
AN INDEPENDENT SET APPROACH TO SOLVING THE COLLABORATIVE
ATTACK PROBLEM

Anne V.D.M. Kayem, Selim G. Akl, and Pat Martin
School of Computing
Queen’s University

Kingston, Ontario, K7L,3N6, CANADA
email: kayem@cs.queensu.ca, akl@cs.queensu.ca, and martin@cs.queensu.ca

ABSTRACT
Access control in distributed databases has tended to fa-
vor a hierarchical approach implemented via cryptographic
schemes. In such schemes, a central authority generates
keys for each level in the hierarchy such that users at a
given level can compute, from their own key, the keys of
users below them and gain access to information items they
hold. Previous schemes proposed, have been found to be
either vulnerable to “collaborative attack”1 or inefficient.
This paper presents a method of assigning keys at each
level in the hierarchy such that the probability of their be-
ing combined to generate illegal keys is minimized. We
model the problem as a graph whose vertices represent the
keys generated, and whose edges indicate the probability
that their end points can be combined to generate a “col-
laborative attack”. The concept of independent sets is then
used to demonstrate the feasibility of our approach.

KEY WORDS
Hierarchical access control, distributed databases, security.

1 Introduction

The ability of distributed databases to allow for the
execution of multiple concurrent transactions in an open
and flexible manner across a myriad of applications, was
amongst the factors that gave impetus to the development
of web based information systems. These systems pro-
vide a transparent environment where users can exchange
information without having to grapple with complex deci-
sions about hardware and software constraints. In recent
years, however, the increased complexity of the underly-
ing distributed database systems and availability of per-
sonal information on such systems, has made the idea of
access control a necessary measure to address the problem
of information disclosure. Distributed databases are com-
posed of many distinct entities (users or processes gener-
ated by a user’s activities) and these entities usually have
distinct privileges of accessing different parts or depths of
resources (data items) in the system. Data items are usu-
ally classified into security classes Ci, 1 ≤ i ≤ m, which

1A “collaborative attack” occurs when two or more users at the same
level in the hierarchy collaboratively compute, from their respective keys,
a key (higher up in the hierarchy) to which they are not entitled.

are ordered by the binary relation ‘�’ such that they form
a partial order hierarchy. In the partial order hierarchy
‘Cj � Ci’ indicates that the security clearance of Cj is
lower than that of Ci and that entities that are permitted to
access data items in Ci are entitled to access items in Cj .
Application examples include the unequal relations in the
military, government organizations and commercial enter-
prises.

Figure 1. Disjoint set representation of data item classifi-
cation

For example in Fig. 1, to handle e-commerce, a com-
pany may choose to classify data into four classes: “Com-
pany Financial Status” - C1, “Customer Files” - C2, “Prod-
uct Catalogue” - C3, and “Web Pages” - C4; such that
Directors can access all the data {C1 ∪ C2 ∪ C3 ∪ C4},
Customer Service Representatives can access everything
but the “Company Financial Status” data {C2 ∪ C3 ∪ C4},
Web Site Maintainers can access the “Product Catalogue”
and “Web Pages” {C3 ∪ C4} and Customers can only ac-
cess “Web Pages” {C4}. Assigning cryptographic keys to
entities such that an entity at a higher level can derive the
keys of lower classes is a good solution to the problem of
controlling access to these data items [2,5,11]; first of all
because the scheme does not depend on the physical secu-
rity of the system on which the data resides and secondly
because the storage space required for keys higher up in the
hierarchy is minimised. Instead of attributing multiple keys
to entities higher up in the hierarchy, the Central Authority
(CA) only has to give each a single key from which all the
keys for data items with lower levels of clearance can be
deduced (computed).

These interesting qualities as well as their capacity to
provide confidentiality, integrity and origin authenticity of
a request for connection, have constituted the principal mo-

466-174 594

debbie

tivation for access control schemes in distributed database
systems [5,6,7,8]. Effective access control in these systems
is modeled as a hierarchical tree where entities are classi-
fied into n disjoint sets, S = {U1, U2, ..., Un}. A partially
ordered set (S,�) is defined such that ‘�’ represents the
binary relation between two sets of entities. Thus entities
in set Ui can retrieve data items with a security clearance
of Ci, and Uj � Ui indicates that entities in Ui are enti-
tled to access data items (Cj) held by entities in Uj , but the
reverse situation should not occur.

However, the theoretical access control solutions on
which these schemes are based have been shown to be vul-
nerable to the problem of “collaborative attack”, whereby
two or more users collude (using their respective keys) to
compute a key to which they are not entitled [2,3,4,5,7].
Fig. 2 gives a graphical illustration of how this might occur.
Consider a situation in which Bob and Alice are web site
maintainers (see Fig. 1) for the same firm. Bob decides to
steal access into “company financial status” data, so he con-
vinces Alice to hand over her private key. A combination
of both keys according to some function Bob defines, gen-
erates a key that grants him read/write access to the higher
level which he normally should not be able to access. This
is a serious problem for organizations where information
sensitivity is an issue. A solution based on the concept of
using maximum dispersion to solve the problem of “col-
laborative attacks” in hierarchical access control schemes,
is presented in this paper.

Figure 2. Scenario of a “collaborative attack”

The paper is structured as follows. In section 2 a brief
review of related work on key assignment schemes is pre-
sented. It was demonstrated in [2] and [3] that the simpler
of the Akl-Taylor cryptographic schemes, designed to han-
dle access control in a hierarchy, is vulnerable to “collabo-
rative attack”. Section 3 reviews an example, drawn from
Mackinnon et al. [3], to show how this might occur. We
present our solution for the general case, and give an illus-
trative example to demonstrate its feasibility, in section 4.
A number of concluding remarks are made in section 5.

2 Related Work

Access control in distributed systems is typically
modeled along the lines of mandatory access control.

Mandatory access control is a system of access control that
assigns security labels or clearances to system resources
and allows access only to users (persons, processes, de-
vices) with distinct levels of authorization [19]. Attribut-
ing clearance levels to data items is particularly adapted to
these systems since access cannot be controlled from a sin-
gle central point. Typically, these controls are enforced by
the operating system and implemented by multilevel secure
(MLS) distributed databases [8], according to the proper-
ties outlined by Bell-Lapadula in [18] namely:

Figure 3. Illustration of MLS security properties [19]

• Simple security property : An entity can read from
an object (data item) as long as the entity’s security
level is the same as, or higher than the object’s secu-
rity level. This is sometimes called the no read up
property.

• *-property : An entity can write to an object (data
item) as long as the entity’s security level is the same
as or lower than the object’s security level.

Fig. 3 gives an indication of what these properties
imply. These two properties prevent direct flow of infor-
mation from objects and/or entities at a lower level, and are
the basis of all MLS models. The first scheme to consider
cryptography as a method of enforcing these conditions in
any system where access control is modeled along the lines
of MLS, was published in [2]. Cryptographic schemes in
this context present several advantages that make them use-
ful for enforcing security in distributed databases where en-
tities communicate via untrusted communication networks.
Since protection applies not only to data records stored in
the database but also to messages broadcast during message
passing between system entities, interception of data pack-
ets is useless unless the interceptor possesses the proper
key.

The publication of the Akl-Taylor hierarchical access
control cryptographic scheme [2] triggered the develop-
ment of several schemes for the distributed database sys-
tems scenario [3,4,5,6,7,8,11,12]. Most of the schemes
proposed are based on public-key cryptography because of

595

the increased security and convenience it provides: private
keys never need to be transmitted or revealed to anyone. In
a secret-key system, by contrast, the secret keys must be
transmitted (either manually or through a communication
channel), and there may be a chance that an eavesdropper
can discover the secret keys during their transmission.

In [2], an entity can from its own cryptographic key
derive the keys of all the entities below itself. More impor-
tantly, the scheme protects against “collaborative attack”.
However, as the number of entities in the system grows
so does the size of the keys held by higher level entities
thereby increasing the number of computations and time
required to derive lower level keys.

To address this problem, Mackinnon et al. [3] pre-
sented an improved algorithm designed to determine an op-
timal assignment of keys by attributing the smallest primes
to the longest chains in the poset that defines the hierar-
chy. The existence of an algorithm to achieve an optimal
decomposition of the poset in polynomial time remains an
open problem. A simple heuristic algorithm based on us-
ing a reduced number of distinct primes was proposed to
resolve the problem. Although this improves on the effi-
ciency of [2], a large amount of storage is still required for
the public parameters.

Sandhu used one-way functions in order to resolve the
problem of access control in an efficient manner [17]. With
this scheme, each secret key Ki for a security class Ci is
generated with its own identity and its immediate ances-
tor’s secret key through a one-way function. The drawback
of this scheme is the large computational overhead which
completely defeats the purpose of efficient key generation.

In 1990, Harn and Lin [11] proposed an approach
whereby instead of using a top-down strategy as in the Akl-
Taylor scheme, a bottom-up key generation scheme was
presented. With this solution the space required to store
the public parameters for most security classes is much
smaller than that required by the previous schemes. How-
ever, when there are many security classes in the system, a
large amount of storage space is required to store the public
parameters.

In order to address these issues, Chang et al. [13] pro-
posed a scheme based on Newton’s interpolation method
and a predefined one-way function. Again the drawback of
this scheme is in the time required for key derivation and
generation. In addition, these schemes have been shown to
be vulnerable to “collaborative attacks” [7,13].

These solutions handled the problem as though keys
attributed to users were intended to be for an indetermi-
nate period and that the only time when it was necessary to
regenerate keys was when a new user joined or left the sys-
tem. In practical scenarios it is likely that users may belong
to a class for a short period of time and then get a promo-
tion, which may give them the right to a higher security
clearance.

Tzeng [4] proposed the first time-bound key assign-
ment scheme to handle this situation. His solution supposes
that each class Ci has many class keys Ki,t, where Ki,t is

the key of class Ci during time period t. The scheme is
very efficient in terms of space requirements because a user
need only keep the information item I(i, t1, t2), which is
independent of the total number of classes for the time pe-
riod from t1 to t2, in order to be able to derive all the keys
to which they are entitled. However the computation of a
cryptographic key, say Ki,t, requires expensive public-key
and Lucas computations [14], and therefore have limited
the implementation of this scheme in the distributed envi-
ronment. The scheme was also shown to be vulnerable to
a “collaborative attack” in [14]. Chien [5] proposed a solu-
tion based on a tamper resistant device in order to address
this problem but this solution has also been shown to be
vulnerable to attack [15].

3 Towards a Solution

We shall assume, based on the evidence given in sec-
tion 2, that no matter how well an access control protocol
is specified, there is always the possibility that it will have
some flaw that makes it susceptible to a “collaborative at-
tack” and that when this is not the case, the time and space
requirements make it inefficient. The solution we propose,
aims to demonstrate that correct identification and elimina-
tion of the keys generating the problem can minimise the
risk of attack as well as provide efficiency in key genera-
tion and derivation. In order to situate our argument in the
context of distributed database systems, we briefly review a
simple scheme described in [2] as an example of a scheme
that that seemingly satisfies the access control requirements
but is provably vulnerable to “collaborative attack”.

3.1 “Collaborative Attack” - An example

To generate keys the CA, U0 chooses a secret key K0

and two distinct large primes, p and q, and makes their
product M = p.q public but keeps p and q secret. Each
class of users Ui is attributed a public integer ti such that
the property (1), holds

tj |ti if and only if Ui � Uj (1)

Next Ki is obtained with Ki = Kti
0 (mod M) and commu-

nicated to Ui. In the case where Ui � Uj , according to (1)
tj |ti is an integer and hence Uj can compute Ki with

Ki = Kti
0 = K

tj(ti|tj)
0 = K

ti|tj

j (mod M)

If this is not the case, then the computation is considered
to be infeasible.The choice of the tis is conducted in an ad-
hoc fashion due to efficiency requirements. In Fig. 4 the ti
associated with each class of users Ui is indicated on top of
the node which represents that class.

The weakness of this scheme, as was shown in [2], is
in the ad-hoc selection of ti which makes the scheme vul-
nerable to “collaborative attack”. For example, in Fig. 4,

596

two users with keys Ki = K4
0 and Kj = K9

0 respectively,
can compute K0 with the following equation

(Ki)−2Kj = K−8
0 K9

0 = K0(mod M)

K0 is the key from which all the keys in the system
are derived, so by successfully obtaining this key, users in
U3 and U5 obtain a key granting them access to all the re-
sources in the system. The solution proposed in [2] to avoid
an attack of this sort was shown to be inefficient in [2] and
[3]. Indeed, the ti yielded from ti =

∏
Uj�Ui

pj where pj

is the sequence of distinct primes chosen by U0 grow large
as the number of entities n increases. [3] proposes an im-
provement but, as mentioned above the solution requires a
large amount of storage.

4 Independent set algorithm

It was shown in [16] that any hierarchical crypto-
graphic access control protocol in which the central author-
ity (CA) selects a single RSA modulus n as the basis of key
generation, inevitably allows for the derivation of illegal
keys in the system. Hence there is always a possibility that,
no matter how well a scheme is defined, if keys generated
are not tested for the possibility of their being combined to
generate “illegal keys”, some may exist that are likely to
cause “collaborative attacks”. The following sub-sections
outline our solution, based on the graph theoretic concept
of independent sets. Basically, keys liable to generate “ille-
gal keys” are identified and eliminated through the applica-
tion of an algorithm to compute an independent set of keys
from keys generated for a given level in the hierarchy.

4.1 Preliminaries and Assumptions

Let us assume that the partial order hierarchy, is
always obeyed and that the CA generates keys for each
level in the hierarchy in such a manner as to enforce
these rules. Assume also that the keys generated, at each
level, form a graph whose structure is defined on the basis
of the likelihood of their being combined to generate a
“collaborative attack”. The keys represent the vertices in
the graph while an edge between any two vertices would

Figure 4. Assignment of ti (indicated by integer values at
top of node) to users

indicate that they can be combined to compute an illegal
key.

Example: (see Fig. 4)
Combining K4

0 and K9
0 with the simple equation shown

below generates a key K1
0 that belongs in the hierarchy(

K4
0

)−2 (
K9

0

)
= K0 (mod M)

whereas applying the same equation to the keys K4
0 , K6

0 ,
and K9

0 give:(
K4

0

)−2 (
K6

0

)
= K−8

0 K6
0 (mod M) = K−2

0 (mod M)

(
K6

0

)−2 (
K9

0

)
= K−12

0 K9
0 (mod M) = K−3

0 (mod M)

keys which do not belong in the hierarchy. According
to this equation for collusion, there would be an edge
between K4

0 and K9
0 , whereas there is none between K4

0

and K6
0 , nor between K6

0 and K9
0 . This is a very simple

example because by the same reasoning,
(
K4

0

)−1
and K6

0

give K2
0 which is also in the hierarchy. The assumption is

that edges are generated between keys by testing the same
conditions on all candidate keys. This can lead to a very
sparse graph or a very dense graph in the best and worst
cases respectively.

Definition 1: Key connectivity is implied by the ease with
which any two keys at a level, say j, can be combined
to generate a key at a higher level, say i. Thus, adjacent
vertices are more likely to be combined successfully to
derive an illegal key than non-adjacent vertices.

The need to find large independent sets typically
arises in dispersion problems where the objective is to
identify a set of mutually separated points. For example,
in our case, we want to assign keys at every level in the
access control hierarchy such that no two keys are close
enough to be combined to derive another key (particularly
a key belonging to a higher level). The principal weakness
of many cryptographic schemes lies in their vulnerability
to attacks based on key connectivity.

Definition 2: The graph G = (V,E) is the represen-
tation of key connectivity where V represents the keys
and E the edges between these keys. Note that the edges
of G are obtained based on all best current knowledge of
possible attacks. The absence of an edge between two keys
in no way guarantees that these two keys cannot be used in
a “collaborative attack”.

Definition 3: A set of vertices I ⊂ V is called inde-
pendent if no pair of vertices in I is connected via an edge
in G; an independent set is called maximal if, by including
any other vertex not in I , the independence property is
violated [1,10].

The largest independent set would be the maximum
possible number of keys that can be derived such that the

597

conditions for security are not violated. The set can there-
fore best accommodate the demands of the system to en-
sure that all the classes in the system get a unique key.
Since the problem of determining a largest independent set
is NP-hard we use a heuristic to obtain an approximate so-
lution in polynomial time. Intuitively, the algorithm works
as follows. The key with the lowest value and degree of
connectivity is selected, added to the independent set and
then it, as well as all the vertices adjacent to it, are deleted.
The process is repeated until the graph is empty or until the
number of keys generated is equal to the number of keys re-
quired. As the definition implies, independent sets are not
unique. Hence, in the best case a largest independent set is
obtained and in the worse case scenario where all the keys
are adjacent to the lowest-degree and lowest-value vertex,
only one key is obtained.

4.2 Algorithm

Algorithm 1 MIS Algorithm
1: Choose a random vertex v from the set C
2: Compare dvalue to dvalues of all adjacent vertices
3: if dvalue < all adjacent dvalues then
4: select v and update K with new entry
5: else
6: if dvalue > all adjacent dvalues then
7: Drop vertex v selected
8: Select a vertex v with the minumum dvalue

amongst the adjacent vertices
9: if dvalue = all adjacent dvalues considered

then
10: select vertex with smallest rvalue
11: end if
12: else
13: if dvalue = all adjacent dvalues then
14: select vertex with smallest rvalue
15: end if
16: end if
17: end if
18: C is then updated so that all the vertices that were se-

lected for inclusion in K are deleted from it

The CA selects a modulus ni for each level in the hi-
erarchy, where i represents the hierarchical level. On the
basis of this and the number of users in the system, a set
of candidate keys, C is generated. An independent set I is
then computed from the keys generated and these are then
distributed to the users at the specified level. Let K be a set
of size |V |, where V is the set of keys generated for a level
i. When the algorithm terminates, K will store all the vi

which satisfy the conditions for inclusion in the indepen-
dent set. Initially K is empty, and during each iteration of
the algorithm some vi is inserted in to K. Let C be a set
of size |V |, where C is considered is the set of candidate
vertices for inclusion in K.

For each level in the hierarchy, the set K is initially
set to empty and the set of candidate vertices, C, holds all
the vi ∈ V . Each vertex in C is characterized by the unique
random key (rvalue) assigned to it by the CA computed on
the basis of the modulus n selected for a level i and its de-
gree (dvalue), that is the number of edges that link it to ad-
jacent keys. Let v1, v2 ∈ V . If dvalue(v1) ≤ dvalue(v2)
then v1 is considered to be a better candidate for inclusion
in I , because its connectivity to the other keys is less than
v2’s.The simplest reasonable heuristic is to find the lowest-
degree vertex, add it to the independent set and delete it
and all the vertices adjacent to it. The MIS Algorithm is
executed sequentially for every level in the hierarchy.

This procedure is then repeated for the vertices left
in C and K is progressively augmented. The incremen-
tal augmentation ends when C is empty. On average this
algorithm converges after O(log|V |) iterations.

4.2.1 Example

Consider for example Fig. 5(a), with vertices labeled
{v1, v2, v3, v4, v5, v6} such that {v1 < v2 < ... < v6} gen-
erated for a level, say i, in the hierarchy such that 1 ≤
i ≤ n. Each vj , 1 ≤ j ≤ 6 represents the rvalue of a
vertex. When the algorithm was executed initially on the
graph Fig. 5(a), vertex v2 was selected at random and found
to have the lowest rvalue compared to the adjacent ver-
tices {v3, v4, v5, v6}. It however has the highest degree -
dvalue. So the choice of vertices is between v5 and v6. v5

has the smaller value (considering the indices), so it gets se-
lected which leaves the scenario in Fig. 5(b). Here v1 gets
selected but happens to have the largest dvalue amongst
the three, so automatically the choice goes to v3 and v6. v3

gets selected first and its adjacent node v1 is deleted; which
leaves v6 unconnected so it is added to the set. In the final
analysis the keys selected would be {v3, v5, v6}.

Figure 5. Example of selection of independent set

If we consider for example that v2 is representative of
the key Ki = K4

0 and, v6 of Kj = K9
0 , then it can be ob-

served that the “collaborative attack” problem is eliminated
because the algorithm will either select one or the other but
never both. So the possibility of combined key attacks is
removed.

It is obvious from this illustration that several differ-
ent combinations would generate correct and valid inde-
pendent sets. We do not consider this to be a disadvantage

598

but rather an advantage because different sets could be gen-
erated off line and attributed when there is a demand for a
new set of keys. This would be the case when a user joins or
leaves the system and the original structure is maintained.
Thus, the method can in the best case contribute to an im-
provement in the efficiency of the key generation scheme
[2].

5 Conclusion

In this paper, we have presented a solution to the prob-
lem of “collaborative attacks” in cryptographic access con-
trol protocols for distributed database systems. The ap-
proach we have adopted is based on the principle of com-
puting an independent set from the vertices in a graph. This
graph is constructed from the set of keys generated by the
central authority (CA) for each level in the access control
hierarchy. The keys are considered to represent the vertices
in the graph and they were connected via edges indicative
of the likelihood of their being combined to generate a “col-
laborative attack”. Adjacent keys signify a higher attack
likelihood than non-adjacent keys.

The independent set approach towards resolving the
problem clearly illustrates that the problem of key selec-
tion to prevent “collaborative attacks” in hierarchical ac-
cess control systems can be reduced to the classical graph
problem of determining a largest independent set. As the
problem is NP-hard, a heuristic is used to achieve an effi-
cient (but perhaps suboptimal) solution in polynomial time.
Nevertheless, as illustrated, the solution is feasible.

The drawback of this scheme is that it adds compu-
tational overhead on the system. The algorithm requires
O(log|V |) (V is the number of vertices or keys) time at
least, for the key selection process. The problems of ef-
ficient key management and redistribution when a user is
added to the system remain. Areas for future work include:
Determining an optimal complexity bound for the key se-
lection process and Devising an efficient key management
and redistribution scheme.

Practical applications for the scheme include web
based distributed database systems where access control is
an issue and where key selection and regeneration needs to
be performed “on the fly” because of the dynamic nature of
this environment. In such systems users may join or leave
the system dynamically. Access control in such systems
needs to be handled in a smooth and seamless fashion so
that the operations are hardly perceptible to or affect the
execution of other processes.

REFERENCES

[1] M. Adams, A Parallel Maximal Independent Set
Algorithm, Proc. 5th Copper Mountain Conf. on Iterative
Methods, 1998.

[2] S.G. Akl and P.D. Taylor, Cryptographic Solution
to a Problem of Access Control in a hierarchy, ACM

Transactions on Computer Systems, 1(3), 1983, 239-248.
[3] S.J. Mackinnon, P.D. Taylor, H. Meijer and S.G. Akl,
An Optimal Algorithm for Assigning Cryptographic Keys
to Control Access in a Hierarchy, IEEE Transactions on
Computers, c-34(9), 1985, 797-802.
[4] W-G. Tzeng, A Time-Bound Cryptographic Key
Assignment Scheme for Access Control in a Hierarchy,
IEEE Transactions on Knowledge and Data Engineering,
14(1), 2002, 182-188.
[5] H-Y Chien, Efficient Time-Bound Hierarchical Key
Assignment Scheme, IEEE Transactions on Knowledge
and Data Engineering, 16(10), 2004, 1301-1304.
[6] I-C. Lin, M-S. Hwang and C.-C. Chang, A New
Key Assignment Scheme for Enforcing Complicated
Access Control Policies in Hierarchy, Future Generation
Computer Systems, 19, 2003, 457-462.
[7] M-S. Hwang and W-P. Yang, Controlling Access in
Large Partially Ordered Hierarchies using Cryptographic
Keys, The Journal of Systems and Software, 67, 2003,
99-107.
[8] A. De Santis, A.L. Ferrara and B. Masucci, Crypto-
graphic Key Assignment Schemes for any Access Control
Policy, Information Processing Letters, 92, 2004, 199-205.
[10] M. Luby, A Simple Parallel Algorithm for the maxi-
mal independent set problem, SIAM Journal of Computing,
15(4), 1986, 1036-1052
[11] L Harn and H.Y. Lin, A Cryptographic Keys Gen-
eration Scheme for Multilevel Data Security, Computer
Security, 9, 1990, 539-546.
[12] C.H. Lin, Hierarchical Key Assignment without
Public-Key Cryptography, Computer Security, 20(7),
2001, 612-619
[13] M.-S. Hwang, C.-C. Chang, and W.-P. Yang, Modified
Chang-Hwang-Wu Access Control Scheme, IEE Electron-
ics Letters, 29(24), 1993, 2095-2096
[14] X. Yi, Security of Tzeng’s Time-Bound Key Assign-
ment Scheme for Access Control in a Hierarchy, IEEE
Transactions on Knowledge and Data Engineering, 15(4),
2003, 1054-1055
[15] A. De Santis, A. Ferrari and B. Masucci, On the
Insecurity of a Time-bound Hierarchical Key Assignment
Scheme, http://www.cacr.math.uwaterloo.ca/, 2005 Tech-
nical reports, 2005, CACR 2005-07
[16] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone
Handbook of Applied Cryptography (CRC Press. 2001)
[17] R.S. Sandhu, Cryptographic Implementation of a Tree
Hierarchy for Access Control, Information Processing
Letters, 27, 1988, 95-98.
[18] D. Bell and L. Lapadula, Secure Computer Systems:
Mathematical Foundations and Model, MITRE Technical
Report,MITRE Corporation, 1974.
[19] http://www.oreilly.com/catalog/csb/chapter/fig.03.03.gif

599

