
Level-Of-Detail Al for a large
Role-Playing Game

Mark Brockington-Bio Ware Corp.
markb8bioware.com

he initial design document for BioMare's multiplayer title, Neverwinter Nights
TuvWN , called for adventures that spanned a series of areas similar in size to those
in our previous single-player r ~ l e - ~ l a ~ i n ~ games (the Baldurj Gate series). Each area
within an adventure is a contiguous region of space that is linked to other areas via
area transitions. The interior of a house, a patch of forest, or a level of a dungeon
would each be represented as a single area.

We found that we had to limit the number of resources taken up by the game and
A1 by limiting the engine to one master area group in Baldurj Gate. A master area
group was a subset of all of the areas within the adventure. A master area group usu-
ally consisted of an exterior area and all of the interiors of the buildings within that
exterior area. When a player character (PC) reached an area transition that would
transfer it to a different master area group, all users heard "You must gather your party
before venturing forth." This was a major headache during a multi-player game unless
you were operating as a well-behaved party that traveled as a group. It regularly
appears on our message boards as one of our most hated features.

A major design goal for NWNwas that it must be a fun multi-player role-playing
game. Thus, it was evident that restricting players' movement by the methods we used
in Baldurj Gate would be impossible. After a brief discussion or two, we decided that
we would have all of the areas within a given adventure active and in memory at all
times, and reduce the size of our adventures so that they were a bit smaller in scope.

However, this posed a problem for the AI programmer. Depending on the num-
ber of areas, and the number of autonomous agents (or creatures) within each area, we
would have thousands of agents operating within the game world. Each of these crea-
tures could make high CPU demands on the AI engine (such as movement or com-
bat) at the same time. Everything in the world could come to a ginding halt as the A1
worked its way through thousands of requests.

Graphics engines face a similar problem when they must render a large number of
ob/ecrs on the screen. Shce everygrapbh cb@ b a a //hit to &e number of trimgJes
that it can render each frame, one solution is to draw the same number of objects, but
with some of them containing fewer triangles. Depending on the scene complexity,

420 Section 8 FPS, RTS, and RPG Al

each object can be rendered with an appropriate level-of-detail. Thus, this level-of-
detail algorithm can control and adjust the number of triangles drawn each frame
while still managing to draw every object.

If it works in graphics, why not for our artificial intelligence needs? We are going
to illustrate the level-of-detail AI system that we implemented in Neverwinter Nights.
We start by translating the level-of-detail concept to AI. Then, we describe how one
can classify agents by the level-of-detail they require. Finally, we show how actions
with high resource usage can be limited.

Level-Of-Detail from the Al Perspective
The advantages of storing 3D objects at different resolutions or levels-of-detail was
first discussed 25 years ago [Clark76]. An object that is onscreen and close to the carn-
era might require hundreds or thousands of polygons to be rendered at sufficient
quality. However, if the object is distant from the camera, you might only need a sim-
plified version of the model with only a handful of polygons to give an approximate
view of what the object looks like. Figure 8.5.1 shows an example [Luebke98] of how
3D graphics might simplify a 10,000-polygon lamp into something barely resembling
a lamp with 48 polygons. In Figure 8.5.2, we see an example of how to use these
lower-polygon models to render four lamps, using fewer polygons than if we only had
the single high-polygon lamp.

FIGURE 8.5.1 Lamps of varying levels-of detail, viewedfiom the same distance. (@
2002, David Luebke. Reprinted with permission.)

FIGURE 8.5.2 Lamps of va rying levels-of detail, viewed at dtfferent distances. (@ 2002,
David Luebke. Reprinted with permission.)

How does this translate to artificial intelligence? If we view artificial intelligence
as creating the illusion of intelligence, the goal of the game A1 would be to make the
objects that the player (or players) can see exhibit smart behaviors. We want to per-
form more precise A1 algorithms and techniques on them to enhance the illusion of

The converse is also true. If an object is off screen, or is so distant that it is diffi-
cult to analyze its behavior, does it really matter whether the object is doing some
clever AI? We could save CPU time by using approximations of smart behaviors on
objects that no player can see.

Level-Of-Detail Classifications
What can each player see? In NWN, the player character (PC) is centered in the mid-
dle of the screen. The camera can be freely rotated around the PC. To control the
number of objects on screen, we limited the pitch of the camera so that one could see
at most 50 meters around the character at any one time.

There are secondary factors to consider when classifying objects. Your best algo-
rithms should go into controlling player characters, since they are always on screen. If
players do notice intelligent behavior on other creatures, the players will be looking
for it more closely on creatures that are interacting with their PC (either in combat or -

in conversation). Finally, if a creature is in an area in which there is no player to see it,
a further relaxation of the A1 is possible.

In NWN, there are five different classifications for an object's level-of-detail, as
shown in Table 8.5.1 going from highest to lowest priority.

Table 8.5.1 LOD Levels in Newminter Nights

LOD Classification

1 Player Characters (PCs) (your party)
2 Creatures firrhtinc or interacting with a PC

4 Creatures in the same large-scale area of a PC
5 Creatures in areas without a PC.

In Figure 8.5.3, we see a number of objets within two separate areas. Each large
square in Figure 8.5.3 represents a different area. There are three players in the game,
each controlling a single PC. PCs are represented by a small circle, with a large circle
indicating the area that can be seen by the player. Creatures are represented with a
small square. Both PCs and creature symbols contain their current LOD.

PCs are always LOD 1, so each small circle contains a 1. Creatures fighting or
inreracting with PCs contain the number 2. Creatures in the proximity of PCs con-
tain the number 3. Creatures that are not within a 50-meter radius of any player

FIGURE 8.5.3 Thefive chsz~cations of level-ofdetail in NWN.

contain the number 4. Meanwhile, all of the creatures in the second area contain the
number 5, to represent that they are at the lowest level-of-detail classification.

Each of these levels is easy to detect via mechanics that are already set up within
the game engine. For example, each creature (not just the PCs) attempts to do a visi-
bility check to all creatures within 50 meters of itself, and it is straightforward to
determine if any of those nearby creatures are PCs. Each area has a scripting event that
runs when a PC moves out of an area andlor into another area (whether it is by con-
necting to the game, performing an area transition, or disconnecting from the game).
Thus, determining and maintaining which areas have PCs in them is easy. All attack
actions go through a single function. This is beneficial, as it means there is only one
spot to check if the creature is attacking a PC and, hence, promoting the attacking
creature to the second highest level of priority.

Which Creature Gets the Next Time Slice?

The perceived intelligence of a creature is strongly correlated to its reaction time in
specific situations. For example, a creature that takes too long to chase after a fleeing
PC does not seem as intelligent as a creature that immediately follows the PC as it
runs away. Thus, the five LOD classifications should determine the update frequency
in order to maintain the required level of interactivity or intelligence.

In NWN, each of the creatures is placed on one of the five lists. After we have cat-
egorized all AI objects on to one of the five lists, a function then determines who gets
the next time slice. In NWN, we found that the percentages in Table 8.5.2 work well.

8.5 Level-Of-Detail Al for a Large Role-Playing Game
-* "*."--

423

Table 8.5.2 Percentage of CPU Time for Each Level-of-Detail

CPU Time Level-of-Detail

60% LOD 1: Player Characters
-

24% LOD 2: Creatures interacting with PCs
10% LOD 3: Creatures in uroximitv of PCs
4% LOD 4: Creature in an area with a PC
2% LOD 5: Creatures not in an area with a PC

When an LOD list is allowed to execute, the first creature waiting on that list's A1
queue is processed. Each creature from that list is processed one at a time until the
list's time slice runs out. Each list is not allowed to steal time from the processing of
the lower-priority lists. This guarantees that at least one creature from each list is
allowed to run an A1 update, and prevents starvation of the lowest-priority list.

How Pathfinding Is Affected by Level-Of-Detail

Many AI actions can use up CPU cycles. One of the most time-consuming actions
that one can perform is pathfinding over a complicated terrain. Thus, a pathfinding
algorithm is a logical place to start implementing a level-of-detail algorithm.

Based on the structure of the AI, we decided not to store the pathfinding progress
in the game world data structure. Instead, each creature keeps its own instance of how
the pathfinding algorithm is progressing. However, using an A* approach in this man-
ner would be extremely expensive; we could have dozens of agents attempting to per-
form pathfinding on the same area at the same time, with each pathfinding search
requiring a large amount of RAM. In NWN, we actually used IDA* and other com-
puter chess techniques to save on the resources used [BrockingtonOO].

The terrain is composed of 10-by-10 meter tiles, each of which has information
indicating how it interconnects between other tiles. With this coarse-grained system
(inter-tile pathjnding), one can easily generate a series of tiles that one must travel
through to reach the final destination. We generate our full path by using intra-tile
pathjnding over the 3D geometry on each tile specified by our inter-tile path.

How can one take advantage of this structure with the level-of-detail algorithm? -

Creatures that are on screen are always required to do both an inter-tile path and an
intra-tile path to make paths look smooth and natural. Any creature at LOD 1
through 3 in our hierarchy implements the full pathfinding algorithm. However, it is
important to note that the difference in CPU time allocated to creatures at LOD 1
versus creatures at LOD 3 is significant. For example, in our urban areas, each PC can
usually see eight other non-player characters standing on guard, selling goods, or wan-
dering the streets. Based on the time percentages given earlier, a PC could compute a
complex path 48 times faster than a creature near a PC.

What about LOD 4 creatures? We only bother to compute their paths via the
inter-tile method, and then spend the time jumping each creature from tile to tile at

424 Section 8 FPS, RTS, and RPG Al

the speed that they would have walked between each tile. The intra-tile pathfinding is
where we spend over 90 percent of our time in the pathfinding algorithm, so avoiding
this step is a major optimization. Even if we had not used this approach, the amount
of time we actually devote to each LOD 4 creature is quite small, and the creatures
would seem to be "popping" over large steps anyway!

For LOD 5 creatures, we do not even bother with the inter-tile path, and simply
generate a delay commensurate with the length of the path (as the crow flies), and
jump the creature to its final location.

What happens if a creature has its priority level increased? Well, in this case, the
path must continue to be resolved at the intra-tile level (in the case of a LOD 4 crea-
ture moving to LOD 3 or above), or at the inter-tile level (in the case of a LOD 5
creature moving to LOD 4).

How Random Walks Are Affected by Level-Of-Detail

Random walking is another action that BioWare designers have used regularly on
creatures in earlier titles. In short, the action takes the creature's current location, and
attempts to have the creature move to a random location within a given radius of its
current location.

The advantages of level-of-detail are clearer for random walks. In the case of
LOD 1 or 2 creatures, we use the full pathfinding algorithm again. For LOD 3 crea-
tures, we only walk the person in a straight line from his current location to a final
location. This is accomplished by testing to see if the path is clear before handing the
destination to the full pathfinding algorithm. Creatures at LOD 4 and 5 do not move
based on random walk actions, because there is no point in executing the action until
a PC is there to see them move.

How Combat Could Be Affected by Level-Of-Detail

In NWN, we use the highly complex Advanced Dungeons and Dragons rule set to
determine the results of a combat. The base combat rules fill 10 pages of text, and
there are over 50 pages of exceptions to the base rules specified in the Player? Hand-
book alone.

To work out the result of a combat in real time is a technically challenging task;
one that could be optimized in our current system. At LOD 1 and 2, we have to
implement the full rule system, since the results of these combats are actually shown
to a PC. At LOD 3 or below, a PC is not privy to the rolls made during a combat. If
there are things that are too complicated to compute in a reasonable amount of time,
one does not need to compute them at this level or below. However, LOD 3 creatures
must be seen to be performing what looks like the actual rules.

At LOD 4 or 5 , one does not even need to use the rules; no one can see the fight,
so the only thing that matters is that the end result is relatively close to what would
happen in practice. Rules can be simplified by analyzing the damage capabilities of
each creature, multiplying this by the number of attacks, and then randomly applying

that damage at the beginning of each round based on the likelihood of each attack
succeeding. At LOD 5 , one could automatically resolve combat based on a biased
coin flip instead of spending the time to actually compute which character is stronger.
The differences in the challenge ratings of each creature could be used to bias the coin
flip.

In this article, we described a system for implementing A1 in a role-playing game with
thousands of agents. We also showed a hierarchy for classifying objects into levels-of-
detail, and how to use this classification to determine which algorithm to use for some
resource-intensive actions. Areas that you can exploit based on level-of-detail include:

Processing frequency.
Pathfinding detail, especially if you employ hierarchical searching.
Pathfinding cheating.
Combat rules and detail.

The actions and classification that we presented focused on discrete levels-of-
detail. However, most graphics research focuses on various methods of doing contin-
uous level-of-detail, such as progressive meshes [Hoppe96]. A couple of approaches
for continuous LOD were considered for NWN. We experimented with varying the
size and depth of the pathfinding search based on a continuous LOD measure (such
as the distance to the nearest player), but our results were unsatisfactory in compari-
son to the discrete LOD system described in this article. We also experimented with a
continuous LOD system for smoother interpolation of processing frequency, and
failed to provide any additional benefit over and above what we saw with our discrete
LOD system. We hope that your experiments are more successful.

References
[Br~ckin~tonOO] Brockington, Mark, "Pawn Captures Wyvern: How Computer

Chess Can Improve Your Pathfinding," Game Developers Conference 2000 Pro-
ceedings, pp. 119-133,2000.

[Clark761 Clark, James, "Hierarchical Geometric Models for Visible Surface Algo-
rithms," Communications of the ACM, Vol. 19, No 10, pp. 547-554. 1976.

[Hoppe96] Hoppe, Hugues, "Progressive Meshes," Computer Graphics, Vol. 30 (SIG-
GRAPH 96), pp. 99-108, 1996.

[Luebke98] Luebke, David, Ph.D. Thesis, "View-Dependent Simplification of Arbi-
trary Polygonal Environments," UNC Department of Computer Science Techni-
cal Report #TR98-029, 1998.

	Cover
	1. GENERAL WISDOM
	The Evolution of Game Al
	The Illusion of Intelligence
	Solving the Right Problem
	12 Tips from the lkenches

	2. Useful Techniques and Specialized Systems
	Building an Al Diagnostic Toolset
	A General- Purpose Trigger System
	A Data- Driven Architecture for Animation Selection
	Realistic Character with Prioritized, Categorized Animation
	Designing a GUI Tool to Aid in the Development of Finite- State Machines
	The Beauty of Response Curves
	Simple and Efficient Line- of- Sight for 3D Landscapes
	An Open- Source Fuzzy Logic Library

	3. PATHFINDING WITH A*
	Basic A* Pathfinding Made Simple
	Generic A* Pathfinding
	Pathfinding Design Architecture
	How to Achieve Lightning- Fast A*
	Practical Optimizations for A* Path Generation

	4. PATHFINDING AND MOVEMENT
	Simple, Cheap Pathfinding
	Preprocessed Solution for Open Terrain Navigation
	Building a Near-Optimal Navigation Mesh
	Realistic Turning between Waypoints
	Navigating Doors, Elevators, Ledges, and Other Obstacles
	Simple Swarms as an Alternative to Flocking

	5. TACTICAL ISSUES AND INTELLIGENT GROUP MOVEMENT
	Strategic and Tactical Reasoning with Waypoints
	Recognizing Strategic Dispositions: Engaging the Enemy
	Squad Tactics: Team Al and Emergent Maneuvers
	Squad Tactics: Planned Maneuvers
	Tactical Team Al Using a Command Hierarchy
	Formations

	6. GENERAL PURPOSE ARCHITECTURES
	Architecting a Game Al
	An Efficient Al Architecture Using Prioritized Task Categories
	An Architecture Based on Load Balancing
	A Simple Inference Engine for a Rule- Based Architecture
	Implementing a State Machine Language
	Enhancing a State Machine Language through Messaging

	7. DECISION-MAKING ARCHITECTURES
	Blackboard Architectures
	Introduction to Bayesian Networks and Reasoning Under Uncertainty
	A Rule- Based Architecture - Using the Dempster- Shafer Theory
	An Optimized Fuzzy Logic Architecture for Decision- Making
	A Flexible Goal- Based Planning Architecture

	8. FPS, RTS, AND RPG AI
	First-Person Shooter Al Architecture
	Architecting an RTS Al
	An Economic Approach to Goal- Directed Reasoning in an RTS
	The Basics of Ranged Weapon Combat
	Level- Of- Detail Al for a large Role- Playing Game
	A Dynamic Reputation System Based on Event Knowledge

	9. RACING AND SPORTS AI
	Representing a Racetrack for the Al
	Racing Al Logic
	Training an Al to Race
	Competitive Al Racing under Open Street Conditions
	Camera Al for Replays
	Simulating Real Animal Behavior
	Agent Cooperation in FSMs for Baseball
	Intercepting a Ball

	10. SCRIPTING
	Scripting: Overview and Code Generation
	Scripting: The Interpreter Engine
	Scripting: System Integration
	Creating Scripting Languages for Nonprogrammers
	Scripting for Undefined Circumstances
	The Perils of Al Scripting
	How Not to Implement a Basic Scripting Language

	11. LEARNING
	Learning and Adaptation
	Varieties of Learning
	GoCap: Game Observation Capture
	Pattern Recognition with Sequential Prediction
	Using N- Gram Statistical Models to Predict Player Behavior
	Practical Natural Language Learning
	Testing Undefined Behavior as a Result of Learning
	Imitating Random Variations in Behavior Using a Neural Network
	Genetic Algorithms: Evolving the Perfect 7koll
	The Dark Art of Neural Networks

	Index
	Backcover

