CARDIAC IMAGING FOR INTERVENTIONAL ASSISTANCE

Pascal Fallavollita, Ph.D

Queens University School of Computing

Outline

INTRODUCTION

- Coronary Heart Disease
- X-ray Fluoroscopy

METHODOLOGY

- Artery Segmentation
- Artery Tracking
- 3D Reconstruction

RESEARCH RESULTS

CONCLUSION

Introduction: Statistics

PREVALENCE

Cardiovascular disease (CVD) is the single leading cause of death in America today.

It accounted for 452,327 of all deaths in the United States in 2004 and 72,338 in Canada that same year.

Introduction: Atherosclerosis

Introduction: Diagnostic imaging

Introduction: X-ray fluoroscopy

Biplane X-ray Fluoroscopy

• Two quasi-simultaneous image acquisitions.

Never used for clinical
 assistance.

• High costs \$\$\$.

Introduction: X-ray fluoroscopy

2 x Monoplane X-ray Fluoroscopy

• Two non-simultaneous image acquisitions.

 Artifacts associated with motion + patient respiration.

• Point correspondence difficult between 2 nonsimultaneous views.

Introduction: Dynamic information

• The dynamic information from the coronary arteries is of great interest to cardiologists and has been attracting increasing attention in cardiac research.

Research Objectives

- 1. To elaborate a method that aims at the development of a clinical tool for the 2D and 3D visualization and interactive manipulation of the coronary arteries.
- 2. This potential clinical tool should assist the cardiologists during their angiographic interventions.

Outline

INTRODUCTION

- Coronary Heart Disease
- X-ray Fluoroscopy

METHODOLOGY

- Artery Segmentation
- Artery Tracking
- 3D Reconstruction

RESEARCH RESULTS

CONCLUSION

Methodology: 4-Step Filter

$$\begin{cases} \partial_t I &= \operatorname{div}(D\nabla I) \\ I(\mathbf{x}, 0) &= I(\mathbf{x}) \end{cases}$$
2. Anisotropic Filter
$$+ I = -\frac{2}{\pi} \operatorname{arctan}\left(a \operatorname{Im}(\frac{I}{\theta})\right) |\nabla I| + \lambda I_{\eta\eta} + \tilde{\lambda} I_{\xi\xi} \end{cases}$$
3. Complex Shock Filter

1. Homomorphic filter

4. Morphological Filter

Methodology: Centerline Extraction

Two-click Isotropic Fast Marching Method

• Find optimal path $C(s): [0, \infty \rightarrow \mathbb{R}^n$ that minimizes the total cost necessary to travel between starting point A towards destination point B in \mathbb{R}^n .

• The cost function, τ , will be a function of pixel position, x, therefore the process is termed isotropic.

$$U(x) = \min_{C_{Ax}} \int_{0}^{L} \tau(C(s)) \, ds \qquad \left\| \nabla U \right\| = \tau$$

• The speed of position x will be defined as: $1/\tau(x)$, and equivalent to the inverse of our 4-step image.

Methodology: Temporal Tracking

Estimate Optical Flow displacements [u, v] of objects using two consecutive images and pyramidal approach.

Methodology: Temporal Tracking

$$E_{snake} = \int_{s}^{1} \frac{1}{2} (\alpha(s) |v_{s}|^{2} + \beta(s) |v_{ss}|^{2}) + E_{external}(v(s)) ds$$

Before convergence

After convergence

Coordinate Systems

$$P_{mat} = \begin{bmatrix} kf & 0 & u_o \\ 0 & kf & v_o \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix}$$
$$m = P_{mat} P_{world}$$

15

X-ray Calibration

Distance Source to Detector (mm)		
Distance Source to Detector (mm)	"1080"	
Intensifier Size (mm)	"178"	
Imager Pixel Spacing (mm/pixel)	"0.3704 "	
Positioner Primary Angle (degrees)	"-34.0 "	
Positioner Secondary Angle (degrees)	" 30 "	
Rows (pixels)	"512"	
Columns (pixels)	"512"	
Window Center (pixels)	"128 "	
Window Width (pixels)	"255 "	

Methodology: Point correspondence

Reconstruction procedure

- X-ray system calibration
- point correspondence between images
 - 3D triangulation algorithm

Methodology: Point Correspondence

3D space curve, its spherical projection to unit sphere, and its perspective projection to image plane Cipolla et al. relate the image geodesic curvature to the 3D space curve geometry:

$$\kappa^{g} = \frac{\lambda \kappa (u \times T) \cdot N}{\left(1 - \left(u \cdot T\right)^{2}\right)^{3/2}}$$

Use 2D to 3D curvature refinement of RANSAC correspondences for final matches between artery centerlines.

Outline

INTRODUCTION

- X-ray Fluoroscopy

METHODOLOGY

- Avery Segmentation - Artery Tracking

- 3D Reconstruction

RESEARCH RESULTS

CONCLUSION

Results: 4-step filter image

Coronary Artery Enhancement

Diastole Coronary Image

Results: 4-step filter image

... other examples of 4-step filter image enhancement

Results: 4-step filter image

Failure of incorrect cost image for centerline extraction

Results: Image enhancement and centerline extraction

Results: temporal tracking

Classical vs Pyramidal Optical Flow Evaluation

Estimated motion is more precise using multi-resolution approach. 24

Temporal Tracking

-The average tracking time in 1 cardiac cycle is approximately 15mins/frame, including image preprocessing using Matlab.

- 35 of 38 coronary frames were tracked correctly.

Results: optimal point correspondence

Synthetic Validation on 5 biplane datasets of 3D helix and its 2D projections

PA/LAT Simulation							
	RANSAC			CURVATURE CONSTRAINT			
	# of candidates	Residual	Sampson error	# of candidates	Residual	Sampson error	
Image Pair #1							
Inlier distance: 1 pixel	390	0.561	0.140	60	0.399	0.098	
Inlier distance: 1.5 pixels	548	1.270	0.316	62	0.955	0.236	
Inlier distance: 2 pixels	695	2.268	0.565	97	2.142	0.533	
Image Pair #2							
Inlier distance: 1 pixel	422	0.609	0.151	46	0.406	0.101	
Inlier distance: 1.5 pixels	572	1.370	0.341	72	1.292	0.321	
Inlier distance: 2 pixels	655	2.240	0.554	112	2.015	0.500	
Image Pair #3							
Inlier distance: 1 pixel	424	0.654	0.163	49	0.624	0.154	
Inlier distance: 1.5 pixels	528	1.451	0.362	76	1.275	0.317	
Inlier distance: 2 pixels	736	2.288	0.569	82	2.037	0.505	
Image Pair #4							
Inlier distance: 1 pixel	402	0.603	0.150	51	0.444	0.111	
Inlier distance: 1.5 pixels	565	1.407	0.350	81	1.009	0.249	
Inlier distance: 2 pixels	697	2.338	0.583	100	1.963	0.487	
Image Pair #5							
Inlier distance: 1 pixel	385	0.651	0.162	41	0.520	0.129	
Inlier distance: 1.5 pixels	559	1.458	0.363	70	0.830	0.207	
Inlier distance: 2 pixels	675	2.527	0.626	86	1.738	0.430	

26

Results: optimal point correspondence

Clinical Validation using RANSAC and our approach

DATASET #1

3D Retroprojection results onto images improve from 2.4 mm to 1.9 mm using geometric constraint

Results: optimal point correspondence

Clinical Validation using RANSAC and our approach

Conclusion

- Target algorithms that will assist cardiologists concurrently during interventions.
- Use only spatial information contained in X-ray sequences to produce a 3D reconstruction of the coronary arteries.
- Point correspondence is optimized using a novel curvature constraint and improves final 3D reconstruction accuracy.
- Algorithms were validated synthetically and on clinical datasets.

QUESTIONS