact of life. The philosophical importance of the well known P

vs. NP question is based on above types of considerations.



CISC462, Fall 2018 5

Algorithmic problems

An algorithmic problem consists of a (usually infinite) set of inputs each of which is associated

with a unique output. An algorithmic problem can be viewed as a function

Sinputs → Soutputs

from the set of inputs onto the set of outputs. The sets of inputs and outputs are typically

encoded as sets of finite strings over an alphabet Σ.

As a special case we can consider decision problems where the set of outputs has only two

values “yes” and “no” (or 0 and 1). Typically when dealing with computability or complexity

questions it is possible to reduce the problem to a “corresponding” decision problem, i.e., we

get essentially similar type results by restricting consideration to algorithmic problems with

only “yes” and “no” outputs.

It makes life easier if we restrict consideration to decision problems because then, instead

of talking about functions, we can identify the problem with a language (or set of strings).

The language consists of inputs corresponding to the “yes” value.

Intuitively, by an (informal) algorithm we mean a set of instructions which can be used to

solve a given problem in a systematic way. We typically would want such a set of instructions

IS to have at least the following properties in order to call it an algorithm.

Definition 1. Informal definition of an algorithm.

(A1) IS is finite (a finite number of atomic instructions)

(A2) The instructions of IS are applied deterministically, i.e., at each stage of the compu-

tation the next instruction is uniquely determined.

(A3) The instructions are capable of solving any instance of the problem.

(A4) The instructions are terminating, that is, for each legal input the result is obtained

after a finite number of applications of the operations.



CISC462, Fall 2018 6

From (A4) a natural question arises: How many steps, or applications of the instructions

are needed on a given input of given size? This is informally referred to as time complexity

of the problem. Alternatively, in complexity considerations we can measure other resources

such as the number of memory cells used by the computation (or space complexity), or the

size of the algorithm itself.

Note that time/space complexity is typically measured as a function of the size of the

input. We will be interested in asymptotic complexity, i.e., the question how the complexity

function behaves for inputs of large size.

Furthermore, each type of complexity can be measured either for worst-case or average-

case inputs. Usually researchers concentrate on worst-case complexity (this applies also

to the present course). As we will see, already determining the precise relationships of

the fundamental worst-case complexity classes is quite challenging. Questions dealing with

average-case complexity are much harder and very little is known on this topic.

Finally, we can note that many (in fact “most”, in a precisely quantifiable sense) decision

problems, that is, functions fdp : Σ
∗ → {0, 1} are, in fact, uncomputable. That is, such prob-

lems cannot be solved by any algorithm independently of the amount of resources available.

We will go over this result, as well as other aspects of uncomputability, in the early part of

the course.

Formalization of the notion of algorithm

Our intuitive definition of an algorithm (Definition 1) is sufficient e.g. when we want to show

that

• a given problem has an algorithmic solution, or,

• a given problem can be solved in polynomial time (using a particular set of instruc-

tions).

On the other hand, the informally defined notion of algorithm is not precise enough if we



CISC462, Fall 2018 7

want to

• obtain lower bounds for the complexity of some problem, that is, show that the problem

has no algorithmic solution using time (or space) less than function f , or,

• show that a given problem has no algorithmic solution.

To prove that no algorithm solves a problem we have to know precisely what are all the

algorithms! In order to formalize the notion of algorithms we will use the Turing machine

(TM) model discussed in the next subsection.

As is well known, all basic questions related to correctness of computations of the TM

model (such as the halting problem, equality of accepted languages, etc.) are unsolvable,

in particular, it is not possible to determine whether a TM is an algorithm in the sense of

Definition 1.

We want to argue that the uncomputability issues are not caused by any deficiency in the

TM model, and in fact, there does not exist any finitely specified formalization of algorithms

that would satisfy conditions (A1)–(A4) of Definition 1. The notion of finitely specified

formalization is defined below.

Definition 2. A finitely specified formalization of algorithms encodes each algorithm effec-

tively as a finite string. This means the following:

• for each algorithm the corresponding instruction set IS is encoded as a string w ∈ Ω∗,

where given w the instruction set IS can be constructed,

• there is an algorithm that for a given a string w ∈ Ω∗ decides whether or not w encodes

some algorithm (in our formalization).

The above conditions seem quite reasonable if we think of representations of algorithms

as programs. They just say that each program has finite length when written over a fixed

character set and there is an algorithm that decides whether or not a given character string



CISC462, Fall 2018 8

encodes a legal program. (The syntactic correctness of programs written in any standard

programming language is verified by a compiler.)

We have the following negative result:

Theorem 1. There is no finitely specified formalization of the informal definition of algo-

rithms.

The method used to prove Theorem 1 is called diagonalization (which is a specific form

of self-reference that was mentioned earlier.) We will discuss diagonalization in detail in the

context of the Turing machine model.

Due to the diagonalization problem, when formalizing algorithms we need to drop the re-

quirement that the algorithms must terminate (condition (A4)). Computations of the Turing

machine model are not guaranteed to terminate and, in fact, it is an unsolvable problem to

determine whether at Turing machine halts on a given input. Theorem 1 indicates that this

is not caused by some “defect” in the Turing machine model – according to Theorem 1 there

simply does not exist any finitely specified formalization of algorithms where the algorithms

are additionally required to terminate.

In theoretical considerations it is sometimes useful to consider also nondeterministic

algorithms where we additionally drop condition (A2).


