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Abstract—Information systems today have become incredibly 

complex and span multiple organizational networks, database 

and applications servers and on to the external Internet cloud 

resources. Consequently strategic approaches are needed to 

troubleshoot system failures by first identifying the component 

causing the failure, and thereby, further investigating the cause 

of the failure to solve the problem. Information regarding past 

troubleshooting strategies can be used to provide guidance for 

solving similar problems. We present a framework, DSDAware 

(Decision Support for Database Administrators using 

Warehouse-as-a-service) for developing a Decision Guidance and 

Support System (DGSS). The framework dynamically extracts 

knowledge from various correlated data sources containing 

systems related data and from the problem solving procedures of 

the human experts. The knowledge is used in a strategic problem 

solving approach to train new administrators by guiding them 

through the troubleshooting process using an interactive 

interface, and to offer a decision support service to the Web 

community. Our work specifically focuses on z/OS Mainframe 

DB2 database (DB) problems where the inherent complexity of 

the system makes troubleshooting a challenging task. The 

diminishing population of mainframe DB administrators (DBA) 

asserts the need for a DGSS for the new DBAs. The research 

applies text and data mining techniques for knowledge 

extraction, a rule-based system for knowledge representation and 

problem categorization, and a case-based system for providing 

decision support.  

I. INTRODUCTION 

Decision Support Systems (DSS) and Decision Guidance 

Systems (DGS) have long been an active field of research 

striving to facilitate decision making tasks in various 

application domains [7][18][21]. Decisions are guided by 

knowledge, which is extracted from data using many different 

techniques. Evolution in technology has lead to automated and 

fast data collection using many different monitoring tools. 

However, extracting useful knowledge from this data is an 

important ongoing research problem. A major application of 

the knowledge is to generate further knowledge by finding 

correlations and drawing inferences, and to provide decision 

support. DSSs have come a long way and many organizational 

and commercial DSSs are now available [1][20]. Ongoing 

research focuses on combining human and machine 

intelligence and dynamic extraction of knowledge from 

machine interactions with the human experts [6]. 

An important application of the DSSs is troubleshooting 

system failures, which has been somewhat less addressed by 

the research community partly because software developers 

already provide tools and support for troubleshooting [5][7]. It 

has, however, become a very challenging task with the 

evolution of large complex multi-component systems and 

more intelligent support is required. For example, failure to 

access some data can be caused by a part of the application 

software, the network, the operating system, or the database in 

the back end. Modern systems are generally equipped with 

many different types of monitors that report messages, alerts 

and values of various system parameters [3][11]. Discovering 

the important information about the problem from all this data 

poses another problem. Often problem reports provide very 

little or misleading information about the actual cause of the 

problem. Administrators need to have knowledge of the 

system architecture and its various components including the 

various monitoring and system tools to efficiently investigate 

and solve problems. Prior knowledge and expertise can, 

therefore, be an asset in such endeavour since it helps to 

follow the same route of a previously reported problem of 

similar type [15].  

Typically each system component comes with manuals and 

tools for troubleshooting and solving problems specific to that 

component [1][14]. However, often the challenge lies in 

identifying the component causing the problem due to the 

dependencies among the various components. A decision 

support framework that provides a strategic guidance for 

solving problems in complex multi-component systems can be 

used to train the new system administrators as well as help 

guarantee the quality of performance. 

The state-of-the-art DSSs and DGSs apply many different 

automated and semi-automated techniques for knowledge 

acquisition, and provisioning of the decision support 

functionality [1][6][7][18][21]. Most of these approaches 

address a specific application or problem domain [6][19], 

which influence the techniques chosen for knowledge 

acquisition, representation and communication [1]. For 

example, DSSs exist today for medical diagnostics [19], 

management decision making [20], and geographic systems 

[6]. However, very few of these systems provide guidance for 

strategic decision making i.e., to explore probable options and 
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interactively guide the user to arrive at a decision specifically 

for systems management.  

We propose a generic strategic problem solving approach 

for systems management, and a training-oriented interactive 

and adaptive framework, DSDAware (Decision Support for 

Database Administrators using Warehouse-as-a-service), for 

Decision Support and Guidance Systems (DGSS). It applies 

offline data mining to extract generic rules from the historical 

data and an interactive interface to dynamically extract 

knowledge from human experts as they perform investigation 

on both historical and real-time data. The knowledge thus 

acquired is stored as different data models, and as rules and 

case-bases (CB), which are used to provide training and 

guidance to new administrators during their problem solving 

process. The framework also provides an interface for 

warehouse-as-a-service to share and exchange knowledge 

with external users outside the organizational boundary. The 

research focuses on z/OS Mainframe DB2 [1] database 

management system (DBMS) due to the scarcity of experts in 

this domain, and the inherent complexity of troubleshooting 

these systems. Our DSDAware framework gathers data in a 

data warehouse, extracts knowledge into a knowledge base for 

providing decision support, and allows sharing of the 

knowledge as a service to the Web community. 

The next section presents the related work in this area. An 

overview of our strategic problem solving approach is 

discussed in Section 3. Section 4 presents the DSDAware 

framework. The work-in-progress is discussed in Section 5. 

Finally, Section 6 summarizes our contributions and draws the 

conclusion. 

II. RELATED WORK 

DSSs and DGSs have been interesting topics of research for 

a number of decades and their applications are widespread; 

from clinical systems, geographic information systems, 

systems and risk management to Web-based negotiations and 

business intelligence [12][14][18][19][20][21]. DSSs can be 

very effective in automating the regular routine tasks, and 

thereby, relieving the operator to struggle to remember the 

common rules. These systems were built originally as expert 

systems by extracting knowledge from human experts, which 

proved to be time consuming and difficult [8]. With 

automated data collection techniques, now the effort is being 

directed towards applying automated or semi-automated 

knowledge extraction techniques to build efficient DSSs 

[9][23]. Where human judgement and cognitions are 

important, DGSS are implemented to provide guidance to 

human experts given the knowledge extracted from analysed 

data [14].  

We focus on a DGSS for z/OS Mainframe DB2 database 

administration. Database administrators (DBAs) face extreme 

challenges due to the requirement to understand a system 

architecture that supports both legacy batch jobs and 

distributed networked applications [2].  It also uses time 

sharing option for parallel execution of hundreds of critical 

transactions in both data sharing and non data sharing modes. 

Previous work on DSSs in the area of systems management 

addresses extracting error diagnostics from single log files of 

applications [17][22], and events from various system 

components [10].  

Many commercial tools also exist, which assist in the 

management on mainframe systems [11] such as ABEND-

AID and File-AID from Compuware [5], Log Analyzer from 

IBM [14], and a suite of management tools from CA 

Technologies [3]. However, they do not provide strategic step-

by-step guidance for problem solving but rather help to detect, 

debug or undo specific errors. Most of these tools do not 

provide a platform independent service interface like our 

DSDAware framework.  

Carneiro et al. [4] propose the DBSitter approach that uses 

a multi-agent framework to collect data on the operational 

status of a DBMS. The data is analysed by a reasoning agent 

and the problems are either corrected automatically or 

presented to the DBA with a set of possible options. Although 

the concept is similar to our approach, the DBSitter requires 

an elaborative agent framework for data collection in a 

predefined format from very specific sources that simplifies 

the knowledge extraction process. The application is designed 

for problem solution rather than guided problem investigation. 

Musen [16] asserts the importance of using ontology in 

intelligent systems for rule-based problem detection but does 

not provide complete system architecture as to how such 

systems may be implemented. We propose a similar idea of 

defining an ontology for correlating different data sources for 

error detection using data and text mining techniques. 

 Research on error detection has spanned into several 

directions such as event driven root cause analysis techniques 

for software systems [10], and data and log mining techniques 

to identify data that indicates an exception situation [17] 

[22][23]. Xu et al. [22] apply source code analysis with 

information retrieval applied to only console logs to identify 

problem features. The features are further analysed using 

principal component analysis anomaly detection technique to 

learn and to detect operational problems. Instead of using time 

windows, the authors use message variables to group a set of 

correlated messages. Finally, a decision tree visualization 

approach is used to display the anomalies. 

Mantaras et al. [15] focus on a CB reasoning (CBR) 

approach in general to solve problems based on previous 

knowledge of similar problems. Guo et al. [9] present an 

approach to acquiring cases for the CB using data mining 

techniques and reducing the number of attributes used to 

define a case. A similar approach is investigated in our work 

since there can be numerous parameters in the data collected 

by the various monitoring tools and it is important to identify 

a set of parameters that can distinctly identify the problem. 

Our framework applies a hybrid approach using rule-based 

and CBR to design an adaptive training-oriented DGSS. 

III. OVERVIEW OF OUR APPROACH 

Troubleshooting systems management issues on complex 

multi-component legacy systems is a challenging task. It 

requires: 

• Critical knowledge of the concerned problem domain. 
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• A good strategy for troubleshooting so that other 

systems are not affected. 

• Knowledge of the complete system architecture to 

understand the cause of the problem. 

In this section we discuss the problem domain of 

troubleshooting z/OS Mainframe DB2 DBMS, its challenges, 

and our hypotheses behind the design of the DSDAware based 

on our interviews with the DBAs in a large organization [1]. 

Since there are diminishing numbers of experts in this domain 

and the new DBAs have to go through a steep learning curve 

for understanding the different features and components of the 

system, there is a crucial need for a DGSS in this area. 

In this paper, we propose a preliminary version of our 

DSDAware framework that would: 

• Build a history of previous problem cases in a case-base 

indexed by the problem features. 

• Provide an interactive interface to extract knowledge 

from the expert DBAs while they solve the problems. 

• Extract knowledge automatically from various 

distributed systems management data sources in the 

organization using text and data mining techniques. 

• Use the knowledge for guiding the new DBAs in 

investigating and solving DB problems. 

• Provide a warehouse-as-a-service interface for external 

users to inquire and contribute knowledge. 

We first discuss the problem domain and then present an 

overview of our approach.  

A. The z/OS Mainframe DB2 Challenges 

DB2 on z/OS has primarily two different types of system 

setup: non-data sharing and data sharing [1]. Each setup is 

used for different types of applications such as legacy 

COBOL batch jobs or distributed Web-based applications 

with varying workloads and user groups. A mainframe system 

typically has multiple logical partitions (LPAR) having 

different storage settings, each hosting one or more instances 

or subsystems of DB2. In a data sharing setup, multiple DB2 

instances share the same data set through a data connector. So, 

when a problem is notified the DBA has to check which 

subsystem, SQL thread, and data set are involved. Datasets are 

stored in table and index spaces as VSAM (Virtual Storage 

Access Method) linear datasets with specific naming 

conventions. The DBA should understand the multipart 

naming convention to detect which particular dataset is giving 

the problem.  

The z/OS Mainframe DB2 system comprises several other 

sub-components for information (IMS) and transaction 

management (CICS) [1][5], which use different types of DB 

connections, queries and update operations with different 

priority levels. Knowledge of the application type and these 

components helps the DBA to troubleshoot a problem 

efficiently. In addition, a Job Entry Subsystem (JES) is 

typically used with a Time Sharing Option (TSO) on the z/OS 

to receive, schedule and manage jobs in the job queue and 

their outputs [1][5]. The JES master log file contains messages 

logged by different system components involved in the 

execution of the jobs. Therefore, it is an important source of 

information for the DBAs to investigate conflicts among 

multiple components, and systems resources. The DB2 Log 

manager uses other log files for DBMS transactions only, 

which are used for data backup and recovery [2].  

There are also a number of tools with which the DBAs 

must be familiar [3][5][14]. These tools are used to configure 

and monitor the system, investigate problems, and execute 

commands. As a result, troubleshooting on z/OS for DB2 can 

be very challenging. Often problems in other components 

including the network and the application servers cause failure 

in data access and the report gets forwarded to the DBAs. 

Therefore, DBAs need to understand the system architecture, 

applications, and the user groups to identify, address and 

resolve DB2 related problems.  

B. The Problem Solving Life Cycle 

We conducted an on-site study of the problem solving 

strategy followed by an expert mainframe DBA at a large 

organization. We observed the troubleshooting processes for a 

number of different system problems, which were reported to 

the DBAs from multiple sources. The study also included 

interviewing DBAs working at different levels such as looking 

after systems related issues for standalone legacy software or 

web applications to specification of requirements for software 

products to be used for DBMS. The study revealed the 

following facts: 

• Problems are reported in a variety of ways and formats, 

for example, through help desk forms, events or alerts 

generated by monitoring tools, by auto-generated or 

forwarded emails containing log data or by error 

message.  

• The information in the problem report may indicate a 

very different problem than the actual problem. 

• Common investigations are made to retrieve further 

information based on the data given in the problem 

report. 

• The investigation and problem solving strategy is 

largely influenced by the available tools and the 

comfort level of the DBA with using those tools. 

Fig. 1   Problem solving life cycle for large complex software systems 
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• The domain knowledge of the DBA about the system 

architecture also governs the path that the DBA follows 

for problem investigation and resolution. 

• The level of expertise gathered from dealing with 

similar problems in the past helps to ascertain the cause 

of the problem and quickly apply an effective solution. 

Based on the above observations, the troubleshooting 

process of large complex software systems can be conceived 

of having generally four main steps as shown in Fig. 1.  

1)  Problem Notification: This is the step that receives the 

problem report in different ways and formats. Depending on 

the apparent cause of the problem, the report gets forwarded 

to the appropriate administrator, for example, the DBA, 

network, application, or z/OS systems administrator. The 

problem notification messages often resemble the messages 

that are found in the JES log file. As explained before, it is an 

important source for problem investigations because different 

system components log messages in that file. If other than 

DSN errors were logged at the time a problem was reported 

there may not be a DB problem.  

Fig. 2 shows an example of the JES master log file. Each 

message is preceded by a date field. The error codes starting 

with DSN indicate database errors (STC codes indicate 

Started Task Control codes used by JES). DSN codes ending 

with „E‟ means an error and „I‟ means information. However, 

many times information messages lead to the cause of the 

problem. For example, the last three messages in Fig. 2 help 

detecting the cause of a resource conflict problem, which was 

reported as a log in problem for the application users. A 

problem report can contain any one of these messages. 

2)  Problem Identification: This step identifies the type of 

problem through some regular checks given the information or 

error message in the problem report in the previous step. 

These checks are basically done to simply verify if the 

reported problem is a DBMS problem, and if it should be 

further investigated by the DBA. In this step, a DBA typically 

searches for related information given the key attributes in the 

error notification. For example, if the DBA gets a notification 

of DSNJ110E error message for the SS11 subsystem (as 

shown in Fig. 2) then further information should be extracted 

about that subsystem. By the error code (ends with an E), it is 

known to be a critical DB error. For the DSNI031I Lock 

Escalation message, the THREAD-INFO parameter gives 

information about the user ID, workstation ID and the 

application ID and the LUW-ID identifies the logical unit of 

work ID or a specific DB command. Further information 

about the dataset (RESOURCE NAME), the job (PLAN 

NAME), the specific part of its execution (PACKAGE 

NAME), and the specific statement (STATEMENT 

NUMBER) are obtained in this step. The DBA also checks the 

monitoring applications for alert reports, and the current status 

of the application or DB command, and the datasets referred 

to in the error message. The JES log messages are checked as 

well to find more details about the associated errors if any 

were reported within a bounded time frame of the reported 

problem. This information is used at this stage for problem 

identification and for further investigation in the next step.  

Fig. 3 shows a decision tree of rules (based on our 

interview), which the DBA follows to identify an SQL 

problem. If a data access error is reported, the DBA generally 

checks the current status of the related SQL command 

identified by LUW-ID in the problem report. The DBA uses 

one of the tools to check if the SQL statement is still accessing 

the DB2 data sources (STATUS_SQL=in_DB2), and if so, 

whether the number of pages being retrieved is changing 

(getPages_Tn denotes pages retrieved at time Tn, and T2>T1). 

 21.00.25 STC09048 IEF695I  START  SS11MSTR WITH JOBNAME  SS11MSTR IS ASSIGNED 

TO USER  MADPRD  , GROUP OMVSGRP 

 21.00.25 STC09048 $HASP373  SS11MSTR STARTED 

 21.00.25 STC09048 ACF9CCCD USERID MADPRD  IS ASSIGNED TO THIS JOB - SS11MSTR 

 21.00.25 STC09048 IEF403I  SS11MSTR - STARTED - TIME=21.00.25  

 03.58.02 STC09048 DSNJ110E  !SS11 LAST COPY 1 ACTIVE LOG DATA SET IS 90 

PERCENT FULL  

 03.58.05 STC09048 DSNJ110E  !SS11 LAST COPY 1 ACTIVE LOG DATA SET IS 95 

PERCENT FULL  

 03.58.10 STC09048 DSNJ111E  !SS11 OUT OF SPACE IN ACTIVE LOG DATA SETS  

13.28.15 STC10799 DSNI031I  !SS11  DSNILKES - LOCK ESCALATION HAS  337 

    337             OCCURRED FOR 

    337             RESOURCE NAME = CCM30.CHAN1AVS 

    337             LOCK STATE =  X 

    337             PLAN NAME : PACKAGE NAME = DISTSERV : SYSLH200 

    337             COLLECTION-ID = NULLID 

    337             STATEMENT NUMBER = 000001 

    337             CORRELATION-ID = db2java1 

    337             CONNECTION-ID = SERVER 

    337             LUW-ID = ODCA1AD7.O744.C7F340EE13E9 

    337             THREAD-INFO = ABCPROD : usilap533a.org.co : ABCPROD : 

    337             db2java1appl 

 13.31.55 STC10799 DSNT376I  !SS11  PLAN=DISTSERV WITH  670 

    670             CORRELATION-ID=db2java1 

    670             CONNECTION-ID=SERVER 

    670             LUW-ID=ODCA1AD7.FAC8.C7F17F909299=141851 

    670             THREAD-INFO=ABCPROD: usilap533a.org.co: ABCPROD: db2java1appl 

    670                     IS TIMED OUT. ONE HOLDER OF THE RESOURCE IS PLAN=DISTSERV 

    670             WITH 

    670                     CORRELATION-ID=db2java1 

    670                     CONNECTION-ID=SERVER 

    670                     LUW-ID=ODCA1AD7.O744.C7F340EE13E9=2777 

    670             THREAD-INFO=ABCPROD: usilap533a.org.co: ABCPROD: db2java1appl 

    670                     ON MEMBER SS11 

 13.31.56 STC10799 DSNT501I  !SS11  DSNILMCL RESOURCE UNAVAILABLE  671 

    671             CORRELATION-ID=db2java1 

    671             CONNECTION-ID=SERVER 

    671             LUW-ID=ODCA1AD7.FAC8.C7F17F909299=141851 

    671             REASON 00C9008E 

    671             TYPE 00000210 

    671             NAME CCM30.CONF1X1W.00000001 

 

Fig. 2   Example error messages in the JES master log file 

Fig. 3   Problem solving life cycle for large complex software systems 
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If both getPages and the SQL statement (SQL_ID_Tn denotes 

the SQL statement being executed at time Tn) are the same as 

before, then there may be some problem with that statement 

that needs further investigation, and hence, indicates a 

possible DBMS problem. But if both getPages and SQL_ID 

are changing then the problem may be elsewhere and a 

message should be forwarded to the application server 

admins.  

3)  Problem Investigation: Once a problem is identified as a 

DBMS problem, it needs to be further investigated to find the 

actual cause of the problem so that it can be addressed 

accordingly. This is the most complex step because of the 

numerous ways problems can be investigated based on the 

strategy followed by a DBA, the tools used, and the 

information available at each step. Two different problem 

investigation scenarios are discussed below. 

For example, an error is reported for an application  that the 

users are receiving data access errors. The problem report is 

forwarded to the concerned DBA. After a few hours the 

problem is automatically solved by the DBMS system. 

However, an investigation is initiated to find the cause of the 

problem. Based on the error report, the DBA checks the 

current application status, the data sources, and the submitted 

job history and no anomaly is detected. The DBA also checks 

the log messages and alerts. The alerts show a large number of 

DSNI031I Lock Escalation messages as shown in Fig. 2. 

Further investigation of the JES log file reveals that the 

concerned application has a DSNT376I TIME OUT error 

because the resource it is trying to access is held by another 

application, which caused the lock escalation problem. 

Typically TIME OUT errors are followed by DSNT501I 

RESOURCE UNAVAILABLE messages as shown by the last 

message in Fig. 2. Thus the DBA confirms that the lock 

escalation caused the application error. The interesting 

observation is that although there are many lock escalation 

messages in the log file, only the ones that have resource 

conflicts with the reported application cause the application 

failure. Further investigation on the lock escalation problem 

checks the history to see if a similar error happened before, 

how frequently, which application caused it, what were the 

data sets, and what is the configuration setting for the 

threshold when the lock escalation occurs. These thresholds 

can vary greatly for different problem symptoms and system 

configurations. For example, a threshold of 1000 locks to 

trigger lock escalation may be good for most systems (if more 

than 1000 locks are acquired by an application, lock escalation 

occurs) but for other more complex systems it may be 20,000. 

Another scenario is a SQL performance problem, which is 

difficult to investigate. Possible causes may be problems in 

acquiring necessary locks, ill structured SQL (unable to take 

advantage of an index for using inequality checks), absence of 

an index, bad scheduling of an analytical query during 

business hours, or insufficient system resources. All the 

probable causes have to be investigated strategically to detect 

the actual cause of the problem and to finally find a solution.  

It is, therefore, a very challenging  problem to extract all 

the knowledge as illustrated above to perform the checks 

automatically. The results of the investigation actions are non-

deterministic i.e., new information may be retrieved or not, 

and the discovery from one action can call for a revised course 

of investigation. Also the same investigation actions are often 

made for many different problems.  

4)  Problem Resolution: This is the final step of the problem 

solving life cycle. Through the investigation steps, the DBA 

gets closer to the solution by collecting more information 

about the problem state, and thereby, narrowing down the 

probable causes of the error. Once enough information 

(beyond some predefined threshold which can be set by the 

minimum number of features used to identify problem cases) 

is obtained, the DBA applies expert knowledge, or consults 

fellow experts to find if a similar situation occurred in the past, 

and consults manuals to find a solution to the problem. 

C. Hypotheses based on the above Observations 

From our observations of the problem solving life cycle on 

a z/OS Mainframe DB2 syste, we propose several hypotheses 

as explained below about the technologies to apply and the 

approaches to follow to provide decision guidance and support 

for all four problem solving steps. Considering the difficulties 

and challenges at each step of the life cycle, we propose a 

hybrid approach to building our decision support framework, 

DSDAware, using rule based systems (RBS), case based 

systems (CBS), and interactive interfaces to guide the new 

DBAs through the troubleshooting process supported by data, 

knowledge and case repositories.  

1)  Hypothesis for Problem Notification: The report on the 

problem is processed automatically to note the time, priority, 

and implications of the problem and store the detailed 

information or message in the warehouse within the 

DSDAware framework for later processing. 

2)  Hypothesis for Problem Identification: Our hypothesis for 

this step is that since a set of regular checks are performed to 

identify a problem as a DB problem; the knowledge required 

for this step can be stored as decision rules and executed using 

a rule based system. Most of this information is available in 

the DB2 manuals [1] and information such as the error codes 

and the key terms can be stored in the data warehouse within 

the framework. The key terms are used to search for, and 

retrieve the corresponding values from the problem report, log 

messages and other data sources. All this information helps to 

define the problem features. Fig. 3 shows a decision tree 

representation of the rules which are structured as: if 

<condition> then <action>. Some of these rules are also 

retrieved from interviewing the DBA experts and by applying 

text and association rule mining techniques on the data sets. 

The proposed rule based approach helps extract necessary 

information automatically for the investigation step, and 

thereby, relieves the DBA of the regular trivial tasks.   

3)  Hypothesis for Problem Investigation: This is the most 

complex step and its efficiency largely influences the time to 

reach the ultimate goal of problem resolution. It cannot be 

automated reliably due to the difficulty in extracting and 
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representing all the analytical knowledge needed at this step, 

and in executing the highly analytical and cognitive tasks.  

Knowledge about previous experiences can lead to an 

efficient problem resolution strategy. Therefore, we use Case 

Based Reasoning (CBR) with machine learning techniques to 

acquire knowledge about the system, reports on previous 

problems, and the problem solving strategy followed by the 

expert DBAs. When a problem is reported, the case base (CB) 

is searched based on the problem features. Case information is 

dynamically collected during the troubleshooting process and 

used for new case definition and adaptation.The challenges in 

this approach are: 

• What parameters should be used to define the features 

of a problem? There are hundreds of parameters in the 

monitored data that are collected by the monitoring 

tools [11]. Furthermore, the set of parameters varies 

depending on the specific problem case. 

• What data structure is most suitable for representing the 

CB considering that we may have insufficient 

information to define a case initially? This would also 

affect the case search and adaptation.  

• How to efficiently search the CB. Not all problem data 

are available in the initial step. Searching the CB with 

insufficient information returns a large set of probable 

cases. 

• How to manage and maintain the CB with new 

knowledge being acquired constantly. 

• How to store the knowledge of step by step 

investigation.  

• How to adapt the cases as new knowledge is acquired 

dynamically using the framework. 

 We also propose to combine the CBR and machine 

learning techniques with a specially designed interactive 

problem solving interface similar to that shown in Fig. 4, 

which would record the investigation steps. In this example 

interface, the DBA can select one of the attributes or keys 

(such as LUW-ID) from the message to query further 

information, select one of the options, or enter a custom query 

or command. This feature can be extended to support 

integration of different DB tools to facilate execution of the 

commands. 

Although we can record the data from the investigation 

steps, the challenge is to deduce the logic behind the sequence 

of actions, which may be values of certain parameters that the 

DBA observes and some reasoning that the expert applies to 

draw some inferences. Particularly, if the DBA backtracks or 

executes some out of context queries then we will get 

knowledge that may be misleading. However, we believe that 

once we get some trace data, it can be analyzed to reach a 

better hypothesis. At this stage, we propose to trace all the 

queries, DB commands and actions that the DBA executes and 

capture the screen snapshots that the DBA goes through.  

We plan to store the above mentioned actions and trace 

data separately from the CB. Multiple cases can propose the 

same problem solving action for the next step. Action details 

include a description, type of operation (execute command to 

apply a change in the system or investigate a value to make 

inference), and possible implications. Separation of the 

actions will allow for easier case adaptation, and display of a 

set of options for the actions during provisioning of decision 

support. Action id, type and the weight of the action for a case 

are only stored in the case detail.  

Based on the choice of action of the DBA, the decision 

model and the CB are adapted to retain new knowledge or 

adapt the decision support model by changing the weights of 

the suggested options.  

4)  Hypothesis for Problem Resolution: The CB as discussed 

above is used to search for probable solutions. We propose to 

use similar interactive interface as shown in Fig. 4 to display a 

list of solution options to select from in the order of their 

weights. The weight for a solution is computed from a number 

of statistics such as its applicability to the problem, past 

success and preference records. An option to officially close 

the issue would indicate that the problem has been resolved.    

IV. THE DSDAWARE FRAMEWORK 

We propose the DSDAware framework to provide decision 

guidance and support to the DBAs in investigating and 

troubleshooting z/OS Mainframe DB2 DBMS problems. The 

framework: 

• Helps DBAs with the four steps of the problem solving 

life cycle. 

• Extracts knowledge  

− Offline from the historical data collected in a data 

warehouse from various correlated distributed 

systems management data sources using machine 

learning techniques, 

− From querying and analyzing real time data using 

the attributes reported in the error message, and  

Fig. 4   The specially designed interactive screen in the DSDAware 

framework for knowledge extraction and providing guidance 
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− From the problem solving strategies of the expert 

DBAs during the problem solving procedure using 

a specially designed interactive interface. 

• Builds a history of problem cases in a CB. 

• Provides training and decision support to new DBAs in 

troubleshooting problems using the interactive interface. 

• Provides a service interface for external users to query 

the warehouse for problem features and solutions from 

the associated CB. 

A. Description  of the Framework 

Fig. 5 shows our DSDAware framework. There are two 

interfaces for communicating with the users. The application 

interface is used by the internal users of the organizations such 

as the DBAs, system administrators, and application 

developers (as shown in Fig. 4). The warehouse-as-a-service 

interface provides decision support services to the external 

Web users as shown in Fig. 6. In the service interface, the 

users can search for a solution by entering a text description 

such as “resource unavailable” with additional features such 

as “reason = 00C9008E”. The lower pane of the screen 

displays solution based on the warehouse data, CB and the 

internal knowledge base if the user searches for a solution. 

Otherwise, it allows users to contribute solution information 

like the Internet forums. The information can be rated based 

on a contributor‟s profile and the acceptability of the solution 

to the DBAs later in the troubleshooting process. 

The Application Manager communicates with the users in 

two ways, i.e., processes the request, and furnishes the 

requested information in proper format and style with the help 

of the DSS manager.  

The DSS Manager uses decision models to provide 

decision support information. Internal programmers can 

communicate with the DSS manager for configuration and 

administration purposes. The decision models use knowledge 

and data from the Decision Support Knowledge Base (DSKB), 

the Data Warehouse, and the Case Base (CB). During the 

problem solving process, the DSS manager communicates 

with the CB manager as guided by the decision models. It also 

communicates with the knowledge collector, the data 

warehouse and the DSKB for storing and retrieving necessary 

information.  

The Knowledge Collector mainly extracts, preprocesses, 

and analyzes data from domain experts, various accessible 

data sources containing both historical and real time data, the 

DSS manager during the decision support process. It uses the 

existing knowledge to process the data and generate new 

knowledge and information, which is stored in the appropriate 

storage i.e., the data warehouse or the DSKB.  

We store data and knowledge separately for better 

management, maintenance and provisioning.  

• The data warehouse contains aggregated and analyzed 

data, related metadata and real time data from various 

monitoring tools, log files, user profile information, 

system information, and operational manuals.  

• The DSKB contains inferred data, rules, and learned 

knowledge, which is the critical knowledge used to 

provide decision support and create and update decision 

models.  

• The CB is the repository of historical problem cases 

indexed by a set of specified problem features.  

The CB Agent is used only to retrieve case information 

whereas the CB Manager oversees the life cycle of the CB 

system (CBS). The data and knowledge from the different 

storages are used by the CB manager to define and update the 
Fig. 6   Interactive Warehouse-as-a-Service interface  
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CB. The CBS life cycle consists of four steps: case retrieval, 

reuse, revise and retain. Each of these steps in the CBS poses 

interesting challenges and represents an important area of 

research. Depending on the information domain, different data 

structures are used to design the CBS. Case retrieval focuses 

on organization and indexing of the information in the CBS. 

The reuse step dictates how the case information can be used 

to solve the problem. If the information does not properly 

match the problem or object state, the revise step is used to 

adapt the retrieved case to make it applicable to the current 

problem. The retain step is used to create new cases and store 

the adapted cases in the CBS.  

When a request arrives at the DSDAware framework, the 

application manager directs the request to either the CBR 

agent for a quick inquiry, or to the DSS manager to execute 

the decision support process, which provides step-by-step 

guidance to solve the problem. It then communicates the 

responses back to the users through the proper interface. 

B. Knowledge Extraction and Storage Framework 

The knowledge collection and storage framework in Fig. 7 

shows how the knowledge collector extracts information and 

knowledge and stores them in the DSDAware framework. By 

interviewing the experts, knowledge is obtained manually and 

stored in the data warehouse using one of the interfaces and 

the predefined data structures. The Data Pre-processor uses a 

semi-automated approach to clean, transform and organize the 

data. Knowledge Extractors (KE) 1, 2 and 3 perform 

multilevel knowledge extraction.  KE-1 first extracts the key 

or attributes that have different synonyms in different data 

sources using text mining techniques in order to create an 

ontology. An ontology is essential to find a correlation among 

the different data sources, for example the log messages and 

the monitored parameters. Domain knowledge, for example, 

the log file structure and the message formats from the DB2 

manuals, is necessary at this stage [1].  

Applications are created to extract the key and value pairs 

from massive data sets. KE-2 applies data mining techniques 

to find frequent word groups to use as problem categories. 

Error codes are used in combination with the word group to 

define problem categories. KE-3 applies association rule 

mining techniques to find co-occurance of messages 

containing the same attribute values, which indicates possible 

causal relationships between the messages within a bounded  

and sliding time window.  

The CB is connected directly to the data warehouse and the 

DSKB. The knowledge required for the CB manager for case 

management are stored separately as shown in Fig. 7 and 

defined by human administrators. Other information such as 

step-by-step action details and screen captures or other data 

collected during the troubleshooting process are stored in the 

data warehouse.  

C. An Example Case Template 

Fig. 8 shows an example case template. The high level 

problem category is useful to organize cases in a distributed 

manner. The other attributes are also used for case 

organization and 

retrieval. The error 

code, message, and 

system configuration 

attributes are self-

explanatory. A case 

can contain 

information about 

how to solve a 

problem if the 

attributes reasonably 

identify the cause of 

the problem. 

Otherwise, a case may 

contain information 

about what may be the 

Fig. 7   The knowledge extraction and storage framework 
 

Fig. 8   Example of a case template 

Problem Attributes 

 Problem category 

 Error code 

 Error message 

 Case category 

 System configuration 

 Feature values [{feature, op, value}, …] 

List of Actions 

{Action id, type, weight} 

… 

Inferences 

Recent updates 

Number of applications 

Other rating 
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next step for investigating the problem further. There can also 

be multiple ways that a problem can be investigated or 

resolved. The case category attribute is used to identify the 

type of actions contained in the case and the list of actions are 

the possible suggested moves that can be made from this 

stage. The feature values are the monitored parameters. An 

expression of the same format as shown in Fig. 6 is used to 

match the feature values. For example, a feature defined by 

{lock_escalation_threshold, LT, 1000) indicates that the 

threshold value at  which a lock escalation is triggered is less 

than 1000 for the observed system. Actions can be of two 

types: one that makes some modification in the system, the 

other that simply queries some value and makes some 

inference. A weight is associated with an action to indicate the 

importance of this action at this state. The inferences help in 

explaining the actions taken to solve a problem, rating the 

importance of a case based on the number of times it has been 

applied and other information such as user or system feedback 

about the effectiveness of the suggested actions. 

D. Warehouse-as-a-service 

It is important to specify a Service Level Agreement (SLA) 

for provisioning the warehouse service. Table 1 shows a set of 

SLA parameters that can be used to uphold the quality of 

service. For information services, reliability should indicate 

some measure of confidence for the information provided by 

the service. Separate guidelines are provided with the service 

description to state the reliability measures. For increased 

reliability more analysis may be required and the response 

time may be higher. Other SLA parameters such as the 

response time and availability are the standard ones. 

Additional SLA parameters such as number of users and 

queries, and domain coverage (types of configurations) are 

specified to define the business model to compute price based 

on the above user selected options. 

TABLE I 

EXAMPLE SLA MODEL FOR THE WAREHOUSE-AS-A-SERVICE 

V. WORK IN PROGRESS 

We are currently working in parallel on the knowledge 

collector, the storage structures, and the CBS.  

A. The Knowledge Collector 

For the knowledge collector, we are working on the 

following aspects. 

1)  Extraction of Key Words: We are working on automated 

extraction of key words and their synonyms from the log files 

and the various DB schemas in order to be able to retrieve 

related values from the various distributed data sources in the 

system. For example, a job is referred to using „Plan‟, „Plan 

name‟, „Job‟, and „Jobname‟ in different messages and 

monitored data. We are applying frequent word mining 

techniques [22][17] combined with domain knowledge to 

semi-automatically: 

• Build a vocabulary of key words 

• Extract the corresponding values of the keys from the 

problem report and associated set of log messages 

• Build a list of problem categories from the list of error 

IDs and mining of groups of words that form message 

templates 

2)  Extraction of Patterns of Associated Messages: Based on 

our study, for a number of problem cases a group of messages 

generally appear together. We are applying association rule 

mining techniques to the temporal data in the JES master log 

file to discover such patterns of co-occurring messages [23]. 

Most real error messages are infrequent, which pose 

additional challenges in mining error related information. 

B. Storage Structures for Knowledge and Data 

We are working on definition of schemas for the warehouse 

and the DSKB to store the data and knowledge.  

C. The CBS 

For the CBS, we are exploring different data structures for 

the case repository and the different case retrieval techniques 

[6][15]. We are also examining the use of data mining 

techniques for finding the set of parameters that can be used to 

define a case [13]. 

VI. CONCLUSIONS 

DSS has evolved to DGSS to both provide guidance and 

extract knowledge from human experts [18]. The approach 

and techniques applied in designing a DGSS largely depends 

on the domain specific data and the type of decision support 

that needs to be provided. In this research we address the 

domain of administration of DB2 DBMSs on z/OS Mainframe 

systems. Administration of legacy mainframe DB2 systems is 

becoming increasingly more challenging due to the scarcity of 

expert DBAs, the steep learning curve, and the increased 

systems complexity to support parallel data transaction 

requests from highly distributed applications. Although many 

different tools exist for log analysis, generating problem alerts, 

querying system data and executing DB commands, none of 

the tools and the DSSs in this domain provide strategic 

decision support and guidance while extracting problem 

features [3][5][14].  

SLA 

Parameters 

Business model 

Gold Silver Bronze 

Reliability 95% 

(confidence) 

90% 80% 

Availability 99% 97% 95% 

Response 

Time 

3 min. (max) 1 min. (max) 15 sec. (max) 

Domain 

coverage 

DB2 on z/OS 

and UNIX 

DB2 on z/OS 

only 

No data 

sharing 

Number of 

users 

50 30 10 

Number of 

queries/day 

up to 20 

parallel queries 

up to 10 up to 10 
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 In this paper, we present our study of the troubleshooting 

process of a z/OS Mainframe DB2 DBMS in a large 

organization, which supports hundreds of transaction requests 

from many different distributed Web applications as well as 

legacy COBOL batch jobs. Based on the observations, we 

define a strategic problem solving life cycle that consists of 

four steps: Problem Notification, Identification, Investigation, 

and Resolution. For better understanding, the strategic 

problem solving life cycle is illustrated in the light of example 

problem scenarios. We, thereby, propose our hypotheses 

regarding the technologies and approaches needed for 

designing a training oriented adaptive decision guidance and 

support framework.  

We propose our DSDAware framework that: 

• Enables automated and semi-automated knowledge 

extraction both offline and during the problem solving 

process, 

• Applies the system knowledge and case history of 

previous problem solving strategies to train the less 

experienced DBAs by guiding them in troubleshooting 

z/OS Mainframe DB2 problems, and  

• Provides a warehouse-as-a-service interface for external 

users to access the knowledge and get decision support. 

 Our ongoing work focuses on the knowledge extraction 

and storage framework and the design of the CBS.  

In a data rich society, we are now in grave need of learned 

and inferred knowledge that is conveniently accessible as 

required through platform independent Web-based service 

interfaces. Information and data are stored in a distributed 

manner in a variety of formats some of which may be 

accessible independently by many different tools. However, 

we get more information that often needs to be further 

searched, filtered and processed to suit specific needs. The 

DSDAware framework would support the next generation 

DGSS that connects multiple information sources with a goal 

of providing reliable knowledge through an interactive 

interface to the global Web users while training and providing 

strategic decision support to the internal users.  
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