
1

Towards a Training-Oriented Adaptive

Decision Guidance and Support System
Farhana H. Zulkernine#1, Patrick Martin#2, Sima Soltani#3, Wendy Powley#4, Serge Mankovskii*5, Mark Addlemanǂ6

#School of Computing, Queen’s University, Kingston, ON, Canada

farhana@cs.queensu.ca, martin@cs.queensu.ca, soltani@cs.queensu.ca, wendy@cs.queensu.ca

*CA Labs, CA Technologies, Toronto, ON, Canada

serge.mankovskii@ca.com

ǂCA Technologies, CA, USA

mark.addleman@ca.com

Abstract—Information systems today have become incredibly

complex and span multiple organizational networks, database

and applications servers and on to the external Internet cloud

resources. Consequently strategic approaches are needed to

troubleshoot system failures by first identifying the component

causing the failure, and thereby, further investigating the cause

of the failure to solve the problem. Information regarding past

troubleshooting strategies can be used to provide guidance for

solving similar problems. We present a framework, DSDAware

(Decision Support for Database Administrators using

Warehouse-as-a-service) for developing a Decision Guidance and

Support System (DGSS). The framework dynamically extracts

knowledge from various correlated data sources containing

systems related data and from the problem solving procedures of

the human experts. The knowledge is used in a strategic problem

solving approach to train new administrators by guiding them

through the troubleshooting process using an interactive

interface, and to offer a decision support service to the Web

community. Our work specifically focuses on z/OS Mainframe

DB2 database (DB) problems where the inherent complexity of

the system makes troubleshooting a challenging task. The

diminishing population of mainframe DB administrators (DBA)

asserts the need for a DGSS for the new DBAs. The research

applies text and data mining techniques for knowledge

extraction, a rule-based system for knowledge representation and

problem categorization, and a case-based system for providing

decision support.

I. INTRODUCTION

Decision Support Systems (DSS) and Decision Guidance

Systems (DGS) have long been an active field of research

striving to facilitate decision making tasks in various

application domains [7][18][21]. Decisions are guided by

knowledge, which is extracted from data using many different

techniques. Evolution in technology has lead to automated and

fast data collection using many different monitoring tools.

However, extracting useful knowledge from this data is an

important ongoing research problem. A major application of

the knowledge is to generate further knowledge by finding

correlations and drawing inferences, and to provide decision

support. DSSs have come a long way and many organizational

and commercial DSSs are now available [1][20]. Ongoing

research focuses on combining human and machine

intelligence and dynamic extraction of knowledge from

machine interactions with the human experts [6].

An important application of the DSSs is troubleshooting

system failures, which has been somewhat less addressed by

the research community partly because software developers

already provide tools and support for troubleshooting [5][7]. It

has, however, become a very challenging task with the

evolution of large complex multi-component systems and

more intelligent support is required. For example, failure to

access some data can be caused by a part of the application

software, the network, the operating system, or the database in

the back end. Modern systems are generally equipped with

many different types of monitors that report messages, alerts

and values of various system parameters [3][11]. Discovering

the important information about the problem from all this data

poses another problem. Often problem reports provide very

little or misleading information about the actual cause of the

problem. Administrators need to have knowledge of the

system architecture and its various components including the

various monitoring and system tools to efficiently investigate

and solve problems. Prior knowledge and expertise can,

therefore, be an asset in such endeavour since it helps to

follow the same route of a previously reported problem of

similar type [15].

Typically each system component comes with manuals and

tools for troubleshooting and solving problems specific to that

component [1][14]. However, often the challenge lies in

identifying the component causing the problem due to the

dependencies among the various components. A decision

support framework that provides a strategic guidance for

solving problems in complex multi-component systems can be

used to train the new system administrators as well as help

guarantee the quality of performance.

The state-of-the-art DSSs and DGSs apply many different

automated and semi-automated techniques for knowledge

acquisition, and provisioning of the decision support

functionality [1][6][7][18][21]. Most of these approaches

address a specific application or problem domain [6][19],

which influence the techniques chosen for knowledge

acquisition, representation and communication [1]. For

example, DSSs exist today for medical diagnostics [19],

management decision making [20], and geographic systems

[6]. However, very few of these systems provide guidance for

strategic decision making i.e., to explore probable options and

2

interactively guide the user to arrive at a decision specifically

for systems management.

We propose a generic strategic problem solving approach

for systems management, and a training-oriented interactive

and adaptive framework, DSDAware (Decision Support for

Database Administrators using Warehouse-as-a-service), for

Decision Support and Guidance Systems (DGSS). It applies

offline data mining to extract generic rules from the historical

data and an interactive interface to dynamically extract

knowledge from human experts as they perform investigation

on both historical and real-time data. The knowledge thus

acquired is stored as different data models, and as rules and

case-bases (CB), which are used to provide training and

guidance to new administrators during their problem solving

process. The framework also provides an interface for

warehouse-as-a-service to share and exchange knowledge

with external users outside the organizational boundary. The

research focuses on z/OS Mainframe DB2 [1] database

management system (DBMS) due to the scarcity of experts in

this domain, and the inherent complexity of troubleshooting

these systems. Our DSDAware framework gathers data in a

data warehouse, extracts knowledge into a knowledge base for

providing decision support, and allows sharing of the

knowledge as a service to the Web community.

The next section presents the related work in this area. An

overview of our strategic problem solving approach is

discussed in Section 3. Section 4 presents the DSDAware

framework. The work-in-progress is discussed in Section 5.

Finally, Section 6 summarizes our contributions and draws the

conclusion.

II. RELATED WORK

DSSs and DGSs have been interesting topics of research for

a number of decades and their applications are widespread;

from clinical systems, geographic information systems,

systems and risk management to Web-based negotiations and

business intelligence [12][14][18][19][20][21]. DSSs can be

very effective in automating the regular routine tasks, and

thereby, relieving the operator to struggle to remember the

common rules. These systems were built originally as expert

systems by extracting knowledge from human experts, which

proved to be time consuming and difficult [8]. With

automated data collection techniques, now the effort is being

directed towards applying automated or semi-automated

knowledge extraction techniques to build efficient DSSs

[9][23]. Where human judgement and cognitions are

important, DGSS are implemented to provide guidance to

human experts given the knowledge extracted from analysed

data [14].

We focus on a DGSS for z/OS Mainframe DB2 database

administration. Database administrators (DBAs) face extreme

challenges due to the requirement to understand a system

architecture that supports both legacy batch jobs and

distributed networked applications [2]. It also uses time

sharing option for parallel execution of hundreds of critical

transactions in both data sharing and non data sharing modes.

Previous work on DSSs in the area of systems management

addresses extracting error diagnostics from single log files of

applications [17][22], and events from various system

components [10].

Many commercial tools also exist, which assist in the

management on mainframe systems [11] such as ABEND-

AID and File-AID from Compuware [5], Log Analyzer from

IBM [14], and a suite of management tools from CA

Technologies [3]. However, they do not provide strategic step-

by-step guidance for problem solving but rather help to detect,

debug or undo specific errors. Most of these tools do not

provide a platform independent service interface like our

DSDAware framework.

Carneiro et al. [4] propose the DBSitter approach that uses

a multi-agent framework to collect data on the operational

status of a DBMS. The data is analysed by a reasoning agent

and the problems are either corrected automatically or

presented to the DBA with a set of possible options. Although

the concept is similar to our approach, the DBSitter requires

an elaborative agent framework for data collection in a

predefined format from very specific sources that simplifies

the knowledge extraction process. The application is designed

for problem solution rather than guided problem investigation.

Musen [16] asserts the importance of using ontology in

intelligent systems for rule-based problem detection but does

not provide complete system architecture as to how such

systems may be implemented. We propose a similar idea of

defining an ontology for correlating different data sources for

error detection using data and text mining techniques.

 Research on error detection has spanned into several

directions such as event driven root cause analysis techniques

for software systems [10], and data and log mining techniques

to identify data that indicates an exception situation [17]

[22][23]. Xu et al. [22] apply source code analysis with

information retrieval applied to only console logs to identify

problem features. The features are further analysed using

principal component analysis anomaly detection technique to

learn and to detect operational problems. Instead of using time

windows, the authors use message variables to group a set of

correlated messages. Finally, a decision tree visualization

approach is used to display the anomalies.

Mantaras et al. [15] focus on a CB reasoning (CBR)

approach in general to solve problems based on previous

knowledge of similar problems. Guo et al. [9] present an

approach to acquiring cases for the CB using data mining

techniques and reducing the number of attributes used to

define a case. A similar approach is investigated in our work

since there can be numerous parameters in the data collected

by the various monitoring tools and it is important to identify

a set of parameters that can distinctly identify the problem.

Our framework applies a hybrid approach using rule-based

and CBR to design an adaptive training-oriented DGSS.

III. OVERVIEW OF OUR APPROACH

Troubleshooting systems management issues on complex

multi-component legacy systems is a challenging task. It

requires:

• Critical knowledge of the concerned problem domain.

3

• A good strategy for troubleshooting so that other

systems are not affected.

• Knowledge of the complete system architecture to

understand the cause of the problem.

In this section we discuss the problem domain of

troubleshooting z/OS Mainframe DB2 DBMS, its challenges,

and our hypotheses behind the design of the DSDAware based

on our interviews with the DBAs in a large organization [1].

Since there are diminishing numbers of experts in this domain

and the new DBAs have to go through a steep learning curve

for understanding the different features and components of the

system, there is a crucial need for a DGSS in this area.

In this paper, we propose a preliminary version of our

DSDAware framework that would:

• Build a history of previous problem cases in a case-base

indexed by the problem features.

• Provide an interactive interface to extract knowledge

from the expert DBAs while they solve the problems.

• Extract knowledge automatically from various

distributed systems management data sources in the

organization using text and data mining techniques.

• Use the knowledge for guiding the new DBAs in

investigating and solving DB problems.

• Provide a warehouse-as-a-service interface for external

users to inquire and contribute knowledge.

We first discuss the problem domain and then present an

overview of our approach.

A. The z/OS Mainframe DB2 Challenges

DB2 on z/OS has primarily two different types of system

setup: non-data sharing and data sharing [1]. Each setup is

used for different types of applications such as legacy

COBOL batch jobs or distributed Web-based applications

with varying workloads and user groups. A mainframe system

typically has multiple logical partitions (LPAR) having

different storage settings, each hosting one or more instances

or subsystems of DB2. In a data sharing setup, multiple DB2

instances share the same data set through a data connector. So,

when a problem is notified the DBA has to check which

subsystem, SQL thread, and data set are involved. Datasets are

stored in table and index spaces as VSAM (Virtual Storage

Access Method) linear datasets with specific naming

conventions. The DBA should understand the multipart

naming convention to detect which particular dataset is giving

the problem.

The z/OS Mainframe DB2 system comprises several other

sub-components for information (IMS) and transaction

management (CICS) [1][5], which use different types of DB

connections, queries and update operations with different

priority levels. Knowledge of the application type and these

components helps the DBA to troubleshoot a problem

efficiently. In addition, a Job Entry Subsystem (JES) is

typically used with a Time Sharing Option (TSO) on the z/OS

to receive, schedule and manage jobs in the job queue and

their outputs [1][5]. The JES master log file contains messages

logged by different system components involved in the

execution of the jobs. Therefore, it is an important source of

information for the DBAs to investigate conflicts among

multiple components, and systems resources. The DB2 Log

manager uses other log files for DBMS transactions only,

which are used for data backup and recovery [2].

There are also a number of tools with which the DBAs

must be familiar [3][5][14]. These tools are used to configure

and monitor the system, investigate problems, and execute

commands. As a result, troubleshooting on z/OS for DB2 can

be very challenging. Often problems in other components

including the network and the application servers cause failure

in data access and the report gets forwarded to the DBAs.

Therefore, DBAs need to understand the system architecture,

applications, and the user groups to identify, address and

resolve DB2 related problems.

B. The Problem Solving Life Cycle

We conducted an on-site study of the problem solving

strategy followed by an expert mainframe DBA at a large

organization. We observed the troubleshooting processes for a

number of different system problems, which were reported to

the DBAs from multiple sources. The study also included

interviewing DBAs working at different levels such as looking

after systems related issues for standalone legacy software or

web applications to specification of requirements for software

products to be used for DBMS. The study revealed the

following facts:

• Problems are reported in a variety of ways and formats,

for example, through help desk forms, events or alerts

generated by monitoring tools, by auto-generated or

forwarded emails containing log data or by error

message.

• The information in the problem report may indicate a

very different problem than the actual problem.

• Common investigations are made to retrieve further

information based on the data given in the problem

report.

• The investigation and problem solving strategy is

largely influenced by the available tools and the

comfort level of the DBA with using those tools.

Fig. 1 Problem solving life cycle for large complex software systems

4

• The domain knowledge of the DBA about the system

architecture also governs the path that the DBA follows

for problem investigation and resolution.

• The level of expertise gathered from dealing with

similar problems in the past helps to ascertain the cause

of the problem and quickly apply an effective solution.

Based on the above observations, the troubleshooting

process of large complex software systems can be conceived

of having generally four main steps as shown in Fig. 1.

1) Problem Notification: This is the step that receives the

problem report in different ways and formats. Depending on

the apparent cause of the problem, the report gets forwarded

to the appropriate administrator, for example, the DBA,

network, application, or z/OS systems administrator. The

problem notification messages often resemble the messages

that are found in the JES log file. As explained before, it is an

important source for problem investigations because different

system components log messages in that file. If other than

DSN errors were logged at the time a problem was reported

there may not be a DB problem.

Fig. 2 shows an example of the JES master log file. Each

message is preceded by a date field. The error codes starting

with DSN indicate database errors (STC codes indicate

Started Task Control codes used by JES). DSN codes ending

with „E‟ means an error and „I‟ means information. However,

many times information messages lead to the cause of the

problem. For example, the last three messages in Fig. 2 help

detecting the cause of a resource conflict problem, which was

reported as a log in problem for the application users. A

problem report can contain any one of these messages.

2) Problem Identification: This step identifies the type of

problem through some regular checks given the information or

error message in the problem report in the previous step.

These checks are basically done to simply verify if the

reported problem is a DBMS problem, and if it should be

further investigated by the DBA. In this step, a DBA typically

searches for related information given the key attributes in the

error notification. For example, if the DBA gets a notification

of DSNJ110E error message for the SS11 subsystem (as

shown in Fig. 2) then further information should be extracted

about that subsystem. By the error code (ends with an E), it is

known to be a critical DB error. For the DSNI031I Lock

Escalation message, the THREAD-INFO parameter gives

information about the user ID, workstation ID and the

application ID and the LUW-ID identifies the logical unit of

work ID or a specific DB command. Further information

about the dataset (RESOURCE NAME), the job (PLAN

NAME), the specific part of its execution (PACKAGE

NAME), and the specific statement (STATEMENT

NUMBER) are obtained in this step. The DBA also checks the

monitoring applications for alert reports, and the current status

of the application or DB command, and the datasets referred

to in the error message. The JES log messages are checked as

well to find more details about the associated errors if any

were reported within a bounded time frame of the reported

problem. This information is used at this stage for problem

identification and for further investigation in the next step.

Fig. 3 shows a decision tree of rules (based on our

interview), which the DBA follows to identify an SQL

problem. If a data access error is reported, the DBA generally

checks the current status of the related SQL command

identified by LUW-ID in the problem report. The DBA uses

one of the tools to check if the SQL statement is still accessing

the DB2 data sources (STATUS_SQL=in_DB2), and if so,

whether the number of pages being retrieved is changing

(getPages_Tn denotes pages retrieved at time Tn, and T2>T1).

 21.00.25 STC09048 IEF695I START SS11MSTR WITH JOBNAME SS11MSTR IS ASSIGNED

TO USER MADPRD , GROUP OMVSGRP

 21.00.25 STC09048 $HASP373 SS11MSTR STARTED

 21.00.25 STC09048 ACF9CCCD USERID MADPRD IS ASSIGNED TO THIS JOB - SS11MSTR

 21.00.25 STC09048 IEF403I SS11MSTR - STARTED - TIME=21.00.25

 03.58.02 STC09048 DSNJ110E !SS11 LAST COPY 1 ACTIVE LOG DATA SET IS 90

PERCENT FULL

 03.58.05 STC09048 DSNJ110E !SS11 LAST COPY 1 ACTIVE LOG DATA SET IS 95

PERCENT FULL

 03.58.10 STC09048 DSNJ111E !SS11 OUT OF SPACE IN ACTIVE LOG DATA SETS

13.28.15 STC10799 DSNI031I !SS11 DSNILKES - LOCK ESCALATION HAS 337

 337 OCCURRED FOR

 337 RESOURCE NAME = CCM30.CHAN1AVS

 337 LOCK STATE = X

 337 PLAN NAME : PACKAGE NAME = DISTSERV : SYSLH200

 337 COLLECTION-ID = NULLID

 337 STATEMENT NUMBER = 000001

 337 CORRELATION-ID = db2java1

 337 CONNECTION-ID = SERVER

 337 LUW-ID = ODCA1AD7.O744.C7F340EE13E9

 337 THREAD-INFO = ABCPROD : usilap533a.org.co : ABCPROD :

 337 db2java1appl

 13.31.55 STC10799 DSNT376I !SS11 PLAN=DISTSERV WITH 670

 670 CORRELATION-ID=db2java1

 670 CONNECTION-ID=SERVER

 670 LUW-ID=ODCA1AD7.FAC8.C7F17F909299=141851

 670 THREAD-INFO=ABCPROD: usilap533a.org.co: ABCPROD: db2java1appl

 670 IS TIMED OUT. ONE HOLDER OF THE RESOURCE IS PLAN=DISTSERV

 670 WITH

 670 CORRELATION-ID=db2java1

 670 CONNECTION-ID=SERVER

 670 LUW-ID=ODCA1AD7.O744.C7F340EE13E9=2777

 670 THREAD-INFO=ABCPROD: usilap533a.org.co: ABCPROD: db2java1appl

 670 ON MEMBER SS11

 13.31.56 STC10799 DSNT501I !SS11 DSNILMCL RESOURCE UNAVAILABLE 671

 671 CORRELATION-ID=db2java1

 671 CONNECTION-ID=SERVER

 671 LUW-ID=ODCA1AD7.FAC8.C7F17F909299=141851

 671 REASON 00C9008E

 671 TYPE 00000210

 671 NAME CCM30.CONF1X1W.00000001

Fig. 2 Example error messages in the JES master log file

Fig. 3 Problem solving life cycle for large complex software systems

5

If both getPages and the SQL statement (SQL_ID_Tn denotes

the SQL statement being executed at time Tn) are the same as

before, then there may be some problem with that statement

that needs further investigation, and hence, indicates a

possible DBMS problem. But if both getPages and SQL_ID

are changing then the problem may be elsewhere and a

message should be forwarded to the application server

admins.

3) Problem Investigation: Once a problem is identified as a

DBMS problem, it needs to be further investigated to find the

actual cause of the problem so that it can be addressed

accordingly. This is the most complex step because of the

numerous ways problems can be investigated based on the

strategy followed by a DBA, the tools used, and the

information available at each step. Two different problem

investigation scenarios are discussed below.

For example, an error is reported for an application that the

users are receiving data access errors. The problem report is

forwarded to the concerned DBA. After a few hours the

problem is automatically solved by the DBMS system.

However, an investigation is initiated to find the cause of the

problem. Based on the error report, the DBA checks the

current application status, the data sources, and the submitted

job history and no anomaly is detected. The DBA also checks

the log messages and alerts. The alerts show a large number of

DSNI031I Lock Escalation messages as shown in Fig. 2.

Further investigation of the JES log file reveals that the

concerned application has a DSNT376I TIME OUT error

because the resource it is trying to access is held by another

application, which caused the lock escalation problem.

Typically TIME OUT errors are followed by DSNT501I

RESOURCE UNAVAILABLE messages as shown by the last

message in Fig. 2. Thus the DBA confirms that the lock

escalation caused the application error. The interesting

observation is that although there are many lock escalation

messages in the log file, only the ones that have resource

conflicts with the reported application cause the application

failure. Further investigation on the lock escalation problem

checks the history to see if a similar error happened before,

how frequently, which application caused it, what were the

data sets, and what is the configuration setting for the

threshold when the lock escalation occurs. These thresholds

can vary greatly for different problem symptoms and system

configurations. For example, a threshold of 1000 locks to

trigger lock escalation may be good for most systems (if more

than 1000 locks are acquired by an application, lock escalation

occurs) but for other more complex systems it may be 20,000.

Another scenario is a SQL performance problem, which is

difficult to investigate. Possible causes may be problems in

acquiring necessary locks, ill structured SQL (unable to take

advantage of an index for using inequality checks), absence of

an index, bad scheduling of an analytical query during

business hours, or insufficient system resources. All the

probable causes have to be investigated strategically to detect

the actual cause of the problem and to finally find a solution.

It is, therefore, a very challenging problem to extract all

the knowledge as illustrated above to perform the checks

automatically. The results of the investigation actions are non-

deterministic i.e., new information may be retrieved or not,

and the discovery from one action can call for a revised course

of investigation. Also the same investigation actions are often

made for many different problems.

4) Problem Resolution: This is the final step of the problem

solving life cycle. Through the investigation steps, the DBA

gets closer to the solution by collecting more information

about the problem state, and thereby, narrowing down the

probable causes of the error. Once enough information

(beyond some predefined threshold which can be set by the

minimum number of features used to identify problem cases)

is obtained, the DBA applies expert knowledge, or consults

fellow experts to find if a similar situation occurred in the past,

and consults manuals to find a solution to the problem.

C. Hypotheses based on the above Observations

From our observations of the problem solving life cycle on

a z/OS Mainframe DB2 syste, we propose several hypotheses

as explained below about the technologies to apply and the

approaches to follow to provide decision guidance and support

for all four problem solving steps. Considering the difficulties

and challenges at each step of the life cycle, we propose a

hybrid approach to building our decision support framework,

DSDAware, using rule based systems (RBS), case based

systems (CBS), and interactive interfaces to guide the new

DBAs through the troubleshooting process supported by data,

knowledge and case repositories.

1) Hypothesis for Problem Notification: The report on the

problem is processed automatically to note the time, priority,

and implications of the problem and store the detailed

information or message in the warehouse within the

DSDAware framework for later processing.

2) Hypothesis for Problem Identification: Our hypothesis for

this step is that since a set of regular checks are performed to

identify a problem as a DB problem; the knowledge required

for this step can be stored as decision rules and executed using

a rule based system. Most of this information is available in

the DB2 manuals [1] and information such as the error codes

and the key terms can be stored in the data warehouse within

the framework. The key terms are used to search for, and

retrieve the corresponding values from the problem report, log

messages and other data sources. All this information helps to

define the problem features. Fig. 3 shows a decision tree

representation of the rules which are structured as: if

<condition> then <action>. Some of these rules are also

retrieved from interviewing the DBA experts and by applying

text and association rule mining techniques on the data sets.

The proposed rule based approach helps extract necessary

information automatically for the investigation step, and

thereby, relieves the DBA of the regular trivial tasks.

3) Hypothesis for Problem Investigation: This is the most

complex step and its efficiency largely influences the time to

reach the ultimate goal of problem resolution. It cannot be

automated reliably due to the difficulty in extracting and

6

representing all the analytical knowledge needed at this step,

and in executing the highly analytical and cognitive tasks.

Knowledge about previous experiences can lead to an

efficient problem resolution strategy. Therefore, we use Case

Based Reasoning (CBR) with machine learning techniques to

acquire knowledge about the system, reports on previous

problems, and the problem solving strategy followed by the

expert DBAs. When a problem is reported, the case base (CB)

is searched based on the problem features. Case information is

dynamically collected during the troubleshooting process and

used for new case definition and adaptation.The challenges in

this approach are:

• What parameters should be used to define the features

of a problem? There are hundreds of parameters in the

monitored data that are collected by the monitoring

tools [11]. Furthermore, the set of parameters varies

depending on the specific problem case.

• What data structure is most suitable for representing the

CB considering that we may have insufficient

information to define a case initially? This would also

affect the case search and adaptation.

• How to efficiently search the CB. Not all problem data

are available in the initial step. Searching the CB with

insufficient information returns a large set of probable

cases.

• How to manage and maintain the CB with new

knowledge being acquired constantly.

• How to store the knowledge of step by step

investigation.

• How to adapt the cases as new knowledge is acquired

dynamically using the framework.

 We also propose to combine the CBR and machine

learning techniques with a specially designed interactive

problem solving interface similar to that shown in Fig. 4,

which would record the investigation steps. In this example

interface, the DBA can select one of the attributes or keys

(such as LUW-ID) from the message to query further

information, select one of the options, or enter a custom query

or command. This feature can be extended to support

integration of different DB tools to facilate execution of the

commands.

Although we can record the data from the investigation

steps, the challenge is to deduce the logic behind the sequence

of actions, which may be values of certain parameters that the

DBA observes and some reasoning that the expert applies to

draw some inferences. Particularly, if the DBA backtracks or

executes some out of context queries then we will get

knowledge that may be misleading. However, we believe that

once we get some trace data, it can be analyzed to reach a

better hypothesis. At this stage, we propose to trace all the

queries, DB commands and actions that the DBA executes and

capture the screen snapshots that the DBA goes through.

We plan to store the above mentioned actions and trace

data separately from the CB. Multiple cases can propose the

same problem solving action for the next step. Action details

include a description, type of operation (execute command to

apply a change in the system or investigate a value to make

inference), and possible implications. Separation of the

actions will allow for easier case adaptation, and display of a

set of options for the actions during provisioning of decision

support. Action id, type and the weight of the action for a case

are only stored in the case detail.

Based on the choice of action of the DBA, the decision

model and the CB are adapted to retain new knowledge or

adapt the decision support model by changing the weights of

the suggested options.

4) Hypothesis for Problem Resolution: The CB as discussed

above is used to search for probable solutions. We propose to

use similar interactive interface as shown in Fig. 4 to display a

list of solution options to select from in the order of their

weights. The weight for a solution is computed from a number

of statistics such as its applicability to the problem, past

success and preference records. An option to officially close

the issue would indicate that the problem has been resolved.

IV. THE DSDAWARE FRAMEWORK

We propose the DSDAware framework to provide decision

guidance and support to the DBAs in investigating and

troubleshooting z/OS Mainframe DB2 DBMS problems. The

framework:

• Helps DBAs with the four steps of the problem solving

life cycle.

• Extracts knowledge

− Offline from the historical data collected in a data

warehouse from various correlated distributed

systems management data sources using machine

learning techniques,

− From querying and analyzing real time data using

the attributes reported in the error message, and

Fig. 4 The specially designed interactive screen in the DSDAware

framework for knowledge extraction and providing guidance

7

− From the problem solving strategies of the expert

DBAs during the problem solving procedure using

a specially designed interactive interface.

• Builds a history of problem cases in a CB.

• Provides training and decision support to new DBAs in

troubleshooting problems using the interactive interface.

• Provides a service interface for external users to query

the warehouse for problem features and solutions from

the associated CB.

A. Description of the Framework

Fig. 5 shows our DSDAware framework. There are two

interfaces for communicating with the users. The application

interface is used by the internal users of the organizations such

as the DBAs, system administrators, and application

developers (as shown in Fig. 4). The warehouse-as-a-service

interface provides decision support services to the external

Web users as shown in Fig. 6. In the service interface, the

users can search for a solution by entering a text description

such as “resource unavailable” with additional features such

as “reason = 00C9008E”. The lower pane of the screen

displays solution based on the warehouse data, CB and the

internal knowledge base if the user searches for a solution.

Otherwise, it allows users to contribute solution information

like the Internet forums. The information can be rated based

on a contributor‟s profile and the acceptability of the solution

to the DBAs later in the troubleshooting process.

The Application Manager communicates with the users in

two ways, i.e., processes the request, and furnishes the

requested information in proper format and style with the help

of the DSS manager.

The DSS Manager uses decision models to provide

decision support information. Internal programmers can

communicate with the DSS manager for configuration and

administration purposes. The decision models use knowledge

and data from the Decision Support Knowledge Base (DSKB),

the Data Warehouse, and the Case Base (CB). During the

problem solving process, the DSS manager communicates

with the CB manager as guided by the decision models. It also

communicates with the knowledge collector, the data

warehouse and the DSKB for storing and retrieving necessary

information.

The Knowledge Collector mainly extracts, preprocesses,

and analyzes data from domain experts, various accessible

data sources containing both historical and real time data, the

DSS manager during the decision support process. It uses the

existing knowledge to process the data and generate new

knowledge and information, which is stored in the appropriate

storage i.e., the data warehouse or the DSKB.

We store data and knowledge separately for better

management, maintenance and provisioning.

• The data warehouse contains aggregated and analyzed

data, related metadata and real time data from various

monitoring tools, log files, user profile information,

system information, and operational manuals.

• The DSKB contains inferred data, rules, and learned

knowledge, which is the critical knowledge used to

provide decision support and create and update decision

models.

• The CB is the repository of historical problem cases

indexed by a set of specified problem features.

The CB Agent is used only to retrieve case information

whereas the CB Manager oversees the life cycle of the CB

system (CBS). The data and knowledge from the different

storages are used by the CB manager to define and update the
Fig. 6 Interactive Warehouse-as-a-Service interface

Fig. 5 The specially designed interactive screen in the DSDAware framework for knowledge extraction and providing guidance

8

CB. The CBS life cycle consists of four steps: case retrieval,

reuse, revise and retain. Each of these steps in the CBS poses

interesting challenges and represents an important area of

research. Depending on the information domain, different data

structures are used to design the CBS. Case retrieval focuses

on organization and indexing of the information in the CBS.

The reuse step dictates how the case information can be used

to solve the problem. If the information does not properly

match the problem or object state, the revise step is used to

adapt the retrieved case to make it applicable to the current

problem. The retain step is used to create new cases and store

the adapted cases in the CBS.

When a request arrives at the DSDAware framework, the

application manager directs the request to either the CBR

agent for a quick inquiry, or to the DSS manager to execute

the decision support process, which provides step-by-step

guidance to solve the problem. It then communicates the

responses back to the users through the proper interface.

B. Knowledge Extraction and Storage Framework

The knowledge collection and storage framework in Fig. 7

shows how the knowledge collector extracts information and

knowledge and stores them in the DSDAware framework. By

interviewing the experts, knowledge is obtained manually and

stored in the data warehouse using one of the interfaces and

the predefined data structures. The Data Pre-processor uses a

semi-automated approach to clean, transform and organize the

data. Knowledge Extractors (KE) 1, 2 and 3 perform

multilevel knowledge extraction. KE-1 first extracts the key

or attributes that have different synonyms in different data

sources using text mining techniques in order to create an

ontology. An ontology is essential to find a correlation among

the different data sources, for example the log messages and

the monitored parameters. Domain knowledge, for example,

the log file structure and the message formats from the DB2

manuals, is necessary at this stage [1].

Applications are created to extract the key and value pairs

from massive data sets. KE-2 applies data mining techniques

to find frequent word groups to use as problem categories.

Error codes are used in combination with the word group to

define problem categories. KE-3 applies association rule

mining techniques to find co-occurance of messages

containing the same attribute values, which indicates possible

causal relationships between the messages within a bounded

and sliding time window.

The CB is connected directly to the data warehouse and the

DSKB. The knowledge required for the CB manager for case

management are stored separately as shown in Fig. 7 and

defined by human administrators. Other information such as

step-by-step action details and screen captures or other data

collected during the troubleshooting process are stored in the

data warehouse.

C. An Example Case Template

Fig. 8 shows an example case template. The high level

problem category is useful to organize cases in a distributed

manner. The other attributes are also used for case

organization and

retrieval. The error

code, message, and

system configuration

attributes are self-

explanatory. A case

can contain

information about

how to solve a

problem if the

attributes reasonably

identify the cause of

the problem.

Otherwise, a case may

contain information

about what may be the

Fig. 7 The knowledge extraction and storage framework

Fig. 8 Example of a case template

Problem Attributes

 Problem category

 Error code

 Error message

 Case category

 System configuration

 Feature values [{feature, op, value}, …]

List of Actions

{Action id, type, weight}

…

Inferences

Recent updates

Number of applications

Other rating

9

next step for investigating the problem further. There can also

be multiple ways that a problem can be investigated or

resolved. The case category attribute is used to identify the

type of actions contained in the case and the list of actions are

the possible suggested moves that can be made from this

stage. The feature values are the monitored parameters. An

expression of the same format as shown in Fig. 6 is used to

match the feature values. For example, a feature defined by

{lock_escalation_threshold, LT, 1000) indicates that the

threshold value at which a lock escalation is triggered is less

than 1000 for the observed system. Actions can be of two

types: one that makes some modification in the system, the

other that simply queries some value and makes some

inference. A weight is associated with an action to indicate the

importance of this action at this state. The inferences help in

explaining the actions taken to solve a problem, rating the

importance of a case based on the number of times it has been

applied and other information such as user or system feedback

about the effectiveness of the suggested actions.

D. Warehouse-as-a-service

It is important to specify a Service Level Agreement (SLA)

for provisioning the warehouse service. Table 1 shows a set of

SLA parameters that can be used to uphold the quality of

service. For information services, reliability should indicate

some measure of confidence for the information provided by

the service. Separate guidelines are provided with the service

description to state the reliability measures. For increased

reliability more analysis may be required and the response

time may be higher. Other SLA parameters such as the

response time and availability are the standard ones.

Additional SLA parameters such as number of users and

queries, and domain coverage (types of configurations) are

specified to define the business model to compute price based

on the above user selected options.

TABLE I

EXAMPLE SLA MODEL FOR THE WAREHOUSE-AS-A-SERVICE

V. WORK IN PROGRESS

We are currently working in parallel on the knowledge

collector, the storage structures, and the CBS.

A. The Knowledge Collector

For the knowledge collector, we are working on the

following aspects.

1) Extraction of Key Words: We are working on automated

extraction of key words and their synonyms from the log files

and the various DB schemas in order to be able to retrieve

related values from the various distributed data sources in the

system. For example, a job is referred to using „Plan‟, „Plan

name‟, „Job‟, and „Jobname‟ in different messages and

monitored data. We are applying frequent word mining

techniques [22][17] combined with domain knowledge to

semi-automatically:

• Build a vocabulary of key words

• Extract the corresponding values of the keys from the

problem report and associated set of log messages

• Build a list of problem categories from the list of error

IDs and mining of groups of words that form message

templates

2) Extraction of Patterns of Associated Messages: Based on

our study, for a number of problem cases a group of messages

generally appear together. We are applying association rule

mining techniques to the temporal data in the JES master log

file to discover such patterns of co-occurring messages [23].

Most real error messages are infrequent, which pose

additional challenges in mining error related information.

B. Storage Structures for Knowledge and Data

We are working on definition of schemas for the warehouse

and the DSKB to store the data and knowledge.

C. The CBS

For the CBS, we are exploring different data structures for

the case repository and the different case retrieval techniques

[6][15]. We are also examining the use of data mining

techniques for finding the set of parameters that can be used to

define a case [13].

VI. CONCLUSIONS

DSS has evolved to DGSS to both provide guidance and

extract knowledge from human experts [18]. The approach

and techniques applied in designing a DGSS largely depends

on the domain specific data and the type of decision support

that needs to be provided. In this research we address the

domain of administration of DB2 DBMSs on z/OS Mainframe

systems. Administration of legacy mainframe DB2 systems is

becoming increasingly more challenging due to the scarcity of

expert DBAs, the steep learning curve, and the increased

systems complexity to support parallel data transaction

requests from highly distributed applications. Although many

different tools exist for log analysis, generating problem alerts,

querying system data and executing DB commands, none of

the tools and the DSSs in this domain provide strategic

decision support and guidance while extracting problem

features [3][5][14].

SLA

Parameters

Business model

Gold Silver Bronze

Reliability 95%

(confidence)

90% 80%

Availability 99% 97% 95%

Response

Time

3 min. (max) 1 min. (max) 15 sec. (max)

Domain

coverage

DB2 on z/OS

and UNIX

DB2 on z/OS

only

No data

sharing

Number of

users

50 30 10

Number of

queries/day

up to 20

parallel queries

up to 10 up to 10

10

 In this paper, we present our study of the troubleshooting

process of a z/OS Mainframe DB2 DBMS in a large

organization, which supports hundreds of transaction requests

from many different distributed Web applications as well as

legacy COBOL batch jobs. Based on the observations, we

define a strategic problem solving life cycle that consists of

four steps: Problem Notification, Identification, Investigation,

and Resolution. For better understanding, the strategic

problem solving life cycle is illustrated in the light of example

problem scenarios. We, thereby, propose our hypotheses

regarding the technologies and approaches needed for

designing a training oriented adaptive decision guidance and

support framework.

We propose our DSDAware framework that:

• Enables automated and semi-automated knowledge

extraction both offline and during the problem solving

process,

• Applies the system knowledge and case history of

previous problem solving strategies to train the less

experienced DBAs by guiding them in troubleshooting

z/OS Mainframe DB2 problems, and

• Provides a warehouse-as-a-service interface for external

users to access the knowledge and get decision support.

 Our ongoing work focuses on the knowledge extraction

and storage framework and the design of the CBS.

In a data rich society, we are now in grave need of learned

and inferred knowledge that is conveniently accessible as

required through platform independent Web-based service

interfaces. Information and data are stored in a distributed

manner in a variety of formats some of which may be

accessible independently by many different tools. However,

we get more information that often needs to be further

searched, filtered and processed to suit specific needs. The

DSDAware framework would support the next generation

DGSS that connects multiple information sources with a goal

of providing reliable knowledge through an interactive

interface to the global Web users while training and providing

strategic decision support to the internal users.

ACKNOWLEDGMENT

We want to express special thanks to Troy Coleman and

Jeff Drake at CA Technologies for their feedback and support

to conduct this research.

REFERENCES

[1] D., Arnott, and G. Pervan. A Critical Analysis of Decision Support

Systems Research. Journal of Information Technology, vol. 20(2), pp.

67-87, 2005.

[2] P., Bruni, J., Iczkovits, H., Mynhardt; P., Zerbini. DB2 9 for z/OS and

Storage Management, IBM Redbooks, 2010.

[3] CA Database Management Solutions for DB2 for z/OS. At:

http://www.ca.com/files/learningpaths/db2_tools_learning_path_21690

8.pdf.

[4] A., Carneiro, R., Passos, R., Belian, T., Costa, P. Tedesco, and A.,

Salgado. DBSitter: An Intelligent Tool for Database Administration.

DEXA 2004, LNCS 3180, F. Galindo et al. (Eds.), pp. 171-180,

Springer-Verlag Berlin Heidelberg, 2004.

[5] Compuware ABEND-AID for Mainframe DB2. At

http://www.compuware.com/mainframe-

solutions/r/19752_AAforDB2_fs_c.pdf

[6] W. Dilla, and P. Steinbart. Using Information Display Characteristics

to Provide Decision Guidance in a Choice Task under Conditions of

Strict Uncertainty. Journal of Information Systems, vol.19 (2), pp. 29,

2005.

[7] S. Eom, S. Lee, E. Kim and C. Somarajan. A Survey of Decision

Support System Applications (1988-1994). Journal of the Operational

Research Society, vol. 49, pp. 109-120, Operational Research Society

Ltd., 1998.

[8] L. Frenzel, and E. Turban. Expert Systems and Applied Artificial

Intelligence, Prentice Hall Professional Technical Reference, 1992.

[9] H. Guo, X. Zhou, and Y. Zhu. Knowledge Acquisition based on Rough

Set and Data Mining. Int. Conf. on Future BioMedical Information

Engineering (FBIE’09), pp. 126-128, IEEE, 2009.

[10] J., Hellerstein, S., Ma, and C., Perng. Discovering Actionable Patterns

in Event Data. IBM System Journal, vol. 41(3), 2002.

[11] G., Henderson. z/OS Performance Monitoring Tools Shoot-Out: ASG,

BMC, CA, Rocket, ASG, whitepaper, 2011.

[12] J., Horak, and J., Owsinski. Transcat Project and Prototype of DSS. In

proc. of 10th EC GI & GIS Workshop on ESDI: State of the Art,

Warsaw, Poland, 2004.

[13] C., Hsu, and Y., Huang. Case Mining from Raw Data for Case Library

Construction. In proc. of 9th Joint Conference on Information Sciences

(JCIS), 2006.

[14] IBM, DB2 Log Analysis Tool for z/OS. At http://www-

01.ibm.com/software/data/db2imstools/db2tools/db2lat/.

[15] R., Mantaras, D., Mcsherry, D., Bridge, D., Leake, B., Smyth, S.,

Craw, B., Faltings, M., Maher, M., Cox, K., Forbus, M., Keane, A.,

Aamodt and I., Watson. Retrieval, Reuse, Revision and Retention in

Case-Based Reasoning. In proc. of The Knowledge Engineering

Review, vol. 20(3), pp.215–240, Cambridge University Press, 2006.

[16] M., Musen. Modern Architectures for Intelligent Systems: Reusable

Ontologies and Problem-Solving Methods. In AMIA Annual

Symposium, (Ed.) C.G. Chute, pp.46-52, 1998.

[17] W., Peng, T., Li, and S., Ma. Mining Logs Files for Data-Driven

System Management, ACM SIGKDD Explorations Newsletter -

Natural language processing and text mining, vol. 7(1), ACM New

York, NY, USA, 2005.

[18] D., Power. Decision Support Systems: From the Past to the Future. In

proc. of the Americas Conference on Information Systems, pp. 2025-

2031, New York, NY, 2004.

[19] M., Romano, and R., Stafford. Electronic Health Records and Clinical

Decision Support Systems: Impact on National Ambulatory Care

Quality. Archives of Internal Medicine, vol.171(10), pp.897-903, 2011.

[20] L., Tai, W., Yu, and X., Feng, 2000. DSS and Business Strategic

Decision Making. In proc. of the 3rd World Congress on Intelligent

Control and Automation, Hefei , China, vol.3, pp. 1962 - 1965, 2000.

[21] E., Turban. Implementing Decision Support Systems: a Survey. In proc.

of IEEE Int. Conf. on Systems, Man, and Cybernetics, vol.4, pp. 2540–

2545, Beijing, 1996.

[22] W., Xu, L., Huang, A., Fox, D., Patterson, and M., Jordan. Detecting

Large-Scale System Problems by Mining Console Logs. In proc. of

SOSP’09, Big Sky, Montana, USA, ACM, 2009.

[23] S., Zhang and X., Wu. Fundamentals of Association Rules in Data

Mining and Knowledge Discovery, Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, vol. 1(2), John Wiley & Sons,

2011.

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=AAAPUB&possible1=Dilla%2C+William+N.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=APIXXX%2CACHXXX%2CACRVAS%2CAJPTXX%2CBRIAXX%2CCIAXXX%2CIAEXXX%2CISNXXX%2CJETAXX%2CJINFE3%2CJINXXX%2CJATAXX%2CJIARXX%2CJLTRXX%2CJMARXX%2CAAAPUB&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=AAAPUB&possible1=Steinbart%2C+Paul+John&possible1zone=author&maxdisp=25&smode=strresults&pjournals=APIXXX%2CACHXXX%2CACRVAS%2CAJPTXX%2CBRIAXX%2CCIAXXX%2CIAEXXX%2CISNXXX%2CJETAXX%2CJINFE3%2CJINXXX%2CJATAXX%2CJIARXX%2CJLTRXX%2CJMARXX%2CAAAPUB&aqs=true

