Fluoroscopy and CT Imaging

Edison in his fluoroscope, 1896

The first commercial fluoroscope

X-ray + Television = Fluoroscopy

Figure 9. Fluoroscopy. The radiant energy from an X-ray tube passes through the patient, and the resulting X-ray shadows are transformed by the image intensifier into a bright image of visible light three centimeters or so in dimensions. This optical image, in turn, is captured by a 100 mm camera, a movie camera, or a video camera.

X-ray image intensifier tube b fluorescent screen Glass envelope Focusing electrodes Anode Output fluorescent screen Visible light Photoelectrons to camera X-ray photons Photocathode from patient X-ray Photocathode photon Light Electrons photons Input screen

YUULI IO

C-arm fluoroscopy

Siemens

Some fluoroscopy images

Biplane fluoroscopy

Pros and Cons for C-arm in Surgery

- Mobile
- Real-time
- Inexpensive
- Good bone contrast
- Broad insurance coverage

- Poor soft tissue contrast
- Limited rotation
- Limited field of view (9-15")
- Often non-isocentric
- Object truncation
- High X-ray dose to all parties
- Need for calibration
- Poor/no joint encoding
- Image warping
- Loss of depth & volume

Calibration = determine unknown constant parameters

Typical calibration: shoot images from various angles of a known object and calculate unknown C-arm parameters

Image warping

Dewarping step-1: Find groove points

•Find image points corresponding to the centerline of each vertical and horizontal groove

Dewarping step-2: Fit 5'th order Bernstein Polynomial Curves

- Fit a least square smooth curve to each vertical and horizontal groove
- •5'th order Bernstein Polynomial

$$B(a_0,...,a_5;v) = \sum_{k=0}^{5} a_k \binom{5}{k} (1-v)^k v^{5-k}$$

Dewarping step-3: Unbend the plate's image

- Unbend the Berstein polynomial to straight lines
- Employ a two pass scan line algorithm to dewarp the image with using bilinear interpolation

Full sweep cone beam

Cone beam CT reconstruction examples

Concept of Computed Tomography (CT)

Planar fan beam

Laboratory for Percutaneous Surgery (The Perk Lab) - Copyright © Que

Beam configurations

Spiral CT

MULTISLICE SPIRAL

Spiral path with 4,8,16,32,64, 128, 256 rows

Scan Examples: http://www.radiology.uiowa.edu/3d/

CT scanners

Examples to CT imaging
4793-20
CHILDRENS

Metric space and CT voxel space

Slice thickness

