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Abstract

This chapter overviews the topic of protein motif discovery. It presents current ap-
proaches to knowledge discovery, focusing on their applications to the protein domain.
In general, a motif is considered an abstraction over a set of recurring patterns in a
dataset. Although we are primarily concerned with protein structure motifs, the chap-
ter also considers sequence motifs and combinations of sequence/structure motifs. The
research described is motivated by our need to organize and understand the rapidly
growing protein databases. Discovered motifs are also useful in automating the process
of structure determination from crystallographic databases.

The �eld of knowledge discovery is concerned with the theory and processes involved
in the representation and extraction of patterns or motifs from large databases. Discovered
patterns can be used to group data into meaningful classes, to summarize data or to reveal
deviant entries. Motifs stored in a database can be brought to bear on di�cult instances
of structure prediction or determination from X-ray crystallography or NMR experiments.
The need for automated discovery techniques is central to the understanding and analysis
of the rapidly expanding repositories of protein sequence and structure data.

This chapter deals with the discovery of protein structure motifs. A motif is an abstrac-
tion over a set of recurring patterns observed in a dataset; it captures the essential features
shared by a set of similar or related objects. In many domains, such as computer vision and
speech recognition, there exist special regularities that permit such motif abstraction. In the
protein science domain, the regularities derive from evolutionary and biophysical constraints
on amino acid sequences and structures. The identi�cation of a known pattern in a new
protein sequence or structure permits the immediate retrieval and application of knowledge
obtained from the analysis of other proteins. The discovery and manipulation of motifs |
in DNA, RNA, and protein sequences and structures | is thus an important component of
computational molecular biology and genome informatics. In particular, identifying protein
structure classi�cations at varying levels of abstraction allows us to organize and increase
our understanding of the rapidly growing protein structure datasets. Discovered motifs are
also useful for improving the e�ciency and e�ectiveness of X-ray crystallographic study of
proteins, for drug design, for understanding protein evolution, and ultimately for predicting
the structure of proteins from sequence data.

Motifs may be designed by hand, based on expert knowledge. For example, the Chou-
Fasman protein secondary structure prediction program (1978), which dominated the �eld
for many years, depended on the recognition of pre-de�ned, user-encoded sequence motifs
for �-helices and �-sheets. Several hundred sequence motifs have been catalogued in Prosite
(Bairoch 1991); the identi�cation of one of these motifs in a novel protein often allows for
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\Pattern Discovery in Molecular Biology: Tools, Techniques and Applications," by Jason Wang, Bruce
Shapiro and Dennis Sha sha (Eds.). Reprinted by permission of Oxford University Press, Inc.
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immediate function interpretation. In recent years there has been much interest and research
in automated motif discovery. Such work builds on ideas from machine learning, arti�cial
neural networks, and statistical modeling, and forms the basis for the methods for protein
motif discovery described in this paper.

The search for protein structure motifs begins with the knowledge that some proteins with
low sequence similarity fold into remarkably similar 3D conformations. Moreover, even glob-
ally di�erent structures may share similar or identical substructures (Rooman, Rodriguez,
& Wodak 1990; Unger et al. 1989), as predicted by Pauling, Corey & Branson h (1951)
and veri�ed in many of the early crystallographic experiments. Researchers have discov-
ered and catalogued important motifs at the secondary, super-secondary, and tertiary
structure levels (Ponder & Richards 1987; Taylor & Thornton 1984; Wilmot & Thorn-
ton 1988). Recently, there has also been interest in the automated discovery and use of
structural motifs at levels �ner than that of secondary structure (Hunter & States 1991;
Rooman, Rodriguez, & Wodak 1990; Unger et al. 1989).

In the remainder of this chapter, we describe several types of protein motifs and present
approaches to knowledge discovery and their application to the problem of structure motif
discovery. We conclude the chapter with a presentation of criteria by which a motif, and
associated motif discovery techniques, may be judged.

Protein Motifs

The study of relations between protein tertiary structure and amino acid sequence is a
topic of tremendous importance in molecular biology. The automated discovery of recurrent
patterns of structure and sequence is an essential part of this investigation. These patterns,
known as protein motifs, are abstractions over one or more fragments drawn from proteins
of known sequence and tertiary structure. The Protein Data Bank (Bernstein et al. 1977)
is the main source of data regarding the 3D structure of proteins.

Protein motifs can be roughly divided into four categories (as illustrated in Figure 1):
sequence motifs are linear strings of amino acid residues (or residue classes) with an
implicit topological ordering; sequence-structuremotifs are sequence motifs that associate
residues in the motif with secondary structure identi�cations; structure motifs are 3D
objects that correspond to portions of a protein backbone, possibly combined with side-
chains; and structure-sequence motifs are structure motifs in which nodes of the graph
are annotated with sequence information. The distinction between sequence and structure
motifs has previously been considered in (Thornton & Gardner 1989) and (Conklin, Fortier,
& Glasgow 1993).

Di�erent types of motifs have di�erent purposes. For example, protein sequence motifs
can facilitate the incremental acquisition of sequence data into knowledge bases organized
according to sequence similarity (Taylor 1986). Protein structure motifs can be used as
building blocks for protein model building in crystallography (Jones & Thirup 1986). Fi-
nally, protein structure-sequence motifs are useful in automated structure prediction, model
building and model design (Unger et al. 1989). They are also applicable to automated ap-
proaches to protein structure determination from crystallographic data (Fortier et al. 1993;
Glasgow, Fortier, & Allen 1993).
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Figure 1: Various types of protein motifs. Legend: X: any residue, G: glycine, V: valine,
H: �-helix,T: turn, p: polar, h: hydrophobic.
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Following, we discuss the di�erent types of protein motifs in more detail and present
recent studies that involved the discovery of such motifs.

Sequence and sequence-structure motifs

Protein sequence motifs are the most commonly encountered motif type in the molecular bi-
ology literature. It is generally assumed that similarities in protein sequence are indicative of
structural and functional similarity. Thus, the discovery of sequence motifs from structurally
similar proteins or protein fragments is an important method for uncovering relationships
between structure and sequence. Protein sequence motifs can facilitate the incremental ac-
quisition and indexing of sequence data into knowledge bases organized according to sequence
similarity (Taylor 1986).

Finding motifs in sequences involves two main steps: 1) assembling a training set of
sequences with common structure or function, then 2) analyzing the training set for regions
of conserved amino acids. Sequence motifs may be discovered from a maximal alignment of
one or more protein sequences, followed by the abstraction of residues at aligned positions.
Conserved residues are those identical at corresponding alignment positions. In recent years,
the use of Hidden Markov Models has become predominant in the sequence modeling
area (Krogh et al. 1994). There is an extensive literature on the comparison of sequence
motifs.

Much of the work on protein structure prediction is based on the a priori de�nition of
sequence motifs that are predictive of a certain type of secondary structure identi�er. These
sequence-structure motifs (referred to by Thornton and Gardner (1989) as \structure-related
sequence motifs") have an inherent directionality of implication from sequence to structure.
The work of Rooman andWodak (1988) associates each amino acid in a motif with a standard
secondary structure identi�er (e.g., motif b in Figure 1). This work demonstrated that, while
associations su�cient to predict a complete protein structure were not derived, a number of
reliably predictive motifs do exist.

Structure and structure-sequence motifs

Structure motifs constitute the building blocks that can be used to describe the tertiary
structure of a protein. The accurate prediction of protein tertiary structure from amino acid
sequence, while theoretically possible, remains one of the great open problems in molecular
biology. One way of addressing this has been to break the problem into the problem of pre-
dicting secondary structure from sequence followed by the problem of packing the secondary
structure into 3D conformations.

Although secondary structures are the most commonly considered structure motifs, there
has been increased interest in the automated discovery and use of structural patterns at both
a �ner and coarser level than that of �-helix or �-sheet. Unger et al. (1989), for example,
report the discovery of motifs for structural fragments containing 6 amino acids, whereas
Taylor and Thornton (1984) consider motifs at the level of super-secondary structure.

Global tertiary structure motifs typically characterize protein families and super-families
(Orengo, Jones, & Thornton 1994), though several global motifs (like the so-called TIM-
barrel) are shared by proteins that are not evolutionarily related nor functionally similar
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(Jones & Thornton 1994).
The abundance of sequence information produced by large-scale sequencing e�orts, com-

bined with the increasing rate of structure information coming from X-ray crystallography
and NMR, is producing the kind of huge and diverse databases necessary for both model-
based and \memory-based" structure prediction and determination, as well as for phyloge-
netic analysis in evolutionary biology. Concomitant with the increasing availability of these
di�erent data types, is a growing belief that protein structure prediction and recognition
methods ought to be, like the protein folding process itself, a simultaneously global and
local, bottom-up and top-down application of constraints. For these reasons, the last several
years have seen an increasing focus on integrated, multiple-resolution, multiple-view protein
databases. This general trend and the associated opportunities to use genomic, structural,
functional, and evolutionary information to reinforce each other and �ll in each others' gaps
have led researchers to look for structural motifs that can be associated with and predicted
from sequence motifs.

A few researchers have added sequence annotation, or computed sequence-structure cor-
relation, after completion of their structure motif discovery. Unger et al. (1989) used a
k-nearest-neighbours method to �nd clusters in the space of protein backbone fragments of
length 6 residues. They tabulated the frequencies of amino acids types at every position,
producing a sequence motif for each of their approximately 100 structure motifs. Their re-
sults indicated that the local 3D structure of a fragment can sometimes be predicted by the
assignment of the fragment to a motif based on these frequency tables. Rooman, Rodriguz &
Wodak (1990) produced a physico-chemical properties motif for each of the 4�10 structural
classes they discovered in di�erent runs of a hierarchical clustering of fragments of length
6 : : : 10. Zhang and Waltz (1993) used a variant of k-means clustering on structure fragments
of size 7, and then tested the �2 signi�cance of the association of their 23 local structure
classes with particular amino acid combinations.

In contrast, other researchers have attempted to produce structure-sequence motifs, or
just highly predictable structure motifs, by discovering motifs in sequence- and structure-
space simultaneously. Lapedes, Steeg & Farber (1995) simultaneously trained two neural
networks, one taking local sequence fragments as input, the other taking the corresponding
local tertiary structure fragments, using an objective function that maximized the correla-
tion between the two networks' outputs. The e�ort described in their paper, representing
preliminary steps in a larger, ongoing project, succeeded in �nding novel secondary structure
classes that are more predictable from amino acid sequence than the standard helix, sheet,
and coil classes.

Conklin (1995) used conceptual clustering to produce mutually predictable sequence and
structure motifs, and by treating both sequence and structure fragments within the same
model-theoretical framework, avoided the \confused dual semantics" displayed by many
other attempts to relate sequence and structure.

As an alternative to the traditional approach of predicting structure from sequence,
inverse protein folding involves predicting sequence from structure. For example, one
can use genetic algorithms or other search methods to generate and test many possible
sequences to see which ones might fold into a given structural pattern. Protein threading
algorithms (Lathrop & Smith 1995) are used to answer the question of whether and how
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each such sequence \�ts" onto a structure motif characterized by particular physico-chemical
environments and attributes.

Hierarchical motifs

A number of groups have worked on the discovery of motifs at two or more levels of protein
organization, simultaneously or in stages.

The Zhang-Waltz (1993) work is a good example of this idea. Their motif discovery
process proceeded in three stages: First, they selected a set of objectively-de�nable prim-
itives that compactly carried the local structural geometry of protein backbone segments.
Second, the database of local structure segments, represented in terms of these new canon-
ical feature vectors, was clustered using a k-means method. The researchers found that 23
such novel secondary structure classes produced the best �t to the data. Third and �nally,
they represented longer stretches (corresponding roughly to super-secondary structure) of
protein backbone, in terms of sequences of symbols corresponding to the local structure
classes found in step two, and designed and trained a �nite-state machine to recognize the
sequences. Thus the description of the trained �nite state machine represented a set of de
novo super-secondary structure motifs discovered on top of a set of de novo secondary struc-
ture motifs. Building upon this work the researchers later tested other input representations
and clustering parameters to arrive at a set of structural building blocks that, they claim,
have generality across large and diverse sets of proteins (Zhang et al. 1993).

Conklin, Fortier & Glasgow (1994) introduced a category of hierarchical protein motifs
that captures, in addition to global structure, the nested structure of the subcomponents of
the motif. This representation was used to discover recurrent amino acid motifs, which were
then used for the expression of higher-level protein motifs.

Computational Approaches to Knowledge Discovery

Knowledge discovery has been de�ned as \the non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data" (Fayyad, Piatetsky-
Shapiro, & Smyth 1996). Generally, the automated discovery process is interactive and
iterative. Brachman and Anand (1996) divide this process into several steps. These in-
clude: developing an understanding of the application domain; creating a target data set;
data cleaning and preprocessing; �nding useful features with which to represent the data;
data mining to search for patterns of interest; and interpreting and consolidating discovered
patterns.

Several approaches to knowledge discovery have been proposed and applied. Following,
we present an overview of some of these approaches derived from research in machine learning
and statistics. We also discuss their applications to the problem of protein structure and
structure-sequence motif discovery.
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Clustering Approaches

Clustering is a discovery task that seeks to identify a �nite set of classes or clusters that
describe a dataset. Appropriately derived clusters can provide predictive and explanatory
power, as well as lead to a better understanding of a complex dataset. Derived clusters (or
classes) may be mutually exclusive or overlapping. Clustering techniques may generally be
divided into three categories: numerical, statistical and conceptual, described in more detail
below.

Cutting across all three major categories are other aspects by which to distinguish cluster-
ing techniques. For example, both agglomerative and divisive clustering techniques exist.
Agglomerative techniques use a starting point consisting of as many clusters as instances;
the starting point consists of a single cluster in divisive techniques. Clustering techniques
can also be di�erentiated on the basis of whether they allow for overlapping clusters, or
whether they only produce disjoint partitions. A clustering technique may be incremental

or nonincremental depending on whether all of the observations are available at the outset
of a clustering exercise. Another important distinction to be made is between approaches
that incorporate at or hierarchical representations. Hierarchical methods have a special
appeal in the protein science domain, in which both the structural organization of a protein
and the evolutionary process which generated it can be described hierarchically.

Numerical Clustering

In numerical clustering, samples are viewed from a geometric perspective as a set of data
points in an n-dimensional space, where n is the number of attributes used to characterize
each data point. The goal of the clustering exercise is to partition the data points, grouping
similar points together. Figure 2 illustrates a simple clustering of a banking dataset into
three overlapping classes. Such classes could be used to predict good/bad risk groups for
loans.

Distance metrics are used to measure similarity/dissimilarity among data points, while
criterion functions help measure the quality of the data partition. Thus, numerical clustering
techniques generally rely on quantitative attributes. In structural biochemistry, attributes
such as inter-atomic and inter-residue distances, and bond and torsion angles are often
considered in performing numerical clustering. The objective in most numerical clustering
methods is to maximize some combination of intra-class similarity and inter-class distance.

Rooman, Rodriguez & Wodak (1990) use an agglomerative numerical clustering tech-
nique to discover structure motifs, which are represented by prototypical fragments. In this
method, only C� positions are used in the description of the amino acid position. Similarity
between fragments is measured using an RMS metric of the inter-C� distances. A fragment
is an instance of a motif class by virtue of being within an RMS distance threshold from the
prototypical motif for that class.

Unger et al. (1989) report an experiment in structure-sequence motif discovery. Hex-
amers, described by C� positions of residues, are clustered using a k�nearest neighbor
algorithm. As in (Rooman, Rodriguez, & Wodak 1990), similarity between hexamers is
measured according to a distance metric. In this approach, structures are �rst aligned using
a best molecular �t routine, and absolute coordinates { rather than intra-motif distances {
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Figure 2: Clusters derived for a set of data relating income to debt to determine the viability
of giving a loan.

are compared.

Bayesian Statistical Clustering

Although statistical clustering techniques typically use numerical representations and met-
rics, the history and philosophy behind them mandate a separate treatment. In standard
numerical methods like single-linkage, total-linkage and mutual nearest neighbor cluster-
ing (Willett 1987; Jarvis & Patrick 1973), the goal is to assign data points to clusters. In
contrast, the goal of a Bayesian latent class analysis, for example, is the construction of a
plausible generative model of the data, that is, to explain the data.

In a latent class analysis approach to �nding class structure in a set of datapoints, one
begins with an underlying parameterized model. For example, one might posit that a set of
points represented by a 2D scatterplot was generated by a 2D Gaussian (normal) distribution.
Or the data might be better explained by a mixture, or weighted sum, of several Gaussian
distributions, each with its own 2D mean vector and covariance matrix. In this approach,
one tries to �nd an optimal set of parameter values for the representation of each datapoint.
Optimality may be de�ned in terms of maximum likelihood, Bayes optimality, minimum de-
scription length (MDL), or minimummessage length (MML). The Bayes, MDL and MML for-
malisms, in particular, put the somewhat vague objectives of standard numerical clustering
| a tradeo� between intra-class and inter-class distances | onto �rmer theoretical ground,
forcing practitioners to make all assumptions and biases explicit and quanti�able. An MDL
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objective function, for example, imposes a cost on the total length of the shortest description
of the data. This cost includes the cost of specifying the model itself, of specifying the class
parameters, and of specifying the residual di�erence between the true positions of the data-
points versus the positions predicted from class parameters. Roughly, the model and class pa-
rameter costs can be termed complexity, and the residual di�erences cost can be called distor-
tion (Buhmann & Kuhnel 1993). The complexity/distortion tradeo� is clear: more, smaller
classes raise complexity but lower distortion (because each datapoint is closer to its class
center). The general term \Bayesian" is often informally applied to most or all of these math-
ematically similar and philosophically related methodologies (McLachlan & Basford 1988;
Baxter & Oliver 1994).

Philosophical foundations aside, the major practical di�erences distinguishing this class
of statistical methods from most other numerical clustering methods include:

� Classes may overlap in a probabilistic sense; a single point may typically be shared
between two or more classes.

� The same objective function can be used to measure and guide both the particular
class centers, variances, and memberships, and the total number of classes.

� The clustering process induces a generative model of the data, meaning the model can
be used both to classify new points and to generate datasets of realistic-looking points
(hence, in this case, plausible protein substructures).

Just as Bayesian and related statistical methods have gained prominence in sequence
analysis, through Gibbs sampling (Lawrence & Reilly 1990) and Hidden Markov Models
(Krogh et al. 1994), so have they come to prominence in structure motif discovery.

Hunter and States (1991) used AutoClass, a general-purpose Bayesian classi�cation tool
(Cheeseman et al. 1988), to discover structure motifs for amino acid segments of length �ve.
Motifs are represented in this work by a probability distribution over Cartesian coordinates
for the backbone atoms of each residue. They discovered 27 classes of structural motifs (in
the highest likelihood classi�cation), where the majority of coordinates were assigned with
a high probability to a single class.

Another general purpose statistical classi�cation and modeling tool, SNOB (Wallace &
Dowe 1994), has also been used to discover novel local structure motifs (Dowe et al. 1996).
In contrast to previous work, the researchers in this project recognized the superiority of
circular von Mises distributions, as opposed to Gaussians, in modeling angular data such as
backbone dihedrals. The SNOB program searches for MML-optimal classi�cations of objects
which may be de�ned in terms of any number of real number, angular, or discrete attributes,
each of which is modeled with the appropriate type of probability distribution.

The mutually-supervised sequence and structure networks designed by Lapedes, Steeg &
Farber (1995) can be recast within a Bayesian unsupervised learning framework (Becker &
Plumbley 1996). Indeed, other neural network learning methods, such as used in predict-
ing aspects of protein structure (Kneller, Cohen, & Langridge 1990; McGregor, Flores, &
Sternberg 1989), can also be understood within and often improved by a Bayesian analysis
(MacKay 1992).
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Conceptual Clustering

Conceptual clustering techniques share with their numerical counterparts the goal of parti-
tioning the data into natural groupings. They have, however, an additional goal, which is to
characterize the clusters in terms of simple and meaningful concepts, rather than in terms of
a set of statistics. These methods predominantly use qualitative attributes. Some of these
commonly considered in protein motif discovery are proximity and spatial con�guration.

The term concept formation is normally used to refer to incremental conceptual clus-
tering algorithms. Following the de�nition of Gennari, Langley and Fisher (1989), concept
formation can be described as follows:

Given: a sequential presentation of objects and their associated description,

Find: 1) clusters that group these objects into classes; 2) a summary description (i.e., a
concept) for each class; and 3) a hierarchical organization for these concepts.

Several useful concept formation algorithms currently exist, including UNIMEM (Lebowitz
1987) and Cobweb (Fisher 1987). These systems rely, however, on an object representation
being expressed as a list of attribute-value pairs. This representation is not the most suitable
for the domain of protein structure, where the most salient features of the object may involve
relationships among its parts. An emerging area of interest in machine learning is the design
of structured concept formation algorithms in which structure objects are formed and then
organized in a knowledge base.

IMEM is a concept formation method speci�cally designed for objects or scenes described
in terms of their parts and the interrelationships among these parts (Conklin & Glasgow
1992; Conklin et al. 1996). These relationships may be topological (e.g. connectivity,
proximity, nestedness) or spatial (e.g. direction, relative location, symmetry). A molecular
structure is represented in IMEM as an image, which comprises a set of parts with their 3D
coordinates, and a set of relations that are preserved for the image. The IMEM algorithm
uses an incremental, divisive approach to build a subsumption hierarchy that summarizes
and classi�es a dataset. This algorithm relies on a measure of similarity among molecular
images that is de�ned in terms of their largest common subimages.

The IMEM approach has been implemented as a system to perform conceptual clustering
with protein structure data (Conklin et al. 1996). Figure 3 illustrates a classi�cation exercise
for a given protein fragment. Assuming the initial hierarchy of Figure 3a, the fragment in
3b is initially stored as a child of the most speci�c subsuming motif. The result of this step
is pictured in Figure 3c. A concept formation step then occurs where a novel motif, which
subsumes both the new fragment and a previously classi�ed fragment, is generated. This
last step is illustrated in 3d.

The Cobweb system (Fisher 1987) performs incremental, unsupervised concept formation
using an information-theoretic evaluation function to construct a concept hierarchy. Special-
ized versions of Cobweb and AutoClass (Cheeseman et al. 1988) have been used to classify
pairs of secondary structure motifs in terms of super-secondary motifs (Schulze-Kremer &
King 1992). The results of applying these clustering methods were combined with results to
form a consensus clustering.
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Figure 3: Development of a concept hierarchy for molecular images
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Conceptual clustering has also been applied to sequence motif discovery. Shimozono et al.
(1992) developed a decision tree method to classify membrane protein sequences according
to functional classes using a variation of the conceptual learning system ID3 (Quinlan 1986).

Non-Clustering Techniques

There are a number of techniques that are not based on clustering per se but which also dis-
cover, or support the discovery of, protein structure and structure-sequence motifs. Promi-
nent among these are 1) methods based on graph-matching that �nd recurrent motifs in
terms of maximal common substructure or similar combinatorial criteria; 2) feature-selection
methods that may be viewed as performing an essential �rst step in motif discovery; and 3)
methods for �nding empirical folding potentials.

Koch, Lengauer and Wanke (1996) used a variation of maximum clique enumeration
to �nd maximal common subtopologies in a set of protein structures. They represented
protein secondary structures as unlabeled directed graphs and restricted the usual clique
enumeration algorithm to only those cliques that represent connected substructures.

It is important to ensure that the right information is input into a motif discovery process
if one expects meaningful output. Feature discovery and feature selection are often crucial
initial steps within a larger motif discovery task. In the protein structure analysis domain,
many primitive features are selected by hand, based on prior expert knowledge. Other fea-
tures may be discovered as special subsets or combinations of hand-picked features. Principal
component analysis is commonly employed for this task on vector representations, because
it can take an n-dimensional representation of a dataset and return a reduced representa-
tion in terms of m < n decorrelated dimensions. This has advantages in later stages of
machine learning or other processing. Other, analogous methods may be used on non-vector
representations. For example, algorithms exist for �nding pairs (Klingler & Brutlag 1994;
Korber et al. 1993) or k-tuples (Steeg 1997) of correlated residue positions in sets of aligned
protein sequences. Such correlations may bespeak evolutionarily-conserved structural or
functional interactions, and form the basis for a particularly useful kind of structure-sequence
motif. The discovery of correlations and associations in protein representations need not be
limited to residues alone; one group of researchers has used a general-purpose data mining
tool (Agrawal et al. 1996) to �nd substructures that correlate with particular functional
features (Satou et al. 1997).

Another important type of protein motif is the empirical folding potential. Sippl has
put this expanding enterprise on �rm theoretical ground by using an Inverse Boltzmann's
Equation to translate between theoretical force �eld terms and empirical database frequen-
cies (Sippl 1990). By performing statistical studies of amino-amino proximity relationships,
core/surface preferences of particular amino acids, and so on, Sippl and others (Grossman,
Farber, & Lapedes 1995; Jones, Taylor, & Thornton 1992) have built motifs into objective
functions that can supplement or replace theoretical potentials in structure prediction and
threading.
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Assessing Protein Motifs and Discovery Methods

A reading of the relevant research literature in protein analysis suggests at least six broad
criteria by which to measure protein motifs, and, by extension, the methods used to de�ne
and discover them:

1. Predictability is the degree to which a motif representing one level or facet of protein
structure or function may be predicted from knowledge of another. For the local
structure motifs designated as \secondary structure", predictability is the ability to
accurately predict secondary structure classes from amino acid sequence.

2. Predictive Utility is the ip side of the predictability criterion. For example, if one
takes the view of secondary structure as an intermediate-level encoding between pri-
mary structure (sequence) and tertiary structure, then predictive utility ought to be
some measure of the gain in accuracy in predicting tertiary structure with a particular
encoding, as compared with prediction using other possible encodings. Another more
direct measure might be the degree to which a particular set of proposed motifs, corre-
sponding to secondary structure classes, constrain the � and  angles of the included
structure fragments.

3. Intelligibility refers to the ease with which researchers and practitioners of protein
science can understand a given structure motif and can incorporate its information into
their own work. Many factors a�ect intelligibility. For example, a discovered structure
class that contains one-third traditional �-helix, one-third traditional �-sheet and one-
third coil is harder to explain than one which correlates almost perfectly with �-helix.
Also, for example, a motif expressed in �rst-order logic with terms for well-known
biochemical aspects such as amino acid names and dihedral bond angles is easier to
understand than a motif represented only in a set of several hundred neural network
connection weight values. Further aspects of motif intelligibility are discussed below.

4. Naturalness, or the equally unwieldy word \intrinsicness", means the degree to which a
motif captures some essential biochemical or evolutionary properties, or some essential
class structure in the space of protein sequence or structure fragments under consider-
ation. Some clustering methods are infamous for �nding ersatz clusters in uniformly
distributed data. Other clustering methods produce results very dependent upon their
starting point. To avoid such results it is important to carefully choose appropriate
representations and attributes for classi�cation.

5. Ease of discovery refers to the computational complexity and data complexity of the
methods required to discover the motif.

6. Systematicity is the degree to which a motif discovery method is derived from explicitly-
stated principles and the degree to which the method can repeatably be applied to
diverse data and produce consistent results.
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Issues in Protein Motif Discovery

What kinds of issues determine the desirability of particular motifs and methods under the
criteria listed above? Following, we present a discussion of some of the important consider-
ations for carrying out a motif discovery exercise.

Use of Both Sequence and Structure Data

The discovery of sequence motifs has been, along with its associated goal of multiple sequence
alignment, the mainstay of computational molecular biology from the beginning. A central
hypothesis is that similarity of sequence implies similarity of structure and function, and
evolutionary conservation of sequence implies conservation of structure and function. Thus,
it is in a sense di�cult to �nd any work on sequence motifs that does not involve sequence-
structure motifs. Much of the vast literature on consensus sequences, sequence pro�les, and
Hidden Markov Modeling of protein families describes the discovery of motifs over sets of
sequences that are already known to correspond to one particular overall tertiary structure.
But where researchers have sought to de�ne family-independent subsequence motifs that
carry important structural information, they have not necessarily succeeded. In a study
described in (Rooman, Rodriguez, & Wodak 1990), 11 out of a set of 12 sequence-structure
motifs claimed to be predictive of secondary structure were found not to be.

There are two major limitations to the above methods. First, the sequence information
is incorporated into the structure motifs after the latter have been de�ned. This approach is
not designed to, and is not likely to, produce structure classes predictable from amino acid
sequence. Second, as noted by Conklin (Conklin 1995b), in the methods outlined above, each
structure motif may be associated with only a single sequence motif; there is no provision
made for associating a structure motif with a disjunction of di�erent sequence motifs (except
in the narrow disjunction implicit in the abstraction of several very similar sequences into a
more abstract motif).

The IMEM method proposed by Conklin, Fortier & Glasgow (1993) addresses both of
these limitations by representing both sequence and structure objects in the symbolic format
of a spatial description logic, a restricted �rst-order logic used to describe and manipulate
concepts. Motif discovery in this system occurs through similarity-based clustering (struc-
tured concept formation) of combined sequence-structure representations. The sequence-
structure predictability is built in to the discovery process, and enforced through a series
of tests which measure the strength and signi�cance of associations between sequence and
structure motifs. For example, the ratioM+=N { where N is the number of protein fragments
assigned to the sequence portion of the motif, and M+ is the number of fragments assigned
to the joint structure-sequence motif { must be greater than 0:8. This ensures that more
than 80% of all the instances of the sequence motif have the same structure, and therefore
that the sequence may be predictive of the corresponding structure. Another test is a �2 test
applied to a 2-by-2 contingency table for each structure-sequence motif. This test assesses
the signi�cance of association, over all protein fragments in the dataset, between the sets
of fragments assigned or not assigned to the sequence portion of the motif and the sets of
fragments assigned or not assigned to the structure portion.
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Number of Classes, Number of Motifs

The number of di�erent motifs, or classes, sought in a discovery procedure has important
impact on both the information-theoretic aspects of predictive utility of the resulting motifs
and the general intelligibility and usefulness of the motifs to molecular biologists.

First, in terms of the distortion versus complexity tradeo� in clustering and latent class
modeling it is clear that more classes generally imply lower distortion and higher complexity
costs. That is, the larger the number of classes and hence class centroids (exemplars, control
points), the closer a given point will be to the centroid of its own class, ceteris paribus. But
the larger the number of classes is, the more bits it takes to encode each data point in terms
of its class-label encoding.

Though the MDL communications paradigm (minimizing a total number of bits trans-
mitted between an hypothesized Sender and Receiver) is a somewhat arti�cial theoretical
tool, it does reveal important practical aspects of data models. As the number of classes in
a model of structure fragment data increases, a real tradeo� becomes apparent. Each motif
becomes more speci�c, in that it carries more detailed local structural information about a
smaller set of fragments. This might make subsequent tertiary structure prediction easier,
because structure-packing considerations are made more precise. On the other hand, there
is a loss of abstraction, a greater number of parameters to optimize in the motif discov-
ery algorithm, a potentially greater di�culty in �nding statistically signi�cant estimates of
frequencies and probabilities of motifs and features.

A growing consensus in computational molecular biology favors classes less coarse than
the standard 2� 5 secondary structure classes. Conklin, in his survey (Conklin 1995b) cites
three reasons:

1. First, he claims that there exist wide discrepancies between di�erent methods of assign-
ing secondary structure designations from crystallographically determined structures.
This point is debatable. It appears to other observers that the Kabsch and Sander
standard (1993) is both well-founded and widely accepted. However, to the extent
that discrepancies do exist, one must take care that a prediction system is not just
modeling the idiosyncrasies of particular structure de�nition rules.

2. A great number of fragment patterns tossed into the large default class \random coil"
are neither random nor unde�nable. Add to this the fact that di�erent kinds of helices,
and di�erent kinds of �-strand con�gurations, can be observed, and there is a case to
be made for additional subclasses of the three major classes.

3. Secondary structure packing analysis is a non-trivial task, and more accurate descrip-
tions of local backbone structure { as ought to result from motif discovery with larger
numbers of classes { can make the task much easier.

Locality: Size of Input Fragments

The size of sequence and structure fragments input to motif discovery systems is another
issue closely related to the question of abstraction versus speci�city. Smaller fragments
imply smaller, more localized motifs. Smaller motifs mean that a greater number of them
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are needed to represent an entire sequence or structure, and hence a greater number of
parameters are used in latter stages of a modeling or prediction task. On the other hand,
smaller motifs also correspond to more frequently-occurring patterns, and therefore problems
in probability estimation are minimized.

One must also carefully consider domain-speci�c and goal-speci�c criteria when choosing
fragment size: Over what lengths of sequence and of structural backbone chain do the phe-
nomena of interest manifest themselves? For example, individual �-strands can be captured
with fragments of size 6 to 12, typically; but what about the turns between strands? How
much information about the strand is conveyed by the nearby turns, and vice versa? How
much information do di�erent strands carry about each other? How much non-local infor-
mation is necessary to determine a sequence fragment's propensity to \become" a helix or a
strand or a stretch of coil, for example?

The information-theoretic and the biophysical issues here are deep and complex. An em-
pirical, trial-and-error approach might be reasonable in attacking this problem. For example,
a fragment size (prediction \window" size) of 13 was found to be e�ective in previous work
on secondary structure prediction (Qian & Sejnowski 1988; Kneller, Cohen, & Langridge
1990). In such studies it was found that smaller windows failed to provide su�cient local
contextual information for prediction of the secondary structure of the central residue in
the window; for windows of length larger than 13, the marginal gains in extra contextual
information were swamped by noise.

Another issue is �xed- versus variable-length motifs. For reasons described earlier in
this chapter, most of the reported projects in structure-sequence motif discovery looked
for short, �xed-length motifs of size 5 to 8 (Zhang & Waltz 1993; Hunter & States 1991;
Unger et al. 1989). It has been observed, however, that di�erent phenomena manifest
themselves over di�erent lengths (such as helices and turns), and di�erent pieces of a protein
have evolved and were conserved over di�erent lengths of sequence. Interactions between
distant residues, and the failing of structure prediction methods to take them into account,
is one of the hypothesized reasons for the limited prediction success that has been achieved.
In general, with longer motifs, more contiguous residues can be predicted, and less tertiary
alignment of predicted portions needs to be performed. Thus, it is too restrictive to discover
motifs of only one size. An advantage of the IMEM approach (Conklin et al. 1996) is that
is can discover variable-length motifs.

Representation

Perhaps the most important initial choice to be made in designing a motif-discovery method
is what kind of representation to use for motifs. The di�erences between some of the op-
tions are huge, as large as the traditional gulf between the \symbolic/logical" and \nu-
meric/statistical" camps in arti�cial intelligence research. The stakes can also be high, both
in terms of the amount of interesting information captured by the resulting motifs and in
terms of the ability for us to understand and communicate the information.

For structure classi�cation, numerical clustering methods dominate the �eld (Zhang &
Waltz 1993; Hunter & States 1991; Rooman, Rodriguez, & Wodak 1990). There are good
reasons for this. First, structures are geometric and physical objects, and the representation
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of such objects { in terms of vectors, angles, and chemical properties { is an old and strong
tradition in the physical and computational sciences. Second, the use of numeric features
and statistical clustering techniques is very amenable to the use of well-de�ned objective
functions, thus enabling a generally principled approach and the use of well-understood
optimization procedures.

If the goal is intelligibility of derived motifs, there is no contest | logical representations
are preferred. Clearly it is di�cult to look at a set of hundreds of connection weights or means
and variances and see anything resembling a motif. However, once a set of classes has been
discovered, there is no major obstacle to �nding more recognizable and descriptive motifs
after the fact. The set of sequences, for example, corresponding to a particular structural
class can be aligned, clustered, and so on, using standard methods, and consensus sequences
can be produced.

A virtue of the IMEM method for representations (Conklin, Fortier, & Glasgow 1993) is
that sequence and structure motifs are represented using a common formal syntax. Unlike
the other structure-sequence motifs mentioned in this chapter and surveyed in (Conklin
1995b), the structure-sequence motifs of IMEM do not inherit a \confused dual semantics",
where a sequence is interpreted using one formalism and a structure another. The knowledge
representation formalism implemented in IMEM presumably enables it to be integrated more
easily into larger, multi-level, multi-view protein analysis systems wherein many di�erent
kinds of features are used to predict other features.

Although a logic representation may be preferable, it is often di�cult to determine the
appropriate primitive concepts and qualitative relationships necessary for conceptual clus-
tering. An integrated approach that incorporates both numeric and conceptual methods
could address this issue. As a �rst step, numeric techniques could be used to perform an
initial classi�cation and derive parameters to be applied in a second step that would use
conceptual clustering to derive meaningful (logical) concepts for the discovered motifs.

Intrinsic versus Extrinsic Clustering Criteria

Implicit in some of the above discussion is a concept of intrinsic versus extrinsic criteria for
clusters and motif discovery. In the multi-stage process and multiple levels of description
that characterize protein structure prediction, as in machine vision and speech recognition,
there is a tension between the \best" intermediate representation language suggested by
optimizing local, \current-level" criteria (What are the best clusters in �	 space?) and
those suggested by optimizing \next-level-up" criteria (Which clusterings produce classes
that work well as primitive symbols in a tertiary structure encoding?) This is a fundamental
issue not yet addressed su�ciently in the computational molecular biology domain. There
may be insights to be gained by examination of other domains which require motif discovery
at several levels of organization, such as computer vision, speech recognition and natural
language understanding.

17



Summary

The investigation of relations between protein tertiary structure and amino acid sequence is
of enormous importance in molecular biology. The automated discovery of recurrent patterns
of structure and sequence is an essential component of this investigation. This chapter has
provided an overview of existing methods for protein structure motif discovery and some of
the outstanding issues involved in this �eld.

Traditional machine learning and knowledge discovery techniques are not always appro-
priate for learning in the protein structure domain. This is mainly because they assume that
similarity between objects is measured as a distance function based on simple attributes and
values. The representation issues for structure motifs, however, are more complex; similarity
is often judged in terms of spatial relations among parts of a structure as well as in terms of
attributes of the structure and its parts. Another distinction is the size of existing datasets
and the implied e�ciency considerations resulting from the vastness and complexity of the
data. Thus, there is an ongoing challenge to �nd appropriate methods for gathering infor-
mation and knowledge from the evergrowing repositories of protein data, and in particular
for understanding the intricate relationship between sequence and structure data.

De�ning Terms

agglomerative. A clustering technique that incorporates a starting point that consists
of as many clusters as there are instances in the dataset.
amino acid residue. The monomeric units of a protein. All proteins are composed of 20
standard amino acids that are linked together by peptide bonds.
clustering. The organization of data so that related information is together. There are
several approaches to clustering, including numerical, statistical and conceptual.
concept formation. A term that refers to incremental conceptual clustering algorithms.
divisive. A clustering technique that incorporates a starting point that consists of a single
cluster.
Hidden Markov Models. A statistical method developed for the generation, recognition
and alignment of sequential data.
incremental clustering. A clustering technique for which instances are considered se-
quentially.
knowledge discovery. A �eld of arti�cial intelligence that involves computational theories
and tools for assisting humans in extracting useful information from databases.
inverse protein folding. The process of �tting a known structure to a given sequence
(rather than the more standard practice of trying to predict the structure of a protein from
the sequence).
motif. An abstraction over a set of recurring patterns.
nonincremental clustering. A technique where all instance are considered at the outset
of clustering.
secondary structure. The local conformation of the protein backbone. The most common
folding patterns are helices, sheets and turns.
sequence motif. A linear string of amino acid residues (or residue classes).
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sequence-structure motif. A sequence motif that associates each residue in its string
with a particular secondary structure.
structure motif. A 3D graph where nodes on the graph correspond to a portion of the
protein backbone.
a structure-sequence motif. A structure motif for which nodes in the graph are anno-
tated with residue names or properties.
super-secondary structure Recurring groupings of secondary structure units (e.g., ��
unit, ��� unit, � barrell).
tertiary structure. The global conformation of a protein folded in 3D space.
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Further Information

Recent research in the area of knowledge discovery is surveyed in the book Advances in
Knowledge Discovery and Data Mining (Fayyad et al. 1996).

A good overview of the area of sequence motif discovery can be found in (Lathrop et
al. 1993). The theses of Evan Steeg (Steeg 1997) and Darrell Conklin (Conklin 1995a)
include more complete reviews of statistical and conceptual clustering techniques and their
application to protein structure motif discovery.

The Proceedings of the International Conference on Intelligent Systems for Molecular
Biology (ISMB) published by AAAI/MIT Press and the Proceedings of the Paci�c Symposium
on Biocomputing (PSB) published by World Scienti�c contain articles related to protein motif
discovery.

The Proceedings of the National Conference on Arti�cial Intelligence (AAAI) and the
Proceedings of the International Conference on Knowledge Discovery and Data Mining, both
published by AAAI Press, contain general articles on machine learning and motif discovery.

A special issue of the journal Machine Learning (volume 21, 1995) focussed on learning
and discovery techniques for molecular biology.
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