Basic Math – Vectors & Lines

Vector in 2D

length (
$$p$$
) = $|p|$ = sqrt($x^2 + y^2$)

Vector in 3D

length
$$(p) = |p| = sqrt(x^2 + y^2 + z^2)$$

Unit vector

Scaling up/down a vector

Create unit vector from a vector a.k.a. "normalize" a vector

Scale down the vector by its own length:

$$v = a / |a|$$
 or $v = a / length(a)$

Create unit vector from a vector (Example)

$$length(Q) = sqrt(3*3 + 4*4+0*0) = sqrt(25) = 5$$

$$\mathbf{v} = (3/5, 4/5, 0)$$

Sum of vectors

Catenate the vectors!

Subtraction of vectors

Reverse p_2 and catenate to p_1 !

Vector from A to B

$$AB = B - A = (x_1-x_2, y_1-y_2, z_1-z_2)$$

Subtract A from B

Distance between A to B

Distance = length(AB) = length(B - A) = sqrt(
$$(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2$$
)

Vector equation of a line

$$L = P + t^* v$$

or broken to x,y,z components

$$L_x = P_x + t^* V_x$$

$$L_y = P_y + t^* V_y$$

$$L_z = P_z + t^* V_z$$

Infinite line:

Ray:

$$t=(0,inf)$$

Segment:

$$t=(t_{min}, t_{max})$$

Create the direction vector of a line

Obtain the direction vector:

AB = B - A subtract

A

Optional:

v= AB / |AB| Normalize – if necessary

Vector equation of a line

$$L = P + t^* v$$
then
$$L - P = t^* v$$
then
$$|L - P| = t|v|$$
Now if $|v| = 1$ (v was normalized)
then
$$|L - P| = t$$

Cross product

Cross product (or vector product) of u and v is denoted as $\mathbf{q} = \mathbf{u} \times \mathbf{v}$, where $\mathbf{u}, \mathbf{v}, \mathbf{q}$ are 3D vectors denoted as $\mathbf{u}(x_1, y_1, z_1)$, $\mathbf{v}(x_2, y_2, z_2)$, $\mathbf{q}(x_3, y_3, z_3)$,

$$|\boldsymbol{q}| = |\boldsymbol{u}| * |\underline{\mathbf{v}}| * \sin(\alpha)$$

 \boldsymbol{q} is perpendicular to both \boldsymbol{u} and \boldsymbol{v} , and

$$X_3 = y_1^* Z_2 - y_2^* Z_1$$

 $y_3 = X_2^* Z_1 - X_1^* Z_2$
 $Z_3 = X_1^* Y_2 - X_2^* Y_1$

NOT COMMUTATIVE! ORDER MATTERS!

Cross product = 0 if and only if $sin(\alpha)=0$ i.e. \boldsymbol{u} and \boldsymbol{v} are parallel

Area of a triangle

A=
$$\frac{1}{2} |\boldsymbol{b}|^* h$$
 --- area of triangle h=| \boldsymbol{c} |*sin(α)

A=
$$\frac{1}{2} |\mathbf{b}|^* |\mathbf{c}|^* \sin(\alpha)$$

A= $\frac{1}{2} |\mathbf{b} \times \mathbf{c}|$

For non-zero b and c, the area is 0 if and only if $sin(\alpha) = 0$ i.e. c and b are parallel, so $\alpha = 0$

Is the point P on the line?

Ortho-normal vector base from 3 points, ABC

Dot product

Dot product (or scalar product) = $dot(\mathbf{u}, \mathbf{v}) = \mathbf{u}^* \mathbf{v}$

$$u(x_1,y_1,z_1) v(x_2,y_2,z_2)$$

dot product = $u^* v = |u|^* |v|^* \cos(\alpha) = (x_1x_2 + y_1y_2 + z_1z_2)$

Result is a scalar number, not a vector

It is commutative, so order does not matter

Dot product = 0 if and only if $cos(\alpha)=0$,

i.e. **u** and **v** are perpendicular

Dot product and the length of a vector

Length = square root of the dot product with itself

$$\mathbf{v}=(x,y,z)$$

length(\mathbf{v}) = sqrt($x^2 + y^2 + z^2$) = sqrt(dot(\mathbf{v}, \mathbf{v}))

Some More Dot Product Facts

$$ab = ba$$
 commutative $(ab)c != a (bc)$ not associative $(a + b)c = ac + bc$ distributive with addition

Angle between vectors

$$dot(\mathbf{u}, \mathbf{v}) = length(\mathbf{u}) * length(\mathbf{v}) * cos(\alpha)$$
$$dot(\mathbf{u}, \mathbf{v}) = |\mathbf{u}| * |\mathbf{v}| * cos(\alpha)$$

If **u** and **v** are unit vectors:

$$|u| = 1$$
 and $|v| = 1$, so

$$dot(\boldsymbol{u}, \boldsymbol{v}) = cos(\alpha)$$

Distance of a point from a line

v is a known unit vector, so length(v) =1 c=P-A -- this is a known vector

$$dot(v,c) = vc = |v| * |c| * cos(\alpha) = |c| * cos(\alpha) = |a|$$

$$a=v*|a|=v(vc)$$

$$d = c - a = c - v(vc)$$

dist =
$$|\mathbf{d}| = |\mathbf{c} - \mathbf{v}(\mathbf{v}\mathbf{c})|$$
 or $\mathbf{d}^2 = \mathbf{c}^2 - (\mathbf{v}\mathbf{c})^2$

Intersection of 2 lines?

$$\begin{aligned} L_1 &= P_1 + t_1^* \mathbf{V_1} \\ L_2 &= P_2 + t_2^* \mathbf{V_2} \\ &-----\\ L_{1x} &= P_{1x} + t_1^* \mathbf{V_{1x}} \\ L_{1y} &= P_{1y} + t_1^* \mathbf{V_{1y}} \\ L_{1z} &= P_{1z} + t_1^* \mathbf{V_{1z}} \\ \end{aligned}$$

$$\begin{aligned} L_{2x} &= P_{2x} + t_2^* \mathbf{V_{2x}} \\ L_{2y} &= P_{2y} + t_2^* \mathbf{V_{2y}} \\ L_{2z} &= P_{2z} + t_2^* \mathbf{V_{2z}} \end{aligned}$$

$$\begin{aligned} \text{where} \\ &= (-\inf, \inf) \\ \text{u} &= (-\inf, \inf) \end{aligned}$$

Intersection of 2 lines

Intersection of 2 lines – IMPOSSIBLE

In the intersection point:

$$\begin{array}{l} L_{1x} - L_{2x} = 0 = P_{1x} - P_{2x} + t_1^* v_{1x} - t_2^* v_{2x} \\ L_{1y} - L_{2y} = 0 = P_{1y} - P_{2y} + t_1^* v_{1y} - t_2^* v_{2y} \\ L_{1z} - L_{2z} = 0 = P_{1z} - P_{2z} + t_1^* v_{1z} - t_2^* v_{2z} \\ \text{where} \\ & \text{t=(-inf,inf)} \\ & \text{u=(-inf,inf)} \end{array}$$

Trouble: 3 eqs, 2 unknowns \rightarrow no guaranteed solution.

The lines might just intersect, but they do not have to.

When they intersect, one of the three eqs cancels out. In other words: a linear combination of any two gives the third one. (We have to be extremely lucky for this to happen.) Generally, two lines avoid each other.

We approximate: find the shortest distance between the two lines and find the point in midway.

Approximate Intersection of 2 lines

Intuition: Find the line that is perpendicular to both lines

Write up the equation of each line

Derive conditions, make an equation system

 $V_1 \times V_2 = V_3$

Solve the vector equation system

[1]
$$L_1 = P_1 + t_1^* \mathbf{v}_1$$

[2]
$$L_2 = P_2 + t_2 * v_2$$

[3]
$$L_3 = P_3 + t_3 * v_3$$

where

$$P_3 = L_2$$
 -- replace P_3 in [3]

$$L_3 = L_1$$
 -- replace L_3 in [3]

[1]
$$L_1 = P_1 + t_1^* \mathbf{v_1}$$
 -- plug [1] in [3]

[2]
$$L_2 = P_2 + t_2 * \mathbf{v_2}$$
 -- plug [1] in [3]

[3]
$$L_1 = L_2 + t_3 * \mathbf{v_3}$$

$$P_1 + t_1^* v_1 = P_2 + t_2^* v_2 + t_3^* v_3$$
 - arrange

$$P_1 - P_2 = -t_1^* v_1 + t_2^* v_2 + t_3^* v_3 - break it up$$

- •3 linear equations
- •3 unknowns
- SOLVABLE

Solve the linear equations

Use any of the three methods:

- Gaussian elimination
- Substitution
- Matrix inversion

$$\begin{pmatrix}
P_{1x} - P_{2x} \\
P_{1y} - P_{2y} \\
P_{1z} - P_{2z}
\end{pmatrix} = \begin{pmatrix}
-v_{1x} & v_{2x} & v_{3x} \\
-v_{1y} & v_{2y} & v_{3y} \\
-v_{1z} & v_{2z} & v_{3z}
\end{pmatrix} \begin{pmatrix}
t_1 \\
t_2 \\
t_3
\end{pmatrix}$$

Plug t₁ and t₂ back into L₁ and L₂ line equations

$$M = (L_1 + L_2)/2$$

d= length $(L_1 - L_2)$

ALTERNATIVE METHOD FOR FINDING THE MINIMUM DISTANCE AND CLOSEST POINT BETWEEN TWO LINES IN SPACE

Find the mutually perpendicular vector between L1 & L2

$$L_1 = P_1 + t_1^* v_1$$
 $L_2 = P_2 + t_2^* v_2$
 $v_3 = v_1 \times v_2 / |v_1 \times v_2|$
 v_3 is normalized!!!

We look for the vector \mathbf{u} that is perpendicular to both L1 and L2. This vector is expressed as $\mathbf{u}=\mathbf{t_3} * \mathbf{v_3}$. The length of it is $\mathbf{t_3}$ and its direction is determined by the $\mathbf{v_3}$ unit direction vector. $\mathbf{v_3}$ is the cross product of $\mathbf{v_1}$ and $\mathbf{v_2}$, being perpendicular to both.

Find the mutually perpendicular vector between L1 & L2

$$L_{1} - L_{2} = t_{3} * v_{3}$$

$$P_{1} - P_{2} + t_{1} * v_{1} - t_{2} * v_{2} = t_{3} * v_{3}$$

$$NICE TRICK !!!$$

$$P_{1} - P_{2} = -t_{1} * v_{1} + t_{2} * v_{2} + t_{3} * v_{3} - dot produce by v_{3}$$

$$(P_{1} - P_{2}) v_{3} = -t_{1} * v_{1} v_{3} + t_{2} * v_{2} v_{3} + t_{3} * v_{3} v_{3}$$

$$(P_{1} - P_{2}) v_{3} = t_{3}$$

$$(P_{1} - P_{2}) v_{3} = t_{3}$$

Use the same "dot product trick" for t₁ and t₂

$$P_1 - P_2 = -t_1^* v_1 + t_2^* v_2 + t_3^* v_3$$

(1)
$$(P_1 - P_2) v_1 = -t_1^* v_1 v_1 + t_2^* v_1 v_2 + t_3^* v_1 v_3$$
 if dot produce by v_1

(2)
$$(P_1 - P_2) v_2 = -t_1^* v_2 v_1 + t_2^* v_2 v_2 + t_3^* v_2^* v_3$$
 if dot produce by v_2

We recognize three dot products of vectors:

$$(P_1 - P_2) v_1$$
 and $(P_1 - P_2) v_1$ and $v_1 v_2$

REMEMBER: dot product is a scalar number

Let a₁, a₂ and d denote those scalars...

(1)
$$a_1 = -t_1 + t_2 d$$

This solves easily for t1 and t2.

(2)
$$a_2 = -t_1d + t_2$$

$$t_1 = (a_2 d - a_1) (1-d^2)$$

 $t_2 = -(a_1 d - a_2) (1-d^2)$
 $t_3 = (P_1 - P_2) v_3$

$$t_2 = -(a_1 d - a_2) (1-d^2)$$

$$t_3 = (P_1 - P_2) v_3$$

Plug t₁ and t₂ back into L₁ and L₂ line equations $L_1 = P_1 + t_1^* v_1$

$$L_2 = P_2 + t_2 * v_2$$

The mid point is $M = (L_1 + L_2)/2$ The distance between L_1 and L_2 is t_3

