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Abstract

In hierarchical distributed systems, shared data access
can be controlled by assigning user groups single crypto-
graphic keys that allow high level users derive low level
keys, but not the reverse. The drawback in this approach
to key management is the requirement of replacing keys
throughout the entire hierarchy whenever group member-
ship changes, to preserve security. This paper presents
two algorithms, based on a precedence tree graph model,
that use a distance-based heuristic to minimize the cost of
key assignment and replacement, respectively. In the av-
erage case, only the keys belonging to the group affected
and its sub-tree are replaced. A complexity analysis and
experimental results indicating performance improvements
demonstrate the feasibility of the proposed algorithms.

1. Introduction

Distributed systems inspired the proliferation of web-
based applications because they allow concurrent access to
shared data. In such systems, data can be classified into a
number of classes CKi

such that 1 ≤ i ≤ n where n is the
maximum number of user groups in the hierarchy and Ki

is the cryptographic key with which the data is encrypted.
Possession of a correct key grants a user access to the data.
Practical applications of this concept of access control in-
clude web-based distributed collaborative systems, secure
group communication environments, and sensor networks
where access to shared data is an issue.

Cryptographic keys for the various user groups requir-
ing access to part of the shared data in the system are de-
fined by classifying users into a number of disjoint security
groups Ui, represented by a partially ordered set (S,�),
where S = {U0, U1, ..., Un−1}[1]. In the partially ordered
set Ui � Uj implies that users in group Uj can have access
to information destined for users in Ui but not the reverse.

For instance, in Figure 1, using the scheme proposed by
Akl and Taylor [1], a security provider (SP) classifies users
into three groups U0, U1, and U2 and controls access with
a series of keys generated using the formula:

Ki = Kti
0 mod M ...(1)

where M = p × q is the product of two large primes, ti
a public exponent that defines a user group’s relationship
vis-a-vis other groups in the hierarchy, and K0 a secret key
selected by the SP situated at U0. Users in U0 can access
data held by U1 and U2 using [1, 8]:

Ki = Kti
0 = K

tj(ti÷tj)
0 = K

(ti÷tj)
j (modM) ...(2)

When the result of ti÷ tj is not an integer the computation
is infeasible and access is not allowed [1]. The security of
this algorithm relies on the fundamental assumption that no
efficient algorithm exists for extracting roots modulo M , if
M is the product of two unknown large primes [9].

Figure 1. Example of a Key Tree

This method of key assignment has two advantages:
first, users in any given group only need to store a sin-
gle key rather than several which makes for better security,
and second, sharing a common key alleviates the complex-
ity of key assignment. The downside is that a change in



any of the groups’ membership, requires a change of keys
throughout the entire hierarchy. For example, in Figure 1,
when a user U00 departs from U0 both K0 and the corre-
lated keys K1, and K2 need to be changed to prevent the
departed U00 from continuing to access CK1 , and CK2 .
Likewise, when U20 departs from U2 the keys K0, and K1

need to be changed in addition to K2 so that K0 can derive
the new K2. More importantly the change must guarantee
that the new K2 does not overlap with K1 and unknow-
ingly grant U1 access to CK2 or vice versa. This approach
to key assignment is not scalable for environments with fre-
quent group membership changes where meeting the goals
of service level agreements is an additional constraint [14].

This paper proposes two algorithms to minimize the cost
of key assignment. The first uses a distance based heuris-
tic to guide the assignment of the exponents used to com-
pute user group keys such that a collusion attack is avoided.
Collusion occurs when two or more users at the same level
in a hierarchy cooperate using their respective keys and a
contrived function to compute a key that belongs to a user
class higher up in the hierarchy, to which they are not enti-
tled. The second employs an exponent replacement scheme
that allows the system track of the validity of the exponents
used to form the keys, to avoid re-assigning keys that have
already been used or that are currently in use.

The paper is structured as follows. Section 2 gives a
review of related work. In section 3 we present our al-
gorithms and give illustrative examples to show how they
work. A complexity analysis and experimental results in-
dicating the performance improvements, effectiveness and
scalability offered by the proposed algorithms are pre-
sented and discussed in section 4. Concluding remarks are
offered in section 5.

2. Related Work

The cryptographic schemes for key management in a hi-
erarchy proposed by Akl and Taylor in 1983 [1] triggered a
plethora of algorithms, each aimed at alleviating the prob-
lem of key replacement. The first, though efficient with a
time complexity in O(log2 n), was shown by its authors
to be vulnerable to collusion attack. The second forestalls
collusion attacks but creates keys whose storage require-
ments grow geometrically as the number of classes in the
system increases, thus making the derivation of low level
keys from high level keys computationally expensive. In-
deed, the time complexity required for deriving low level
keys from high level keys using this scheme is O(n log n),
and generating and replacing keys throughout the hierarchy
requires O(n log n)n time [1]. Since ensuring data security
requires replacing every key in the hierarchy whenever any

groups’ membership changes, this scheme is inefficient.
Mackinnon et al. propose an algorithm to assign keys

optimally, using a heuristic to restrict the growth in key
size to a linear rather than a geometric progression [1, 8].
However, in the worst case key derivation still requires
O(n log n) time and the time requirements for key replace-
ments remain unchanged.

Alternative solutions to the problem of minimizing the
time and space requirements of key assignment (genera-
tion) include the approach based on bottom-up key gener-
ation proposed by Harn and Lin. Although the space re-
quirements of the public parameters of the security classes
is much smaller for higher level classes, when there are
many security classes in the system storage space is in
O(n2 log n) as is the case in Sandhu’s scheme[3, 4, 6, 10].

Tzeng proposed using time bounded keys to avoid re-
placing most of the keys each time a user is integrated into
(e.g. subscriptions to newsletters where new users are not
allowed to view previous data), or excluded from, the sys-
tem [11]. His solution supposes that each class Uj has
many class keys Kt

j , where Kj is the key of class Uj dur-
ing time period t. A user from class Uj for time t1 through
t2 is given an information item I(j, t1, t2), such that, with
I(j, t1, t2), the key Kt

i of Ui at time t can be computed
if and only if Ui � Uj and t1 ≤ t ≤ t2. The scheme
is efficient in key storage and computation time because
the same key can be used with different time bounds for
multiple sessions. However, Chien showed that the scheme
is vulnerable to collusion attack and proposed a solution
based on a tamper resistant device that has also been shown
to be vulnerable to collusion attack [2, 13]. Moreover, time
bounded schemes are not practically efficient for dynamic
scenarios where user behavior is difficult to foresee making
it hard to accurately predict time bounds to associate with
keys.

Other schemes include batching [7] and merging [12].
Batching provides better performance by accumulating key
re-assignment requests until a threshold value of requests
is attained. Here, better performance comes at the added
price of an increase in the size of the vulnerability window
(i.e. the period from the time the key server or security
provider receives a key re-assignment request to the time
all the users in the group concerned receive the new key
[7]) between key replacements. Merging, creates greater
correlation between group keys by compressing them into
single keys and characterized with time-bounds. Although
this results in better efficiency for key derivation in the av-
erage case, its reliance on the more sophisticated of the
Akl-Taylor schemes still leaves the time complexity for
key derivation in O(n log n) and that for computing the of
number of time intervals z associated with a key, in O(z2).



Thus efficient key management requires a deterministic al-
gorithm that ensures scalable growth in key size.

3. Key Management

Our key management model is inspired by that proposed
by Akl and Taylor where by a central authority (e.g. a secu-
rity provider or key server) creates a precedence tree graph
based on a series of correlated keys. Each user group Ui is
assigned a key Kti

i such that ti is the public exponent that
defines Ui’s relationship vis-a-vis other groups in the hier-
archy. To access data both at their level and below users
in Ui must possess a valid key Kti

i that belongs either to a
parent node or to the node itself. Since previous solutions
faced either one or both pitfalls: vulnerability to collusion
attack or inefficiency in key management, we use dispersion
between assigned keys to reduce the possibility of collu-
sion attack and an integer factorization metric to bound the
growth in key size linearly [5].

Figure 2. Collusion Avoidance

3.1. Exponent Generation Algorithm

Since the performance of any key assignment scheme,
based on the Akl-Taylor model, depends on the size of ti,
our exponent generation algorithm uses the following prop-
erties to minimize the cost of key assignment and protect
against collusion attack [5]:

• Property 1: Avoiding a collusion attack by verifying
that the gcd {ti : Ui ∈ G} does not divide any tj [1].
Here, G represents the graph of keys at a level in the
hierarchy and tj represents any of the exponents asso-
ciated with keys higher up in the hierarchy

• Property 2: The growth function of ti must be linear
in order to minimize the cost of key assignment.

Any scheme that obeys the first property provides se-
curity against collusion attack [1, 8]. The second property
bounds the growth of the exponents linearly to minimize
the cost of key assignment and/or derivation. We use a reg-
ular rooted tree graph, where each node is of the same de-
gree, to model the allocation of the exponents. In the tree
graph, each node in the tree represents the exponent ti as-
sociated with the corresponding key Ki. To guarantee ac-
cess to its descendant nodes, the exponent belonging to the
ancestor node must be a divisor of these exponents. This
allows keys belonging to descendant nodes to be derived
from those belonging to their ancestors. Thus, in addition
to properties 1 and 2 cited above, we pose a third:

• Property 3: Accessibility is conditional on nodal
precedence and exponent divisibility. Nodal prece-
dence is verified by the condition that ti ÷ tj and ex-
ponent divisibility by ti ÷ tj . Hence access to a child
node is granted if and only if tj belongs to a parent
node and tj is a divisor of the exponent ti belonging
to the child node.

Algorithm 1 : Exponent Generation (D, d)
Require: D ≥ 1; d ≥ 1
Ensure: t0,0 ← x /*x ≥ 1: random value in [1..10]*/

1: for k = 1 to D − 1 do
2: tk,0 ← tk−1,0 ×

(
dk − 1

)
3: if ((tk,0 ≤tk−1,0)∨((tk,0 mod tk−1,0) 6=0)) then
4: tk,0 ← tk−1,0 × 2 /*Get new value*/
5: end if; j ← 0 /*Parent node position*/
6: for i = 1 to dk − 1 do
7: if ((i mod d) = 0) then
8: j ← j + 1 /*Shift to next parent node*/
9: end if; tk,i ← tk,0 × (i + 1)

10: temp← i /*Bounds growth of tk,i linearly.*/
11: while ((tk,i=tk,i−1)∨((tk,i mod tk−1,j)6=0)) do
12: tk,i ← tk,0 × temp; temp← temp + 1
13: end while
14: end for
15: end for

The central authority (CA) e.g. key server, selects a
nodal degree, d, and depth, D and creates an exponent tree
graph in which each node is labeled by the level at which
it is situated and its position at that level. In Figure 2, for
instance, tj,0 indicates the exponent assigned to the node
situated at level j and position 0. Integer values are allo-
cated to each node such that the greatest common divisor
(GCD) of the exponents at any level, say i (see Figure 2),
does not divide any of the exponents belonging to their an-
cestors. A distance based heuristic is used to achieve this



by selecting an exponent for the leftmost node at any level
such that it does not divide any of the exponents belong-
ing to nodes at higher levels. Subsequent values assigned
to the nodes at the same level are multiples of the value of
the leftmost node. Thus the GCD of the exponents at any
level, say i, is equal to the value belonging to the leftmost
node and Properties 1,2, and 3 are verified. The procedure
is repeated until every node in the hierarchy has been as-
signed an exponent. The exponents allocated are then used
to compute the keys required for each of the user groups.
Algorithm 1 formally outlines the procedure.

Algorithm 2 : Exponent Replacement (rk, ri)
Require: rk, ri ≥ 0 /*Position of ti being replaced*/
Ensure: R 6= ∅ /*Registry of exponents*/

1: for k = rk to D − 1 do
2: j ← 0; i← 1
3: while (i ≤ ri) do
4: if ((i mod d) = 0) then
5: j ← j + 1 /*Parent node position*/
6: end if i← i + 1
7: end while tk,ri ← tk,0 × (ri + 1)
8: temp← ri /*Bounds growth of tk,ri linearly.*/
9: while ((tk,ri ∈ R)∨((tk,ri mod tk−1,j) 6=0)) do

10: tk,ri ← tk,0 × temp /*Multiplicity rule*/
11: temp← temp + 2 /*Invalid Exponent,next?*/
12: end while
13: if

(
ri 6= dk−1 − 1

)
then

14: for i = ri + 1 to dk − 1 do
15: if ((i mod d) = 0) then
16: j ← j + 1 /*Shift to next parent node*/
17: end if tk,i ← tk,0 × (i + 1)
18: temp← i
19: while ((tk,i ∈ R)∨((tk,i mod tk−1,j) 6=0)) do
20: tk,i ← tk,0 × temp; temp← temp + 1
21: end while
22: end for
23: end if
24: end for

3.2. Exponent Replacement

On reception of a message indicating a user’s wish to
depart from the system, the CA computes a new exponent
for the node concerned and checks to ensure that it is not
in the registry to prevent re-using exponents with the same
key K0 (see Section 1, equation 1). Next, the exponent is
checked to ensure it is a multiple of the exponent belong-
ing to the leftmost node and is a factor of the exponents
belonging to its descendant nodes. If this is the case, the

new exponent is recorded in the registry and assigned to the
node. When no valid exponent can be found that satisfies
the properties above, the CA will resort to selecting a new
set of exponents for the whole hierarchy or changing the
key K0 and re-assigning keys to the whole hierarchy (this
is the case in previous schemes). Algorithm 2 outlines the
exponent replacement procedure.

3.3. Illustration

As illustrated in Figure 3, to generate the exponent tree
graph, t0,0 is randomly assigned a value of 1. At level 1,
t1,0 ← 1 initially, but t1,0 = t0,0 (see Algorithm 1, line
3) so t1,0 ← 2 (see Algorithm 1, line 4). Next t1,1 ←
t1,0 × 2 = 4 (see Algorithm 1, line 9). Since this value is
valid and t1,1 is the last node at level 1, we move on to level
2 where t2,0 ← t1,0×

(
22−1

)
(see Algorithm 1, line 2:) and

t2,1 ← 12. Initially, t2,2 = 18 (see Algorithm 1, line 12)
but t1,1 = 4 is not a divisor of 18, so the next multiple of
t2,0, 24 (see Algorithm 1, line 16) is selected. Likewise,
t2,3 = 30 is discarded in favor of 36.

Figure 3. Exponent Generation and Alloca-
tion

Now, suppose two users decide to depart from U6 and
U2 at times T , and (T + 2) respectively. Assuming U6’s
message arrives before U2’s, the CA selects a new expo-
nent for t2,3. As shown in Figure 3, since the first selection
42, is not evenly divisible by 4 the exponent belonging to
t1,1 (see Algorithm 2, line 8) the next available multiple of
t2,0 = 6 which is 48 (see Algorithm 2, line 11) is selected.
The new t2,3 = 48 is not in the registry and is divisible by
its parent t1,1 = 4 so t2,3 ← 48, and is recorded in the
registry. Similarly, 8 is selected to replace 4 and t1,1 = 8.
When the exponent being replaced falls on a leftmost node,
say t2,0, we replace all the nodes at that level to avoid col-
lusion. For example, replacing t1,0 with 3 results in t1,1

being replaced with 9, t2,2 with 54 and t2,3 with 54. Like-
wise, replacing the root node t0,0 could result in a com-
plete change of the hierarchy. We assume however, that
in practical scenarios, replacements at the root node oc-
cur rarely and leftmost nodes can be used for user groups
where membership changes occur rarely.



4. Analysis

This section presents an analysis of the algorithms pro-
posed, in comparison to the Akl-Taylor scheme that is in-
vulnerable to collusion. Since the proposed algorithms op-
erate along the Akl-Taylor principle, we could also have
used the Mackinnon scheme but choose not to because the
worst case complexity bounds in the Mackinnon scheme
tend, towards the Akl-Taylor scheme. The other schemes
mentioned in section 2, either have complexity bounds for
key generation and management that are similar to the
Mackinnon scheme, are not adapted to highly dynamic sce-
narios (e.g. time-bounded schemes), and/or sacrifice secu-
rity for performance [7, 10, 11, 12].

4.1. Complexity Analysis

Every user group stores a key Ki, that requires
dlogdKie space, where Ki is the largest key and d, the
nodal degree of the tree. In an n node tree, the size of
the largest ti obtained by ti =

∏
Ui�Uj

pj , where pj is a
distinct prime assigned to a node Uj , is O(n log n)n when
the size of the nth prime is in O(n log n)[1]. Whereas,
with the proposed exponent generation algorithm, the size
of the largest ti is O(n log n). Thus, in our scheme the size

Figure 4. Computation Time vs. Number of
Nodes Generated

of the exponents ti, will grow linearly with the number of
user groups n, whereas in the Akl-Taylor scheme it grows
geometrically. To derive Ki from Kj the user in Uj needs
O(n log n) time using the the Akl-Taylor scheme whereas
our scheme requires O(log n) time. Finally, key replace-
ment in the Akl-Taylor scheme requires generating keys for
the whole hierarchy in the best, average, and worst cases.

Although our replacement scheme still requires O(n log n)
time in the worst case, we achieve better performance in the
best and average cases, by replacing keys only in the por-
tions of the hierarchy directly connected to the node that
needs to be replaced.

4.2. Experimental Results

We evaluated the performance and scalability of the ex-
ponent generation and replacement algorithms, with exper-
iments conducted on an IBM Pentium 4 computer with an
Intel 2.66Ghz processor and 504MB of RAM. In the first
experiment we studied the effect of varying tree sizes on
exponent computation time, by using a series of different
randomly generated trees comprised of 16 to 6561 nodes
respectively. The exponent generation algorithm was ex-
ecuted 1000 times on each tree instance, and the compu-
tation times averaged and reported in Figure 4. The er-
ror bound for each point plotted is ±0.04 seconds. We
observed that the computation times grow logarithmically
with the number of nodes in the hierarchy, which confirms
the result obtained in the complexity analysis and noted
that increased tree size (>1000 nodes) does not signifi-
cantly affect system overhead.

Figure 5. Cost of Key Replacement in Rela-
tion to Position and Percentage Replaced

The second experiment evaluates the cost of replacing
exponents with respect to the tree size, number of nodes
replaced, and nodal position. We randomly selected trees
comprised of 128 to 7776 nodes respectively. In each tree
25%, 50%, and 75% of the nodes were replaced, in the
best, average and worst cases respectively. In the best case,
the nodes replaced were situated at the leaves or one level
above the leaves. In the average case nodes were selected
at random points in the tree, but not the root or leaf nodes.



The worst case consisted of selecting nodes situated to the
left hand side of the tree including the root node. The
replacement algorithm was executed 1000 times for each
case on each tree and the results were averaged to obtain
the plots in Figure 5. The error bounds for each of the
points in the respective graphs plotted are, ±0.013,±0.04
and ±0.03 seconds in the best,average, and worst cases re-
spectively.

The worst case of replacements is more computation-
ally intensive than the best and average cases, but again
the growth curve is logarithmic. In fact, for replacements
of between 1000 and 6500 nodes the replacement times
stay relatively constant. Thus, our exponent replacement
algorithm is scalable to increased tree size and does not
create significant overhead. The best case records a lower
computation time than all the other cases because there are
fewer comparisons and verifications required in replacing
leaf nodes than there are in the average and worst cases.

5. Conclusions

In this paper we have presented two algorithms for cryp-
tographic key management in a hierarchy based on a tree
graph model. The first uses a distance based heuristic to
control the growth of the exponents used to generate keys
for access control in the tree hierarchy. While the sec-
ond proposes a key replacement scheme that minimizes the
number of keys that need to be changed whenever there is
a change in user group membership by re-assigning keys
only to portions of the graph rather than to the whole graph
as is the case in previous schemes.

A complexity analysis and experimental results indicate
that the algorithms are scalable and perform effectively. We
note that verifying exponent validity can be computation-
ally intensive, potentially creating overhead, and propose
that this process be performed off line or during periods
when the system is idle. Questions that may come to mind
in relation to the proposed scheme include the possibility
of key reuse. We answer this question in the negative, ar-
guing that the registry of exponents and the exponent tree
graph allow the system to keep track of the exponents that
have been used or that are currently in use. In the extreme
case when no valid exponent exists, the CA can select a
new secret key K0 and re-assign new keys to the whole
hierarchy.

In closing, we mention a couple of open problems.
Completely eliminating the window of vulnerability cre-
ated between key replacements and determining an opti-
mal complexity bound for handling out-of-sync data con-
tinue to remain an issue. The out-of-sync problem occurs
when a valid user attempts to (between key replacements)

decrypt and update a file encrypted with a key that is no
longer valid or vice versa [7].
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