
Adaptive Cryptographic Access Control for

Dynamic Data Sharing Environments

by

Anne Voluntas Dei Massah Kayem

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

October 2008

Copyright c© Anne Voluntas Dei Massah Kayem, 2008

Abstract

Distributed systems, characterized by their ability to ensure the execution of mul-
tiple transactions across a myriad of applications, constitute a prime platform for
building Web applications. However, Web application interactions raise issues per-
taining to security and performance that make manual security management both
time-consuming and challenging. This thesis is a testimony to the security and per-
formance enhancements afforded by using the autonomic computing paradigm to
design an adaptive cryptographic access control framework for dynamic data sharing
environments.

One of the methods of enforcing cryptographic access control in these environ-
ments is to classify users into one of several groups interconnected in the form of a
partially ordered set. Each group is assigned a single cryptographic key that is used
for encryption/decryption. Access to data is granted only if a user holds the “correct”
key, or can derive the required key from the one in their possession. This approach
to access control is a good example of one that provides good security but has the
drawback of reacting to changes in group membership by replacing keys, and re-
encrypting the associated data, throughout the entire hierarchy. Data re-encryption
is time-consuming, so, rekeying creates delays that impede performance.

In order to support our argument in favor of adaptive security, we begin by pre-
senting two cryptographic key management (CKM) schemes in which key updates
affect only the class concerned or those in its sub-poset. These extensions enhance
performance, but handling scenarios that require adaptability remain a challenge.
Our framework addresses this issue by allowing the CKM scheme to monitor the rate
at which key updates occur and to adjust resource (keys and encrypted replicas) allo-
cations to handle future changes by anticipation rather than on demand. Therefore,
in comparison to quasi-static approaches, the adaptive CKM scheme minimizes the
long-term cost of key updates. Finally, since self-protecting CKM requires a lesser
degree of physical intervention by a human security administrator, we consider the
case of “collusion attacks” and propose two algorithms to detect as well as prevent
such attacks. A complexity and security analysis show the theoretical improvements
our schemes offer. Each algorithm presented is supported by a proof of concept
implementation, and experimental results to show the performance improvements.

i

Co-Authors

1. Anne V.D.M. Kayem, Patrick Martin, Selim G. Akl, and Wendy Powley, “A
Framework for Self-Protecting Cryptographic Key Mnaagement”, Second IEEE
International Conference on Self-Adaptive and Self-Organizing Systems (SASO
2008), Isola di San Servolo (Venice), Italy, October 20-24, 2008, (To Appear),
is based on Chapter 5

2. Anne V.D.M. Kayem, Selim G. Akl, and Patrick Martin, “On Replacing Crypto-
graphic Keys in Hierarchical Key Management Systems”, Journal of Computer
Security, Vol. 16(3), 2008, pp. 289-309, is based on Chapter 4

3. Anne V.D.M. Kayem, Patrick Martin, Selim G. Akl, and Wendy Powley, “A
Self-Protective Key Management Framework”, 4th International Workshop on
Engineering Autonomic Software Systems, held in conjunction with the 17th In-
ternational Conference on Computer Science and Software Engineering (CAS-
CON 2007), Markham, Ontario, Canada, October 2007 (Position Paper) is
based on Chapter 5

4. Anne V.D.M. Kayem, Patrick Martin, and Selim G. Akl, “Heuristics for Im-
proving Cryptographic Key Assignment in a Hierarchy”, In Proceedings of the
3rd IEEE Symposium on Security in Networks and Distributed Systems, May
21-23, 2007, Niagara Falls, ON, Canada. pp. 531-536, is based on Chapter
3

5. Anne V.D.M. Kayem, Selim G. Akl, and Patrick Martin, “An Independent Set
Approach to Solving the Collaborative Attack Problem”, In Proceedings of the
17th IASTED International Conference, Parallel and Distributed Computing
and Systems, November 14-16, 2005, Phoenix, AZ, USA. pp. 594-599, is based
on Chapter 6

ii

Dedication

To my parents and my three sisters: Veronique, Delphine, and Madeline.

iii

Acknowledgments

There are no words with which to express my deepest gratitude to my supervisors,
Dr. Selim G. Akl and Dr. Patrick Martin. They have been, to me, like two fathers for
the past four years, prompting me always to do better than my best and encouraging
me in moments of difficulty. By allowing me to explore different horizons they enabled
me to discover the joy and challenge of designing a research project. Many thanks
also to the members of my examination committee: Dr. Sylvia Osborn, Dr. Stafford
E. Tavares, Dr. Mohammad Zulkernine, and Dr. Hagit Shakay for their helpful
comments. I am also grateful to the Canadian Commonwealth Scholarship Program
for financially supporting this research.

I would like to thank my father and mother who always managed to say something
to uplift my mood and self-confidence. They helped me stay focused and most espe-
cially kept my dreams alive. My sisters have also been a source of constant support
for which I will always be grateful. I sometimes think I do not deserve to have you
all, because I have done nothing to merit it. Every PhD student needs a family like
mine, to help them through the moments of stress and moodiness.

Queen’s University has left a deep and very positive impression on me. There are
so many I would like to thank. You made my life here memorable. In particular, I’d
like to thank Wendy Powley for all the support she has given me throughout these
four years. She has been to me a great source of inspiration and encouragement. I
also am deeply grateful to her for helping me proof-read some chapters and for the
suggestions that helped me improve the quality of this thesis.

Finally, I would like to acknowledge the support that all my friends have given
me. Our discussions reminded me there’s more to life than research and so much to
be gained from philosophy, politics, culture, and history.

iv

Statement of Originality

I, Anne Voluntas Dei Massah Kayem, certify that the work presented in this thesis
is original unless otherwise noted. Any published (or unpublished) ideas and/or
techniques from the work of others are fully acknowledged in accordance with the
standard referencing practices.

v

Contents

Abstract i

Co-Authors ii

Dedication iii

Acknowledgments iv

Statement of Originality v

Contents vi

List of Tables x

List of Figures xi

List of Acronyms xiii

List of Symbols xv

1 Introduction 1
1.1 Motivation . 3
1.2 Thesis Statement . 6
1.3 Contributions . 7
1.4 Organization of Thesis . 10

2 Distributed Access Control 13
2.1 Terminology . 14
2.2 General Access Control Models . 17

2.2.1 Discretionary Access Control 17
2.2.2 Mandatory Access Control . 22
2.2.3 Role-Based Access Control . 25

vi

2.2.4 Multilevel Access Control . 27
2.3 Cryptographic Access Control . 30

2.3.1 Key Management Models . 31
2.3.2 One-Way Function Schemes 34
2.3.3 Time-Bound Schemes . 44
2.3.4 Other CKM Schemes . 45

2.4 Other Access Control Paradigms . 47
2.4.1 Overview . 48
2.4.2 Cookies . 49
2.4.3 XML Access Control and Limitations 50
2.4.4 Anti-Viruses, Intrusion Detection, and Firewalls 54

2.5 Autonomic Access Control . 58
2.5.1 The Autonomic Security Model 58
2.5.2 Perspectives and Discussions 60

3 Efficient Key Management: Heuristics 62
3.1 An Overview of the CAT Scheme . 64
3.2 Exponent Assignment Algorithm . 66

3.2.1 Algorithm . 68
3.2.2 Exponent Assignment Example 70

3.3 Enforcing Hierarchy Updates . 72
3.3.1 Replacement, Insertion, and Deletion: Algorithm 72
3.3.2 Insertion, Deletion and Replacement: Example 75

3.4 Analysis . 77
3.4.1 Security Analysis . 77
3.4.2 Complexity Analysis . 78

3.5 Experimental Setup and Results . 79
3.5.1 Implementation and Experimental Setup 80
3.5.2 Cost of Key Generation . 82
3.5.3 Cost of Data Encryption . 83
3.5.4 Cost of Key Replacement . 85
3.5.5 Window of Vulnerability . 86

3.6 Discussions . 87

4 Timestamped Key Management 89
4.1 Timestamped Key Assignment . 92
4.2 Timestamped Rekey Scheme - Algorithm 94
4.3 Analysis . 96

4.3.1 Security Analysis . 96
4.3.2 Complexity Analysis . 97

vii

4.4 Experimental Setup and Results . 98
4.4.1 Implementation and Experimental Setup 98
4.4.2 Timestamped Key Generation - Server Cost 100
4.4.3 Timestamped Rekeying - Server Cost 101
4.4.4 Window of Vulnerability . 103

4.5 Discussion . 105

5 Self-Protecting Key Management 109
5.1 Self-Protecting Cryptographic Key Management (SPCKM) Framework 110

5.1.1 Mathematical Model Supporting Framework 114
5.1.2 An Example . 120

5.2 Implementation and Experimental Setup 121
5.2.1 Experimental Setup . 122
5.2.2 Prototype Description . 123
5.2.3 Performance Criteria . 124
5.2.4 Experimental Results . 125

5.3 Discussions . 131
5.3.1 Contributions of the SPCKM Framework 131
5.3.2 Some Challenges in Adaptive Rekeying 132
5.3.3 The Adaptive Rekey Scheduling Problem 134

6 Collusion Detection and Resolution 137
6.1 On Detecting Collusion Possibilities 139

6.1.1 The DCFK problem . 139
6.1.2 Example . 141

6.2 Adaptive Collusion Detection and Resolution (ACDR) Framework . . 142
6.2.1 Preliminaries and Assumptions 144
6.2.2 Collusion Verification . 147
6.2.3 Example of Collusion Detection 150
6.2.4 Collusion Resolution Algorithm 151
6.2.5 Example of Collusion Resolution 153

6.3 Experimental Setup and Results . 155
6.3.1 Implementation and Experimental Setup 155
6.3.2 Cost of Collusion Detection 156
6.3.3 Cost of Collusion Resolution 158
6.3.4 Cost of Key Generation . 159
6.3.5 Cost of Key Generation and Data Encryption 160

6.4 Discussions . 161

viii

7 Summary and Conclusions 163
7.1 Summary and Critique . 165
7.2 Potential Extensions . 168

7.2.1 Internal Violations . 169
7.2.2 Adaptive Rekeying . 171
7.2.3 Key Selection . 172

A Cryptographic Schemes: Comparison Tables 187

B Hierarchies used in Experiments 190

ix

List of Tables

2.1 Comparison: Access Control Lists and Capability Lists 22
2.2 Key Management Models: Comparison 34
2.3 One-Way Function Schemes: Time Complexity Analysis Comparison

(Here n is the number of security classes in a hierarchy, M is the
product of two large primes and is used to generate a key Ki such that
Ki < M , and s is the number of descendant classes directly accessible
from a class Ui.) . 43

2.4 A Comparison of the Time Complexities of the Overhead created by
the different Key Management Approaches 45

2.5 Comparison: DAC, MAC, CAC, RBAC, Cookies, and XACML 57
2.6 Comparison: Conventional versus Autonomic Access Control Approach 61

3.1 Comparative Time Complexity Analysis: SPKM, CAT, and MCK
Schemes . 79

4.1 Comparative Analysis: Time complexity in multiplications per key size
in O(log M) bits . 98

5.1 Used Notations . 115
5.2 Effect of Replication (data version creations) on Key Management

Scheme Performance . 130

A.1 A Summary of KM models of presented CKM schemes 188
A.2 Suitability to Key Updates . 188
A.3 Hierarchy Styles supported by CKM schemes presented and Vulnera-

bility to Collusion attacks. (**DG: Directed Graph) 189

x

List of Figures

2.1 Hasse Diagram . 16
2.2 Discretionary Access Control . 18
2.3 An Access Control Matrix . 19
2.4 Mandatory Access Control . 24
2.5 Independent versus Dependent Key Management Models 32
2.6 Adjusting to Key Updates in a Dependent Key Management Scheme 33
2.7 Exponent Assignments: A comparison between the CAT and Mackin-

non schemes . 36
2.8 XACML Access Control Model [94] 52
2.9 The Autonomic Computing Feedback Control Loop 59

3.1 Exponent Assignment under the Akl and Taylor Scheme 65
3.2 An Illustration of a collusion-liable and collusion-free exponent assign-

ment . 67
3.3 An Example of a Key Management Hierarchy 69
3.4 Exponent Generation and Allocation 71
3.5 Exponent Replacement: Example . 76
3.6 Sequence Diagram describing SPKM,CAT, and MCK Implementation 81
3.7 Cost of Key Generation Only . 83
3.8 Total Cost of Data Encryption per Hierarchy Size 84
3.9 Total Cost of Key Replacement in Relation to Hierarchy Size 85
3.10 Size of Window of Vulnerability with Respect to Number of Classes

Replaced . 86

4.1 Timestamped Key Management . 90
4.2 Key Assignment and Corresponding Hash Values Generated 93
4.3 Rekeying with the TSR scheme: Example 95
4.4 Sequence Diagram describing the TSR Implementation 99
4.5 Cost of Key Generation Only . 101
4.6 Cost of Key Generation and Data Encryption per Size of Poset 102
4.7 Cost of Rekeying per Number of Class keys Replaced 103

xi

4.8 Size of Vulnerability Window created with respected to the Number of
Keys Replaced . 104

5.1 Self-Protecting Key Management Framework 112
5.2 An Example of a Timeline of System States 117
5.3 Initial Replacement Scenario with no Update Requests 120
5.4 Scenario in which u21 departs . 121
5.5 Prototype Scenario for the SPCKM Implementation 123
5.6 Average Request Satisfaction Time with respect to number of Replicas 126
5.7 Effect of Static Replication on Average Request Response Time . . . 127
5.8 Variation in Vulnerability Window Size with Respect to Request Ar-

rival Rate . 129
5.9 Variation in Percentage of Rekey Requests Satisfied with Respect to

Request Arrival Rate . 130
5.10 A Case of Cyclical Rekeying . 133
5.11 Illustration of polynomial-time reduction from TSP to RSP 136

6.1 Illustration of polynomial-time reduction from MIS to DCFK 142
6.2 Collusion Verification and Resolution Framework 143
6.3 Example of a Hierarchy with Collusion Possibilities 146
6.4 An Illustration of Collusion Detection in a Hierarchy 151
6.5 Example of a Applying the Collusion Detection Algorithm to Remove

Collusions . 154
6.6 Cost of Collusion Detection . 157
6.7 Cost of Collusion Resolution . 158
6.8 Comparative Cost of Key Generation 159
6.9 Overall Comparative Cost of Key Generation and Data Encryption . 160

7.1 Indirect information access via inference channels 170

B.1 Hierarchies of size 3 to 31 . 190
B.2 Hierarchies of size 43 to 111) . 191

xii

List of Acronyms

ACDR: Adaptive Collusion Detection and Resolution
ACL: Access Control List
BLP: Bell-Lapadula security model
BN: Brewer and Nash security model
CA: Central Authority or Key Server
CAC: Cryptographic Access Control
CAT: Collusion-Free Akl and Taylor Scheme
CL: Capability List
CLW: Clark-Wilson security model
CWSP: Chinese Wall Security Policy
DAC: Discretionary Access Control
DBMS: Database Management System
DCFK: Detecting Collusion-Free Keys Problem
Triple DES: Triple Data Encryption Standard
DKM: Dependent Key Management
FSA: File Sharing Application
IKM: Independent Key Management
MAC: Mandatory Access Control
MCK: Mackinnon et al. Scheme
MIS: Maximum Independent Set
NP: Class of decision problems that can be solved on

a Non-deterministic Turing Machine in Polynomial time
RBAC: Role-Based Access Control
RSP: Rekey Scheduling Probem
SA: Security Administrator
SPKA: Self-Protecting Key Assignment
SPKM: Sub-Poset Key Management
SPCKM: Self-Protecting Cryptographic Key Management
SPR: Sub-Poset Rekeying
TSA: Timestamp Authority

xiii

TSKA: Timestamped Key Assignment
TSKM: Timestamped Key Management
TSP: Travelling Salesman Problem
TSR: Timestamped Rekeying
XML: eXtensible Markup Language
XACL: XML Access Control Language
XACML: eXtensible Access Control Markup Language

xiv

List of Symbols

U0 Central Authority or Key Server
S A partially ordered set (poset) of security classes {U0, ..., Un−1}
Ui User group at the ith position in the poset
n Maximum number of security classes in a poset
ti The exponent assigned to the ith security class
Ki The cryptographic secret key assigned to the ith security class
di Unencrypted data associated with the ith security class
DKi

Data di encrypted with key Ki

M Product of two large distinct primes p and q
KS A key set {K0, ..., Kn−1}
I An independent or collusion-free set of set of

vertices (keys) that is a subset of V
Γ Time at which an event occurs
G A subset of V comprising keys assigned to level l in the poset
h Maximum number of levels in the access control hierarchy

defined by the poset
ex,y Exponent situated at the yth position at the xth level
Y Denotes the maximum number of security classes at any given

level in the access control hierarchy
RH Secret registry of Verification signatures
Ti Timestamp associated to the ith security class
HKi,Ti

Verification Signature associated with the ith security class
Ni Number of replicas associated with the ith security class
αi Degree of availability associated with the ith security class
V A set of vertices (keys), computed using an exponent set of integers

assigned to the security classes or groups in the hierarchy
Wc The cth preset monitoring interval
λc

i Arrival rate of rekey requests from Ui during the Wc

Max (λc
i) Preset maximum arrival rate of rekey requests during Wc from Ui

mi Sum of rekey requests from Ui during Wc

xv

pc
i Probability prediction that current resources levels are

inadequate for Wc+1

µi Predicted number of rekey request from Ui during Wc+1

e−µi Base of the natural logarithm raised to −µi

TR Total rekey time during Wc at Ui

TE Total encryption time during Wc at class Ui

TC Total checkpointing time during Wc at class Ui

E (TR) Expected TR

E (TE) Expected TE

E (TC) Expected TC

xvi

Chapter 1

Introduction

“A man who makes trouble for others

is making trouble for himself.”

–Chinua Achebe

By its distributed nature, the Internet offers a considerable scope of opportuni-

ties for resource sharing, making it a prime vehicle for building collaborative Web

applications. The popularity of applications like YouTube, Flickr, Facebook, and

MySpace, highlight a few of a growing number of “social networking” environments

whose primary goal is to facilitate information sharing [28]. Yet, collaborative Web

applications inevitably raise questions pertaining to data security and availability [13].

Users want firm reassurances that their data is secure and that access to it will occur

in a timely manner. Consequently, the expectation is that access control schemes

will evolve from their current quasi-static status into a realm of adaptability whereby

security will be on par with the performance expectations imposed by service level

agreements.

1

CHAPTER 1. INTRODUCTION 2

The autonomic computing paradigm has emerged as an interesting approach to

resolving problems that involve dynamic adaptation [20, 56]. It has gained popularity

as an approach to designing adaptive systems because of its principle of extending

existing architectures as opposed to re-designing them [20, 36, 56, 56, 48]. Essentially,

the autonomic computing can be defined as an approach to designing computing

systems that are self-managing in the sense that they have the ability to control the

functioning of applications with very little input from a user, and are self-configuring

to ensure that the system is managed efficiently [76, 91]. Therefore, systems modeled

using the autonomic computing paradigm have the capacity to run themselves, and

at the same time keep the system’s complexity invisible to the user [99].

Autonomic computing gives security management a new perspective because it

has the potential to facilitate security management in complex scenarios. In compar-

ison to manually managed security systems, autonomic security management has the

advantage of being less time-consuming, less prone to error, and less challenging, for

the security administrator (SA). Autonomic management will, in essence, allow the

SA to set a number of base parameters that will enable a system to manage itself and

only revert to the SA for unusual cases. Self-protecting (adaptive) access control can,

therefore, be described as an approach to security that is based on the autonomic com-

puting paradigm whereby a system is designed to be self-managing (to reduce human

error) and self-configuring (to provide efficient management). Hence, self-protecting

access control schemes have the ability to match security with performance in dynamic

scenarios. However, although this proposition has gained popularity in many com-

puting domains, its application in the security domain has been met with skepticism

and reluctance.

CHAPTER 1. INTRODUCTION 3

Skepticism is generated by the fact that security mistakes (failures) can have

far-reaching consequences. We recall security incidents like the one that occurred in

January 2007 when hackers broke into Winners’1 computer system and stole customer

credit card information [79]. Yet, failure in other areas does not generate the same out-

rage, probably because there is some assurance, or alternative solution. For instance,

power failures/surges do not raise the same concerns and yet can be equally, perhaps

even more, risky. Reluctance results from the concern security failures raise. Costly

law suits and loss of revenue make business owners seek conservative approaches on

which they have some assurance of dependability and security weaknesses are covered

by clauses that limit their liability.

Hence, there are a number of issues that need to be addressed to motivate users

to accept the idea of autonomic control in security schemes [56]. First, is there a way

of determining when too much control has been handed over to the system? Second,

how can we guarantee that the source of a breach will be easier to trace than in

standard security schemes? Although the answers to these questions are not straight-

forward, the growing complexity of computing system management undeniably tips

the balance in favor of autonomic control. Breaches are currently difficult to trace

and prevent, and the problem will only become worse with time [20, 99, 67].

1.1 Motivation

Our motivations for pursuing the argument in favor of adaptive security enforced

through self-protecting access control schemes are founded on three observations.

The first is that even though the ease of use of password authentication schemes

1Department store in the US and Canada specialized in clothing, shoes and accessories.

CHAPTER 1. INTRODUCTION 4

has made them the de facto standard of enforcing access control on the web, their

susceptibility to increasingly sophisticated cyber-security attacks make cryptographic

alternatives or support for authentication schemes attractive. Cryptographic access

control (CAC) schemes, unlike authentication schemes that rely on system-specific

security policies, have the advantage that their security does not rely on the physical

security of the system on which the data resides [2]. Moreover, since CAC schemes

use data encryption to enforce access control, unauthorized access is more difficult

because the data remains encrypted irrespective of its location, and only a valid key

can be used to decrypt it.

Secondly, access control models are prone to failures (security violation or the

inability to meet its objectives) that stem from the fact that security designers tend

to assume that if security schemes are correctly specified, failure is unlikely.

Thirdly, CAC schemes have failed to gain usage popularity in Web applications

because they rely on key management algorithms that place a heavy processing cost on

the system. Cryptographic key management (CKM) algorithms handle data security

by updating the key that is used to encrypt a data object whenever a situation

arises that might compromise the rules of access control. While generating new

cryptographic keys can be done within a relatively short period2, data encryption is

time consuming. When key updates occur frequently3 and involve re-encrypting large

amounts of data4, the key server is unable to complete a re-encryption before the next

request arrives. This can result in a cascading effect, where the key server continually

stops and restarts the key generation and encryption process, that results in longer

2Depending of the key generation function used, it takes about 0.0015 seconds to generate 1
Triple DES key and about 10 seconds to encrypt a file that is ≈ 32 MB in size

3Here frequently implies that the intervals between key update requests are about 4-7 seconds
long

4Data sizes of ≥ 32 MB

CHAPTER 1. INTRODUCTION 5

response times. Longer response times imply a wider vulnerability window5 and

reduced data availability to satisfy user queries. Queries cannot be handled during

the re-encryption process so, longer encryption times affect the query response time.

The CKM algorithms that have been proposed to address the three concerns cited

above, can be broadly classified into two categories: independent and dependent

key management algorithms. Independent key management algorithms operate by

assigning each security class in an access control hierarchy a separate key and access

to lower classes is only granted to a user belonging to a higher level class if he/she

holds the key that explicitly authorizes him/her access. Dependent key management

algorithms, on the other hand, assign each class a separate key and users belonging

to classes at higher levels are granted access to lower level classes if the key in their

possession can be used to mathematically derive the required lower level key. In both

cases the reverse is not possible since users belonging to lower level classes are not

assigned keys that allow them access to information at higher levels.

Although independent key management algorithms are more flexible and easier to

implement in practice, the cost of key distribution is high in comparison to that in

dependent key management algorithms because all the keys a user group requires are

physically distributed to it. Moreover, the independent key management approach

opens up more possibilities for security violations due to mis-managed or intercepted

keys [40]. Dependent key management algorithms alleviate these problems by min-

imizing the number of keys distributed to any group (class) in the hierarchy thus

making for a less cumbersome security management policy. Thus, supporting a CAC

scheme with a dependent key management algorithm falls in line with the first of the

5Period between the emission of a key update request and its satisfaction (key generation, data
re-encryption, and distribution of the updated key) by the key server. A wide vulnerability window
allows a malicious user, who is supposed to have left the system, more time to cause damage.

CHAPTER 1. INTRODUCTION 6

three observations we made at the beginning of this section, that CAC schemes make

unauthorized access more difficult by using data encryption to protect data irrespec-

tive of its location. However, dependent key management algorithms do not perform

well in dynamic scenarios because the inter-dependence between the assigned keys in

the hierarchy implies that updating any of the keys results in a change of keys and

data re-encryptions throughout the entire hierarchy to preserve data security. When

these changes occur within short intervals of each other and involve large amounts of

data, dependent key management schemes face delays that can result in a failure to

meet pre-specified security and performance objectives.

1.2 Thesis Statement

Cryptographic key management schemes based on a dependent key management

approach can be extended to provide a basis for adaptive security in web-based data

sharing applications. Standard approaches focus on security correctness and efficiency

in key management, but overlook cases that involve dynamic key updates [71, 86].

Consequently, when faced with situations that require frequent key updates, the key

replacement process opens up windows of vulnerability and creates delays that neg-

atively impact performance.

A number of problems need to be solved to achieve adaptability in key manage-

ment schemes. First, in previous schemes, replacing any of the keys in the hierarchy

triggers a change throughout the entire hierarchy. This method of key replacement is

computationally expensive, because it implies additionally, that all the data associ-

ated with the updated keys be re-encrypted. Therefore, an algorithm that minimizes

the cost of key replacement in a dependent key approach is needed.

CHAPTER 1. INTRODUCTION 7

Second, in cases where key replacement occurs frequently, the time-lapse between a

request for key replacement and the distribution of the updated key can create delays

that not only impede performance by widening the window of vulnerability but also

increase the response time experienced by non-requesting users awaiting the updated

key. The problem of minimizing the window of vulnerability and the response time

can be resolved by using a predictive algorithm to anticipate requests for key updates

and adjust the associated resources accordingly.

Finally, since the incorporation of adaptability into key management schemes

reduces the necessity of interventions by the security administrator, an algorithm for

monitoring key generation and usage is required to prevent security violations by

authentic users.

1.3 Contributions

The contributions of this thesis are as follows:

1. We present a comparative analysis of standard access control approaches in

relation to their vulnerabilities and inefficiencies, showing that, they, like all

systems, are prone to failure and need to be supported by fault tolerance solu-

tions, in order to be self-protecting.

2. We propose two new algorithms to minimize the cost of key assignment and

replacement. The first algorithm, that we refer to hereafter as the “Sub-Poset

Key Assignment (SPKA)” scheme, uses a distance based heuristic to guide the

assignment of the exponents used to compute user group keys such that a col-

lusion attack is avoided. Collusion occurs when two or more users at the same

CHAPTER 1. INTRODUCTION 8

level in a hierarchy cooperate using their respective keys and a contrived func-

tion to compute a key that belongs to a user class higher up in the hierarchy, to

which they are not entitled. The second algorithm, that we refer to hereafter as

the “Sub-Poset Rekey (SPR)” scheme, operates by using an integer factoriza-

tion metric to select exponent replacements in a way that bounds the growth

of the keys linearly. Additionally, the SPR algorithm allows the key server to

replace keys only in the sub-poset associated with the security class affected by

the key replacement. These two contributions offer the advantage of a flexible

access control hierarchy in the sense that keys can be replaced, deleted, or in-

serted into the poset without having to re-define a new hierarchy as is the case

in previous schemes.

3. We propose a new algorithm to minimize the cost of key replacement (rekeying)

by associating a timestamp with each valid instance of a key and computing a

verification signature from both the timestamp and the key. In order to gain

access to data, a user’s timestamp and key must yield a currently valid verifica-

tion signature. Rekeying is handled by updating the timestamp associated with

a key, computing a new verification signature that is stored in a secret registry,

and secretly transmitting the updated timestamp to the current members of a

group. Thus, instead of rekeying and re-encrypting the data in the portion of

the poset associated with the key that needs to be replaced, as is the case in

the “Sub-Poset Rekey (SPR)” scheme [52], the “Timestamped Rekey (TSR)”

scheme allows the central authority (e.g. key server or security provider) to

update only the group’s timestamp and verification signature.

4. The second and third contributions minimize the cost of rekeying in general,

CHAPTER 1. INTRODUCTION 9

but are faced with the problem that the size of the window of vulnerability

and the response time per request increases with an increasing arrival rate of

rekey requests. The fourth contribution addresses these problems with a key

management framework that uses the autonomic computing paradigm [56] to

incorporate adaptivity and self-protection into a key management algorithm.

The approach allows the key management algorithm to make predictions about

future arrival rates of rekey requests and to adjust the number of resources (keys

and replicated data) in anticipation. The framework allows a CKM scheme to

adapt to changing scenarios by minimizing the response time and the size of

the vulnerability window created by frequent rekeying. The functionalities of

the framework are structured into six components: the sensor, monitor, ana-

lyzer, planner, executor and effector, that are linked together to form a feedback

control loop. The feedback control loop continually monitors the arrival rate

of rekey requests at the key server and, at regular intervals, computes an ac-

ceptable resource (keys and encrypted replicas) allocation plan to minimize the

overall cost of rekeying. Each component of the framework contributes to en-

hancing a standard CKM scheme’s performance without changing its underlying

characteristics. The advantage of this solution is that the response time for han-

dling an increased arrival rate of rekey requests is minimized, in comparison to

the previous two approaches we proposed, because all the key server needs to

do is to transmit the new key when a request arrives as opposed to waiting

to generate a new key and re-encrypt the associated data when a rekey event

occurs.

CHAPTER 1. INTRODUCTION 10

5. Finally, we present a solution to the problem of “collusion attacks” in key man-

agement hierarchies. Our algorithm adaptively assigns keys at each level in the

hierarchy such that the possibility of the keys being combined to generate illegal

keys is minimized. The algorithm works by mapping the key set onto a graph

whose vertices represent the keys generated, and the edges, the possibility that

their end points can be combined to generate a “collusion attack”. The “collu-

sion free” key set is obtained by using a heuristic to compute an independent

set of the vertices. Since the problem of computing a maximum independent

set of keys (i.e., a key set that is both collusion free and covers every node in

the hierarchy) is NP-complete, we deduce that the problem of detecting all the

possible key combinations that can result in collusions is also NP-complete.

1.4 Organization of Thesis

The rest of the thesis is organized as follows. In the next chapter we review the

literature on standard access control schemes. We show that, they are prone to failure

(security vulnerabilities) and need to be supported by fault6 tolerant solutions, to be

self-protecting. The pros and cons of each scheme are highlighted, evolving gradually

through the state of the art to support our argument in favor of adaptive security.

Our evaluation of the access control approaches in the literature indicates that the

main drawbacks they face are a result of the fact that access control approaches are

designed with the assumption that, if correctly specified, failure (security violation or

the inability to meet its objectives) is unlikely.

6The terms ‘fault’ and ‘vulnerability’ are used interchangeably throughout this thesis, though in
principle, a vulnerability is a special case of a fault.

CHAPTER 1. INTRODUCTION 11

In Chapter 3 we present two algorithms that improve on the cost of key assign-

ment and replacement in comparison to previous CKM schemes. We use examples to

clarify the explanation of the algorithms. Towards the end of the chapter, a complex-

ity analysis, security analysis, and experimental results indicating the performance

improvements, effectiveness, and scalability offered by the proposed algorithms are

presented and discussed. However, in the worst case the change occurs at the highest

point in the hierarchy, resulting in a change of keys and data re-encryptions through-

out the entire hierarchy as is the case in previous schemes.

Chapter 4 addresses this concern by building on the algorithms presented in Chap-

ter 3, with the proposition of a timestamped key management scheme to handle the

worst key replacement case. This approach resolves this problem by associating each

key with a timestamp. The timestamp and key are used to compute a verification

signature that is used to authenticate users before data access is granted. So when-

ever group membership changes, instead of rekeying and re-encrypting the associated

data, only the timestamp is updated and a new verification signature computed. The

new scheme is analyzed using a time complexity, security, and experimental analy-

sis and is shown to provide performance improvements as well as providing effective

security.

The results presented in Chapters 3 and 4 highlight the fact that, while extensions

to standard schemes result in performance improvements for relatively static scenar-

ios where user behavioral patterns can be predicted a priori, their reliance on manual

management makes it difficult for these CKM schemes to handle dynamic scenarios

effectively. This is the case in particular when rekey events occur frequently and at

random points in the key management hierarchy. In Chapters 5 and 6, we present

CHAPTER 1. INTRODUCTION 12

two adaptive security schemes that address the need for dynamic key replacements

and also automatic detections of attack possibilities. Specifically, we address the

need for adaptive security with a framework and prototype implementation for self-

protecting cryptographic key management (SPCKM) that is presented in Chapter 5.

We explore the benefits gained by using the autonomic computing paradigm to de-

sign the SPCKM framework. A prototype implementation and experiments showing

performance improvements demonstrate the effectiveness of the proposed framework.

Following this line of thought, since automated key management implies a lesser

degree of control by the SA, Chapter 6 considers a case of how illegal keys might be

generated using authentic keys and presents a “collusion” detection algorithm and a

“collusion” resolution algorithm for detecting and replacing any such keys. Finally,

Chapter 7 summarizes the main contributions of the thesis, offers a critical assessment

of the thesis, and identifies some suggestions for further research.

Chapter 2

Distributed Access Control

“Nothing is more difficult, and therefore

more precious, than to be able to decide.”

– Napoleon Bonaparte

Distributed systems like the Internet are inherently vulnerable to security threats

because of their open architecture and ability to facilitate interactions amongst het-

erogeneous systems. Although a lot of work has gone into designing schemes to protect

data from unauthorized access, the ever evolving applications that arise on the Web

create scenarios that increasingly require that good security be matched with perfor-

mance. Yet, the idea of matching security with performance has received very little

attention in the computer security research community because the primary goal of

security schemes is to provide good protection rather than efficiency. A good example

of such a case is that of cryptographic key management schemes. These schemes pro-

vide access control with an added layer of security that makes violation more difficult,

but have not gained widespread popularity because of the cost of implementation and

13

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 14

the lack of scalability.

Our running example is that of a collaborative web application because it seems

to be a suitable application to use to emphasize the need for adaptive security. The

proposed collaborative web application involves a hypothetical scenario of a file shar-

ing platform that users can join and leave spontaneously. A security administrator

centrally oversees updates and sanctions bad behavior by policing (i.e., a user is com-

pletely expelled or suspended temporarily). The group that a user chooses to join

determines the privileges of access (read, write, modify, and/or delete) that they are

allowed. Real-world collaborative web applications include Chat Systems, Shared

White boards, and “social networking” environments like Facebook [32], YouTube

[103], Flickr [34], and MySpace [73].

The aim of this chapter is to review the literature on distributed access control

paradigms in relation to the issue of matching good security with performance. We

show that access control is intertwined with the notion of dependability and there-

fore access control schemes need to be supported by fault tolerance in order to be

self-protecting. As mentioned in the introductory chapter, our hypothesis is that in-

corporating fault tolerance into a security scheme endows it with the ability to adapt

to changing scenarios resulting in better performance and security. For clarity, we

begin with some definitions of the common terminology and then proceed to discuss

models of access control in distributed systems in relation to the problems we evoked

in Chapter 1, Section 1.2.

2.1 Terminology

The notion of “access” control typically suggests that there is an active entity

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 15

(i.e. a user or application process), with a desire to read or modify a data object

(file, database, etc). For simplicity, we will hereafter refer to an entity as a user and a

data object as a file. Access control typically involves two steps: authentication and

authorization. In order to authenticate an active user, the distributed system needs

some way of attesting that a user is in reality who he/she claims to be. Standard

methods of authentication include passwords and digital signatures. On the other

hand, authorization to access a file relies on a set of rules. Although the rules can be

specified in a natural language format, this choice is typically avoided in order not

to generate ambiguities, inconsistencies, and omissions. A more formal and scientific

approach therefore, is to specify the access control rules or security policies with a

series of mathematical axioms that indicate which users get to access a file.

A privilege allows a user to perform a number of well-defined operations on a

file. For example, in the collaborative Web application that we described earlier, the

security administrator can choose to schedule automatic virus checks with an anti

virus application. In this way, the application gets assigned the privilege of scanning

all the hard disks and memory on the computers on the network (system) with the

aim of eliminating viral threats.

Privileges usually imply some sort of stratification of users each with a clearly

defined role. A role is a set of operations that a user is allowed to perform. A user

can have more than one role and more than one user can have the same role [10].

Partial orderings are used to compare the levels of privileges associated with a

set of security policies. A partial ordering � on a set of security classes S, such that

S = {U0, .., Un−1} where Ui denotes the ith security class, is a relation on S×S which

is:

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 16

Figure 2.1: Hasse Diagram

• Reflexive: For all Ui ∈ S, Ui � Ui holds;

• Transitive: For all Ui, Uj, Uk ∈ S, if Ui � Uj and Uj � Uk then Ui � Uk

• Antisymmetric: For all Ui, Uj ∈ S, if Ui � Uj and Uj � Ui then Ui = Uj

Hasse diagrams are a graphical representation of partially ordered sets (posets).

A Hasse diagram is a directed graph where the security classes are the elements of

the set and the edges in the diagram define the relations that support the partial

ordering. So, for Ui, Uj ∈ S an edge is placed from Ui to Uj if and only if:

• Ui � Uj

• There exists no Ul ∈ S such that Ui � Ul � Uj

This definition implies that Ui � Uj holds if and only if there is an edge between Ui

and Uj. The Hasse diagram for the partially ordered set ({Ui, Uj, Ul} ,�) is given in

Figure 2.1.

An access control scheme is considered to exhibit security correctness when it

can provably be shown to provide both confidentiality and integrity to the system

it needs to protect. Confidentiality is the quality that allows a security system en-

sure that information is accessible only to those authorized to have access. While

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 17

integrity is provided by specifying rules that prevent malicious or accidental altering

of information.

A security system is dependable when it ensures availability, reliability, and safety.

Availability implies that users with the right privileges always get access to the data,

while reliability implies that the data has not been tampered with and is therefore

correct. Safety ensures that the system employs a set of rules that prevent a user

from making changes that will damage the data.

2.2 General Access Control Models

Security models for access control in distributed systems can be generally classified

as either discretionary or mandatory [22, 75, 83]. In the discretionary access

control approach, access authorizations are determined at the discretion of the owner.

Mandatory access control assumes an opposite view in the sense that access control

is regulated by controlling the flow of information among communicating users by

assigning labels to files to restrict accessibility to authorized users. In the following,

we review both the discretionary and mandatory models of access control, highlighting

their pros and cons in relation to enforcing adaptive security.

2.2.1 Discretionary Access Control

Discretionary access control (DAC) is based on the privileges a user has with

respect to a file. A lot of Web applications use the DAC principle because it is

simple and straight-forward to implement in a distributed environment. Using a

DAC mechanism allows users control over the access rights to their files without their

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 18

Figure 2.2: Discretionary Access Control

needing to comply with a set of pre-specified rules. When these rights are managed

correctly, only those users specified by the file owner may have some combination of

read, write, execute, etc. permissions (privileges) on the file [78, 22]. An example of

how a DAC model might be used to enforce access control in our collaborative file

sharing application is given in Figure 2.2. In this case, a user, say Alice, can choose to

create a folder containing photographs she would like to share and allow access only

to members who belong in her repertoire of “friends”. As Figure 2.2 shows, Jane has

the right to view and download the photographs, John only has permission to view

the photographs while Sam has no privileges at all with respect to the Photographs

Folder.

The access control matrix is perhaps the most widely used model for enforcing

simple security policies according to the DAC method [37]. Access rights can be

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 19

Photographs Folder Skype.exe Movies Folder
Sam - {Execute} -
Jane {V iew, Download} {Execute} {Execute,Download, Upload}
John {V iew} {Execute} {Execute,Download}

Figure 2.3: An Access Control Matrix

defined individually for each combination of users and files/directory in the form of

an access control matrix. An access control matrix that enforces the rules of access

depicted in Figure 2.2 is given in Figure 2.3. In this case, the example is extended to

allow all three users different rights of access on three different files/directories. Here,

the three files/directories are the Photographs Folder, Skype.exe, and Movies Folder.

As shown in Figure 2.3, Jane can view and download files from the Photographs Folder

whereas John can only view the photographs and Sam has no privileges at all with

respect to the Photographs Folder. On the other hand, all three users can execute

Skype.exe, as well as download movie files from the Movies Folder, but only Jane has

the right to upload movies to Movies Folder.

The access control matrix is typically not implemented directly if the number of

users and files is large or if the groups of users requiring access to the data, and the

content of the file, change frequently because of the risk of creating ambiguities or

overlaps in the security policy specifications [37]. The access control matrix is sparse,

so storing it by rows gives capability lists, and by columns gives access control lists.

A capability list is analogous to a ticket for a concert, that is, a user with a “ticket”

(access privilege) is allowed entry into the concert hall (file). The capability list (CL)

specifies privileges of access to various files held by a user. The access control list

(ACL) on the other hand, is analogous to a reservation book at a restaurant (file)

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 20

where a customer (user) is allowed seating in the reservation-only restaurant if his/her

name appears in the reservation book. The access control list specifies the permissible

rights that various users have on a file [22]. Although both implementation approaches

appear to be equivalent, they differ in the following ways [22, 64]:

1. Authentication: In implementing an ACL, the identification of the user (e.g.

driver’s license of the restaurant’s owner) needs to be authenticated, whereas

in CLs, it is the capability (ticket for the concert) that must be authenticated.

So, in the case of CLs, the authenticity of the holder of the ticket (user) is

secondary and not always required.

2. Review of Access Rights: Reviewing access control rights allows a security

administrator to determine which users are allowed to access what. In ACLs

reviews are trivial since the list contains all the information and is centrally

located at the server. ACLs minimize the storage requirements for access control

information by using groups to avoid enumerating all users that have common

access rights. In CLs on the other hand, it is difficult to review access rights

unless an activity log is kept for all the users that are given the capability.

3. Access Rights Propagation: In ACLs, the propagation of access rights is

explicitly initiated by a request to the data server, which then modifies or adds

an entry to its ACL. In CLs, access rights can be propagated from user to

user without the intervention of the data server, which can result in a com-

pletely uncontrollable system. One of the ways of avoiding this is to oblige the

propagation to go through the data server.

4. Access Rights Revocation: In ACLs revoking access rights is simplified by

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 21

the fact that the privileges granted to any user on the system can be removed

simply by deleting them from the list that is typically located at the access

control server. On the other hand, in CLs, the process is not as straightforward

because the privilege granting user cannot revoke a granted privilege until the

period for which it is granted expires. Only then can the granting user either

deny giving the requesting user a similar capability or give them one that grants

less or more access rights.

Discussion:

Although the access control matrix (ACM) is a good way of providing a stan-

dard framework for enforcing access control requirements in distributed systems, it

has disadvantages that limit how an access control scheme can meet some security

requirements. An example of such a problem is the confinement problem that Lamp-

son [61] cited, which is to determine whether there is a mechanism by which a user

authorized to access a file may leak information contained in that file to users that

are not authorized to access that file. Harrison et al. [37] formally showed that the

confinement problem is undecidable due to the characteristic of discretionary transfer

of access rights between users in the ACM model. An added consideration is that

although the DAC model is effective for specifying security requirements and is also

easier to implement in practice, its inability to control information flow implies it is

not well-suited to the context of Web-based collaborative applications where central

control in some form is desirable [46]. Moreover, since users applying a DAC security

model do not have a global picture of the data on the system, it is difficult to take

the semantics of the data into consideration in assigning access rights, so information

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 22

might unknowingly be revealed to unauthorized users. Table 2.1 summarizes the pros

and cons of the ACL and CL approaches to implementing ACMs in the DAC model.

Table 2.1: Comparison: Access Control Lists and Capability Lists

Approach ACL CL

Authentication User identification User capability
Review Access Rights Easy to Review Not easy unless

user capability log is kept
Access Right Propagation Server Initiated User to user
Access Right Revocation Server Initiated Server waits till rights

expire then denies
subsequent requests

Location Server Side User Side
Storage Requirements Minimized Increases

2.2.2 Mandatory Access Control

Apart from the confinement and information semantics problems inherent in the

access control matrix model, a key problem that the DAC model faces is vulnerability

to Trojan Horse attacks [89]. In order to viloate confidentiality, Trojan Horse attacks

exploit two possibilities of access rights management:

• Changes in access rights to a file are handled by the file owner and are not

centrally controlled so a malicious user can masquerade as the file owner and

grant read-access to a file against the owner’s desire

• Users authorized to access a file are typically allowed to create copies of the

file, so a malicious user can create a copy of the file or part of it and grant

read-access to users to whom the owner has not authorized access

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 23

The mandatory access control (MAC) model counters these threats by controlling

access centrally. An ordinary user (i.e., not the central authority) cannot change the

access rights a user has with respect to a file, and once a user logs on to the system the

rights he/she has are always assigned to all the files he/she creates. This procedure

allows the system use the concept of information flow control to provide additional

security [37]. Information flow control allows the access control system to monitor

the ways and types of information that are propagated from one user to another. A

security system that implements information flow control typically classifies users into

security classes and all the valid channels along which information can flow between

the classes are regulated by a central authority or security administrator.

MAC models are typically designed using the concept of information flow con-

trol [31, 12]. Information flow control is different from regulating accesses to files

by users, as in the ACM model, because it prevents the propagation of information

from one user to another. In the MAC model, each user is categorized into a security

class and the files are tagged with security labels that are used to restrict access to

authorized users [47, 83]. All the valid channels along which information can flow

between the classes are regulated [31]. The collaborative file sharing example shown

in Figure 2.3 can be extended to handle a security scenario in which a security ad-

ministrator prevents transitive disclosures, by the users accessing Alice’s Photographs

Folder, by using data labels to monitor information flow. Each data object is tagged

with the security clearance labels of each of the users in the system. As shown in

Figure 2.4(a.), by extending the discretionary access example we gave in Figure 2.3,

a transitive disclosure could occur if a user, in this case Sam, gains access to Alice’s

photographs folder because he belongs in Jane’s (who incidentally is on Alice’s list

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 24

Figure 2.4: Mandatory Access Control

of friends) list of “friends”. The MAC model prevents such disclosures by defining

a hierarchy such as the one depicted in Figure 2.4(b.) to monitor information flow

centrally. The users are assigned labels according to their security clearance and in-

formation flow is regulated by authenticating a user and then granting access to the

file based on their privileges. Since each file is labeled with a security clearance tag,

Sam can no longer access files that Jane downloads from Alice’s Photographs Folder

because Sam does not have a security clearance that allows him access. When the

access control policy of a system is based on the MAC model, the security of the

system ceases to rely on voluntary user compliance but rather is centrally controlled,

making it easier to monitor usage patterns and prevent violations.

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 25

2.2.3 Role-Based Access Control

Role-based access control (RBAC) is a combination of mandatory and discre-

tionary access control. In the role-based access control model, a role is typically a

job function or authorization level that gives a user certain privileges with respect to

a file and these privileges can be formulated in high level (e.g. in simple English) or

at a low level (e.g. formally specified and hard coded into an application). RBAC

models are more flexible than their discretionary and mandatory counterparts in the

sense that a user can be assigned several roles and a role can be associated with sev-

eral users. Unlike the access control lists (ACLs) used in traditional DAC approaches

to access control, RBAC assigns permissions to specific operations with a specific

meaning within an organization, rather than to low level files. For example, an ACL

could be used to grant or deny a user modification access to a particular file, but it

does not specify the ways in which the file could be modified. By contrast, with the

RBAC approach, access privileges are handled by assigning permissions in a way that

is meaningful, because every operation has a specific pre-defined meaning within the

application.

Moreover, the RBAC approach to access control is more flexible than the one in the

DAC and MAC models in the sense that roles can have overlapping responsibilities

and privileges, so users belonging to different roles may need to perform common

operations.

Thus, the role in which a user gained membership is not mutually exclusive of

another role for which the user already possesses membership. The operations and

roles can be subject to organizational policies or constraints and, when operations

overlap, hierarchies of roles are established. Instead of instituting costly auditing

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 26

to monitor access, organizations can put constraints on access through RBAC. For

example, it may seem sufficient to allow all the users on the system (Jane, John and

Sam) to have ‘view’ and ‘download’ access to the Photographs Folder, if their accesses

are monitored carefully. By using role-based access control, constraints can be placed

on user accesses so that they do not tamper with contents of the Photographs Folder.

RBAC assumes that all permissions needed to perform a job function can be

neatly encapsulated. In fact, role engineering has turned out to be a difficult task

[37]. The challenge of RBAC is the contention between strong security and easier

administration. On the one hand, for stronger security, it is better for each role

to be more granular, thus having multiple roles per user. On the other hand, for

easier administration, it is better to have fewer roles to manage. Organizations need

to comply with privacy and other regulatory mandates and to improve enforcement

of security policies while lowering overall risk and administrative costs. Meanwhile,

web-based and other types of new applications are proliferating, and the Web services

application model promises to add to the complexity by weaving separate components

together over the Internet to deliver application services.

An added drawback that RBAC faces is that roles can be assigned in ways that

create conflicts that can open up loopholes in the access control policy. For example in

the scenario in Figure 2.2, we can assume that Alice is the security administrator for

the Movies Folder, and that she chooses to assign roles to users in a way that allows

him/her to either download or upload movies but not both. Now suppose that at a

future date Alice decides to assign a third role that grants a user, say Sam, the right

to veto an existing user’s (e.g. Jane’s) uploads. In order to veto Jane’s uploads, Sam

needs to be able to download as well as temporarily delete questionable uploads, verify

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 27

the movies and, if satisfied, reload the movies to the site. So, essentially Sam has the

right to both download and upload movies to Movies Folder, a role assignation that

conflicts with the first two Alice specified. Since policy combinations create conflicts

that can open up vulnerabilities in a security system designed using the RBAC model,

extensions to enable adaptability need to be evaluated with care.

2.2.4 Multilevel Access Control

The multilevel security (MLS) model is essentially a special case of how the MAC

model is implemented for different contexts or scenarios. In the MLS model, a security

goal is set and information flow is regulated in a way that enforces the objectives

determined by the security goal [82]. Practical implementations of security schemes

based on the MLS concept include the Bell-Lapadula (BLP), Biba Integrity Model,

Chinese Wall, and Clark-Wilson models [82, 8, 23, 17, 43, 65]. In the following, we

briefly discuss each of these four MLS models but for a detailed exposition of the field

one should see the works of McLean [70], Sandhu [85], Nie et al. [74], and Gollmann

[37].

• The BLP and BIBA models:

In the BLP model [8], high level users are prevented from transmitting sensitive

information to users at lower levels, by imposing conditions that allow users at

higher levels only read data at lower levels but not write to it. On the other hand

users at lower levels can modify information at higher levels but cannot read it.

Although this method of information flow control prevents sensitive information

from being exposed, allowing users at lower levels to write information to files

at higher levels that they cannot read can create situations of violations of data

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 28

integrity that are difficult to trace and correct [65]. The Biba integrity model

[11] addresses this problem of data integrity by checking the correctness of all

write operations on a file. However, this approach opens up the possibility of

security violations that result from inferring high level information from low

level information.

• The Chinese Wall model: In 1989, Brewer and Nash proposed a commer-

cial security model called the Chinese wall security policy [17]. The basic idea

is to build a family of impenetrable walls, called Chinese walls, amongst the

datasets of competing companies. So, for instance, the Chinese wall security

policy could be used to specify access rules in consultancy businesses where

analysts need to ensure that no conflicts of interest arise when they are dealing

with different clients. Conflicts can arise when clients are direct competitors

in the same market or because of ownerships of companies; therefore, analysts

need to adhere to a security policy that prohibits information flows that cause a

conflict of interest. The access rights in this model are designed along the lines

of the BLP model but with the difference that access rights are re-assigned and

re-evaluated at every state transition whereas they remain static in the BLP

model. Unfortunately, their mathematical model was faulty and the improve-

ments proposed have failed to completely capture the intuitive characteristics

of the Chinese wall security policy [105, 63, 64].

• The Clark-Wilson (CLW) Model: Like the BIBA model, the CLW model

addresses the security requirements of commercial applications in which the

importance of data integrity takes precedence over data confidentiality [23].

The CLW model uses programs as an intermediate control level between users

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 29

and data (files). Users are authorized to execute certain programs that can in

turn access pre-specified files. Security policies that are modeled using the CLW

model are based on five rules:

1. All data items must be in a valid state at the time when a verification

procedure is run on it.

2. All data transformation procedures need to be set a priori and certified to

be valid.

3. All access rules must satisfy the separation of duty requirements.

4. All transformation procedures must be stored in an append-only log.

5. Any file that has no access control constraints be transformed into one with

one or more access control constraints before a transformation procedure

is applied to it.

The CLW model is therefore more of a security policy specification framework that

extends the concepts in the BIBA model to the general case.

The discussion in this section also illustrates that access control models are typ-

ically designed with a set goal and that the scenarios that they are designed for are

assumed to be static. Although no single access control scheme can be designed to

handle every possible security scenario, web-based security scenarios are increasingly

difficult to predict and control manually, which adds a further complication to the

problem of designing good security frameworks in the Web environment. In these

cases, therefore, the need for good security is intertwined with performance because

the delays created in trying to address new situations manually can be exploited ma-

liciously and also affect performance negatively from the user’s perspective. In the

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 30

next section we cover the cryptographic approaches that have been proposed to ad-

dress the access control problem. Hierarchical cryptographic access control schemes

offer the advantage of being simpler to model mathematically and so lessen the SA’s

burden of security policy specification.

2.3 Cryptographic Access Control

Hierarchical cryptographic access control (CAC) schemes emerged in an attempt

to design MLS models that are more general and capable of providing security in

different contexts without requiring extensive changes to the fundamental architecture

[2, 44, 66, 28]. For instance, in situations that require data outsourcing CAC schemes

are useful because the data can be double encrypted to prevent a service provider

from viewing the information but yet be able to run queries or other operations on

the data and return a result to a user who can decrypt the data using the keys in

their possession [28]. CAC schemes are typically modeled in the form of a partially

ordered set (poset) of security classes that each represent a group of users requesting

access to a portion of the data on the system. Cryptographic keys for the various

user groups requiring access to part of the shared data in the system are defined by

classifying users into a number of disjoint security groups Ui, represented by a poset

(S,�), where S = {U0, U1, ..., Un−1} [2, 66]. By definition, in the poset, Ui � Uj

implies that users in group Uj can have access to information destined for users in

Ui but not the reverse. The following paragraphs present a comparative discussion

of cryptographic key management (CKM) schemes that are based on the concept of

posets of security classes, highlighting the pros and cons of each approach in relation

to designing self-protecting access control frameworks.

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 31

2.3.1 Key Management Models

Models of key management (KM) are based on the concept of posets and can

generally be divided into two main categories: independent and dependent key man-

agement schemes. Independent key management (IKM) schemes originate from the

multicast community where the concern is securing intra-group communications effi-

ciently. In these protocols, the focus is on how to manage keys within a group in a

way that minimizes the cost of key distribution when the membership of the group

changes [40, 104].

IKM schemes approach hierarchical KM by assigning each security class all the

keys they need to access information both at their level and below. Accesses are

granted only if the user requesting access holds the correct key [40]. So for instance

in Figure 2.5(a.), to access the data located at the security classes below it a user U0

needs to hold all the keys K1, K2, K3, K4, and K5 in addition to their own key K0.

While this method of KM is easier to implement in practical systems because of

its flexibility, the cost of key distribution as well as the possibility of security viola-

tions due to mis-managed or intercepted keys, is higher than that in dependent key

management schemes [40]. In fact, in the worst case scenario where all the keys in

the hierarchy are updated, 2n + 1 keys are redistributed (n represents the maximum

number of security classes in the hierarchy), making key re-distribution more costly

in comparison to the dependent key management approach where only n keys are re-

distributed [40]. As shown in Figure 2.5(a.), to access data DK0 , DK1 , DK2 , DK3 , DK4 ,

and DK5 at classes U0, U1, U2, U3, U4, and U5, a user situated at class U0 must hold

the keys K1, K2, K3, K4, and K5 in addition to their own key K0. So, if a key say K4,

is updated then the new key needs to be re-distributed to all the users in the classes

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 32

U0, U1, U2 and U4 that use it.

Figure 2.5: Independent versus Dependent Key Management Models

A good way to alleviate these problems is to design the KM scheme in a way

that minimizes the number of keys distributed to any security class in the hierarchy.

This model, typically referred to as the dependent key management (DKM) scheme,

defines a precedence relationship between the keys assigned to the security classes

in the hierarchy whereby keys belonging to security classes situated at higher levels

in the hierarchy can be used to mathematically derive lower level keys. Access is

not possible if the derivation function fails to yield a valid key. So for instance, in

Figure 2.5(b.), the data d1, d2, d3, d4, and d5 is encrypted with the keys K1, K2, K3, K4

and K5 to obtain DK1 , DK2 , DK3 , DK4 , and DK5 . Therefore, possession of the key K1

allows access to DK1 , DK3 , and DK4 since the key is associated with the security class

U1 that is situated at a higher level than the classes U3 and U4, and by the partial

ordering U3, U4 � U1. The reverse is not possible because keys belonging to the lower

classes cannot be used to derive the required keys and access information at higher

levels.

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 33

However, there are a number of drawbacks that impede the performance of de-

pendent key management schemes in dynamic scenarios. For instance, as shown in

Figure 2.6, an update request typically requires that the key associated with the

security class concerned be replaced.

Figure 2.6: Adjusting to Key Updates in a Dependent Key Management Scheme

So when a user u10 departs from U1 both K1 and the correlated keys K2, K3, and

K4 need to be changed to prevent the departed user u10 from continuing to access

DK1 , DK2 , DK3 , DK4 . Likewise, when u20 departs from U2 the keys K1, K2, K3, K4

need to be changed as well so that K1 can derive the new K2 and more importantly

to guarantee that the new K2 does not overlap with K1, K3, or K4 and unknowingly

grant U3 or U4 access to DK2 or vice versa. This approach to key assignment is not

scalable for environments with frequent1 group membership changes where meeting

the goals of service level agreements is an additional constraint. Table 2.2 summarizes

the pros and cons of both key management approaches [40, 104].

1Here, “frequent” implies that the interval between two rekey events is shorter than the time
it takes the key management scheme to define a new one-way function, check its uniqueness, and
generate a new key for the node (class) concerned.

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 34

Table 2.2: Key Management Models: Comparison

DKM Model IKM Model

Security Fewer keys distributed More Keys distributed
Cost More re-encryption Less re-encryption

Inter-group communication Not flexible More Flexible
Effect of Changing one key implies Change only affected
Rekeying updating the whole hierarchy keys, and distribute

users requiring the keys
Key Distribution Cost n keys 2n + 1 keys

(Number of keys
transmitted)

2.3.2 One-Way Function Schemes

Akl and Taylor [2] proposed the first cryptographic key management scheme based

on the DKM model. According to their scheme, a central authority (e.g., a security

provider or key server) U0 chooses a secret key K0 as well as two distinct large primes

p and q. The product M = p × q, is computed and made public whereas p and

q are kept secret. The access control hierarchy is composed of a maximum of n

security classes and each class (group) Ui is assigned a public exponent (an integer) ti

that is used, together with a one-way function2, to compute a key Ki for the group.

In the schemes that Akl and Taylor proposed, this one-way function is expressed as:

Ki = Kti
0 mod M . For simplicity, throughout this section, in analyzing the complexity

of a KM scheme, we will assume that a hierarchy is comprised of a maximum of n

security classes. We assume also that every key Ki is less than M (Ki < M) and that

each key Ki requires O(log M) bits to be represented.

Akl and Taylor suggested two algorithms for assigning the exponents used to

compute the group keys. The first algorithm (referred to hereafter as the Ad-hoc AT

2A function which is easy to compute but whose inverse is computationally infeasible.

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 35

scheme) uses an ad-hoc assignment of exponents that is efficient in time and space

complexity, but is vulnerable to collusion attack. The second algorithm (referred

to hereafter as the CAT scheme) assigns each group Ui a distinct prime pi and the

exponents are computed from the product of all the pj’s associated with the classes

Uj in the poset such that Uj 6� Ui. The size of the nth largest prime, in an n group

hierarchy is O(n log n) [58]. Considering that the formula Ki = Kti
0 mod M is used

to compute the keys, if Ki < M then this implies that Ki requires O(log M) bits

to be represented. In the CAT scheme the largest exponent, ti, is a product of n

primes, so ti is O((n log n)n). Each key in the hierarchy is computed by raising a

key to the power of ti, therefore log ti multiplications are required to compute a

single key, that is, O(n log n) multiplications of O(log M) bit numbers. Finally, to

generate keys for the whole hierarchy, since n keys are required in total, we need

O(n2 log n) multiplications of O(log M) bit numbers. In the Ad-hoc AT scheme, the

size of ti is O(log n) since the integer values assigned to the exponents grow linearly

with the size of the hierarchy. Therefore generating keys for the whole hierarchy

requires O(n log n) multiplications of O(log M) bit numbers. In both schemes, key

replacements trigger updates throughout the entire hierarchy, so the costs of key

generation and replacement are equivalent. We note, however, that when the CAT

scheme is used key updates are more expensive than in the Ad-hoc scheme. Therefore,

when key updates are triggered frequently throughout the entire hierarchy, rekeying

using the CAT approach is computationally expensive.

Mackinnon et al. [66] address this problem with an improved algorithm designed

to determine an optimal assignment of keys by attributing the smallest primes to the

longest chains in the poset that defines the hierarchy. They use a heuristic algorithm

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 36

to reduce the number of primes used to obtain the decompositions because obtaining

an optimal decomposition of a poset in polynomial time remains an open problem

[66]. This improves the time efficiency for key generation in the CAT scheme, because

the largest exponent ti, is a product of approximately half the total number of primes

and so, in comparison to the CAT scheme, reduces the total number of multiplica-

tions required to compute a key by a half. For example, in Figure 2.7(a.), the initial

Figure 2.7: Exponent Assignments: A comparison between the CAT and Mackinnon
schemes

assignment of primes is 2, 3, 5, 7, 11, 13 and therefore using the exponent generation

algorithm in the CAT gives the exponent assignment shown in Figure 2.7(b.). By

contrast, using the exponent generation algorithm in the Mackinnon scheme yields

the assignment given in Figure 2.7(c.). Notice that in the last case the largest ex-

ponent is a product of 2, 5, 11 while the largest exponent in the CAT scheme is a

product of 2, 3, 5, 7, 13. The Mackinnon scheme reduces the cost of exponent gener-

ation and consequently key generation, in the best case but in the worst case, when

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 37

the algorithm fails to obtain an optimal decomposition, the complexity bounds for

key generation and replacement remain unchanged from what they are in the CAT

scheme.

Sandhu [84] proposed addressing the issue of rekeying and security class addi-

tions/deletions with a key assignment/replacement scheme that is based on a one-way

function. According to his scheme, the security classes are organized in the form of

a rooted tree with the most privileged security class, say U0, being at the root and

the least privileged at the leaves. In order to generate keys for the security classes

in the hierarchy, the central authority starts by selecting an arbitrary secret key K0

for the class U0. The keys for each of the successor classes are created by assigning

the classes an identification parameter, Id(Ui), that is then encrypted with the key

belonging to its direct ancestor class. For instance, if a class, say Uj, has s children

(i.e. security classes at level i directly below it) then the keys for each of the children

classes will be computed as follows:

Ki1 = EKj
(Id (Ui1)),

... = ...,

Kis = EKj
(Id (Uis))

This scheme makes it easier to completely delete or insert new security classes into

the hierarchy, because insertions/deletions only require the creation/deletion of the

identification parameter associated with the class and encrypting the identification

parameter with the ancestor key. However, key replacement at any security class in

the hierarchy still requires updating the whole hierarchy to prevent departed users at

higher levels from continuing to derive lower level keys and to allow high level keys to

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 38

continue to be able to derive low level keys. Key replacements also imply updating the

affected one-way functions and re-encrypting the data with the new keys. Ensuring

the uniqueness of the one-way functions can be challenging in complex hierarchies

when group membership changes frequently.

In order to evaluate the complexity of the Sandhu scheme, we assume that the keys

are equivalent in size to those obtained in the CAT scheme, i.e. Ki < M , where M is

the product of two large primes, and Ki requires O(log M) bits to be represented. We

assume also, that in the worst case, the number of encryptions needed to obtain the

largest key, in an n group hierarchy is equivalent to the largest prime, so O(n log n)

encryptions of keys of size O(log M) bits are required to compute a key. Since n keys

are required for the whole hierarchy, we need O(n2 log n) encryptions of O(log M) bit

numbers to compute all n keys. Rekeying results in an update of keys throughout

the entire hierarchy, so the complexity bounds for key generation and rekeying are

equivalent.

In order to overcome the drawbacks of the Sandhu scheme, Yang and Li [100]

proposed a scheme that also uses a family of one-way functions but limits, to a

pre-specified number, the number of lower level security classes that can be directly

attached to any class in the hierarchy. The keys for the security classes in the hierarchy

are assigned on the basis of the maximum accepted number of classes that can be

attached to a security class. A high level class can only derive the key associated

with the nth lower level security class attached if there is a path that links it to the

lower class and if the high level class key can be used to derive the required low

level class key [100]. Limiting the number of lower level security classes attached to

a higher level security class reduces the number of keys and encryptions needed but

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 39

the complexity bounds for generating and replacing the keys remain the same as in

the Sandhu scheme. Moreover, Hassen et al. [40] have shown that the scheme does

not obey the confidentiality requirements expected of a key management graph (i.e.

high level nodes can only derive keys belonging to lower level nodes if they hold a

key that is valid and authorizes them access). According to Hassen et al. [40], in

the Yang and Li scheme, deleted keys can still be used by users to continue to derive

lower level keys since the lower levels keys are not updated when a change occurs at

a higher level security class.

Other schemes based on the concept of one-way functions and the DKM model

include that proposed by Harn and Lin [38], Shen and Chen [88], and Das et al. [27].

Harn et al. proposed using a bottom-up key generation scheme instead of the top-

down approach that the Akl and Taylor schemes use. In the Harn et al. scheme, the

smallest primes are assigned to the lower level security classes and the larger primes

to the higher level classes. The Harn et al. scheme allows a security administrator

to insert new classes into a key management hierarchy without having to update

the whole hierarchy. Key insertions/deletions are handled by updating only the keys

belonging to higher level classes that have access privileges with respect to the new

class. Therefore, key insertions or deletions do not result in key updates throughout

the entire hierarchy. Moreover, in comparison to the CAT scheme, the cost of key

derivation in the Harn et al. scheme is lower if we consider that key derivation is

bounded by O(log(ti/tj)) operations (i.e., O(n log n) time) when Ui � Uj. However,

the complexity bounds for key generation and replacement remain unchanged from

what they were in the CAT scheme because the sizes of the largest prime and key

remain the same and rekeying still requires updating all the keys in the hierarchy.

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 40

In order to address these issues Shen and Chen [88], and Das et al. [27], proposed

using asymmetric cryptography, the Newton interpolation method and a predefined

one-way function to generate keys. As in the Harn et al. scheme, both schemes

allow security class additions/deletions without requiring updates throughout the

entire hierarchy. Key generation is handled by assigning each class (group) a secret

key Ki, such that Ki is relatively prime to a large prime number pi, and a positive

integer bi, such that 1 ≤ bi ≤ pi. Both Ki and bi are used to compute the interpolation

polynomial Hi(x) and the public parameter Qi associated with a class Ui. Both Hi(x)

and Qi are made public while bi and Ki are kept secret. Key derivation is possible

if a user’s secret key allows them to derive first the bl associated with the lower class

Ul, and then the required secret key Kl. Key updates are handled by replacing only

the interpolation polynomial ,Hi(x), and the public parameter Qi associated with Ui,

as well as the old secret key Ki that can be updated to a new one, say K ′
i. So all the

other keys do not need to be changed.

We know, from our analysis of the CAT scheme, that in an n class hierarchy, the

size of the nth largest prime pi is O(n log n). Therefore, if bi < pi, the size of bi is

O(n log n) [58]. A key Ki requires O(log M) bits to be represented. According to

Knuth [58], computing a k degree interpolation polynomial requires O(k2) divisions

and subtractions and since computing Qi requires that Ki be raised to the power

1/bi, this implies that we need O(log n) multiplications of O(log M) bit numbers, in

addition to the interpolation time O(k2), to compute one key. Therefore the n keys

in the hierarchy are obtained by O(n log n) multiplications of O(log M) bit numbers

in addition to O(nk2) interpolation time. Key derivation is a two step process, first

O(k2) interpolations are required to obtain bl and next O(log n) multiplications of

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 41

O(log M) bit numbers are required to obtain Kl. It is also worth noting that these

schemes have been shown to be vulnerable to “collusion attack” [107, 41].

We note that in all of the KM schemes that we have discussed in this section,

rekeying requires updating the whole hierarchy, so the costs of key generation and

replacement are equivalent. We also note that these costs are high, because key

replacement requires that the associated data be re-encrypted.

In order to alleviate the costs of key replacement, Atallah et al. [5] proposed a

method of updating keys locally, i.e. in the sub-hierarchy associated with the affected

security class. In the Atallah et al. scheme, a user belonging to a higher level class uses

a hash function to derive the key belonging to a lower level class and the authors show

that the scheme is secure against collusion attack. This scheme has the advantage

over previous approaches that security classes can be inserted into, and deleted from,

the hierarchy without having to change the whole hierarchy. In fact, since each of the

paths between the higher and lower level classes is associated with a cryptographic

hash function replacing, inserting, or deleting a key is achieved by creating (in case of

replacement or insertion), or deleting a key and recomputing a hash function for the

affected paths using the new key. Cycles are eliminated from the key management

graph, with a shortcut algorithm [4] that operates by dynamically creating direct

access paths from high level classes to low level classes. While this improves on the

cost of key derivation it adds more paths to the key management graph which goes to

further complicate security management and open up potential loopholes for security

violations due to mismanaged edge function assignments.

There are a number of additional points worth noting regarding the Atallah et

al. scheme. First, in order to derive the key belonging to a lower level class, a user

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 42

belonging to a higher level class must derive all the keys along the path leading to the

target lower level class. By contrast, in the CAT scheme, key derivation is a one step

process. Although, the Atallah et al. scheme concludes with some pointers on how to

reduce the number of hops performed to reach a lower level class, this comes at the

price of additional public key information. Second, when the replacements need to

be done throughout most of the hierarchy, rekeying is more costly than in previous

schemes because it implies replacing the keys, re-computing all the hash functions on

all the affected edges, and re-encrypting the data associated with the updated keys.

So, in essence the scheme does well in the best and average cases but performs worse

than previous schemes in the worst case scenario. Third, because there is a lot of

public information that is computed from the secret key, there is a greater chance

that an adversary can correctly guess at the value of the secret key. Finally, although

the authors claim that their scheme is secure against collusion, a closer look indicates

that this is not the case. In the Atallah et al. scheme replacement requires computing

a new secret edge value yi,j, and since the old descendant class (group) key is not

replaced, once a high level user performs a key derivation operation to obtain a key,

he/she continues to have access to the lower level classes until the classes are rekeyed.

In order to evaluate the complexity requirements of the Atallah et al. key man-

agement schemes, we assume that there are n groups in the hierarchy. We assume

also that largest key Ki < M , the size of each secret key is bounded by O(log M) bits.

The largest access key, yi,l, is obtained from the function yi,l = Kl−H(Ki, ll) mod 2ρ

where H(Ki, ll) is a cryptographic hash function, Kl is the key associated with the

lower level class connected by the edge to the higher level class, and ρ is a prime

number greater than any key value. Since (H(Ki, ll) mod 2ρ) < 2ρ, this implies that

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 43

Table 2.3: One-Way Function Schemes: Time Complexity Analysis Comparison
(Here n is the number of security classes in a hierarchy, M is the product
of two large primes and is used to generate a key Ki such that Ki < M ,
and s is the number of descendant classes directly accessible from a class
Ui.)

Scheme Generation Rekeying

Ad-Hoc AT (Random) O(n log n)×O(log M) O(n log n)×O(log M)
CAT (Primes) O(n2 log n)×O(log M) O(n2 log n)×O(log M)
Mackinnon et al. O(n2 log n)×O(log M) O(n2 log n)×O(log M)
Sandhu O(n2 log n)×O(log M) O(n2 log n)×O(log M)
Yang and Li O(n2 log n)×O(log M) O(n2 log n)×O(log M)
Shen and Chen O(n log n)×O(nk2) O(log n)×O(k2)

×O(log M) ×O(log M)
Atallah et al. One O(log M) bit key and n O(log M) bit keys

s subtractions of and n− 1 subtractions of
O(ρ) bit numbers from O(ρ) bit numbers from
O(log M)) bit numbers O(log M)) bit numbers

H(Ki, ll) mod 2ρ requires O(log(2ρ)) = O(ρ) bits to be represented. Therefore, in the

case where a single class has s edges connecting it to the lower classes directly below

it, we need one randomly generated O(log M) bit key and s subtractions of O(ρ)

bit numbers from O(log M) bit numbers to obtain all the keys required. Since there

are n classes in total in the hierarchy, each with s edges connecting it to its direct

descendant classes, we need, n randomly generated class keys and a total of n − 1

subtractions of O(ρ) bit numbers from O(log M) bit numbers to obtain all the keys

required. Table 2.3 summarizes the worst-case complexity costs of all the one-way

function key generation algorithms that we have discussed in this section. Additional

tables (Tables A.1, A.2, and A.3) summarizing key management schemes are given

in Appendix A.

All of these solutions handled the access control problem as though keys assigned

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 44

to users were intended to be for an indeterminate period and that the only time when

it was necessary to regenerate keys was when a new user joined or left the system.

In practical scenarios, such as the examples evoked in relation to a collaborative web

application, it is likely that users may belong to a class for a short period of time

and then get a higher role or be eliminated from the group, which may give them the

right to a higher security clearance or disallow them access completely.

2.3.3 Time-Bound Schemes

Tzeng [93] proposed using time bounded keys to avoid replacing most of the keys

each time a user is integrated into (e.g., subscriptions to newsletters where new users

are not allowed to view previous data), or excluded from, the system. His solution

supposes that each class Uj has many class keys Kt
j , where Kj is the key of class

Uj during time period t. A user from class Uj for time t1 through t2 is given an

information item I(j, t1, t2), such that, with I(j, t1, t2), the key Kt
i of Ui at time t can

be derived from Kt
j if and only if Ui � Uj and t1 ≤ t ≤ t2. The scheme is efficient in

key storage and computation time because the same key can be used with different

time bounds for multiple sessions.

The scheme allows a user to keep only their information item I(i, t1, t2), which

is independent of the total number of classes for the time period from t1 to t2, in

order to be able to derive all the keys they are entitled to. However the computation

of a cryptographic key, say Kt
j , requires expensive public-key and Lucas computa-

tions [107, 102] and therefore has limited the implementation of this scheme in the

distributed environment. Moreover, Yi and Ye have shown that Tzeng’s scheme is

vulnerable to collusion attack [102].

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 45

Chien [21] addresses the collusion problem in Tzeng’s scheme with a solution based

on a tamper resistant device but as Yi has shown, this scheme is also vulnerable to

collusion attack [101]. More recently, Wang et al. [95] have proposed a time-bound

scheme based on merging that creates a correlation between group keys by compress-

ing them into single keys that are characterized with time-bounds. Although this

results in better efficiency for key derivation in the average case, the time complexity

for key generation is in O(n log n) (here, n is the maximum number of security classes

in a poset that is representative of the access control hierarchy) and that for com-

puting the number of time intervals z associated with a key, in O(z2). More recent

time-bounded key management schemes include [21, 102, 101, 95, 6, 29]. However, it

is worth emphasizing that time bounded schemes are not practically efficient for dy-

namic scenarios where user behavior is difficult to foresee since it is hard to accurately

predict time bounds to associate with keys. Table 2.4 summarizes our analysis of

the comparative time complexities of the overhead created by the one-way function,

and time-bounded schemes.

Table 2.4: A Comparison of the Time Complexities of the Overhead created by the
different Key Management Approaches

Approach Rekeying Collusion

One-Way Functions O(n2 log n)×O(log M) No for most cases
Time-Bounded O(z2)×O(n log n) Yes for most cases

2.3.4 Other CKM Schemes

In order to minimize the amount of information distributed during key replace-

ments variants of independent key management schemes that appear in the literature,

[88, 59] propose ways of making key updates (distributions) easier and more secure

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 46

by encrypting the keys that are to be distributed with a public key. The encrypted

keys are then placed in some public location and a secret key is transmitted to each

group. Access to a particular set of keys is only allowed if a user is in possession of the

correct secret key. This makes it easier to exclude users that are compromised and

reduces the number of keys distributed but the advantage comes at the cost of added

public key information that increases the chances of an adversary correctly guessing

at the secret keys being used [26].

Other approaches in the area of secure group communications have proposed

batching key update requests in order to minimize the long term cost of rekeying

[62]. Batching operates by accumulating requests for key updates during a preset in-

terval at the end of which the keys are then replaced. Although, this improves on the

cost of rekeying, it widens the vulnerability window of the key management scheme.

Still along this line of batching key update requests, Crampton has suggested

using lazy re-encryption to minimize the cost of data re-encryptions [25]. Lazy re-

encryption operates by using correlations in data updates to decide whether or not

to update a key and re-encrypt the old data when group membership changes. In

this way, since data re-encryption accounts for the larger part of the cost of key

replacement, re-encryption is only performed if the data changes significantly after a

user departs or if the data is highly sensitive and requires immediate re-encryption

to prevent the user from accessing it. The problem of having to re-encrypt the data

after a user’s departure still remains. Moreover, if the file is a sensitive file that does

not change frequently, lazy re-encryption can allow a malicious user time to copy off

information from the file into another file and leave the system without ever being

detected.

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 47

More recently, Ateniese et al.[7] have proposed an improvement on the variant of

IKM schemes that Blaze et al. [14] proposed in 1998 whereby proxy-reencryption is

used to assign users access to particular files associated with another user or group.

Basically, each group or user in the hierarchy is assigned two pairs of keys (a master

and a secondary key). The secondary key is used to encrypt files and load them into a

block store where they are made accessible to users outside of the group. In order to

access encrypted data from the block store a user must retrieve the data and present

both the data and their public key to an access control server. The access control

server re-encrypts the data in a format that is decryptable with the user’s secret key,

only if the presented secondary public key authorizes them access. The problem of

having to reencrypt, update and distribute new keys when group membership changes

remains.

Therefore irrespective of how a key management scheme is designed, rekeying is

handled by replacing the affected key and reencrypting the associated data. Rekeying

is time-consuming and increases the vulnerability window in a CKM scheme, making

it susceptible to two issues: delayed response time in handling key updates and an in-

creased possibility of security violations during the vulnerability window. Additional

tables summarizing our comparisons of CKM schemes are given in Appendix A.

2.4 Other Access Control Paradigms

In the previous sections, we presented and discussed standard distributed access

control models highlighting the inefficiencies and vulnerabilities that they face in

handling dynamic security scenarios on the Web. Although CAC schemes offer a

number of advantages over the DAC and MAC models in terms of security, their

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 48

reliance on costly KM algorithms has hindered their widespread implementation in

real world applications. The objective of this section, therefore, is to explore other

access control paradigms that have emerged since the creation of the Internet in

order to show the extent to which they address the issue of providing access control

in dynamic environments like the Web.

2.4.1 Overview

The principal paradigm in distributed systems before the emergence of the World

Wide Web had been the client-server architecture [92, 37]. The client-server architec-

ture in its simplest form allows the server to protect itself by authenticating a client

requesting access. Kerberos is an example of an authentication service designed for

such an environment [92]. This client-server architecture has however changed in

many aspects. For instance, when a client looks at a web page, the client’s browser

will run programs embedded in the page. So, instead of handling simple accesses

either to an operating system or a database, programs are being sent from the server

to be executed at the client side. Clients receive programs from servers and can store

the session states in “cookies”. The World Wide Web has also created a new para-

digm for software distribution. Software can be downloaded from the Internet and

many organizations have learned the hard way to restrict the kinds of programs that

they allow their employees to download.

However, while the Internet has not created fundamentally new security problems,

it has changed the context in which security needs to be enforced. Consequently, the

design of access control paradigms is currently going through a transitory phase in

which standard paradigms are being re-thought and evolved to cope with the scenarios

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 49

that arise on the Internet. The following sections explore some of the changes that

are occurring in access control paradigms, highlighting the pros and cons of each

in relation to the problem of designing adaptive security schemes that ensure self-

protecting access control.

2.4.2 Cookies

The http protocol (hypertext transfer protocol), is a stateless protocol that was

originally designed to transfer HTML documents, and is the workhorse of the World

Wide Web [37]. Http requests are treated as independent events even when they

are initiated by the same client. Web browsers overcome the problem of having to

repeat all management tasks associated with a transaction by storing the information

entered with the first request and automatically including that information in all

subsequent replies to the server. For instance (see Figure 2.2), when Alice allows Jane

to download movies from Movies Folder, Jane’s web browser needs to keep a record

of the state of the download operation so that it is able to return a consistent state

between Jane’s client (browser) and the server Movies Folder in case the download

operation is interrupted. The browser stores the state of the operation on the client

side as a cookie and the server can retrieve the cookie to learn about the client’s

current state in the operation.

At a basic level, cookies in themselves are not a security problem in the sense that

they are executable pieces of code that the server stores at the client-side and so do

not pose a problem of confidentiality. A server will only store a cookie on a client

that has passed an authentication test. There are however, a couple of application-

level attacks that exploit the behavior of cookies. For instance (see Figure 2.2), if

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 50

Alice sets up a bonus points loyalty scheme for users of the online telephony system,

Skype.exe, a client could increase the score to get higher discounts, with a cookie

poisoning attack. In a cookie poisoning attack, the attacker could be a third party

that makes an educated guess about a client’s cookie and then uses the spoofed cookie

to impersonate the client.

Clients can protect themselves by setting up their browsers to control the place-

ment of cookies, obliging the server to request permission before storing a cookie or

block cookies, but this can become a nuisance [96]. There is also the option of deleting

the cookies at the end of a session or allowing the server to protect itself by encrypt-

ing cookies. Spoofing attacks can then be prevented by using proper authentication.

However, we note again that in this case, all the attack prevention strategies are sta-

tically implemented and as in the approaches we have already discussed, attack types

are assumed to be known beforehand.

2.4.3 XML Access Control and Limitations

According to R. Chandramouli [19] eXtensible Markup Language (XML) and

XML schema specification languages gained acceptance as standards for represent-

ing, interchanging, and presenting both meta data and complex content models in

a platform-independent fashion because the XML schema provides a very extensible

means for specifying document structures through a comprehensive type definition

language. Hence, advocates for XML access control hold that XML is a good candi-

date for a linguistic framework that is needed to express an access control model that

embodies multiple policy requirements.

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 51

Considerable effort has gone into developing XML-based frameworks for the spec-

ification of access control information. The Organization for the Advancement of

Structured Information Standards (OASIS) Extensible Access Control Markup Lan-

guage (XACML) and IBMs XML Access Control Language (XACL) are access con-

trol policy specification frameworks that are mainly geared towards securing XML

documents, but they can be applied to other system resources as well. Currently

these languages do not provide direct support for representing standard access con-

trol models such as DAC or MAC, but a recent extension to XACML incorporates

RBAC support [77].

The Extensible Access Control Markup Language (XACML) is a general-purpose

language for specifying access control policies [42]. In XML terms, it defines a core

schema with a namespace that can be used to express access control and authorization

policies for XML objects. Since it is based on XML, it is, as its name suggests, easily

extensible. XACML supports a broad range of security policies [19, 42], and uses a

standardized syntax for formatting requests so that any one of the following responses

to an access request will be valid:

• Permit: action allowed

• Deny: action disallowed

• Indeterminate: error or incorrect/missing value prevents a decision

• Not Applicable: request cannot be processed.

As shown in Figure 2.8, XACML’s standardized architecture for this decision-

making uses two primary components: the Policy Enforcement Point (PEP) and

the Policy Decision Point (PDP). The PEP constructs the request based on the

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 52

user’s attributes, the resource requested, the action specified, and other situation-

dependent information through Policy Information Point (PIP). The PDP receives

the constructed request, compares it with the applicable policy and system state

through the Policy Access Point (PAP), and then returns one of the four replies

specified above to the PEP. The PEP then allows or denies access to the resource.

The PEP and PDP components may be embedded within a single application or may

be distributed across a network.

Figure 2.8: XACML Access Control Model [94]

In order to make the PEP and PDP work, XACML provides a policy set, which

is a container that holds either a policy or other policy sets, plus links to other

policies. Each individual policy is stated using a set of rules. Conflicts are resolved

through policy-combining algorithms. XACML also includes methods of combining

these policies and policy sets, allowing some to override others. This is necessary

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 53

because the policies may overlap or conflict. For example, a simple policy-combining

algorithm is “Deny Overwrites”, which causes the final decision to be “Deny” if any

policy results in an “Overwrite”. Conversely, other rules could be established to allow

an action if any of a set of policies results in “Allow”.

Determining what policy or policy set to apply is accomplished using the “Target”

component. A target is a set of rules or conditions applied to each subject, object, and

operation. When a rule’s conditions are met for a user (subject), object, operation

combination, its associated policy or policy set is applied using the process described

above.

The associated access control data for a given enterprise domain can then be en-

coded in an XML document, and the conformance of data to the enterprise access

control model can be obtained by validating the XML document against the XML

schema that represents the enterprise access control model using XML parsers. These

XML parsers are based on standard application programming interfaces such as the

Document Object Model (DOM), and the parser libraries are implemented in vari-

ous procedural languages to enable an application program to create, maintain, and

retrieve XML-encoded data.

Although, XML-based and other access control languages provide capabilities for

composing policies from scratch, allowing users to specify access control policies,

together with the authorizations through the programming of the language, they lack

a formal specification language for access control constraints (like historical-based and

domain constraints) that prevent assigning overlapping privileges. As an example,

consider the case of constraints that require the manipulation and recording of access

states (such as granted privileges). This is in order to avoid creating situations that

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 54

result in users who were previously denied access to certain files being unknowingly

granted access in a future state. Like most access control languages, XACML does

not provide tools for the expression of historical constraints for historical-based access

control policies, thus leaving the completeness of the constraint logics to the policy

writer. This case is similar to the one that was evoked in Section 2.2.3 where Alice

unknowingly grants Sam a combination of “view” and “download” rights with respect

to the Movies Folder, by allowing Sam to veto Jane’s uploads to the site.

Domain constraints are based on the semantic information pertaining to an enter-

prise context; a grammar-based language cannot deal with content-based constraints.

So, an XML schema is insufficient for a complete specification of the RBAC model for

an enterprise since the latter contains content-based domain constraints. An example

is not allowing more than one user to be assigned to the role of security administrator

(role cardinality constraint) and not allowing the roles viewer and unloader to be

assigned to the same user (separation-of-duty constraint).

Here, again we note as before that the specification languages assume a static

environment where changes in access control policies are generally effected manually

by a security administrator. So in essence, although XML-based access control lan-

guages provide features that enable them to specify a broad range of policies, a formal

specification is still needed in order to define constraint rules adaptively.

2.4.4 Anti-Viruses, Intrusion Detection, and Firewalls

Other methods of protecting computer systems from unauthorized access include

anti-viruses, firewalls and intrusion detection/prevention mechanisms. Anti-virus pro-

grams work by detecting and preventing malicious programs from causing damage to

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 55

the system [87, 16]. The anti-viral program keeps a registry of known malicious code

signatures, and removes or cleans any files on the system that are infected with the

malicious signature. Since anti-virus programs depend on a registry of known mali-

cious code signatures, the registry needs to be updated constantly to prevent newer

variants of viruses from infecting the computer system. The ease with which viruses

can spread over the Internet further goes to emphasize the need for adaptive anti-viral

programs.

Viruses and malicious code installation on a computer system create amongst

other problems that of denial of service . Denial of service attacks that come from

one or two sources can often be handled quite effectively. Matters become much

more difficult when the denial of service attack is distributed. In distributed denial

of service attacks, a collection of malicious processes jointly attempt to bring down a

networked service. Typically, the attackers install malicious code on computers that

are not well protected and then use the combined power of these computers to carry

out the attack. There are basically two types of denial of service attacks: bandwidth

and resource depletion.

Bandwidth depletion attacks are accomplished by sending messages to a single

machine with the effect being that normal messages have difficulty getting to the

receiver. Resource depletion attacks on the other hand deceive the receiver into using

up resources on useless messages. An example of a resource depletion attack is TCP

SYN-flooding [92]. Here, the attacker initiates a large number of connections to a

server but never responds to the acknowledgments from the server. The result is that

the server keeps resending acknowledgment messages that consume bandwidth and

slow down network communications.

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 56

Since these attacks occur by secretly installing malicious software (malware) on

badly protected network devices, intrusion detection algorithms aim to detect and re-

move such snippets of code from a system before the malware does damage. Intrusion

detection systems work to detect malicious behavior in order to alert a security ad-

ministrator so that some action can be taken to stop the intrusion before the system

is damaged irreparably [15, 35].

Firewalls play an added protection role in distributed systems. Essentially, a

firewall disconnects any part of a distributed system from the outside world. All

outgoing and incoming packets are routed through a special computer and inspected

before they are passed. Unauthorized traffic is discarded and not allowed to continue.

An important point is that the firewall itself needs to be protected against any form

of security threat and should never fail.

There are essentially two categories of firewalls: the packet-filtering gateway and

the application-level gateway. The packet-filtering gateway filters incoming and out-

going packets. In contrast to the packet-filtering gateway, the application-level gate-

way inspects the content of an incoming or outgoing message. An example of an

application-level gateway is a mail gateway that discards incoming or outgoing mail

exceeding a certain size. More sophisticated mail gateways exist that are capable of

filtering spam e-mail.

The common pattern inherent in all the approaches discussed above is the inabil-

ity to forecast violation scenarios or adapt to new scenarios dynamically. Norton’s

Symantec Anti-virus software is taking steps towards building pre-emptive anti-virus

software that incorporates adaptivity by using machine learning and data mining

techniques, which is an indication that professional organizations also recognize the

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 57

T
ab

le
2.

5:
C

om
p
ar

is
on

:
D

A
C

,
M

A
C

,
C

A
C

,
R

B
A

C
,
C

o
ok

ie
s,

an
d

X
A

C
M

L

D
A

C
M

A
C

C
A

C
R

B
A

C
X

A
C
M

L

C
on

tr
ol

P
oi

n
t

U
se

r
S
er

ve
r

S
er

ve
r

S
er

ve
r

S
er

ve
r/

U
se

r
A

u
th

en
ti

ca
ti

on
U

se
r

S
er

ve
r

S
er

ve
r

S
er

ve
r

S
er

ve
r/

U
se

r
(C

on
tr

ol
P
oi

n
t)

R
ev

ie
w

of
U

se
r

S
er

ve
r

S
er

ve
r

S
er

ve
r

S
er

ve
r/

U
se

r
A

cc
es

s
R

ig
h
ts

A
cc

es
s

R
ig

h
t

U
se

r
S
er

ve
r

S
er

ve
r

S
er

ve
r

S
er

ve
r/

U
se

r
P

ro
p
ag

at
io

n

A
cc

es
s

R
ig

h
t

U
se

r
S
er

ve
r

S
er

ve
r

S
er

ve
r

S
er

ve
r/

U
se

r
R

ev
o
ca

ti
on

Im
p
le

m
en

ta
ti
on

A
C

L
L
at

ti
ce

P
ar

ti
al

ly
L
at

ti
ce

S
er

ve
r-

b
as

ed
or

C
L

M
o
d
el

or
d
er

ed
S
ec

u
ri

ty
H

ie
ra

rc
h
y

P
ol

ic
y

In
fo

rm
at

io
n

N
on

e
Y
es

Y
es

Y
es

N
on

e
u
n
le

ss
F
lo

w
se

cu
ri
ty

p
ol

ic
y

C
on

tr
ol

sp
ec

ifi
ed

U
se

r-
R

el
ia

n
t

Y
es

N
o

N
o

N
o

N
o

u
n
le

ss
S
ec

u
ri

ty
au

th
or

iz
ed

in
P
ol

ic
y
?

se
cu

ri
ty

p
ol

ic
y

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 58

need for an evolution towards adaptive security mechanisms [39, 48]. Adaptive in-

trusion detection algorithms are also still at a budding stage but the idea of moving

towards schemes that can adjust to new scenarios is inherent in all these approaches.

Table 2.5 summarizes our discussion and comparative analysis of the the DAC, MAC,

CAC, RBAC, Cookies, and XACML approaches to access control.

2.5 Autonomic Access Control

The paradigm of autonomic computing emerged in a bid to design applications

with the ability to adaptively handle scenarios of varying complexity [56]. Yet, these

methods have not gained as much popularity in the domain of access control due

to skepticism and reluctance on the part of the users towards autonomic approaches

[20]. The main reason behind the skepticism and reluctance is that security breaches

create scandals that are expensive to handle and so business owners prefer to opt

for security schemes that react in pre-specified and predictable ways, as opposed to

those that adapt and evolve dynamically. However, web applications are increasingly

faced with scenarios that are difficult to predict a priori, which makes manual security

management challenging and prone to error [56, 20]. As mentioned before in Section

2.4.4, breaches created by errors in security policy specifications are currently difficult

to trace and prevent, and this will become even harder as systems become more

complex [20].

2.5.1 The Autonomic Security Model

Security via the autonomic computing paradigm was first proposed by Chess et

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 59

al. in 2003 [20]. In order to address the challenge of handling complex situations for

which security needs to be ensured, they suggest using the paradigm of autonomic

computing that IBM proposed in 2001 [57, 56]. The paradigm of autonomic com-

puting supposes that a system can be designed to self-regulate by using automatic

reactions to defend, optimize and heal. The functions of an autonomic system are

modeled using a feedback control loop that has two major components: the autonomic

manager and the managed resource. The autonomic manager adjusts the behavior of

the managed resource on the basis of recorded observations.

Figure 2.9: The Autonomic Computing Feedback Control Loop

The autonomic model shown in Figure 2.9, is comprised of six basic functions:

the sensor, monitor, analyzer, planner, executor, and effector. The sensor captures

information relating to the behavior of the managed component and transmits this

information to the monitor. The monitor determines whether or not an event is

abnormal by comparing observed values to threshold values in the knowledge base.

The analyzer, on reception of a message from the monitor, performs a detailed analysis

to decide what parameters need to be adjusted and by how much, and transmits this

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 60

information to the planner where a decision is made on the action to take. The

executor inserts the task into a scheduling queue and calls the effector to enforce the

changes on the managed resource in the order indicated by the planner.

Autonomic computing aims to provide survivability and fault-tolerance for secu-

rity schemes [20, 48]. Johnston et al. [48] propose a preliminary approach that uses

reflex autonomic computing in the development of a multi-agent security system. This

is an interesting approach to self-protecting security, but the authors indicate that

real-world implementation of their prototype system would require additional security

controls and does not support the ability of a security class to operate independently.

As Moreno et al. [72] pointed out, the connection to the rest of the system is lost.

We note also that this work on autonomic access control focuses mainly on security

policy definitions and restrictions on the messages sent and received by entities (users

and/or agents) in the system as opposed to key management for cryptographic ac-

cess control. The problem of designing adaptive CAC schemes to support a specified

security policy definition in general still needs to be addressed.

2.5.2 Perspectives and Discussions

The discussion in this chapter has been centered on the state of the art in distrib-

uted systems access control. The pros and cons of each approach were highlighted

in relation to the problems that arise in ensuring access control in collaborative web-

applications where user group membership is dynamic. Proactive security approaches

like access control, are popular because it is easier to prevent damages that result

from security loopholes than to wait for a violation to occur and then try to repair

the resulting damage caused.

CHAPTER 2. DISTRIBUTED ACCESS CONTROL 61

Table 2.6: Comparison: Conventional versus Autonomic Access Control Approach

Conventional Autonomic
Access Control Statically operated Dynamic or Adaptive
Resilience to Not Efficient Aims for enhanced

change efficiency through
adaptivity

Information Flow Yes if supported Yes if supported
Control between
Security classes
Rekey Effect React on demand Anticipate demand

(Key and adjust
Management) accordingly

In analyzing each approach, we noted that access control methods typically face

either one or all of three weaknesses: vulnerability to security violations, inefficiency

in management resulting in delays as well as reduced availability, and a lack of inbuilt

mechanisms that allow them handle new scenarios adaptively (i.e., without a security

administrator having to intervene manually). Moreover, the fundamental assumption

that all the security solutions make is that if specified correctly, failure (security

violation) is unlikely.

However, security attacks show that access control schemes need not only to be

supported by some form of fault tolerance (way of minimizing the chances of a vulner-

ability being exploited by malicious users) but also need to be designed in ways that

enable them to adjust their behavior in order to cope with changing scenarios. In the

following chapters we focus specifically on cryptographic access control schemes, that

are designed using the DKM approach. We show that adaptability can enhance the

performance and security of cryptographic access control schemes, without necessar-

ily changing their underlying security specifications. In Table 2.6, we summarize the

main attributes of conventional and autonomic access control approaches.

Chapter 3

Efficient Key Management:

Heuristics

“Management must manage!”

– Harold S. Geneen

Efficient key assignment and replacement are probably the most controversial

aspects of key management in cryptographic access control schemes. Certain schools

of thought hold the belief that cryptographic key management should be dynamic

to minimize the risk of security violations due to stolen keys. Therefore keys should

be updated throughout the entire hierarchy whenever any of the keys need to be

updated. On the other hand, the other school of thought holds that key updates

typically involve data encryptions that are expensive and therefore it makes sense to

reduce the number of keys updated at any time; particularly if the updates occur

fairly frequently.

For instance, a common security concern in collaborative web-applications is that

62

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 63

of secure access to shared data. Security administrators are faced with two chal-

lenges, that of guaranteeing users, data security and availability. However, while

cryptographic key management schemes are designed to provide good security, issues

pertaining to availability tend to be relegated to a secondary role. In dependent key

management (DKM) schemes in particular, better security comes at the price of ex-

pensive key replacements since replacing any of the keys in the hierarchy results in

rekeying the entire hierarchy and re-encrypting the associated data.

In this chapter we look at the problem of minimizing the cost of rekeying when

a key in the hierarchy needs to be updated. We consider the cases of deleting and

adding keys into the hierarchy as being special cases of rekeying, in the sense deletion

is similar to the case of updating a key with a new key that is not available to any user

(either by direct access or derivation). Insertions are also considered to be a special

case of rekeying, where the creation of the new key requires adjusting the hierarchy

to incorporate the addition. Our sub-poset key management (SPKM) scheme draws

its inspiration from the DKM scheme that Akl and Taylor [2] proposed in 1983. The

SPKM scheme comprises two algorithms for exponent assignment and replacement

whose goals are to minimize the cost of initial key assignment and subsequent rekey-

ing. The first algorithm uses a distance based heuristic to guide the assignment of the

exponents used to compute user group keys such that collusion attacks are avoided.

Collusion attacks occur when two or more users at the same level in a hierarchy co-

operate using their respective keys and a contrived function to compute a key that

belongs to a user class higher up in the hierarchy, to which they are not entitled.

The second algorithm employs an exponent replacement algorithm that allows the

system to track the validity of the exponents used to form the keys, in order to avoid

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 64

re-assigning keys that have already been used or that are currently in use. Since our

proposed SPKM scheme extends the Collusion-Free Akl and Taylor (CAT) scheme,

we begin by briefly reviewing how it operates.

3.1 An Overview of the CAT Scheme

In the Ad-hoc AT and CAT schemes, a security administrator (SA) classifies users

into exactly one of a number of disjoint security classes Ui and generates keys for each

of the classes using the formula:

Ki = Kti
0 (modM) (3.1)

where M = p × q is the product of two large primes, ti is the public exponent that

defines a user group’s relationship vis-à-vis other groups in the hierarchy and K0 is

a secret key that is selected by the SA situated at the highest level in the hierarchy,

usually at U0. Each of the computed keys Ki is secretly distributed to its respective

group Ui (here we assume that that transmission channels are secure, so the keys can

be transfered without their being intercepted by a third party).

When the property Ui � Uj holds, and tj divides ti evenly (i.e., ti ÷ tj gives an

integer value), Uj can derive Ki from Kj with the following computation:

Ki = Kti
0 (mod M) = K

tj(ti÷tj)
0 (mod M) = K

(ti÷tj)
j (mod M) (3.2)

The security of this algorithm relies on the fundamental assumption that no efficient

algorithm exists for extracting roots modulo M , if M is the product of two unknown

large primes [81].

Although the ad-hoc assignment of exponents in the Ad-hoc AT scheme is efficient

in time and space complexity, Akl and Taylor showed that it is vulnerable to collusion

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 65

Figure 3.1: Exponent Assignment under the Akl and Taylor Scheme

attacks. For instance in Figure 3.1(a.), two users from U3 and U5 can deduce K0

from the combined product of their keys K3 and K5 as follows:

(K3)
−2K5 mod M = (K4

0)−2K9
0 mod M = K−8

0 K9
0 mod M = K0 mod M

In order to remove the vulnerability to collusions, Akl and Taylor proposed a

second algorithm for exponent assignment where the exponents are computed using

the formula:

ti =
∏

Uj 6�Ui

pj (3.3)

where pj is a product of all the primes that are not associated with the security class

under consideration or those that are the sub-poset of the class under consideration.

For example, as shown in Figure 3.1(b.), t1 = 2×5×13 which eliminates p1, p3, and p4.

Each exponent is a composition of a series of primes and is resistant to collusion attack

[2]. However, as we explained in Chapter 2, Section 2.3.1, since this scheme is based

on the DKM model, updating, inserting or deleting any of the keys in the hierarchy

requires that the whole hierarchy be rekeyed to avoid assigning overlapping keys that

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 66

could result in violations of the access control policy. In the following sections we

present two algorithms that alleviate this problem by assigning the exponents in a

way that ensures only the keys in the sub-poset associated affected key are replaced.

3.2 Exponent Assignment Algorithm

Since the performance of any key management (KM) scheme based on the Akl

and Taylor model depends on the size of the exponent ti, our exponent assignment

algorithm aims to alleviate the cost of KM by linearly bounding the growth of the size

of the exponents assigned to the classes. In order to do this, the exponent assignment

algorithm must enforce two conditions, the first is that the exponents be assigned

using a distance-based heuristic to bound the growth of the exponents linearly and

the second is that an integer factorization metric be used to ensure that the exponents

assigned cannot be used to provoke “collusion” attacks [50]. Both conditions can be

expressed more formally as follows:

• Property 1: Avoiding a collusion attack by verifying that the GCD {ti : Ui ∈ G}

does not divide any tj [2]. Here, G represents the keys that are assigned to the

security classes at a level in the hierarchy and tj represents any of the expo-

nents associated with keys belonging to security classes that are higher up in

the hierarchy. For instance in Figure 3.2(a.), collusion is possible because the

greatest common divisor at both levels 1 and 2 are equal to 1. On the other

hand, collusion is not possible if the assignment in Figure 3.2(b.) is used.

• Property 2: The growth function of ti must be linear in order to minimize

the cost of key assignment. For instance in Figure 3.2(b.), assigning t2 a value

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 67

of 4 as opposed to 20 would mean 3 modular exponentiations in terms of key

generation time if equation (3.1), (Ki = Kti mod M) is used, as opposed to 8

modular exponentiations.

Figure 3.2: An Illustration of a collusion-liable and collusion-free exponent assign-
ment

Therefore, any scheme that obeys the first property provides security against

collusion attack [2, 66], while the second property bounds the growth of the exponents

linearly to minimize the cost of key assignment and/or derivation. Since we use a poset

to model the key management hierarchy, each security class is assigned an exponent

ti that is used to compute the corresponding key Ki, using equation (3.1). In order

to guarantee access to the security classes that are lower levels in the hierarchy, the

exponent belonging to the higher level security class must be a divisor of the exponent

belonging to the lower level class. This allows keys belonging to the lower level security

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 68

classes to be derived from those belonging to the higher level security classes. Thus,

in addition to properties 1 and 2 cited above, secure and efficient key management in

the SPKM scheme is conditional on a third property which can formally be stated as

follows:

• Property 3: Accessibility is conditional on the precedence relationship be-

tween security classes and exponent divisibility. The precedence relationship

is verified by the condition that Ui � Uj and exponent divisibility by ti ÷ tj.

Hence access to a lower class is granted if and only if tj belongs to a higher level

security class and tj is a divisor of the exponent ti belonging to the lower level

security class.

3.2.1 Algorithm

The security administrator specifies the size and depth of the hierarchy and hands

control to the central authority (CA) e.g. key server, where each class in the hierarchy

is assigned an exponent that will be used to compute the required secret key. In

Figure 3.3, for instance, ej,0 indicates the exponent assigned to the class situated at

level j and position 0. Integer values are allocated to each class such that the greatest

common divisor (GCD) of the exponents at any level, say i (see Figure 3.2), does not

divide any of the exponents belonging to higher level , say j, security classes in the

poset. A distance based heuristic is used to achieve this by selecting an exponent

for the leftmost node at any level such that it does not divide any of the exponents

belonging to classes at higher levels. Subsequent values assigned to the classes at the

same level are multiples of the value of the leftmost class.

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 69

Thus the GCD of the exponents at any level, say i, is equal to the value be-

longing to the leftmost node and Properties 1,2, and 3 are verified. The procedure

is repeated until every node in the hierarchy has been assigned an exponent. The

Figure 3.3: An Example of a Key Management Hierarchy

exponents allocated are stored in a secret registry to keep track of their validity and

also to facilitate replacement later on. The pseudo code for the exponent assignment

algorithm is given in Algorithm 1.

Once the exponents have been assigned successfully, the key server proceeds to

select two distinct large primes p and q that are used to compute a product M = p×q.

M is made public whereas p and q are kept secret. Finally, the CA selects a secret

key K0 and using equation (3.1), computes keys for the whole hierarchy. The position

of an exponent in the KM hierarchy is specified by labeling the exponent in terms

of the level and position at which it is situated in that level in the hierarchy. For

instance, ex,y indicates the exponent assigned to the security class situated at level x

and position y. So we can re-write equation (3.1) as follows:

Kx,y = K
ex,y

0 (modM) (3.4)

and the keys generated using equation (3.1) are distributed secretly to the users

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 70

Algorithm 1 : Exponent Generation (h, nd)

Require: h ≥ 1; nd ≥ 1
Ensure: e0,0 ← val /*val ≥ 1: random value in [1..10]*/
1: for k = 1 to h− 1 do
2: ek,0 ← ek−1,0 ×

(
ndk − 1

)
3: if ((ek,0 ≤ek−1,0)∨((ek,0 mod ek−1,0)6=0)) then
4: ek,0 ← ek−1,0 × 2 /*Get new value*/
5: end if ; j ← 0 /*Parent node position*/
6: for i = 1 to ndk − 1 do
7: if ((i mod nd) = 0) then
8: j ← j + 1 /*Shift to next parent node*/
9: end if ; ek,i ← ek,0 × (i + 1)

10: temp← i /*Bounds growth of ek,i linearly.*/
11: while ((ek,i=ek,i−1)∨((ek,i mod ek−1,j)6=0)) do
12: ek,i ← ek,0 × temp;
13: temp← temp + 1
14: end while
15: end for
16: end for

belonging to the respective security classes in the access control hierarchy and the

access control hierarchy is formed.

3.2.2 Exponent Assignment Example

The operation of the exponent assignment algorithm is better explained with the

example shown in Figure 3.4, where the security administrator specifies the size and

form of the access control hierarchy. In this case the security administrator decides

to make each security class have two classes directly attached to it and to have three

levels in the hierarchy. A secret registry is used to store both the currently public

exponents and those that have already been used in order to keep track of those that

have been assigned (exponent validity).

In order to allocate exponents that will be used to compute keys for the security

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 71

classes in the hierarchy, the CA begins by selecting an exponent e0,0 for the highest

security class in the hierarchy. In this case U0,0 is the only class at the highest level of

the hierarchy and it gets assigned a value of 1. Exponents for the remaining classes in

the hierarchy are then generated by assigning values to the nodes e1,0 and e1,1, at level

1 in the exponent graph. An arbitrary value of 2 is selected for node e1,0, and since

2 is greater than its ancestor e0,0 = 1, and Property 1 is verified, e1,0 the leftmost

node at level 1, takes on 2. The next exponent e1,1 then takes on a multiple of e1,0,

e1,0×2 = 4. This is the last node at level 1, so we can proceed to level 2. In the same

way, at level 2, e2,0 is assigned a value of 6 because it is not in the registry and is

greater than any of the exponents that have already been assigned to higher classes.

As before, this value of 6 is then checked to ensure that Properties 1,2, and 3 are

Figure 3.4: Exponent Generation and Allocation

verified. In this case, all three conditions are verified since 6 is a multiple of both 1

and 2 (the exponents at e0,0 and e1,0 respectively) so Properties 2 and 3 are satisfied,

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 72

and since the greatest common divisor at level 2 is 6 Property 1 is satisfied as well.

The next exponent e2,1 = 12. Initially, e2,2 = 18 but e1,1 = 4 is not a divisor of 18, so

this value is discarded in favor of the next 24. This is the exponent associated with

the last class at level 2 and also the last in the hierarchy so the CA will now proceed

to generate keys for each of the security classes in the hierarchy using equation (3.1).

3.3 Enforcing Hierarchy Updates

In replacing exponents we tackle three aspects: key replacements, deletions, and

insertions. Key replacements occur when for some reason the CA decides to update

the key associated with a security class. This is the case for instance when there is

a change in the membership of a group of users that share a common secret key. In

such a situation the CA may choose to update the shared group key to prevent a

departed user from continuing to access data available to users in possession of the

old key. Key deletions occur when the CA decides to completely eliminate a group

from the hierarchy or merge them with another one and finally, key insertions occur

when the CA decides to create a new user group. In all three cases some form of

key update occurs that results in an adjustment of the KM hierarchy. The following

paragraphs outline the operation of the algorithms.

3.3.1 Replacement, Insertion, and Deletion: Algorithm

We first consider what happens when a user departs from any of the groups in the

hierarchy. As mentioned before, when this occurs the key belonging to that group

needs to be replaced to continue to guarantee data security. The weakness inherent

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 73

in previous methods was that whenever the key belonging to any class needs replac-

ing, keys for the whole hierarchy were re-generated [66, 2, 50, 43]. The exponent

replacement algorithm overcomes this drawback by replacing only the exponent be-

longing to the affected security class and those that belong to the security classes in

its sub-poset.

Algorithm 2 : Exponent Replacement (rk, ri)

Require: rk, ri ≥ 0 /*Position of ek,i being replaced*/
Ensure: R 6= ∅ /*Registry of exponents*/
1: for k = rk to h− 1 do
2: j ← 0; i← 1
3: while (i ≤ ri) do
4: if ((i mod nd) = 0) then
5: j ← j + 1 /*Parent node position*/
6: end if i← i + 1
7: end while ek,ri ← ek,0 × (ri + 1)
8: temp← ri /*Bounds growth of ek,ri linearly.*/
9: while ((ek,ri ∈ R)∨((ek,ri mod ek−1,j)6=0)) do

10: ek,ri ← ek,0 × temp /*Multiplicity rule*/
11: temp← temp + 2 /*Invalid Exponent,next?*/
12: end while
13: if

(
ri 6= ndk−1 − 1

)
then

14: for i = ri + 1 to ndk − 1 do
15: if ((i mod nd) = 0) then
16: j ← j + 1 /*Shift to next parent node*/
17: end if ek,i ← ek,0 × (i + 1)
18: temp← i
19: while ((ek,i ∈ R)∨((ek,i mod ek−1,j)6=0)) do
20: ek,i ← ek,0 × temp
21: temp← temp + 1
22: end while
23: end for
24: end if
25: end for

Intuitively, the replacement algorithm operates as follows. On reception of a

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 74

message indicating a user’s wish to depart from the system, the CA computes a new

exponent for the node concerned and checks to ensure that it is not in the registry

to prevent re-using exponents with the same key K0 (see equation (3.1)). Next,

the exponent is checked to ensure it is a multiple of the exponent belonging to the

leftmost node and is a factor of the exponents belonging to the nodes that are lower

than it. If this is the case, the new exponent is recorded in the registry and assigned

to the node. In the worst case, when no valid exponent can be found that satisfies

the properties above, the CA will resort to selecting a new set of exponents for the

whole hierarchy or changing the key K0 and re-assigning keys to the whole hierarchy

(this is the case in previous schemes). The pseudo code in Algorithm 2 summarizes

the exponent replacement procedure.

In order to delete a key, the CA proceeds by replacing the exponent, associated

with the security class concerned, with a value of −1 or 0, and the CA can ensure

that Property 3 is not violated by extending the condition to prevent any divisions

with 0 or −1. As before, to prevent previous users from continued access, a new key

for the class is computed using either exponent −1 or 0 and the data re-encrypted

with the new key.

Inserting a new group in the hierarchy requires that an exponent be created at a

given level, say k, and a position l. The exponent insertion algorithm works in the

same way as the exponent assignment algorithm with the sole difference being that

instead of creating a hierarchy we only create a number x of security classes. In order

to avoid replicating exponents, the exponent insertion algorithm generates an expo-

nent in conformity with Properties 1,2, and 3 and then checks the exponent registry

to ensure that the exponent generated does not already exist. If the exponent does

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 75

not exist in the registry, a key is created using equation (3.4) and the generated key is

secretly distributed to the users wishing to join the newly formed group. Otherwise,

the exponent selection process is repeated until a suitable exponent is found.

3.3.2 Insertion, Deletion and Replacement: Example

Consider the case where two users decide to depart from U5 and U2 at times T ,

and (T +2) respectively. Assuming U5’s message arrives before U2’s, the CA selects a

new exponent for e2,2. As shown in Figure 3.5(a), the key server initially assigns e2,2

a value of 30. However, since 30 is not a multiple of e1,1 = 4, this value is discarded

in favor of the available next multiple of e2,0 = 6, which is 36. The new value for e2,2

is recorded in the registry and a new key generated and assigned to the users in U5.

In order to handle the change in exponents required at U2 at time T +2, as shown

in Figure 3.5(b.), the key server initially assigns e1,1 a value of 6. However, since

6 already exists in the exponent registry, the next available multiple of e1,0 = 2 is

selected. In this case, e1,1 = 8 is a multiple of e0,0 = 1, therefore the new value of

8 is retained for e1,1 and recorded in the exponent registry. This assignment implies

that the data associated with U4 and U5 will no longer be accessible to users at U2

because 8 is neither a multiple of 12 nor 36. The key server addresses this problem

by assigning e2,1 the next available multiple of e2,0, in this case 42. Since 42 is not a

multiple of e1,1 = 8, the value is discarded in favor of the next multiple of e2,0 = 6,

48. It turns out that 48 is a multiple of 8 so e2,1 is assigned the value 48 that is

recorded in the registry. Likewise values of 54, 60, and 66 are eliminated in favor of

72 in selecting a value for e2,2. The new assignment is shown in Figure 3.5(c.).

As shown in Figure 3.5(d.), to delete a key, say K5, the key server assigns e2,2

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 76

a value of 0 or −1 and uses the new value of e2,2 to compute a new K5 = K2,2

using equation (3.4). Likewise, to insert a security class at level 1 for instance (see

Figure 3.5(e.)), the key server creates a new class by assigning e1,2 a value of 16. So,

at level 1, the GCD {2, 4, 16} = 2 as before, and the value of 16 is chosen because it

obeys Properties 1,2, and 3, and is not in the exponent registry.

Figure 3.5: Exponent Replacement: Example

When the exponent being replaced falls on a leftmost node, say e2,0, all the nodes

at that level are replaced to avoid collusion. For example, replacing e1,0 with 3 results

in e1,1 being replaced with 9, e1,2 with 18 and e2,1 with 54. Likewise, replacing the

exponent e0,0 could result in a complete change of the hierarchy. We have assumed

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 77

however, that in practical scenarios, replacements at the root node occur rarely and

leftmost nodes can be used for user groups where membership changes occur rarely.

3.4 Analysis

This section presents a security and complexity analysis of the algorithms pro-

posed, in comparison to the CAT scheme and the Mackinnon et al. (MCK) scheme.

This is because the SPKM and MCK schemes are both inspired by the CAT scheme.

The other schemes mentioned in Chapter 2 (section 2.3), either have complexity

bounds for key generation and management that are similar to the MCK scheme,

are not adapted to highly dynamic scenarios (e.g. time-bounded schemes), and/or

sacrifice security for performance [62, 84, 93, 95]. The security analysis gives an in-

dication of the security guarantees that the proposed SPKM scheme provides, while

the complexity analysis presents a theoretical analysis of the cost of key management

(generation, replacement, and derivation).

3.4.1 Security Analysis

The security analysis of the SPKM scheme is centered on the security of the key

Ki. With respect to the security of Ki, there are two possible attacks. In the first

attack a user at some level l, belonging to a class Ul attempts to access information

at a higher level or any other group in the hierarchy that they are not authorized

to access. The second attack involves two or more users at some level l colluding to

compute an authorized key Ki higher up in the hierarchy.

Akl and Taylor showed that if the greatest common divisor of the exponents at

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 78

level l does not divide any of the exponents at level i, then collusion is not possible

[2]. A special case involves a user at level l attempting to derive a key (Ki) at level i.

From equation (3.2), that is Ki = Kti
0 mod M = K

tl(ti÷tl)
0 mod M = Kti÷tl

l mod M ,

since ti ÷ tl does not yield an integer value, hence Ki will not be derivable from Kl.

Concerning the security of the exponent ti, a malicious user who no longer belongs

in a group might attempt to guess at the value of ti associated with the key Ki. This

attack is forestalled by keeping secret the key K0 that is used to compute the new

Ki with the newly generated ti. Moreover, the central authority avoids reassigning

exponents that have already been applied to keys by parsing the registry before

assigning a new exponent to a group.

3.4.2 Complexity Analysis

We analyze the SPKM scheme in relation to the CAT and MCK schemes, because

the three schemes use the same key generation function, i.e. Ki = Kti
0 mod M . As-

sume that there are n groups in the hierarchy, and that the size of the largest distinct

prime pj assigned to a group Uj, is O(n log n) bits. In the CAT and MCK schemes

the formula ti =
∏

Uj 6�Ui
pj is used to obtain the largest ti and ti is O((n log n)n), so

the space required to store any ti is O(n log n) bits. If Ki < M , the size of each key

Ki, is bounded by O(log M) bits. Therefore, O(n log n) multiplications of O(log M)

bit numbers are required to compute a key Ki. Generating keys for the whole hierar-

chy (n groups) requires O(n2 log n) multiplications of O(log M) bit numbers. In the

CAT and MCK scheme, rekeying involves changing the keys throughout the entire

hierarchy, therefore the cost of rekeying is equivalent to the cost of key generation for

the entire hierarchy.

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 79

Table 3.1: Comparative Time Complexity Analysis: SPKM, CAT, and MCK Schemes

SPKM CAT and MCK

Generation O (n log n)×O(log M) O (n2 log n)×O(log M)
Replacement O (n log n)×O(log M) O (n2 log n)×O(log M)
Derivation O (log n) O (n log n)

In the SPKM scheme, assuming also that we have a hierarchy of n groups and

that the largest ti is less than or equal to the value of the nodal degree raised to

the power of n, we deduce that O(log n) bits are required to represent each ti. Since

Ki < M and Ki requires O(log M) bits to be represented, computing each Ki requires

O(log n) multiplications of O(log M) bit numbers. Therefore, in order to obtain all n

keys in the hierarchy, we need O(n log n) multiplications of O(log M) bit numbers. In

the worst case, the cost of rekeying in the SPKM scheme is equivalent to the cost of

generating keys for the whole hierarchy, so the costs of key generation and rekeying are

equivalent. In order to derive Ki from Kj the user in Uj needs to perform O(log(ti/tj))

operations and so derivation takes O(n log n) time using the CAT scheme whereas the

SPKM scheme requires O(log n) time. Table 3.1 summarizes the complexity analysis.

3.5 Experimental Setup and Results

This section describes our experimental setup we used to run experiments to eval-

uate our SPKM scheme in comparison to the CAT and MCK schemes, and experimen-

tal results showing performance evaluations. We have chosen to limit the comparison

to both the CAT and MCK schemes because all three schemes rely on the same key

generation function (i.e. equation (3.1)) and the main factor that causes the difference

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 80

in key generation or replacement times, is the size of the exponent used to compute

the keys. We begin by describing the criteria used to perform the evaluations and

then proceed to describe the platform on which we conduct the experiments.

3.5.1 Implementation and Experimental Setup

In order to perform our evaluations we use four metrics: key generation time, data

encryption time, key replacement time, and the size of the window of vulnerability.

We explain the criteria in a little more detail below:

• Key Generation Time: This is the time it takes the algorithm to generate the

exponents required to compute the keys and then use the generated exponents

to compute the keys required for all the security classes in the hierarchy

• Data Encryption Time: This is the time required to encrypt a data object (in

our case, a file)

• Key Replacement Time: This is the combined time it takes to both generate a

new key and encrypt the data associated with the affected keys

• Window of Vulnerability: This is the combined time it takes to transmit a key

replacement request to the key server and the key replacement time.

These four metrics allow us to compare the behavior of all three schemes with the

aim of confirming the observations we made in our complexity analysis. An added

consideration is that the four metrics we have selected are the more cost-intensive

operations that the key management schemes need to handle both during the initial

setup of the access control system and when keys need to be replaced. As shown in

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 81

Figure 3.6, in the implementation setup, the key server generates exponents for each

of the classes in the hierarchy and uses the exponents to generate keys. The keys are

then used to encrypt the data and once this is done, the keys are distributed to the

users requiring access. Key replacement requests are directed to the key server and

users remaining in the group wait to receive a new key before continuing accesses.

Figure 3.6: Sequence Diagram describing SPKM,CAT, and MCK Implementation

We implemented our exponent generation and replacement algorithms on a Mi-

crosoft Windows XP platform using the Java 2 Standard Development Kit and Eclipse

[87, 16]. In our implementation, the key generation function generates Triple DES

(Data Encryption Standard)[97] encryption/decryption keys and the data encryption

module encrypts the files. Each security class is associated with a file of size ≈ 32MB.

Although a Triple DES key is not the state of the art in cryptographic key usage, it

seemed like a good choice because it is simple to use for implementation purposes and

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 82

is strong enough to provide good security as well as to highlight the need for a scheme

like the SPKM one we have suggested for addressing issues of performance manage-

ment in dealing with data encryptions and key replacements. The experiments are

conducted on an IBM Pentium IV computer with an Intel 2.66Ghz processor, 512MB

of RAM. We limited the size of our hierarchy to 111 security classes in total because

of the computational limitations of the machine we used for testing. (Diagrams of

the hierarchies used are given in Appendix B.)

3.5.2 Cost of Key Generation

The first experiment evaluates the total cost of key generation per poset size in

the SPKM scheme in comparison to the CAT and the MCK schemes. In each case

key generation is handled for the whole hierarchy and for simplicity, we conducted

the experiments on poset sizes of 3 to 111 using a 32MB file per security class. The

experiment was repeated 10 times for each hierarchy instance and the results averaged

and plotted in Figure 3.7. The error bound for each data point in the CAT, MCK

and SPKM schemes respectively is ±0.005 seconds.

As indicated in Figure 3.7, the experimental results confirm the theoretical analysis

that the CAT and the MCK schemes perform worse than the SPKM scheme. This

is to be expected because the exponent generation algorithms that the CAT and the

MCK schemes use results in a geometric growth in the size of the exponent whereas

in the SPKM scheme the exponent generation algorithm bounds the growth of the

sizes of the exponents linearly.

We noted also that although the cost of key generation in the MCK scheme is

generally lower than that of the CAT scheme, in the worst case, as indicated by the

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 83

data point (85 classes,0.164 seconds), the cost of key generation is higher. However,

the difference between the times produced by the CAT and the MCK schemes is

approximately 0.0484 seconds so this reasonable. This is because the scheme fails to

Figure 3.7: Cost of Key Generation Only

find an optimal assignment and so the combined time of searching for the assignment

and then proceeding to generate the keys results in an overall higher key generation

cost in the MCK scheme than in the CAT scheme.

3.5.3 Cost of Data Encryption

In the second experiment we evaluated the cost of data encryption throughout

the entire hierarchy during key generation. This encryption cost does not include the

cost of key generation but rather the total cost of data encryption for all the classes

in the hierarchy. Each class has a 32MB file associated with it. The experiment was

repeated 10 times for each hierarchy instance and the results averaged and plotted

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 84

in Figure 3.8. The error bound for each data point in the CAT, MCK and SPKM

schemes respectively is ±20 seconds.

As shown in Figure 3.8, the cost of encryption in the MCK scheme is better than

that in the CAT scheme and likewise the SPKM scheme performs better than the

first two. This indicates the the size of the exponent defines the size of the key and

consequently the time it takes to perform encryptions. Again, this is not surprising

Figure 3.8: Total Cost of Data Encryption per Hierarchy Size

because encryptions are performed by dividing the file to be encrypted into blocks

that are then encrypted with the provided cryptographic key. The higher the value

of the cryptographic key the closer it is to its maximum bit size (in this case we are

using a triple DES key so the maximum key size is 128 bits and provides 112 bits of

security), and consequently the longer it takes to create a cipher.

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 85

3.5.4 Cost of Key Replacement

We evaluate the cost of key replacement, in all three schemes, in the worst case

when the whole hierarchy is rekeyed. The cost of key replacement is the combined

cost of key generation and encryption for the whole hierarchy. The experiment was

repeated 10 times for each hierarchy instance and the results averaged and plotted

in Figure 3.8. The error bound for each data point in the CAT, MCK and SPKM

schemes respectively is ±20 seconds.

Figure 3.9: Total Cost of Key Replacement in Relation to Hierarchy Size

As indicated by the results plotted in Figure 3.9, the cost of replacement is similar

to the cost of data encryption because the cost of key generation is very small in

comparison to the cost of encryption (see Figure 3.8). However, the performance of

the SPKM scheme is better than that of the previous two schemes. An added point

worth noting is that the cost of key generation in itself is reasonable (bounded by 2

seconds) but the cost of encryption is a factor of the key type. More complex keys

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 86

imply higher encryption costs.

3.5.5 Window of Vulnerability

The size of the window of vulnerability is determined by the combined time it takes

to transmit a rekey request to the key server and the time it takes to create a new

key, re-encrypt the data associated with the replaced key and transmit the updated

key to the users remaining in the group. The experiment was repeated 10 times for

Figure 3.10: Size of Window of Vulnerability with Respect to Number of Classes
Replaced

each hierarchy instance and the results averaged and plotted in Figure 3.10. The

error bound for each bar plotted in the CAT, MCK and SPKM schemes respectively

is ±10 seconds.

The results shown in Figure 3.10 confirm the observations made in sections 3.5.1

- 3.5.3, that although the cost of encryption and key generation costs during rekeying

grows with an increasing hierarchy size, the SPKM scheme still performs better than

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 87

the CAT and the MCK schemes.

3.6 Discussions

We have presented an SPKM scheme that uses two algorithms for exponent gen-

eration and replacement to minimize the cost of key management and replacement

in a hierarchy. The first uses a distance based heuristic to control the growth of

the exponents used to generate keys for access control in the tree hierarchy. While

the second proposes a key replacement scheme that minimizes the number of keys

that need to be changed whenever there is a change in user group membership by

re-assigning keys only to portions of the hierarchy rather than to the whole poset

(hierarchy) as is the case in previous schemes.

The security and complexity analysis and experimental results indicate that the

algorithms are secure, scalable, and perform effectively in comparison to both the

CAT and MCK schemes. The complexity analysis and experimental results were used

to evaluate both the theoretical and practical improvements on the time required to

generate and/or replace the exponents used to compute keys for the hierarchy.

Since the verifications required to obtain valid exponents can be computationally

intensive, potentially creating overhead, we propose that this process be performed

off line or during periods when the system is idle. Additional questions that may

come to mind in relation to the proposed scheme include the possibility of key reuse.

We answer this question in the negative, arguing that the registry of exponents and

the exponent hierarchy allow the system to keep track of the exponents (ti’s) that

have been used or that are currently in use. Furthermore, in the extreme case when

no other combinations of exponents (ti’s) are possible, the central authority (security

CHAPTER 3. EFFICIENT KEY MANAGEMENT: HEURISTICS 88

administrator or key server) has the option to select a new secret key K0 and re-assign

new keys to the whole hierarchy in order to preserve data security.

The size of the window of vulnerability and data re-encryptions affect both the

security and performance of all the key management schemes, but is reduced signifi-

cantly in the SPKM scheme. The objective of the next chapter is to present a method

(algorithm) that overcomes this drawback by avoiding data encryptions.

Chapter 4

Timestamped Key Management

“Defer no time, delays have dangerous ends”

– William Shakespeare

This chapter describes a second approach to efficient rekeying. As mentioned

before, one of the main issues that arises in rekeying is that of minimizing the size

of the window of vulnerability created during the rekey process. In the previous

chapter, we noted that the requirement of rekeying and re-encrypting the associated

data to preserve data security creates a wide vulnerability window [5, 52]. Since this

process is time consuming and causes delay, the approach we propose in this chapter

associates a timestamp to each key and uses both pieces of information to compute a

verification signature that can be used for authenticating users [51]. Replacement is

handled by updating both the timestamp and the verification signature as opposed

to updating the whole hierarchy and re-encrypting all the associated data, as is the

case in the SPKM scheme that we proposed previously.

As illustrated in Figure 4.1, the assumption is that there exists a single trusted

89

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 90

secure central authority U0, as well as a trusted (secure) timestamp authority (TSA),

in charge of key generation and timestamp creation respectively. The timestamp

authority communicates the timestamps to U0, where they are associated with the

keys generated and transmitted securely to the user groups in the hierarchy. Data

is only accessible to users if his/her key and timestamp yield a verification signature

(hash value) that corresponds to the one associated with the data.

Figure 4.1: Timestamped Key Management

The central authority U0, ensures secure access by transmitting the key and

timestamp pair for each group to the data server where a hash value (verification

signature) is computed for each key and timestamp pair, and stored in a secret reg-

istry RH . It is assumed that the registry is kept secret by encrypting its contents with

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 91

a secret key that is held by the data server. Each slot in the registry points to the

data encrypted under the group key, associated with the signature. For instance, in

Figure 4.1, the verification signature HK0,T0 , grants access to DK0 , ..., DKn−1 because

all the other keys K1, ..., Kn−1 are derivable from the key K0 associated with the

verification signature HK0,T0 .

In order to access data, members of a security class (group) Uj, transmit their

key Kj and timestamp Tj, securely to the data server where a pre-defined one-way

hash function, Hi, is applied to the pair to compute a verification signature HKj ,Tj
.

The computed signature HKj ,Tj
is then compared to the value in RH for Uj and if

the computed signature matches the currently valid signature for Uj then access is

granted, otherwise it is denied. In the case where access is granted, the user in Uj

can then access all data packages that obey the precedence relation, Ui � Uj.

When the membership of a group changes, U0 contacts the TSA for a new timestamp

to replace the old value of Tj. On reception of the new timestamp, U0 transmits this

securely to the members of Uj and recomputes a new hash value HKj ,Tj
which is sent

to the data server in order to prevent users who have departed from continuing to

access data.

The advantage of this approach is that it removes the requirement of updating

keys in whole portions of the hierarchy whenever the key, Kj belonging to a class Uj

needs to be updated. As a consequence, the window of vulnerability created between

key replacements is significantly reduced in comparison to the CAT, MCK and SPKM

schemes [2, 66, 52, 62]. We begin with an overview of how the keys, timestamps, and

verification signatures are generated and assigned to the various classes in the poset

and then proceed to show how replacement works.

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 92

4.1 Timestamped Key Assignment

Our solution for timestamped key assignment has the following form. The central

authority, U0, begins by defining the size and form of the poset that defines the access

control hierarchy. Next, U0 selects a secret key K0 as well as two large primes p and

q, whose product M is made public while p and q are kept secret. In order to assign

exponents to the various classes in the hierarchy, U0 uses an exponent generation

algorithm such as the one outlined in Chapter 3 (SPKM scheme). Once the exponents

have been generated and assigned, a key Ki for each class in the hierarchy is then

computed using the formula, Ki = Kti
0 (modM).

The TSA generates timestamps Ti for the keys Ki, by selecting an integer value

that is relatively prime to the product φ = (p − 1)(q − 1), of the two distinct large

primes p and q used in the computation of the keys (see equation (3.1), Chapter 3,

section 3.1 : Ki = Kti
0 mod M where M = p× q). These values of p and q are made

known to the TSA by U0 and the reason for selecting a value that is relatively prime

to φ is in order to guarantee the uniqueness and security of the timestamp [81]. An

integer value that is relatively prime to φ is selected and assigned to Ti.

Once a valid timestamp has been selected, the key server proceeds to compute

a hash value (verification signature) HKi,Ti
for the given user group Ui using the

formula:

HKi,Ti
= (h1(Ki, Ti) + zh2(Ki, Ti))(modM) (4.1)

where

h1(Ki, Ti) = KTi
i mod M (4.2)

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 93

and

h2(Ki, Ti) = 1 + (KTi
i mod M ′) (4.3)

Here, p, q are the large prime numbers selected by U0, M ′ is chosen to be slightly less

than M (say M − 1) and z is an arbitrary integer value selected in order to avoid

collisions in the secret registry (RH). The values of z and M ′ are transmitted securely

to the data server alongside the computed hash values, where they are then recorded

in the secret registry RH .

Figure 4.2: Key Assignment and Corresponding Hash Values Generated

For instance, in Figure 4.2, using φ = (p−1)(q−1) = 288 (i.e. p = 17 and q = 19),

and an arbitrary value for z = 12, we obtain the hash values 776, 1, 2, 4, 68, 56, for the

various combinations of Ki and Ti. The hash values obtained are dependent on the

bit length of the keys Ki. As illustrated, in Figure 4.2, in order for a user in U2 to be

granted access to data encrypted with K5, the data server needs to authenticate their

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 94

key K2, and timestamp T2, by applying the hash function (see equation (4.1)) to the

values supplied by the user. If the computed value corresponds to the current value

in the registry, access is granted. Otherwise it is denied. In the case where access is

granted the user can then proceed to derive K5 from K2 using equation (3.2).

If the division of t5 and t2 (i.e. t5÷t2, in this case, t5 = 24 and t2 = 4 so t5÷t2 = 6)

yields an integer value then the user can proceed to derive K5 as follows:

K5 = K24
0 (modM)

= K
4(24÷4)
0 (modM)

= K24÷4
2 (modM)

= K6
2(modM)

Since K6
2(modM) = K5, the user can now use this key to access data in D5 that is

encrypted with the key K5.

4.2 Timestamped Rekey Scheme - Algorithm

When a user departs from a group, say Uj, security is preserved by updating the

timestamp Tj associated with the secret key Kj. As mentioned before, in order to

guarantee that the Tj selected is unique, the key server updates Tj by selecting a new

value that is not in the registry and is relatively prime to φ = (p− 1)(q− 1). When a

valid timestamp is obtained, the key server proceeds to compute the new hash value

(HKj ,Tj
) using equations (4.1),(4.2), and (4.3) above. The new hash value (HKj ,Tj

) is

transmitted securely to the data server and the timestamp is also securely transmitted

to valid members of the group Uj. A user who has left the group will be unable to

access data because his/her timestamp is invalid. For instance, in Figure 4.3, if the

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 95

membership of U2 changes, all U0 does is update T2 and compute a new hash HK2,T2 .

In this case, the new timestamp T2 is 23 and the new hash value HK2,T2 , is 895.

The new hash value is recorded in the registry, RH to avoid repetitions that could

potentially lead to security violations.

Figure 4.3: Rekeying with the TSR scheme: Example

This approach has the advantage of removing the requirement of updating both

the key affected by the change as well as those that are derivable from it. Indeed,

the cost of data re-encryption is no longer a factor since updating the timestamp

and verification signature does not affect the associated key that was used in the

encryption process. As a consequence, the window of vulnerability created between

key replacements is decreased significantly in comparison with the SPKM scheme.

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 96

4.3 Analysis

The scheme is analyzed with respect to its security properties and its complexity.

The security analysis shows cases of attacks that might occur against the proposed

timestamp scheme and the counter measures taken in designing the schemes. The

complexity analysis, on the other hand, compares the efficiency of Timestamped Key

Management with that of the SPKM, MCK, and the CAT schemes. We chose to

make the comparison with these three schemes since the SPKM, MCK, and the TSR

schemes extend the method of key management in the CAT scheme [2].

4.3.1 Security Analysis

There are three security issues that need to be addressed, namely the security

of Ki, the security of Ti and the security of the hash value HKi,Ti
. With respect to

the security of Ki, there is one possible attack. In this attack two or more users at

some level l collude to compute an authorized key Ki higher up in the hierarchy. As

mentioned before, when the greatest common divisor of the exponents at level l does

not divide any of the exponents at level i, then collusion is not possible [2]. A special

case involves a user at level l attempting to derive a key (Ki) at level i. From equation

(3.2), that is Ki = Kti
0 (modM) = K

tl(ti÷tl)
0 (modM) = Kti÷tl

l (modM), since ti ÷ tl

does not yield an integer value, Kl will not pass the test of divisibility and hence Ki

will not be derivable from Kl.

With respect to the security of Ti, a possible attack is that a lower level user

attempts to derive a Ti at a higher level. Considering that Ti is a very large integer,

guessing at the exact value of Ti using gcd {Ti, φ} = 1, even when φ = (p− 1)(q − 1)

is known, is a hard problem, since Ti is generated using a cryptographically secure

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 97

random number generator and gcd {Ti, φ} = 1 is not easy to solve for large values of

Ti and φ [81].

Finally, concerning the security of the hash value (verification signature) HKi,Ti
, a

malicious user who no longer belongs in a group might attempt to guess at the value

of Ti associated with the key Ki that they still have. The function for computing the

signatures forestalls this attack by using a secure timestamp authority to generate

timestamps that are difficult to guess [71, 78]. Furthermore, the security of the keys

and the fact that the verification signature is obtained by the means of a one-way

hash function, makes deriving the value of HKi,Ti
hard [71, 78].

4.3.2 Complexity Analysis

The time complexity of the TSR scheme is examined in relation to the SPKM,

MCK, and CAT schemes because all three are based on the CAT key management

scheme [52]. Assuming that the sizes of the largest ti and Ti (exponent and timestamp

respectively), used to compute the keys and hash values in the TSR scheme, are

equivalent and require O(log n) bits to be represented; we can conclude (from the

discussion in Section 3.4.2) that O(n log n) multiplications of O(log M) bit numbers

are required to generate keys and timestamps for the whole hierarchy of n groups

(classes). With respect to rekeying, since the TSR scheme only needs to replace the

timestamp associated with the affected class, the TSR scheme only needs to perform

O(log n) multiplications of O(log M) bit numbers to compute the new hash value.

Moreover, while the CAT, MCK, and SPKM schemes need to re-encrypt all the data

that was encrypted with the old keys, in the TSR scheme, the data does not need to

be re-encrypted. A summary of the complexity analysis for all three schemes is given

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 98

in Table 4.1.

Table 4.1: Comparative Analysis: Time complexity in multiplications per key size in
O(log M) bits

CAT and MCK Scheme SPKM Scheme TSR Scheme

Generation O(n2 log n) O(n log n) O(n log n)
Rekeying O(n2 log n) O(n log n) O(log n)

4.4 Experimental Setup and Results

This section describes the experimental setup we used to run experiments to eval-

uate our SPKM scheme in comparison to the CAT and MCK schemes, and exper-

imental results showing performance evaluations. As mentioned in Section 3.5, we

limit the comparison to the SPKM, CAT and MCK schemes because all four schemes

rely on the same key generation function (i.e. equation (3.1)) and the main factor

that causes the difference in key generation or replacement times, is the size of the

exponent used to compute the keys.

4.4.1 Implementation and Experimental Setup

The performance and scalability of the TSR scheme proposed in this chapter were

evaluated with a set of experiments conducted on an IBM Pentium IV computer with

an Intel 2.66GHz processor and 512MB of RAM and a 32MB file per security class

in the hierarchy. As in Section 3.5, our evaluations are based on four metrics: key

generation time, data encryption time, key replacement time (rekeying), and the size

of the window of vulnerability.

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 99

The sequence diagram, given in Figure 4.4, shows how the TSR scheme oper-

ates. The key server generates a series of exponets using the SPKM scheme expo-

nent generation algorithm and then calls the timestamp generation function to create

timestamps. Once the timestamps are created the verification signature function is

called to generate signatures that are communicated to the key generation function.

On reception of the signatures, the key generation calls the data encryption function

Figure 4.4: Sequence Diagram describing the TSR Implementation

to encrypt the data and then proceeds, on completion of the encryption process, to

transmit both keys and signatures to the user groups. Replacement is handled by call-

ing the timestamp generation function and signature function to create a timestamp

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 100

and verification signature repectively.

We implemented our exponent generation and replacement algorithms on a Mi-

crosoft Windows XP platform using the Java 2 Standard Development Kit and Eclipse

[87, 16]. In our implementation, the key generation function generates Triple DES

(Data Encryption Standard)[97] encryption/decryption keys and the data encryption

module encrypts the files. Each security class is associated with a file of size ≈ 32MB.

Although a Triple DES key is not the state of the art in cryptographic key usage,

it seemed like a good choice because it is simple to use for implementation purposes

and is strong enough to provide good security as well as to highlight the need for a

scheme like the SPKM one we have suggested for addressing issues of performance

management in dealing with data encryptions and key replacements. The experimen-

tal results show that the TSR scheme reduces the vulnerability window and increases

data availability in comparison to the SPKM, CAT, and MCK schemes [52]. Al-

though the test scenarios are not exhaustive, the experiments give an intuition about

the general performance of the schemes under consideration.

4.4.2 Timestamped Key Generation - Server Cost

In the first two experiments we study the effect of varying the size of the poset

on the cost of key generation (time required to generate keys and encrypt a 32MB

file per security class in the poset). The CAT [2], MCK [66], SPKM [52], and the

TSR schemes were run 10 times for instances of 7 to 111 security classes respectively.

The computation times were averaged and reported in Figure 4.5 and Figure 4.6.

The error bound for each data point plotted is ±0.03 seconds for key generations and

±20 seconds for the combined cost of key generation and encryption, in each of the

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 101

respective four schemes. (Diagrams of the hierarchies used are given in Appendix B.)

Figure 4.5: Cost of Key Generation Only

The cost of key generation in the TSR scheme is higher than that of the CAT,

MCK, and SPKM schemes, which is reasonable given that the TSR scheme requires

additional time on top of key generation, to generate a timestamp and hash value for

each group in the hierarchy. However, the additional cost does not create a significant

effect on the combined cost of key generation and data encryption. In fact, as shown

in Figure 4.6 the cost of key generation and data encryption is better in the TSR

scheme than in the CAT scheme and the MCK scheme and marginally worse than

that of the SPKM scheme.

4.4.3 Timestamped Rekeying - Server Cost

The second experiment evaluates the cost of key replacement with respect to

the size of the poset, using all four schemes. Arbitrary instances of numbers and

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 102

positions of class keys to be replaced were selected. The algorithm was run 10 times

for each rekey instance of 7 to 111 security classes per hierarchy and the times obtained

averaged to plot the graph in Figure 4.7 with the error bounds for each test point in

the CAT scheme, MCK and SPKM schemes being ±20 seconds and ±0.02 seconds in

the TSR scheme.

Figure 4.6: Cost of Key Generation and Data Encryption per Size of Poset

In the CAT and MCK schemes each rekey event triggers an update of the whole

hierarchy. In the SPKM scheme replacement was triggered at a point in the hier-

archy that would result in a complete update of the hierarchy. In the TSR scheme,

timestamp updates were triggered at every class in the hierarchy. This was to en-

sure a fair comparison between the previous schemes and the proposed TSR scheme.

The cost of rekeying is evaluated as simply being the cost of generating a new key

or timestamp and where need be encryption. It does not include the cost of key

transmission.

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 103

The cost of rekeying was observed to grow linearly in the TSR scheme whereas

in the other schemes, the cost of rekeying stays fairly constant, in relation to the

combined cost of key generation and data encryption (see Figure 4.6), with respect

to the number of classes involved. In both cases this is to be expected because, in the

SPKM scheme, in the worst case (i.e. when the key belonging to the highest class

in the poset needs to be updated) the whole hierarchy is rekeyed to prevent illegal

access to data (or preserve data security). Likewise, in the CAT and MCK schemes

Figure 4.7: Cost of Rekeying per Number of Class keys Replaced

rekeying requires updating the whole hierarchy. By contrast, in the TSR scheme the

cost of rekeying is much lower because rekeying only involves updating the timestamp

and verification signature (hash value).

4.4.4 Window of Vulnerability

The third experiment evaluates the size of the window of vulnerability generated

in the CAT, MCK, SPKM, and TSR schemes. In this case the classes we selected for

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 104

rekeying resulted in changes throughout the hierarchy in all four schemes. We define

the window of vulnerability as the sum of the time it takes to communicate a rekey

request to the key server, generate the new key(s), re-encrypt the affected data with

the new key and transmit the updated key to the users in the affected classes. We

randomly selected instances and numbers of classes to be replaced in a poset that

comprised 384 classes. The algorithm was run 10 times for each rekey case and the

times (size of the window of vulnerability) obtained averaged to plot the graph in

Figure 4.8, with the error bounds for each of the points plotted in the CAT, MCK,

and SPKM schemes being ±20 seconds respectively and ±0.02 seconds in the TSR

scheme.

Figure 4.8: Size of Vulnerability Window created with respected to the Number of
Keys Replaced

We observe that the size of the window of vulnerability created by the schemes

grows linearly with the number of classes replaced. The reason for this behavior is that

the window of vulnerability in this case includes the time required to generate and

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 105

distribute the new (updated) keys as well as the data re-encryption time. By contrast,

since the TSR scheme only updates the timestamp and verification signature, the size

of the window of vulnerability is equivalent to the combined cost of message and key

distribution as well as the cost of timestamp and verification signature computation

stays fairly constant with respect to the size of the rekey instance.

4.5 Discussion

Throughout this chapter the focus has been on securing access to shared data

efficiently by reducing the size of the vulnerability window and the delay incurred by

users during rekeying, in comparison with previous schemes modeled on the approach

in the CAT scheme. As mentioned before, the reason for focusing on shared data

scenarios is that they make for a good example to emphasize the effects of the cost of

using cryptographic access control in dynamic environments. Both in this chapter and

in chapter 3, algorithms were presented that improve on the costs of key management

in models based on a poset in which the keys are inter-dependent. Using posets

of inter-dependent keys has the advantage of minimizing the number of keys held

by any one group of users thus making for better data security and efficiency in

key management (rather than other schemes that assign each group all the keys

they require [40]). However, as noted before, these hierarchical schemes that use

inter-dependent keys, handle key updates (changes) by replacing not only the key

concerned, but also those in the sub-hierarchy affected by the update [62, 106]. In fact,

in the worst case all the keys associated with all the classes in the entire poset need

to be updated and all the associated data re-encrypted. Additional problems include

the vulnerability window created between key replacements, and data unavailability

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 106

during the rekey period (users cannot access data while they have not received a valid

key). Evidently, these methods of rekeying are computationally expensive, which is

why recent approaches have favored assigning user groups all the keys they require

instead of using a poset of inter-dependent keys [2, 66, 62, 106, 52].

We have addressed the problem of rekeying in access control hierarchies, by propos-

ing a solution that associates a timestamp Ti to each key Ki and uses both to compute

a verification signature (hash value) that is used to authenticate users before they are

granted access to data. So, instead of replacing all the keys in Ui’s sub-poset when-

ever a key change is necessary, all the central authority (e.g., key server or security

provider) needs to do is to replace the secret timestamp associated with the key

Ki and recompute a new verification signature. Thus, to access data in Dl or Dk

encrypted with Kl or Kk, a user belonging in Ui must be able to first derive the

new verification signature associated to Ui using their key Ki and timestamp Ti, and

secondly be able derive the respective keys Kl and Kk from the key Ki which they

possess. An added advantage of the new scheme is that the data does not need to

be re-signed (re-encrypted) since the key remains unchanged. Thus, the amount of

out-of-sync data lost and the size of the window of vulnerability are both minimized,

since only one class is affected as opposed to several, which is the case in previous

schemes like the CAT, MCK, SPKM, time-bounded, batching and merging schemes

[95, 62, 52].

There are a number of scenarios in which the proposed Timestamped Key Man-

agement and TSR schemes can be applied. As an illustration, consider a collaborative

web-based community like Facebook where various users communicate. Users can be

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 107

grouped by their privileges of access to data on the system. Here, information broad-

cast could be an invitation to a party. The problem arises when the information needs

to be broadcast to certain users but not to others. Another example is in battlefield

scenarios, where certain information may be broadcast to soldiers depending on their

location and the situation with which they are faced. Other areas of application

include sensor networks and distributed systems where communicating entities need

some assurance that the communicating parties can be trusted.

Other issues that can arise with respect to this scheme include the possibility of

collision in the verification signatures since they are obtained via a hash function. Our

argument is that the hash function we have proposed is based on a one-way function

and also uses double hashing to avoid collisions. In the experiments that involved

executing the algorithm 10 times for each replacement instance in a hierarchy of 3 to

111 classes we noted that there were no collisions.

The timestamped scheme associates each key with a timestamp, and both the

timestamp and key are used to compute a verification signature that is used as an

authentication procedure before data access is granted. In this way whenever group

membership changes, instead of rekeying and re-encrypting the data associated with

the keys, only the timestamp is updated and a new verification signature computed.

Although this scheme makes it possible to significantly reduce the cost of rekeying,

making it interesting for dynamic scenarios, the scheme’s reliance on authentication

makes it vulnerable. That is, if a malicious user holding a valid key finds a way of

generating correct timestamps, there is no straight-forward way of detecting or even

preventing them from accessing the system.

CHAPTER 4. TIMESTAMPED KEY MANAGEMENT 108

However, computing the timestamps and verification signatures may require vary-

ing amounts of computation time depending on the verifications that need to be per-

formed to ensure security which is why in Chapter 5, we suggest using a self-adaptive

function to support key management. The method we describe in Chapter 5 is mod-

eled around the scheme that we proposed in Chapter 3 (SPKM scheme), but it can

also be applied to the timestamp scheme that we have proposed in this chapter. In

such a case the adaptive model will monitor the system’s behavior and instruct the

key server to generate timestamps and verification signatures in anticipation of pe-

riods of high demand when rekey requests may occur within short intervals of each

other.

In the next chapter we present a method of adaptive key management that extends

the approach that we presented in Chapter 3, but it can also be applied to the

timestamp scheme. We have chosen to use the SPKM scheme as the basis for the

adaptive framework because it is more encryption intensive than the timestamped

scheme and is a better way of highlighting the advantage of adaptation over previous

schemes. Moreover, the timestamped scheme operates more like an authentication

scheme and therefore is more susceptible to attacks that are triggered by correct

guesses at the timestamps.

Chapter 5

Self-Protecting Key Management

“Adapt or perish is nature’s inexorable imperative”

– H.G. Wells

In the previous two chapters we presented ways in which CKM schemes can be ex-

tended for better performance. Efficient CKM schemes are good for handling security,

because they allow an access control scheme to match security with performance and

so provide better guarantees of satisfying service level agreements between various

web applications. However, emerging applications like data outsourcing, collabora-

tive project development, and pay-TV, make it necessary to take adaptability into

account in designing security schemes.

This need for adaptability in security schemes has arisen mainly because of the

complexity of managing security for the multiple and varied scenarios that occur in

Web-applications, where security management is complicated by the fact that the

scenarios for which security needs to be ensured are difficult to predict a priori. For

instance, in the CKM context, it is difficult to manually predict where and when a

109

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 110

rekey request will occur and so manual security management in this kind of scenario

results in delayed responses and a wider period of vulnerability.

This chapter presents a framework based on the autonomic computing paradigm

[20, 57, 56] that allows a CKM scheme to adapt to changing scenarios by minimiz-

ing the response time and the size of the vulnerability window created by frequent

rekeying. By supporting a CKM scheme with autonomic functionalities, we allow

the scheme to assume the quality of being self-protecting in the sense that the CKM

scheme acquires the ability to self manage and self-configure in order to handle new

key management situations adaptively. The framework is composed of six function-

alities: the Sensor, Monitor, Analyzer, Planner, Executor, and Effector, that are con-

nected together in the form of a feedback control loop (FBCL) [53, 54]. The FBCL

continually monitors the arrival rate of rekey requests at the key server and, at reg-

ular intervals, computes an acceptable resource (keys and encrypted replicas/data

versions) allocation plan to minimize the overall cost of rekeying. Each component

of the framework contributes to enhancing a standard CKM scheme’s performance

without changing its underlying characteristics. A prototype implementation and

experiments showing performance improvements demonstrate the effectiveness of the

proposed framework.

5.1 Self-Protecting Cryptographic Key Management

(SPCKM) Framework

Our Self-Protecting Cryptographic Key Management (SPCKM) framework han-

dles the rekey problem by supporting a standard KM scheme with an autonomic

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 111

model. Each class in the access control hierarchy represents a group of users au-

thorized to access a portion of the shared data. A rekey request is triggered by

transmitting a message to the key server indicating a change in group membership.

The message can be explicit in the sense that a user actively indicates his/her wish

to leave the group, or it can be implicit, for instance if a user remains inactive for a

long time then the KM system can lock him/her out for safety reasons.

In the framework, the adaptive rekey process is initiated by monitoring, over an

initial period, the rate at which the key server (central authority) receives requests.

This information is then used to generate keys and encrypted versions of the data to

anticipate future rekey requests. Therefore, in comparison to quasi-static key manage-

ment approaches, the SPCKM framework allows a key management scheme minimize

the response time and the size of the vulnerability window created in handling rekey

requests.

As in the schemes we have presented in previous chapters, we assume that there

exists a single trusted central authority (key server) U0 in charge of key genera-

tion/assignment and data encryption. Cases of central server crashes are assumed to

be handled by some fault-tolerance solution like server replication. The key server

encrypts the data on the data server according to the rules of access specified by

the security administrator (SA) and distributes the keys secretly to the user groups

requiring access. Data is only accessible to users if the key in their possession allows

them to directly decrypt, or to derive the keys required to decrypt that data. For

instance, as shown in Figure 5.1, u20 can access data DK2 , DKn−2 , and DKn−1 since

his/her key can be used to directly decrypt DK2 and derive the keys Kn−2 and Kn−1

required to access DKn−2 , and DKn−1 respectively.

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 112

Rekey requests can be explicitly formulated by a user wishing to depart from a

group in which case the user transmits a message encrypted with his/her key to the

key server. Alternatively, the key server can monitor a group’s behavior and decide

Figure 5.1: Self-Protecting Key Management Framework

whether or not to exclude a user from a group. Knowledge of the membership of a

group is located in a registry in the knowledge base. The registry contains the group

and user identification of every user in the system as well as their associated secret

keys.

As shown in Figure 5.1, our framework is comprised of six basic components that

are interconnected in the form of a feedback control loop situated at the key server.

The SA defines an initial observation period during which key replacement is handled

solely by the conventional approach and data is collected to start off the adaptive

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 113

KM process. This initial period is divided into two time windows that are denoted by

W1 and W2. During W1 the sensor captures and transmits all rekey requests to the

monitor. At the end of W1, the monitor computes, on a per class basis, the arrival

rate of rekey requests and compares this value to a preset maximum arrival rate in

the knowledge base. If the current arrival rate is greater than the maximum arrival

rate, the maximum arrival rate is reset to the current arrival rate and a message

is transmitted to the analyzer indicating that the maximum arrival rate has been

exceeded while monitoring continues in the next interval W2. When the current

arrival rate is below the maximum arrival rate, the event is discarded and monitoring

continues in the next interval, W2.

The analyzer computes a probability prediction to determine whether or not the

current resource (keys and data versions) allocation will satisfy the next series of rekey

requests that arrives in the next time interval, W2, and communicates this value to

the planner where an acceptable number of resources (keys and data versions) is

generated in anticipation of the next series of rekey requests. The planner then

calls the executor to define a schedule for creating and assigning the resources, and

the executor instructs the effectors to perform each task according to the priority

defined, in this case, first come first served. The maximum values (against which

observed values are compared) are located in the knowledge base and are set by the

SA on the basis of empirical observations. In the meantime, the monitor restarts the

adaptive cycle by computing the arrival rate that occurs in W2. The FBCL cycles

continuously over time, analyzing the arrival rate for each subsequent period Wx that

occurs after W2. Copy consistency is maintained on the data versions by periodically

checkpointing the state of the primary on to the data versions.

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 114

This approach has two main advantages. First, the response time and the size

of the vulnerability window between key replacements is reduced since rekeying is

handled in the background proactively as opposed to reactively waiting to generate

the keys and encrypt the data when the rekey request arrives at the key server.

Second, the job of the SA is made easier, since the SA no longer needs to take care

of every key replacement scenario but rather, the SA presets specific parameters and

allows the scheme to run on its own. Cases directly requiring the SA would henceforth

be limited to situations that require the consent/advice of the SA to proceed.

5.1.1 Mathematical Model Supporting Framework

In the mathematical model that supports our framework, we use a Poisson process

to describe the rate of arrival of rekey requests at the key server because this model is

suited to modeling the occurrence of random events in time [30]. The arrival rate of

rekey requests at the key server has this property of randomness since there is no way

of predicting the exact number of rekey requests that will occur in a given period.

Moreover, similarly to the basic foundational axioms of the Poisson model where

occurences are viewed as being independent of the past and future, the observed

arrival rate at any point in time is independent of both present and future arrival

rates.

Since we are using a Poisson process to model the arrival rate of rekey events

that originate from a group Ui in the KM hierarchy, we can assume that the requests

arrive independently at a rate λ and denote:

The sensor captures rekey requests transmitted to U0 over a preset period Wc

and transmits this information (number of rekey requests and size of the monitoring

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 115

Table 5.1: Used Notations
Notation Meaning

Wc: The cth predefined monitoring
period (time window) for rekey requests arriving from
Ui, such that 0 ≤ c ≤ γ − 1 and γ
is the maximum number of time windows

λc
i : The arrival rate of rekey requests from

group Ui during Wc

Max (λc
i): The maximum arrival rate of rekey requests for group Ui that

the key server anticipates handling during Wc

mc
i : Total number of rekey requests

that originate from group Ui during Wc

pc
i : The probability prediction that the key

server will not be able to satisfy all the rekey requests
that will arrive from Ui during the next monitoring period Wc+1.

αi: The degree of data availability that a user can expect inspite of the
overhead generating activities (rekeying, encryption,...) on the system.

period Wc) to the monitor. At the end of the period Wc, the monitor computes the

sum of the rekey requests received as well as the arrival rate λc
i . The arrival rate is

computed with the formula:

λc
i =

mc
i

Wc

(5.1)

where the arrival rate is measured in terms of number of requests per second. In the

next step, the monitor compares the value of λc
i to a preset value Max (λc

i) that is

located in the knowledge base. The preset maximum values are set by the SA on the

basis of empirical observations. If λc
i > Max (λc

i), the maximum arrival rate is reset

to the current arrival rate, i.e. Max (λc
i) is assigned λc

i and a message is transmitted

to the analyzer indicating that the previous maximum arrival rate has been exceeded

(reset).

Using the formula for computing the probability mass function of the Poisson

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 116

variable mi, the analyzer computes a probability prediction to determine whether

or not the current number of keys and encrypted replicas (versions) of data will be

enough to satisfy a subsequent arrival rate of at least λc
i in Wc+1, without creating

significant delays. There are two reasons for using this formula: the first is that it

forms a part of the properties of the Poisson model that facilitate making predictions

on the basis of very little information, and the second because it serves as a simple

prediction tool. The formula for computing the probability pc
i is given by [30]:

pc
i =

µmi
i

mi!
∗ e−µi (5.2)

where

µi = Max (λc
i) ∗Wc+1 (5.3)

is a prediction of the number of rekey requests that are expected during Wc+1.

The analyzer decides on whether to increase or decrease the resources (number of

keys and encrypted data versions), by comparing pc
i to a preset probability prediction

value, ε. If pc
i = ε, the value is discarded. Otherwise, if pc

i < ε the analyzer calls the

planner with an instruction to decrease the resources, and if pc
i > ε, the planner is

called with an instruction to increase the resources. This is to ensure that an optimal

number of resources is always maintained so that the costs of updating data versions

do not outweigh the benefits of adaptive KM.

On reception of the value of pc
i and instructions regarding how the resources should

be adjusted, the planner proceeds to compute a degree of availability. The degree of

availability allows the planner to determine how to adjust the number of resources to

keep the cost of running the system within acceptable limits. Availability, is defined

as the fraction of time that the key server is in a position to satisfy any rekey request

it receives. We consider that the key server can be in one of two states: the normal

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 117

state or the idle state.

• Normal State: This is the state in which the key server performs two kinds

of activities: key distribution or key generation. As shown in Figure 5.2 during

this period, key generation and key distribution occur. Let TR be the random

variable representing the total time that the system spends rekeying during the

window Wc.

Figure 5.2: An Example of a Timeline of System States

• Idle State: As shown in Figure 5.2, this is the state in which all the required

keys have been generated and the key server has relegated the tasks of data

encryption and checkpointing to the data server [68, 69, 45]. Let TE be the

random variable that represents the total encryption time during the window

Wc and TC be the random variable that represents the total checkpointing time.

Our method of computing the degree of availability is inspired by the approach

proposed by Jalote [45] where the availability of DKi
is expressed as a probability

function of the overhead generating activities in the KM system, expressed with the

following formula:

αi = 1− Oi

Wc+1

(5.4)

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 118

where Oi is the overhead generated in maintaining update consistency on Ni replicas

at each security class Ui. The overhead Oi is computed using the formula:

Oi = E(TR) + E(TE) + E(TC) (5.5)

where E(TR) is the expected rekey time (i.e. the expected time required to generate

and distribute a key to satisfy a rekey request), E(TE) is the expected encryption

time, and E(TC) is the expected time required to copy updates from the primary

data version onto the backup data versions (checkpointing).

Our framework is not designed to handle requests that are not completed during

Wc, so we will assume that all rekey requests that arrive during the time window Wc

are completed before the end of Wc, otherwise they are processed during the next

time window Wc+1. So, Wc is set with respect to the time it takes to encrypt the

data and copy updates from the primary replica (primary data version) on to the

backup data versions during Wc. In order to compute the expected overhead during

the window Wc+1, we need to compute the expected rekey time, encryption time, and

checkpointing time. We compute all three values E(TR), E(TE), and E(TC) using

equations (5.6),(5.7) and (5.8).

Since pc
i expresses the probability prediction that, if the current arrival rate occurs

during the window Wc+1, the key server will not have the resources to satisfy all the

requests that arrive in Wc+1, we multiply pc
i by Wc+1 to get a theoretical estimate of

the expected rekey time. So, E(TR) can be computed using the following formula:

E(TR) = pc
i ∗Wc+1 (5.6)

Considering that rekeying implies re-encrypting data, we can say that the encryp-

tion time is conditioned by the number of rekey requests that will occur during Wc+1

and the number of data copies that need to be encrypted/re-encrypted. We denote

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 119

Ni as the number of data versions (replicas) that will need to be maintained at class

Ui to satisfy µi rekey requests in Wc+1 and compute a theoretical estimate of the total

expected encryption time using the following formula:

E(TE) = pc
i ∗Wc+1 ∗Ni (5.7)

This expresses the fact that all the replicas are encrypted and this time is taken into

account in computing an estimate of the total re-encryption time E(TE).

In order to compute E(TC), we note that the theoretical estimate of the total

time during which the system would not be in a state of rekeying during Wc+1 (i.e.

E(TE) + E(TC)) can be expressed as [(1− pc
i) ∗Wc+1 ∗Ni]. Since we know E(TE)

from equation (5.7), we can compute E(TC) using the following formula:

E(TC) = [(1− pc
i) ∗Wc+1 ∗Ni]− E(TE) (5.8)

where Ni is the number of replicas required to ensure an optimal level of availability

at class Ui during Wc+1.

Standard KM schemes are not supported by replication, so the overhead is given

by: O = E(TR) + E(TE) in which case αi = 1 − (2 ∗ pc
i). On the other hand in

our proposed SPCKM framework, overhead is calculated using equation (5.5). By

substituting equations (5.6),(5.7) and (5.8) into equation (5.4), we can re-express

availability as follows:

αi = |1− (Ni + pc
i − pc

iNi)| (5.9)

The growth of the number of replicas is controlled with a heuristic that bounds the

availability degree by 1, and positive values of availability are ensured by expressing

the results of equation (5.9) as absolute values.

If a rekey request arrives when there is no existing data version available to satisfy

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 120

it, then the SPCKM scheme reverts to generating a new key, re-encrypting the primary

with the new key and distributing the new key to the users that are left in the group.

So in the worst case, the cost of rekeying reverts to the cost of KM in a standard

scheme.

5.1.2 An Example

We use an example of a simple read-intensive scenario to explain how our frame-

work operates. In this case, suppose that the observations of the key server during

the initial monitoring period W1 result in a prediction that one rekey request is going

to arrive from U2 during a future monitoring period Wx. In order to handle the rekey

request, the analysis from the feedback control loop at the key server determines that

one new key and encrypted data version needs to be generated in anticipation of this

request. As shown in Figure 5.3 the key server creates a new key K2, for the group

Figure 5.3: Initial Replacement Scenario with no Update Requests

U2, and transmits this key to the data server where it is kept in a secret registry.

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 121

On reception of the new key KB and instructions to create a copy of DK2 , the data

server proceeds to create a new copy of DK2 that it re-encrypts with KB. In order to

maintain copy consistency, updates on DK2 are checkpointed onto DKB
by periodi-

cally creating copies of DK2 and re-encrypting it with with KB to obtain an updated

version of DKB
.

Figure 5.4: Scenario in which u21 departs

As shown in Figure 5.4, when the key server receives a departure request during

Wx it proceeds to destroy the primary data version and assign K2 the value of KB.

The primary is replaced with the next data version in line (in this case DK2 ← DKB
)

and the new key K2 ← KB broadcast to the users remaining in the group. Finally

it creates a new key, KB, that it transmits to the data server and as before the data

server creates a new data version DKB
in anticipation of future requests.

5.2 Implementation and Experimental Setup

This section presents the prototype implementation of our proposed framework

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 122

and experimental results evaluating its performance in comparison to a basic key

management (BKM) scheme that is not supported by the paradigm of autonomic

computing. For simplicity we have implemented the prototype as though the access

control hierarchy were comprised of only one single class. The reason for doing this

was to simplify the evaluation process since handling several nodes in the hierarchy

requires a scheduling algorithm that determines a priority for satisfying requests in

a way that minimizes the overall cost of replication and key replacement. A single

node still allows us to evaluate the impact of autonomic control on KM.

5.2.1 Experimental Setup

We evaluate the performance and scalability of the SPCKM framework proposed

in this paper with a set of experiments conducted on an IBM Pentium IV computer

with an Intel 2.66GHz processor and 512MB of RAM. Our evaluation is conducted on

a write-intensive file to simulate a scenario in which re-encryption for data security

is necessary. Therefore, we do not compare our approach with the lazy re-encryption

technique which as we mentioned before (see Section 2.3.4) is better suited to read-

intensive scenarios. We compare both approaches using various metrics, namely the

degree of availability, cost of key generation and data encryption, the cost of key

replacement, cost of message communications, and the size of the window of vul-

nerability. Although the test scenarios are not exhaustive, the experiments give an

intuition about the general performance of the schemes under consideration. Re-

sults for each case are obtained from averages of over 10 runs, with random numbers

of rekey requests expressed as proportions of a user group with a maximum of 100

members and files (versions of the shared data) of size ≈ 32MB.

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 123

5.2.2 Prototype Description

We build our prototype on the Microsoft Window XP platform using the Java 2

Standard Development Kit and Eclipse [87, 16]. We design the prototype in the form

of a chat system using socket programming and a client-server model. In the access

control class, the clients play the role of users and the server that of the key and

data server, supplying both keys and allowing access to data. The key server in our

prototype, generates Triple DES (Data Encryption Standard) encryption/decryption

keys and the data server keeps an encrypted log file of each group’s communications.

Figure 5.5: Prototype Scenario for the SPCKM Implementation

The operation of our prototype is better explained using Figure 5.5. As shown

in Figure 5.5, the clients (users) communicate via the server and all communications

are saved into a log file. Access to the log file is granted only if a user holds the

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 124

correct group key. Once the server is initialized it waits until it receives a connection

request at which point it checks to ensure that it has a free socket. If this is the case,

it spawns a thread that allows the client to connect to it. The server then displays

the current group key on the client’s message board as well as the communications

that have occurred since they joined the group. A client disconnects from the group

by transmitting a ‘BYE’ message to the server, and the server, on reception of this

message, closes the connection and broadcasts a message to the other group members

indicating the departure event. The message also contains the updated group key.

The prototype starts off the self-protecting model by using the initial connection

and disconnection requests to collect data empirically. This data is stored in a file

that serves as the knowledge base for the server and the server uses this data to start

running the feedback control loop that performs adaptive KM.

5.2.3 Performance Criteria

The performance criteria we use to evaluate the SPCKM framework are the Re-

sponse Time, Size of the Window of Vulnerability, Percentage of requests satisfied

with respect to rekey request arrival rate, and Server processing cost. We explain

these four criteria below.

• Response Time: We measure response time by calculating the time it takes the

server to transmit a new key in response to a rekey request. In the case of the

SPCKM framework, if a new key exists, this is the time required to transmit

the new key to all the users remaining in the group. In the BKM scheme, this

is the time required to generate a new key, re-encrypt the data, and distribute

the updated key to the users remaining in the group.

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 125

• Window of Vulnerability: The window of vulnerability is the period that starts

from the time a rekey request leaves a user to the point when the users remaining

in the group receive the updated key. So, it is calculated as the rekey request

transmission time to the server plus the response time.

• Percentage of requests satisfied with respect to rekey request arrival rate: We

calculate the percentage of requests satisfied with respect to the arrival rate

as the number of keys that get transmitted in response to X number of rekey

requests that occur during a time window Wx.

• Server Processing Cost: These are the costs the server incurs in handling adap-

tive KM and include the average number of replicas (backup data versions)

maintained to ensure that the observed request arrival rate is handled within

the current time window, the costs of updating, and the average percentage of

requests satisfied.

5.2.4 Experimental Results

In the first experiment we evaluate the comparative response times per request of

the BKM and SPCKM schemes with respect to the rekey request arrival rate. We

define response time in this case as the time it takes the key server to assign all the

group users a new key after it has received a rekey request or voluntarily decided to

replace the current group key. The size of the monitoring window is set statically to

a value of 60 seconds. The sum of rekey requests is computed by adding the number

of requests that arrive during the monitoring period and the monitor computes the

arrival rate using equation 5.1. The experiment was repeated 10 times for each case

with an average interval of 2 to 5 seconds between each request, and results averaged

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 126

and plotted in Figure 5.6. The error bound for each point plotted is ±10 seconds in

the basic scheme (no replication, i.e., no backup data versions), ±10 seconds in the

SPCKM scheme (varied or adaptive replication, i.e., varied number of backup data

versions) and ±5 seconds in the SPCKM scheme (static replication : 1 replica, i.e.,

one backup data version).

Figure 5.6: Average Request Satisfaction Time with respect to number of Replicas

We observed that the response time in the basic key management (BKM - no

replication) and the SPCKM (static replication) schemes grows linearly with an in-

creasing arrival rate of rekey requests whereas the response time in the SPCKM

(adaptive replication) scheme as the number of rekey requests increases, little or no

additional time is required. These results allow us draw the conclusion that the re-

sponse time in the BKM (no replication) scheme is affected by an increased arrival

rate of rekey requests which is a consequence of the fact that the key server keeps

stopping and restarting the key generation and re-encryption process for each rekey

request it receives. So for high rekey request arrival rates (i.e. an increase in the

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 127

number of rekey requests), as time goes on, it takes longer on average to respond

to a rekey request. The condition is made worse with static replication, because an

increased arrival rate implies that the server needs to create a new backup data ver-

sion as soon as a replacement occurs, and when the arrival rate is high this implies

that the server will still be re-encrypting the new data version when it receives a new

rekey request.

Figure 5.7: Effect of Static Replication on Average Request Response Time

Again the server keeps starting and stopping encryptions, and the condition is

worse than when no replication is used because the server needs to create both two

data versions each time. By contrast, in the SPCKM (adaptive replication) scheme,

since the key server creates a new backup data version of the file and creates support-

ing keys in anticipation of a predicted volume of requests, response time is generally

equivalent to the average time it takes to transmit the new key on average. More-

over, the SPCKM (varied replication) scheme further minimizes its key replacement

costs by adaptively adjusting the number of replicas (data versions) in response to

the arrival rate of rekey requests.

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 128

Since we noted that the adaptive scheme only requires a maximum of 10 replicas

(data versions) generally, we also tested cases where the number of replicas in the

SPCKM scheme is fixed statically at 1, 3, and 5, and compared the performance of

the SPCKM scheme to a BKM scheme in which there is no replication at all. From

the plot shown in Figure 5.7, we observed that a larger number of static replicas keeps

the response very close to the values obtained in the static scheme. However, when

this value is significantly smaller than the number required to satisfy the requests,

the server takes much longer to respond to key requests (see plot with 3 or 1 backup

data versions) than it does when it is not supported by replication or uses adaptive

replication.

Our second experiment evaluates the size of the window of vulnerability created

in both the BKM and SPCKM schemes during rekeying. The window of vulnerability

is defined as the time elapsed between an emission of a rekey request by a user to the

key server up until the time of reception of the new key by the users remaining in the

group. We ran each experiment 10 times, each time over a 60 second time window

and the results were averaged and plotted in Figure 5.8. The error bound for each of

the plotted bars is ±2 seconds.

We noted that the size of the vulnerability window in the BKM and the SPCKM

(static replication) schemes grows linearly with an increasing arrival rate of rekey

requests whereas that in the SPCKM (adaptive replication) scheme, as the number

of rekey requests increases little or no additional time is required. This supports the

result we obtained in the first experiment where an accumulation of rekey requests

in the BKM and SPCKM (static replication) schemes results in a longer average

response time per request. We note also that the SPCKM (adaptive replication)

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 129

scheme not only overcomes the drawback of delayed response times in the BKM and

SPCKM (static replication) schemes but also makes for better security by reducing

the size of the window of vulnerability between rekey requests.

Figure 5.8: Variation in Vulnerability Window Size with Respect to Request Arrival
Rate

Finally, we discuss the processing cost incurred by the key and data servers. We

noted that for an average rekey request arrival rate of 0.256 requests/second the

SPCKM (adaptive replication) scheme uses an average of four data versions against

one in the SPCKM (static replication) and none in the BKM schemes. In the SPCKM

(adaptive replication) scheme, the average time spent updating (copying messages on

to the primary copy and re-encrypting in the case of rekeying) the backup data

versions is 0.17 seconds in the BKM scheme and 3.3 seconds in the SPCKM scheme

with static replication, as opposed 6.6 seconds in the SPCKM scheme. However, the

SPCKM (adaptive replication) scheme makes up for its shortcomings on the backup

data version creation and update side by satisfying an average of 52.27% of the

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 130

requests during the 60 second montoring interval while the basic scheme only satisfies

20.96%, and the SPCKM with static replication only satisfies 8.69%. In fact as shown

Figure 5.9: Variation in Percentage of Rekey Requests Satisfied with Respect to Re-
quest Arrival Rate

in Figure 5.9, in our experiments when the arrival rate was 0.5 requests/second during

the 60 second monitoring interval, the BKM and the SPCKM (static replication)

schemes only satisfied less than 1% and 0.33% of the requests they received while

the SPCKM (adaptive replication) scheme initially, (i.e. before adjusting to the new

rate) satisfied 12.67% of the requests. The results are summarized in Table 5.2.4.

Table 5.2: Effect of Replication (data version creations) on Key Management Scheme
Performance

None Static Adaptive

Number of backup data versions 0 1 4
Update Costs (seconds) 0.17 3.3 6.6
% Requests Satisfied 20.96 8.69 52.27

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 131

5.3 Discussions

This section summarizes the contributions of our adaptive key management frame-

work and shows that the decision version of the problem of adaptive rekeying in a

hierarchy is NP-complete. The reason for doing this is to demonstrate that perfor-

mance improvements are only possible if done in a way that minimizes the overall

cost of rekeying. Therefore rekeying in hierarchies needs to be handled by some form

of priority scheduling to minimize the risk of cyclical rekeying which would create an

added management cost to the key server. In fact the performance degradation in

this case could even result in the adaptive scheme performing worse than any of the

quasi-static key management schemes that we have discussed so far, which will defeat

the advantage of adaptivity in key management.

5.3.1 Contributions of the SPCKM Framework

In the preceding sections we outlined some of the reasons behind the hesitancy

to adopt the autonomic computing paradigm into security frameworks. For reasons

pertaining to cost and credibility, business owners prefer to have control over their

security mechanisms. Our aim therefore, was to argue that self-protecting approaches

can enhance the performance of standard KM schemes without necessarily changing

their underlying security, thus making the job of the SA easier.

Specifically, we considered the problem that arises in shared data scenarios where

access is controlled with a CKM scheme. In these scenarios, several users hold a se-

cret key that is used to encrypt commonly accessible data. When group membership

changes, data security is maintained by updating the shared group key and transmit-

ting it to the users remaining in the group. Therefore, KM is expensive when changes

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 132

occur frequently and involve large amounts of data.

We proposed a simple but effective SPCKM framework to address this problem.

The framework does not detract from the basic qualities of the standard security

scheme but rather enhances its capabilities with a combination of a stochastic model

and replication. The stochastic model determines an acceptable degree of replication

to maintain based on an observed arrival rate and the potential impact of checkpoint-

ing on the overall performance of the system. In this way data versions and keys

are generated to preemptively handle situations of high demand making for better

performance than in standard schemes. The SA now only has to preset required

parameters and let the system run, without having to be present to manually han-

dle every change. Experimental results show that the SPCKM approach reduces the

vulnerability window and increases data availability in comparison to the BKM.

Regarding the security of the scheme, if we assume that a key generated in the

BKM scheme using the Triple DES (Data Encryption Standard) scheme is secure then

it is safe to say that both the BKM and SPCKM schemes are secure in the sense that

the SPCKM scheme only enhances the performance of the basic scheme by adding in

data replication. Checkpointing on data versions are secured by ensuring that updates

are accepted only from the primary replica. Rekeying results in a destruction of the

primary replica associated with the updated key and the selection of a new primary

copy by the key server.

5.3.2 Some Challenges in Adaptive Rekeying

Other challenges include finding other statistical distributions that are more effec-

tive than the Poisson model in modeling rekey arrival rates, and finding a good way

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 133

to define adequate monitoring thresholds. Issues of copy consistency can also arise in

situations where there is a high volume of communications between users (frequent

updates on the primary) and rekey requests occur within very short intervals of each

other. One of the more interesting problems that can occur in this scenario of adap-

tive rekeying is that of cyclical rekeying when rekey events occur within very short

intervals of each other.

Figure 5.10: A Case of Cyclical Rekeying

A case of cyclical rekeying is given in Figure 5.10. In this case, four rekey requests

R0, R1, R2, R3 are emitted from different classes U3, U1, U2 at times T0, T1, T2, T3. As-

suming that the rekey requests are totally ordered, we can infer that the key server

will respond to the rekey requests in the order in which they arrive. The key server

responds by transmitting a new key to the users remaining in a group and does not

handle a new request until the current one is completed. The problem of cyclical

rekeying occurs in the DKM scheme, when a rekey request requires repeating the key

transmission process for a class that has just been rekeyed. In the case shown inf Fig-

ure 5.10, the request R1 requires changing the keys K1, K2, and K3, which implies

rekeying K3 that had just been updated when R0 occurred. Likewise, for R2 and

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 134

R3 doing one after the other results in a loop situation because K2 is updated at T2

and reupdated at T3 when R3 occurs requiring a change of the keys K1, K2, and K3.

When requests like these that occur within short intervals of each other they create a

situation of cyclical rekeying which is expensive not only in terms of key generation

but also in data version encryptions. In fact, as we show in the following section this

problem is NP-hard [86, 24] which explains why we used a priority heuristic to handle

adaptive rekeying in the experiments conducted throughout the entire hierarchy.

5.3.3 The Adaptive Rekey Scheduling Problem

The adaptive rekey scheduling problem (RSP) can be expressed in the form of

a complete graph in which there are n vertices. The vertices represent the user

groups in the hierarchy and the associated keys and the RSP is one where a central

authority wishes to assign keys to every node (vertex) in the RSP graph in way that

minimizes the overall cost of key assignment. In order to minimize the total cost

of key assignment the key server needs to compute a schedule that guarantees that

for each set of scheduling tasks, each vertex will be assigned a key exactly once and

the path that defines the rekey schedule contains no cycles (i.e. there is no repeated

rekeying).

In order to show that the decision version of the RSP is NP-complete, we need

to show two things. First, that the problem belongs in NP and secondly, that the

problem is NP-hard. Suppose there is an integer cost c(i, j) to rekey a security class

say Ui before Uj and that the key server needs to select a sequence whose total cost

is minimum, where total cost is defined as the number of cycles that will occur when

Ui is rekeyed before Uj. The decision version of this problem can be expressed as

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 135

follows:

RSP = < G, c, k > : G = (V, E)) is a complete graph

c is a function from V × V → Z

k ∈ Z

G has a RS path with cost at most k

Theorem 5.3.1. The decision version of the RSP is NP-complete.

Proof.

First, we show that the RSP belongs in NP. Given an instance of the problem,

we use as a certificate a sequence of n nodes in the rekey schedule. The verification

algorithm checks that this sequence contains each vertex exactly once, sums up the

edge cost and checks whether the sum is at most k. This process can be done in

polynomial time.

In order to prove that RSP is NP-hard, we show that the traveling salesman

problem (TSP) is reducible to the RSP (i.e. TSP≤P RSP) [24]. The TSP basically

involves modeling a problem as a complete graph with n vertices, and requires a

salesman to visit all n vertices (cities) visiting each vertex exactly once and using a

tour whose total cost is minimum. The total cost of the tour is the sum of the costs

along the edges of the tour.

Suppose G = (V, E) is an instance of the TSP, then an instance of the RSP can

be constructed as follows. First, we define a complete graph G′ = (V, E ′), where

E ′ = (i, j) : i, j ∈ V and i 6= j and the associated cost function along an edge in the

graph is defined by:

c(i, j) =

 0 if (i, j) ∈ E

1 if (i, j) 6∈ E

CHAPTER 5. SELF-PROTECTING KEY MANAGEMENT 136

Since G is undirected, it has no self-loop, so c(u, v) = 1 for all vertices (u, v) ∈ V .

The instance of the RSP is then < G′, c, 0 > which is easily formed in polynomial

time.

In order to show that the graph G has a traveling salesman tour if and only if

graph G′ has a tour of cost at most 0, we can suppose that G has a traveling salesman

tour h. Each edge in h belongs to E and thus has a cost of 0 in G′. Thus h is a

tour in G′ with cost 0. Conversely, suppose that graph G′ has a schedule h′ of cost

at most 0. Since the costs of the edges E ′ are 0 and 1, the cost of tour h′ is exactly

0 and each edge on the schedule path must have cost 0. Therefore h′ contains only

edges in E and it can be concluded that h′ is a TS tour in graph G.

Figure 5.11: Illustration of polynomial-time reduction from TSP to RSP

The proof is better explained with the example shown in Figure 5.11. Here, the

graph G′ has edges of cost 0 and 1 respectively. So in this case an example of a tour

h is GHIJDG while one of h′ is ABCDEFA. In this case, it is clear that the graph

G is a subset of the graph G′ which supports the argument that TSP≤P RSP.

Chapter 6

Collusion Detection and Resolution

“Imagination is more important than knowledge.”

–Albert Einstein

A fundamental challenge in designing secure hierarchical cryptographic access con-

trol schemes is protecting against attacks perpetrated by valid users in possession of

“correct” keys. Attacks that occur due to inference and covert channels as well as

through the use of keys that are illegally obtained by applying contrived mathemat-

ical functions to known keys, highlight a few of the possibilities of internal security

violations. Therefore, attacks that are carried out by valid users are more difficult to

detect and so more dangerous to the security of any system.

We now consider one of the attacks, termed a “collusion attack”, that can be

provoked by valid users. As mentioned before, a collusion attack occurs when two

or more users at the same level in the hierarchy collaboratively compute (using a

contrived mathematical function), from their respective keys, a key (higher up in the

hierarchy) to which they are not entitled. Collusion detection and resolution is an

important issue in guaranteeing the security of any key management scheme because

137

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 138

it enables the scheme to enforce precautionary measures against collusion attacks

which can be carried out by users in possession of valid keys.

In previous chapters we noted that evaluating the security of a KM scheme in-

volved determining whether or not the scheme is provably secure. The aim of our

adaptive collusion detection and resolution framework is to show that the process of

evaluating the security of a generated key set can be done automatically and also

that in certain cases, it can be more cost effective to use a less secure scheme that is

supported by some form of verification algorithm.

We begin by showing that the problem of optimally identifying all the possible

collusion liable key combinations within a key set is NP-hard, and is hard to solve

algorithmically in polynomial-time. Our proposed solution is based on two heuristic

algorithms. The first algorithm maps the key set onto a graph according to known

collusion functions while the second algorithm uses a heuristic based on computing

an independent set of a graph. For simplicity and coherence, we have designed our

algorithms around the Ad-hoc AT scheme since this is an example based on the

same key generation function that the SPKM, CAT and MCK schemes use, and

is vulnerable to “collusion attack”. In order to evaluate the performance of our

collusion detection and resolution algorithms, we use them to support the Ad-hoc

AT scheme and make the comparison with the CAT scheme. This is because both

schemes represent the two extremes - the CAT scheme is secure against collusions but

generally more costly to run than either the SPKM or MCK schemes, and the Ad-hoc

scheme represents the other extreme - less costly to run than the CAT, SPKM, or

MCK schemes - but vulnerable to “collusion attack”.

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 139

6.1 On Detecting Collusion Possibilities

In this section we show that the decision version of the problem of determining

the largest set of “collusion free” keys within a key set (referred to hereafter as the

DCFK problem), is NP-complete. The term “collusion free” is used to denote the keys

within a key set that cannot be combined using any known mathematical function to

illegally obtain other keys in the hierarchy. For instance, when a KM scheme is based

on the model that Akl and Taylor proposed, the Properties 1,2, and 3 (see Chapter

3, Section 3.2) need to be enforced by generating and assigning keys in a way that

prevents violation. The DCFK problem is hard to solve algorithmically because it

requires determining the largest sub-set of collusion-free keys within a key set, such

that all the security classes requiring keys are assigned different keys and also so that

there are enough extra ones to handle the predicted request arrival rates during future

monitoring intervals, say Wc+1.

6.1.1 The DCFK problem

The DCFK problem can be expressed in the form of an undirected graph comprised

of z vertices, where the vertices represent the keys assigned to the security classes at

level i in the hierarchy and the edges represent the probability that their end points

can be combined to provoke a “collusion attack”. The DCFK problem requires the

key server to compute the largest “collusion-free” key set from a given key graph.

Restating this optimization problem as a decision problem, we wish to determine

whether a graph has a “collusion-free” set of size z, and we can define a language to

describe the problem as follows:

DCFK = {〈G, z〉 : graph G has a “collusion-free” key set of size z}.

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 140

Theorem 6.1.1. The decision version of the DCFK problem is NP-complete.

Definition 6.1.1. Given a graph, G = (V, E) where V represents the set of vertices

in G and E the set of edges that connect the vertices, a set of vertices I ⊂ V is called

independent if no pair of vertices in I is connected via an edge in G; an independent

set is called maximal if by including any other vertex not in I, the independence

property is violated [1, 50].

Proof.

In order to show that the DCFK problem is NP-complete we need to show that

Theorem 6.1.1 is true by proving two things, first that the DCFK problem belongs

in NP and secondly that the DCFK problem is NP-hard [24]. First we show that the

DCFK problem belongs in NP. Suppose we are given a key graph, G = (V, E) and an

integer z for a level l in the key management hierarchy. The verification algorithm

needs to check that the graph contains a subset of unconnected keys V ′, such that

|V ′| = z where z is the number of security classes at level l, in the hierarchy, requiring

keys. Since the value of z is known, the verification algorithm can check the set V

in polynomial time to determine whether or not there is a set V ′ within V such that

|V ′| = z. Therefore the DCFK problem belongs in the set of NP problems.

In order to show that the DCFK problem is also NP-hard, we show that the maxi-

mum independent set (MIS) problem is reducible to the DCFK problem (i.e.MIS ≤P

DCFK) [24]. Essentially, the decision version of the the MIS problem is to determine

whether a given undirected graph G = (V, E) contains an independent set of cardi-

nality at least z. The independent set is called maximal when the subset V ′ that is

extracted from V is such that |V ′| = z and no other independent set in V completely

contains V ′.

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 141

Suppose that a graph G has an MIS such that V ′ ⊆ V with |V ′| = z and a DCFK

such that V − V ′ ⊆ V with |V − V ′| = |V | − z. Now, let u and v be two arbitrarily

selected vertices in V connected by an edge, so that at least one of u or v belongs in

V ′ since every vertex in V ′ is not connected with an edge in E. Equivalently, at least

one of u or v belongs in V − V ′ and the set V − V ′ which has a size of |V | − z forms

a DCFK for the graph G−G′.

Conversely, suppose that G − G′ has a DCFK such that V − V ′ ⊆ V , where

|V − V ′| = |V | − z. Then for all (u, v) ∈ V − V ′, if (u, v) is connected by and

edge in E, then either of u ∈ V − V ′ or v ∈ V − V ′ or both belong in V − V ′.

The contrapositive of this implication is that for all (u, v) ∈ V if u 6∈ V − V ′ and

v 6∈ V − V ′, then (u, v) ∈ V ′. In other words, V − |V − V ′| is a MIS and it has a size

|V | − |V − V ′| = z

6.1.2 Example

The following example helps to simplify and clarify the proof given above. In

this case, we use the example of a graph G that contains a MIS and some connected

vertices. As shown in Figure 6.1, graph G includes both graphs G and G−G′ where

graph G′ has connectivity 0 and graph G−G′ has connectivity 1. Here, connectivity

0 implies that there is no edge between the two adjacent vertices and connectivity 1

implies that there is an edge between the two adjacent vertices. Clearly, since graph

G′ includes vertices GHIJ it forms a MIS for graph G. Hence, adding any vertex

from either G′ into G − G′ or vice-versa violates the rules of connectivity in either

case. So, the problem of computing a MIS of G is equivalent to that of computing

the DCFK of a key set.

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 142

Figure 6.1: Illustration of polynomial-time reduction from MIS to DCFK

Since the DCFK problem is NP-Complete, we support our adaptive collusion

detection and resolution (ACDR) framework with two polynomial-time “heuristic”

algorithms to obtain a near-optimal solution to the DCFK problem. The size of the

set of keys produced by the algorithms covers all the security classes and is provably

collusion-free.

6.2 Adaptive Collusion Detection and Resolution

(ACDR) Framework

The Adaptive Collusion Detection and Resolution (ACDR) framework is com-

prised of four basic components: the Key Generation Module (KGM), the Collusion

Detection Module (CDM), the Collusion Resolution Module (CRM) and the Rule

Set (RS), embedded within the Effector in the Self-Protective Cryptographic Key

Management (SPCKM) framework (see Figure 5.1), that we presented in Chapter

5. As shown in Figure 6.2, our framework is comprised of four basic components

embedded with the Effector that is situated at the key server. When the Effector

receives instructions from the Executor to create keys to handle a rekey request, the

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 143

Effector begins by generating the set of keys, required to satisfy the demand, within

the Key Generation Module (KGM).

Figure 6.2: Collusion Verification and Resolution Framework

The KGM generates a set of keys to handle the predicted arrival rate during

Wc+1, and transmits the key set to the CDM where they are checked to identify any

combinations that could be exploited to provoke collusions. In order to check for

collusions, the CDM uses a collusion detection algorithm that operates by mapping

all generated keys onto a key graph where each vertex represents a key and the edges

indicate the probability that their end points can be combined to generate an illegal

key that can be used to provoke a “collusion attack”. The CDM establishes which

keys are “collusion-liable” by consulting the Rule Set (RS).

The RS contains rules or values that a key set needs to maintain in order to avoid

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 144

collusions. If the key set passes the verification step (stage at which collusions are

detected), then the key set is transmitted to the data server for data encryption.

On the other hand if the verification step fails to produce a collusion-free key set,

the CDM transmits the key set to the Collusion Resolution Module (CRM) where

an algorithm is applied to the key set to break the connectivity between the keys.

Once the graph has been formed, the CDM sends the graph to the CRM where

an algorithm that is based on the concept of maximum dispersion, implemented by

computing an independent set of the key graph, to minimize the connectivity of the

keys and therefore reduce the occurrence of collusion attacks. Once a collusion-free

key set is obtained the key set is transmitted to the data server for data encryptions,

after which the keys are distributed to the users.

The framework allows the key server to verify that the keys that are newly gener-

ated do not inadvertently open up possibilities for violating the conditions to prevent

collusions. A further advantage is that the SA can pre-set these conditions and allow

the scheme to run on its own and only handle abnormal cases that require the SA’s

consent/advice to proceed. We begin by stating the assumptions and basic definitions

that support our collusion detection and resolution algorithms and then proceed to

outline the operation of the algorithms.

6.2.1 Preliminaries and Assumptions

We assume that the rules of construction of the poset remain valid and that the

central authority (CA) generates keys for each level in the hierarchy in a manner

that enforces these rules. Additionally, we also assume that the keys generated, at

each level, can be mapped on to a graph whose structure is defined by the number of

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 145

possibilities of combining keys to generate a “collusion attack”. The keys represent

the vertices in the graph while an edge between any two vertices indicates that both

keys can be combined to compute an illegal key. As an example, Figure 6.3(a.)

depicts a hierarchy with a series of possibilities for collusions. One such case is that

of combining the keys K3 = K4
0 mod M and K5 = K9

0 mod M to generate the key

K0 which belongs to the highest class in the hierarchy. In this case, K3 and K5 can

be used to trigger a collusion attack through the following function:(
K4

0

)−2 (
K9

0(mod M)
)

= K1
0 (mod M) = K0 (6.1)

whereas, by the same function, combinations of K3 and K4 or K4 and K5 as shown

below (
K4

0

)−2 (
K6

0(mod M)
)

= K−8
0 K6

0 (mod M) = K−2
0 (mod M) (6.2)

(
K6

0

)−2 (
K9

0(mod M)
)

= K−12
0 K9

0 (mod M) = K−3
0 (mod M) (6.3)

yield results that do not belong in the hierarchy. If either or both conditions are

verified the edge between the classes is labeled with a value of 1, otherwise it is

labeled with a value of 0. So, as shown in Figure 6.3(b.), according to this collusion

function, there would be an edge between K3 = K4
0 mod M and K5 = K9

0 mod M ,

whereas there is no edge between K3 = K4
0 mod M and K4 = K6

0 mod M or between

K4 = K6
0 mod M and K5 = K9

0 mod M . This can lead to a very sparse graph or

a very dense graph in the best and worst cases, respectively. The following three

definitions are mainly to extend the above explanations to the general case.

Definition 6.2.1. Key connectivity is implied by the ease with which any two keys

at a level, say j, can be combined to generate a key at a higher level, say i. Thus,

adjacent vertices would be more likely to be combined successfully to derive an illegal

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 146

key than non-adjacent vertices.

Definition 6.2.2. The graph G = (V, E) is the representation of key connectivity

where V represents the keys and E the edges (probability that their end points can

be combined to provoke a “collusion attack”) between these keys (see Figure 6.3(b.))

Figure 6.3: Example of a Hierarchy with Collusion Possibilities

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 147

The need to find large independent sets typically arises in dispersion problems

where the objective is to identify a set of mutually separated points. For example in

our case, we want to assign keys at every level in the access control hierarchy such

that no two keys are close enough to be combined to derive another key (particularly

if that key belongs to a higher level). The principal weakness of many CKM schemes

lies in their vulnerability to attacks based on key connectivity.

Note that the edges of G are obtained based on all best current knowledge of

possible attacks. The absence of an edge between two keys in no way guarantees that

these two keys cannot be used in a “collusion attack”.

The largest independent set would indicate the maximum possible number of keys

that can be attributed such that the conditions for security are not violated, and that

the set derived can accommodate the demands of the system in order that all the

classes in the system get a unique key. Since the problem of determining a largest

independent set is NP-hard we use a heuristic to obtain an approximate solution in

polynomial time.

6.2.2 Collusion Verification

On reception of the instruction to create a key set to satisfy the predicted number

of rekey requests, the KGM generates a set of keys according to the rules of access

in the hierarchy that the SA specified. When the scheme is based on the principle

of key management in the Ad-Hoc AT scheme, integer value exponents are randomly

assigned to each of the security classes in the hierarchy. The generated exponent set

is then transmitted to the Collusion Detection Module (CDM) where it is checked to

identify whether any of the exponents that exist therein will result in the formation

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 148

of collusion liable keys. In order to identify collusion liable keys the CDM uses a

collusion detection algorithm that intuitively works as follows.

Basically, the algorithm works by checking the possibility of any of the keys be-

ing combined to provoke “collusions”. The collusion detection algorithm checks for

collusion possibilities based on known combination rules. These rules are located in

the rule set (RS). Since the algorithms we have proposed extend the CAT scheme,

the RS contains the greatest common divisor of the exponents at each of the levels in

the hierarchy, as well as the registry of assigned exponents at every level in the hier-

archy. The RS is formed by computing the GCD at every level of the hierarchy and

inserting the computed value and the values of the exponents into the table. In order

to determine whether or not a key combination is collusion liable, a greatest common

divisor heuristic (see Section 3.2) is used to compute the GCDs of the exponents used

to compute the keys at level l. We express the conditions that the collusion detection

algorithm uses to determine collusion-possibilities as follows:

• Condition 1: Let el,y be the exponent that is used to compute the key belong-

ing to class y at level l. A collusion-possibility arises if the the greatest common

divisor (GCD) of all the exponents at level l is equal to any of the GCDs of the

exponents at levels l − 1, ..., 0. More formally we can express this as follows:

gcd (el,0, ..., el,y) = gcd (e0,0, ..., e0,y) ∨ ... ∨ gcd (el−1,0, ..., el−1,y)

where GCD[l] = gcd (el,0, ..., el,y)

• Condition 2: The GCD of one or of the pairs of exponents assigned at level l

is a divisor of one or more of the exponents at levels 0 to l − 1, indicating that

there is a collusion attack possibility at level l. we express this more formally

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 149

as follows:

gcd (el,0, el,1) ∨ ... ∨ gcd (el,y−1, el,y) | (e0,0 ∨ ... ∨ el−1,y)

Algorithm 3 : Collusion Detection (GCD[], h, nd)

Require: h ≥ 1; nd ≥ 1 /*h:depth of hierarchy, nd: number of paths linking a
security class to those directly below it*/

Ensure: GCD[0] ∨ ... ∨ GCD[h − 1] 6≤ 0 /*GCD[x]: greatest common divisor of
exponents at level x*/

1: k ← 0
2: GCD[0]← 1
3: for i = 1 to ndk − 1 do
4: GCD[0] = gcd (GCD[0], ek,i) /*Compute GCD at level 0*/
5: end for
6: for k = 1 to h− 1 do
7: GCD[k]← ek,0 /*Start collusion detection process*/
8: for i = 1 to ndk − 1 do
9: GCD[k] = gcd (GCD[k], ek,i)

10: end for
11: index = k
12: for k = index downto 1 do
13: if (GCD[k] = (GCD[k − 1] ∨ ... ∨GCD[0])) then
14: for i = 1 to ndk − 1 do
15: if (gcd (ek,i−1, ek,i) = (e0,0 ∨ ... ∨ ek−1,i)) then
16: Edge[ek,i−1, ek,i] = 1
17: else
18: Edge[ek,i−1, ek,i] = 0
19: end if
20: end for
21: end if
22: end for
23: end for

If either or both conditions are verified, the edge between the classes is labeled

with a value of 1, otherwise it is labeled with a value of 0. When no collusion

liable exponents are found in the exponent set, the CDM transmits the exponent set

to the KGM where they are used to generate keys. The keys are computed using

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 150

equation (3.1) (i.e. Ki = Kti
0 mod M). Otherwise the collusion resolution module

(CRM) is called to rectify the situation by re-computing a new exponent set that

is collusion-free to break the potential connectivity between the keys. Alternatively,

when the collusion-free exponent set is obtained, the exponent set is transmitted to

the KGM for key generation. The algorithm is summarized in the pseudo-code give

in Algorithm 3.

6.2.3 Example of Collusion Detection

Consider for example the case shown in Figure 6.4(a.) where a hierarchy is formed

on the basis of the exponent set V = {1, 2, 3, 4, 6, 9}. From the directed graph in

Figure 6.4(a.), we can infer that the rule set will be as shown in Figure 6.4(b.). In

this case the greatest common divisor (GCD) at level 0 is 1, level 1, 1 and level 2,

1 (see Algorithm 3, lines 3-10). Since the GCDs at all three levels are the same, it

implies that there are collusions at levels 1 and 2 (see Algorithm 3, lines 13 and 14).

The collusion detection algorithm by computing the GCD of all pairwise exponents

to form the graphs shown in Figures 6.4(c.), 6.4(d), and 6.4(e) (see Algorithm 3,

line 15).

We note that in each of the cases collusion is possible either because the combined

GCD at a given level yields a value that is a divisor of some or all of the exponents at

the higher levels (here levels 0 and/or 1) or is a divisor of the combined GCD of the

exponents at levels 0 and/or 1. For instance, the edge between K3 and K4 is labeled

with a 1 because the GCD {4, 6} = 2 and since dividing t1 = 2 by this value yields an

integer, we can deduce that t3 = 4 and t4 = 6 can be combined in some form to yield

a collusion-liable key. The same is true for the combinations:K1, K2; K4, K5;K3, K5;

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 151

Figure 6.4: An Illustration of Collusion Detection in a Hierarchy

and/or K3, K4, K5.

6.2.4 Collusion Resolution Algorithm

Menezes et al. [71] showed that any hierarchical cryptographic access control

protocol in which the central authority (CA) selects a single RSA [11] modulus M

as the basis of key generation, inevitably allows for the derivation of illegal keys in

the system. Hence there is always a possibility that, no matter how well a scheme is

defined, if the keys generated are not tested for the possibility of their being combined

to generate “illegal keys”, some may exist therein that can be used to cause “collusion

attacks”.

When the graphs of collusion liabilities have been computed the collusion resolu-

tion algorithm proceeds to replace the collusion liable keys with ones that break the

connectivity in such a way as to form an independent set. This problem is similar

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 152

to that of determining a maximal independent set (MIS) and since the MIS problem

is an NP-hard problem, we use an approximation heuristic to obtain a solution in

polynomial time.

Algorithm 4 : Collusion Resolution (GCD[], h, nd)

Require: h ≥ 1; nd ≥ 1 /*h:depth of hierarchy, nd: number of paths linking a
security class to those directly below it*/

Ensure: GCD[0] ∨ ... ∨ GCD[h − 1] 6≤ 0 /*GCD[x]: greatest common divisor of
exponents at level x*/ ; R : Exponent Registry;

1: for k = 1 to h− 1 do
2: if (GCD[k] = (GCD[k − 1] ∨ ... ∨GCD[0])) then
3: for i = 1 to dk − 1 do
4: if ((i mod nd) = 0) then
5: j ← j + 1 /*Selecting new exponent. Shift to next parent node*/
6: end if ; ek,i ← ek,0 × (i + 1)
7: temp← i /*Bounds growth of ek,i linearly.*/
8: while ((ek,i=ek,i−1)∨((ek,i mod ek−1,j)6=0)) do
9: ek,i ← ek,0 × temp /*new exponent selection*/

10: temp← temp + 1
11: end while
12: if ek,i ∈ R then
13: GOTO line 4
14: else
15: R← ek,i

16: GOTO line 1
17: end if
18: end for
19: end if
20: end for

In order to remove collusion liable keys, the collusion resolution algorithm proceeds

to correct the assignment (that is to remove the possibility of collusion), by selecting

a random class (usually the class with the least number of edges that are labeled

with a 1) and assigning a new random value to it. In a scheme like the Ad-hoc

AT scheme where collusion liable keys result from the exponent assignment used to

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 153

generate the keys, the heuristic used by the collusion resolution algorithm to achieve

this search in polynomial time is to assign exponent values in a way that ensures that

the greatest common divisor (GCD) at level l is different from those at levels 0 to l−1.

Additionally, the assigned exponents must continue to be multiples of the exponents

assigned to the security classes that are superior to it and that are authorized to

access data at level l. Once a completely collusion-free set is found for level l, the

procedure is repeated for all of the other levels in the hierarchy. On average, this

algorithm converges after O(log |V |) iterations for each level in the hierarchy, where

V is the number of security classes at level l in the hierarchy. The pseudo-code given

in Algorithm 4 summarizes the operation of the collusion resolution algorithm.

6.2.5 Example of Collusion Resolution

The following example is aimed at clarifying how the collusion resolution algorithm

works. Consider for example the hierarchy depicted in Figure 6.5(a.) where V =

{1, 2, 3, 4, 6, 9}. In the first step, the algorithm is executed for level 0 and since

there is nothing higher than t0, t0 retains the value of 1. At level 1, as shown in

Figure 6.5(b.), the GCD {2, 3} = 1 which is equal to t0, this indicates that there is a

possibility that the keys K1 and K2 that are formed from t1 = 2 and t2 = 3 can be

used to provoke a collusion attack. In order to prevent this occurrence, the algorithm

then proceeds to select a random value for t2 such that GCD {t1, t2} 6= 1 and both t1

and t2 remain multiples of t0 (see Algorithm 4, lines 2 and 7). A pseudo-randomly

chosen value of 4 is selected and since GCD {2, 4} = 2 which is not a divisor of the

GCD at level 0, and both are multiples of t0, t2 retains the randomly assigned value

of 4 (see Algorithm 4, lines 8-11).

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 154

Likewise at level 2, as shown in Figure 6.5(c), first t3 = 4 which has been assigned

to t2 , and GCD {4, 9} = 1 = t0, GCD {4, 6} = 2 = t1 and t5 = 9 is not a multiple of t2.

Hence, the algorithm needs to re-assign integer values to t3, t4, and t5 such that GCDs

of the pairs of ti at level 2 are not a factor of any GCDs at levels 0 and 1 and that

additionally, the divisibility condition continues to hold. The random assignments in

Figure 6.5(c.) present two possibilities of assignments, t3 = 12, t4 = 24, t5 = 36 and

t3 = 6, t4 = 12, t5 = 24 (see Algorithm 4, lines 12-14). So one of the sets is chosen

and finally in Figure 6.5(d.) the new assignment of exponents is such that collusion

is prevented.

Figure 6.5: Example of a Applying the Collusion Detection Algorithm to Remove
Collusions

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 155

It is obvious from this illustration that several different combinations would gen-

erate correct and valid independent sets. We could use a heuristic to control the size

of the GCD of the exponent pairs at all of the levels in the hierarchy. However, we

do not consider having different exponent sets to be a disadvantage but rather an ad-

vantage because different sets could be generated off line and attributed when there

is a demand for a new set of keys. This would be the case when a user joins or leaves

the system and the original structure is maintained. In this way the method can in

the best case contribute to an improvement in the efficiency of the key generation

scheme [66].

6.3 Experimental Setup and Results

This section describes the experimental setup we used to run experiments to evalu-

ate our collusion detection and resolution algorithms. We used our collusion detection

and resolution algorithms to support the Ad-hoc AT scheme and compared its per-

formance to the CAT scheme. In the Ad-hoc scheme, the exponents are randomly

assigned, whereas in the CAT scheme each exponent is computed from the the prod-

uct of the primes that are assigned to all the classes that do not belong to the class

under consideration or those in its sub-poset.

6.3.1 Implementation and Experimental Setup

The experiments were conducted on an IBM Pentium IV computer with an Intel

2.66GHz processor and 512MB of RAM and a 32MB file per security class in the

hierarchy. We implemented both schemes on a Microsoft Windows XP platform using

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 156

the Java 2 Standard Development Kit and Eclipse [87, 16]. In our implementation,

the key generation function generates Triple DES (Data Encryption Standard)[97]

encryption/decryption keys and the data encryption module encrypts the files.

In the Ad-hoc AT scheme, each key set contained an average of 8.68% of collusion-

liable keys. The hierarchies were comprised of 7 to 111 classes and implemented in

the form of a tree graph with an average of 2-4 successor classes per class. (Diagrams

of the hierarchies used are given in Appendix B.) Our evaluations are based on four

criteria namely, cost of collusion detection, cost of collusion resolution, cost of key

generation, and the combined cost of key generation and data encryption. We explain

these criteria in a little more detain below:

• Cost of Collusion Detection: This is the time it takes the algorithm to identify,

based on known collusion functions, the key combinations of keys that can be

used to provoke collusion attacks.

• Cost of Collusion Resolution: This is the time it takes the algorithm to resolve

the collusions by randomly selecting a new key and testing it.

• Cost of Key Generation: This is the cost of creating keys. In the Ad-hoc AT

scheme, this includes the cost of collusion detection and resolution.

• Cost of Key Generation and Data Encryption: This is the cost of creating the

keys and encrypting all of the files associated with each one of the security

classes.

6.3.2 Cost of Collusion Detection

In the first experiment, we evaluate the cost of detecting collusions with respect

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 157

to the size of the hierarchy. We used hierarchies in which the exponents used to form

the keys were randomly generated (e.g. in the Ad-hoc AT scheme) with an average

of 8.68% of the exponents being collusion liable. The experiment was run 10 times

for each hierarchy of size 7 to 111, and the results averaged and plotted in Figure 6.6.

The error bound for each point plotted is ±3 seconds.

We observed that the time taken to detect collusions increased with the size of the

hierarchy which is reasonable since the detection algorithm needs to make a greater

number of comparisons to establish collusion liabilities in a larger hierarchy than

in a smaller one. However, we note that the time it takes to detect collusions is

proportionate to the size of the hierarchy. For example, it takes an average of 112.6

seconds to identify approximately 14 collusion cases in a hierarchy with 156 classes,

and approximately 1 second to detect 1 collusion case in a 7 class hierarchy. This

Figure 6.6: Cost of Collusion Detection

time cost can be evaluated as being reasonable when we consider that the detection

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 158

algorithm needs to perform an average of h(V !), where h is the number of levels in

the hierarchy and V the number of security classes at each level in the hierarchy,

comparisons to detect all the collusions in the hierarchy.

6.3.3 Cost of Collusion Resolution

Our second experiment evaluates the cost of correcting collusions in order to es-

tablish a collusion-free key set. In this case, we also used hierarchies of size 7 to 111

and ran the experiment 10 times for each case. The results obtained were averaged

and plotted in Figure 6.7 and the error bound for each point plotted is ±10 seconds.

Figure 6.7: Cost of Collusion Resolution

We observed that the cost of collusion resolution stays fairly constant in the smaller

hierarchies and begins to grow geometrically with an increasing hierarchy size. This

is as a result of the fact that our collusion resolution algorithm uses a principle that

is similar to the one we use in the SPR scheme. Therefore, collusion resolution in

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 159

smaller hierarchies requires fewer checks and exponent adjustments whereas in larger

hierarchies more verifications are required and consequently replacements. We note

however, that time taken to correct the remains proportionate to the number of

collusions that need to be corrected. For example, it takes 0.32 seconds to correct 1

collusion occurrence in a 15 class hierarchy while it take 7.04 seconds to correct an

average of 14 collusion occurrences in a 111 class hierarchy.

6.3.4 Cost of Key Generation

In our third experiment we support the Ad-hoc AT scheme that is vulnerable to

collusion with our collusion resolution scheme and compare the cost of key generation

to that in the “Collusion-Free” AT scheme. The algorithm was run 10 times for each

Figure 6.8: Comparative Cost of Key Generation

hierarchy is made up of 7 to 111 security classes and the results averaged to obtain

the plots in Figure 6.8. The error bound for each data point in both plots is ±0.005

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 160

seconds.

In this case our initial observation is that the simple Akl and Taylor scheme

performs worse than the Ad-hoc AT scheme. However, a closer look shows that

the time difference between each of the points is not very significant (≈ 0.45%) on

average. Moreover, considering that the Ad-hoc AT scheme has the added overhead

of checking for collusions after the initial exponent assignment, this performance is

actually not as bad as it appears initially.

6.3.5 Cost of Key Generation and Data Encryption

Our fourth experiment evaluates the combined cost of key generation and data en-

cryption. Again in this case the experiment is run 10 times to obtain each data point

and the results for each one averaged to obtain the plot in Figure 6.9. The size of the

Figure 6.9: Overall Comparative Cost of Key Generation and Data Encryption

file that we used is approximately 32MB and the error bound for each of the points

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 161

plotted is ±20 seconds.

In this case, we noted as before, that the size of the key plays a big role in the

cost of data encryption. What the Ad-hoc AT scheme loses in terms of performance

during key generation, it gains back during data encryption. Moreover, as the plots

in the graph show, the gains are even more significant for larger hierarchies.

6.4 Discussions

In this chapter, we have presented a solution to the problem of detecting and

removing collusion liable keys from a key set generated using a CKM scheme. We

also showed how both algorithms fit into the SPCKM framework, that we presented

in Chapter 5, to support our goal of designing adaptive security schemes that are self-

protecting of their environments. The approach we adopted for identifying collusion

liable keys was to map the keys on to a graph where the vertices represent the keys

and the edges, the probability of their being combined to provoke collusions. Adjacent

keys signify a higher attack likelihood than non-adjacent keys. In order to remove

the collusion liable keys we use a collusion removal algorithm that is based on the

principle of computing an independent set from the vertices in a graph.

Using the independent set approach to resolve this problem shows that the prob-

lem of removing the collusion liabilities in a key set is similar to the classic graph

theory problem of computing a largest independent set. As the problem is NP-hard,

a heuristic was used to achieve an efficient (but perhaps suboptimal) solution in

polynomial time. Nevertheless, as illustrated, the solution is feasible.

The drawback of this scheme is that it adds computational overhead on the system.

The algorithm requires O(log |V |), where V is the number of vertices (exponents),

CHAPTER 6. COLLUSION DETECTION AND RESOLUTION 162

time at least, for the key selection process at each level in the hierarchy. Additionally,

the algorithm needs O(n log n) time to resolve the collusions.

Chapter 7

Summary and Conclusions

“Adapt yourself to the things among which your lot has been

cast and love sincerely the fellow creatures with whom

destiny has ordained that you shall live.”

– Marcus Aurelius

Throughout this thesis, we have proposed a number of approaches to extending

the cryptographic access control schemes to incorporate adaptability. Specifically,

we focused on cryptographic key management (CKM) in a hierarchy, where access is

controlled by assigning each security class (group) a single key that allows the users to

directly access information or derive the key required when the conditions of access are

satisfied. We noted that while these CKM schemes afford better security than CKM

schemes in which the keys are independent of each other, key management is expensive

because updates result in costly data re-encryptions and changes throughout the

entire hierarchy because of the inter-dependencies between the keys.

163

CHAPTER 7. SUMMARY AND CONCLUSIONS 164

We argued that security schemes face difficulties in matching security with per-

formance because the focus in designing security schemes has generally been on cor-

rectness as opposed to performance. In fact, designers of security schemes, unlike

other areas of computing, tend to assume that if security schemes are properly de-

signed, failure (security violations or inefficiency) is unlikely. The first two solutions

we propose show that while performance enhancements can be gained by using a

number of heuristics to tweak a security scheme, cases that involve more dynamic

scenarios result in delays that not only impede performance, but also in the long-run,

create security vulnerabilities on the system. We suggested resolving this problem

with an adaptive security scheme and proposed a framework for self-protecting key

management that is based on the paradigm of autonomic computing. By its property

of adaptivity, our framework evolved a quasi-static access control scheme into one

that has the ability to be self-protecting. We defined self-protecting access control

as the ability of a software system to ensure continued security by adjusting its ac-

cess control parameters in response to perceived changes in its environment. Finally,

since self-protecting security implies a lesser degree of control by a human security

administrator, we considered the problem of attacks that can be perpetrated by users

in possession of valid keys. Specifically, we focused on the problem of “collusion at-

tacks” and proposed an adaptive algorithm for resolving collusions. The algorithm

monitors key assignments and checks to ensure that collusion attacks are prevented.

In the following we first summarize the contributions of this thesis and then proceed

to evoke ways in which this work can be extended.

CHAPTER 7. SUMMARY AND CONCLUSIONS 165

7.1 Summary and Critique

In Chapter 1 we presented the hypothesis that underlies our arguments in favor of

adaptive security. Essentially, the hypothesis is that security schemes can be extended

to incorporate adaptivity without necessarily changing their underlying specifications.

We explained why we opted to base our solution on the dependent key management

model for cryptographic access control, by the fact that it offers better security and

more efficient key management than its independent key management counterpart.

In dependent key management schemes that are modeled using a partially ordered set

(poset) of disjoint security classes, access is controlled by classifying every user into

exactly one of a number of disjoint security classes that are partially ordered. In the

partial order hierarchy, cryptographic keys that are associated with lower level classes

are mathematically derivable from higher level keys, but not the reverse. In other

words, access to data is granted if a user holds the “correct” key, or can derive the key

from the one in their possession. (This is the case when a user belongs to a class that is

higher up in the hierarchy). The drawback inherent in this approach to cryptographic

access control in a hierarchy is that changes in group membership imply not only a

group key update but additionally, trigger changes throughout the entire hierarchy

due to the inter-dependencies between these keys. We then highlighted three scenarios

centered on the idea of using cryptographic key management to support access control

in collaborative web applications where access to shared data is an issue and where

the cost of key replacement poses an impediment to efficient access control.

Chapter 2 reviews the literature both on cryptographic access control in particular

and other access control models in general. In each one we noted that while security

is a primary concern, performance is always secondary which is probably reasonable

CHAPTER 7. SUMMARY AND CONCLUSIONS 166

because the goal of a security scheme is first and foremost to protect. Adaptivity, how-

ever, is essential to good security in scenarios that change frequently but researchers

have only recently begun to address this issue when designing security schemes. Our

discussion begins with mandatory and discretionary access control models that are

probably the oldest known access control models in the area of distributed systems

security. Next, we discuss the different models of cryptographic key management

for access control highlighting their pros and cons. Other newer access control par-

adigms include role-based access control, code-based access control, cookies, XML

access control, anti-viruses, intrusion detection and firewalls. Finally, we conclude

with a discussion on autonomic access control which is still at a budding stage.

Chapter 3 presents a heuristic algorithm (sub-poset scheme) for minimizing the

cost of key assignment and replacement. Basically, the algorithm uses an integer

factorization metric and a distance-based heuristic to assign exponents to the secu-

rity classes in the hierarchy in a way that minimizes the cost of key generation and

encryption and ensures that the size of the exponents does not grow geometrically.

Since this algorithm extends the one that Akl and Taylor proposed to control access

in a hierarchy [2], we compared the performance of our heuristic algorithm to both

the CAT scheme and the MCK scheme that all have the same root (i.e. designed

according to the principle of key management that Akl and Taylor proposed). The

complexity analysis and experimental results showed that the heuristic algorithm per-

forms better than the previous two schemes. From this we concluded that the size of

the key is a determining factor in the time it takes to encrypt data. So, it is desirable

to have smaller keys not just for storage purposes (cases of small devices that have

limited storage capacity), but also in terms of reducing encryption time.

CHAPTER 7. SUMMARY AND CONCLUSIONS 167

Since the heuristics scheme still faces the drawback of requiring that the whole

hierarchy be rekeyed when the replacement event involves the highest security class in

the hierarchy (this is the case in the previous schemes), we proposed using timestamps

to limit the necessary changes. In essence, this scheme that we call the timestamp

scheme, operates by associating a timestamp to every key in the hierarchy and com-

puting a verification signature for each timestamp and key pair. Access to data is

verified by checking that the timestamp and key pair in a user’s possession yields a

correct verification signature. Rekeying is handled by replacing the timestamp associ-

ated with a security class and computing a new verification signature for the security

class. So, in this case the window of vulnerability created during key replacement is

significantly reduced in comparison to the SPR, CAT, and MCK schemes.

However, although these first two schemes make for better performance than the

CAT and MCK schemes, they do not cope well with high demand situations. In Chap-

ter 4, we proposed a framework to handle these scenarios effectively by anticipating

user requests and adjusting resource allocation accordingly. In order to model this

adaptive key management approach, we used the feedback control loop drawn from

the paradigm of autonomic computing. Finally, we discussed the benefits of adaptive

rekeying showing that it provides better performance than a basic KM scheme and

significantly reduces the size of the window of vulnerability.

Since adaptive key management implies a lesser degree of physical intervention by

a human security administrator, we consider some of the cases of violations that might

be perpetrated by authentic users. Specifically, we focused on the case of “collusion

attack”. We designed an adaptive collusion resolution algorithm that uses the concept

of deriving an independent set from a key graph to eliminate keys that are liable to be

CHAPTER 7. SUMMARY AND CONCLUSIONS 168

used to provoke such attacks. We analyzed the performance of the collusion resolution

algorithm using the Akl and Taylor scheme that is vulnerable to collusion attack and

compare its performance to that of the Akl and Taylor scheme that is secure against

collusions. The results indicate that while the collusion resolution algorithm takes

longer on average to generate a set of collusion-free keys, the combined cost of data

encryption and key generation is lower than in the CAT scheme. This indicates that

the cost of data encryption (recall, that we are using Triple DES keys whereas AES

keys allow for faster encryptions) is proportional to the key size when the key is

obtained by exponentiation. Therefore schemes based on an exponentiation function

benefit in terms of overall performance if they avoid raising keys to high exponents.

We conclude Chapters 5 and 6 with a critique of the adaptive security solutions we

presented. Essentially, we noted that the decision version of the problem of adaptive

key replacement in hierarchies is NP-complete and showed that it is reducible to

the traveling salesman problem. Likewise, the decision version of the problem of

detecting and removing all the possible key combinations, within a key set, that can be

exploited to provoke collusion attacks is NP-complete. We showed that the collusion

detection and resolution problem is reducible to the independent set problem. This

observation is emphasized by the fact that our collusion resolution and detection

algorithm, does not specifically consider the case of multiple party collusions provoked

by key combinations from different levels in the hierarchy. Lastly, we discussed the

benefits of adaptive security with a probabilistic analysis of both schemes.

7.2 Potential Extensions

In this section we discuss the potential of extensions of this work. Some of the

CHAPTER 7. SUMMARY AND CONCLUSIONS 169

problems we look at stem from the shortcomings of our work while others are problems

in the area of key management that are not directly related to this work but are worth

mentioning for completeness.

7.2.1 Internal Violations

In spite of the protection access control protocols provide against illegal access

to sensitive information, the issue of indirect access remains a serious problem. The

problem of inference channels in multilevel secure databases was first considered in

the 1980s [18, 33]. Basically, inference occurs when users are able to piece together

information through legal access channels, in order to deduce information at another

security level.

Research has aimed to address the problem through formal methods which fo-

cus on minimal classification updates, partial disclosure and classification of data

repositories to prevent disclosure via knowledge discovery [78, 90, 98]. The general

approach is to try to control the query types accepted, or limit the data provided

in response to a query. However, this solution affects system availability whereas

the proportion of users who seek to use indirect queries to gain unauthorized access

to data, generally comprise a very small section of this group. This security threat

will be further aggravated in the autonomic database environment where inferences

based on autonomic element behavior, usage monitoring and the application of “trick

questions” may occur.

Covert channels represent another manifestation of indirect violations of secu-

rity policies in the context of hierarchical access control [83]. In multilevel secure

databases, a covert channel refers to a transfer of information, from one level in the

CHAPTER 7. SUMMARY AND CONCLUSIONS 170

Figure 7.1: Indirect information access via inference channels

hierarchy to another, which violates the partial order between the security classes.

This occurs when, for example, a higher level user employs their legal key to access

information at their level and then deposits this information in a memory or storage

location that can be accessed by the user with the lower security clearance. Solutions

presented in the literature are many and varied. Keefe et al. [55] present a formal

framework for secure concurrency control in multilevel databases. In [60] Lamport

presents a solution to the problem of secure read/write. Although these solutions have

been shown to be secure, they do not allow for serializable schedules for transactions

and they also suffer from the problem of starvation where lower priority transactions

(that get preempted by higher priority transactions) may be delayed indefinitely [3].

The solution proposed in [9] presents algorithms which generate serializable schedules

but both suffer from starvation.

Figure 7.1 depicts a scenario based on a collaborative Web application (e.g., Face-

book), where indirect access to information is achieved via inference channels and

covert channels. In this case a user, say Alice, has been included in the “friends”

profile of several users. Imagine for instance that she seeks to obtain information on

CHAPTER 7. SUMMARY AND CONCLUSIONS 171

another user, say Bob, whose “friends” profile she does not belong to. She, however

is on John’s “friends” profile and John in turn is on Bob’s “friends” profile, so when

Bob propagates updates to his profile to John, Alice can, from reading information

on John’s public space, infer information related to Bob. Furthermore with a little

cooperation from John, a covert channel can be opened between herself and John that

allows her to directly receive all the updates that Bob propagates. These weaknesses

are not easy to handle with standard cryptographic key management schemes and also

usually occur because of weakness in functional, multivalued and join dependencies

in the databases that support these systems [18, 49, 78]. The detection and removal

of these channels are vital steps in the provision of secure shared data environments

7.2.2 Adaptive Rekeying

Further implementation and experimentation is needed throughout the entire hi-

erarchy with the aim of evaluating the performance of the adaptive scheme against

a quasi-static scheme. Other challenges that need to be addressed include finding

other statistical distributions that are more effective in modeling rekey arrival rates

than the Poisson model and finding a good way to define adequate monitoring thresh-

olds. A good prediction algorithm for handling future arrival rates of requests is also

needed. An example of how this might be done would be to compute a moving av-

erage as opposed to using the maximum arrival rate. Issues of copy consistency can

also arise in situations in which there is a high volume of communications between

users (frequent updates on the primary copy) and rekey requests occur within very

short intervals of each other.

Additionally, determining an optimal complexity bound for handling out-of-sync

CHAPTER 7. SUMMARY AND CONCLUSIONS 172

data continues to remain an issue. The out-of-sync problem occurs when a user in

possession of a new key attempts to decrypt and update a file encrypted with a key

that is no longer valid [62].

7.2.3 Key Selection

In the algorithms we presented to detect and remove “collusion-liable” keys from a

key set, we noted that the algorithms depend on known collusion detection functions.

Therefore, if an attacker were to come up with a function that is not known a priori,

the system has no way of detecting and/or preventing the attack. Finding ways of

determining collusion functions that are not known a priori remains a challenge. One

way of approaching the problem would be to try to find correlations that can be used

to provoke attacks and define some sort of language to model combinations that could

result in collusions. Additionally, we need to find ways of optimizing the collusion

detection and resolution process for better performance in larger hierarchies than the

ones we considered in our experiments.

References

[1] M. Adams. A parallel maximal independent set algorithm. In Proceedings. 5th

Copper Mountain Conf. on Iterative Methods, 1998.

[2] S.G. Akl and P.D. Taylor. Cryptographic solution to a problem of access control

in a hierarchy. ACM Transactions on Computer Systems, 1(3):239–248, August

1983.

[3] P. Ammann and S. Jajodia. A timestamp ordering algorithm for secure, single-

version, multilevel databases. Database Security, V: Status and Prospects,C.E.

landweher, ed., Amsterdam, Holland, 1992.

[4] M.J. Atallah, M. Blanton, and K.B. Frikken. Key management for non-tree

hierarchies. In Proceedings, ACM Symposium on Access Control Models and

Technologies, Lake Tahoe, California, USA, pages 11–18, 2006.

[5] M.J. Atallah, K.B. Frikken, and M. Blanton. Dynamic and efficient key man-

agement for access hierarchies. In Proceedings, ACM Conference on Computer

and Communications Security, pages 190–202, 2005.

[6] G. Ateniese, A. De Santis, A.L. Ferrara, and B. Masucci. Provably-secure

time-bound hierarchical key assignment schemes. In Proceedings of 13th ACM

173

REFERENCES 174

Conference on Computer and Communications Security (CCS’06), pages 288–

297, 2006.

[7] G Ateniese, K Fu, M Green, and S. Hohenberger. Improved proxy re-encryption

schemes with applications to secure distributed storage. ACM Transactions on

Information and System Security (TISSEC), 9(1):1–30, February 2006.

[8] D. Bell and L. Lapadula. Secure computer systems: Mathematical foundations

and model. MITRE Report, MTR2547, page 2, 1973.

[9] E. Bertino, S. Jajodia, L. Mancini, and I Ray. Advanced transaction processing

in multilevel secure file stores. In Proceedings. IEEE Transactions on Knowledge

and Data Engineering, 10(1):120–135, 1998.

[10] E. Bertino and R. Sandhu. Database security - concepts, approaches, and

challenges. IEEE Transactions on Dependable and Secure Computing, 2(1):2–

19, 2005.

[11] K. Biba. Integrity considerations for secure computer systems. Technical Report

ESD-TR-76-372, ESD/AFSC, Hanscom AFB, Bedford, MA, April, 1977.

[12] J-C. Birget, X. Zou, G. Noubir, and Ramamurthy B. Hierarchy-based access

control in distributed environments. In Proceedings. IEEE International Con-

ference on Communications, 1:229–233, 2001.

[13] K. Birman, R. van Renesse, and V. Werner. Adding high availability and

autonomic behaviour to web services. Proc. of 26th International Conf. on

Software Engineering (ICSE’04), pages 17–26, 2004.

REFERENCES 175

[14] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic and

atomic proxy cryptography. In Proceedings of Eurocrypt ’98, 1403:127–144,

1998.

[15] A. Boukerche, R.B. Machado, K.R.L. Juca, J.B.M. Sobral, and M.S.M.A. No-

tare. An agent based and biologically inspired real-time intrusion detection and

security model for computer network operations. Computer Communications,

(30):2649–2660, March 2007.

[16] J.T. Bradley, S.T. Gilmore, and J. Hillston. Analysing distributed internet

worm attacks using continuous state-space approximation of process algebra

models. Journal of Computer and System Sciences, March (Article in Press)

2007.

[17] D.D.C. Brewer and M.J. Nash. The chinese wall security policy. IEEE Sympo-

sium on Security and Privacy, Oakland, pages 206–214, May 1988.

[18] A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: Constraints, inference

channels and monitoring disclosures. In Proceedings. IEEE Transactions on

Knowledge and Data Engineering, 12(6):900–919, 2000.

[19] R. Chandramouli. A policy validation framework for enterprise authorization

specification. In Proceedings of the 19th Annual Computer Security Applications

Conference, 2003, pages 319–328, 2003.

[20] D.M. Chess, C.C. Palmer, and S.R. White. Security in an autonomic computing

environment. IBM Systems Journal, 41(1):107–118, 2003.

REFERENCES 176

[21] H-Y. Chien. Efficient time-bound hierarchical key assignment scheme. IEEE

Transactions on Knowledge and Data Engineering, 16(10):1301–1304, October

2004.

[22] R. Chow and T.J. Johnson. Distributed Operating Systems and Algorithms.

Addison Wesley Longman Inc., 1998.

[23] D.R. Clark and D.R. Wilson. A comparison of commercial and miltrary com-

puter security policies. In Proceedings of the 1987 IEEE Symposium on Security

and Privacy, pages 184–194, 1987.

[24] T.R. Cormen, C.E. Leiserson, R.I. Rivest, and C. Stein. Introduction to Algo-

rithms. McGraw-Hill Book Company, 2001.

[25] J. Crampton. Cryptographically-enforced hierarchical access control with mul-

tiple keys. In Proceedings of 12th Nordic Workshop on Secure IT Systems

(NordSec 2007), pages 49–60, 2007.

[26] J Crampton, K Martin, and P. Wild. On key assignment for hierarchical access

control. In Proceedings, 19th IEEE Workshop on Computer Security Founda-

tions, S. Servolo Island, Italy, pages 98–111.

[27] M.L. Das, A. Saxena, V.P. Gulati, and D.B. Phutak. Hierarchical key man-

agement scheme using polynomial interpolation. SIGOPS Oper. Syst. Rev.,

39(1):40–47, 2005.

[28] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-

rati. Over-encryption: Management of access control evolution on outsourced

data. In Proceedings, VLDB 2007, pages 123–134, Spetember 23-28 2007.

REFERENCES 177

[29] A.L. De Santis, A. Ferrara and B. Masucci. New constructions for provably-

secure time-bound hierarchical key assignment schemes. In Proceedings of 12th

ACM Symposium on Access Control Models and Technologies (SACMAT’07),

pages 133–138.

[30] M H DeGroot and M J Schervish. Probability and Statistics. Addison Wesley,

Third Ed., New York, 2002.

[31] D.E. Denning. A lattice model of secure information flow. Communications of

the ACM, 19(5):236–243, 1976.

[32] Facebook. Facebook. http://www.facebook.com/, 2007.

[33] C. Farkas and S. Jajodia. The inference problem: A survey. ACM SIGKDD

Explorations Newsletter, 4:6–11, 2002.

[34] Flickr. Flickr. http://www.flickr.com/, 2008.

[35] D. Frincke, A. Wespi, and D. Zamboni. From intrusion detection to self-

protection. Computer Networks, (51):1233–1238, 2007.

[36] A.G. Ganek and T.A. Corbi. The dawning of the autonomic computing era.

IBM Systems Journal, 42(1):5–18, 2003.

[37] D. Gollmann. Computer Security. John Wiley and Sons, Ltd, 2005.

[38] L. Harn and H. Lin. A cryptographic keys generation scheme for multilevel

data security. Computer Security, 9:539–546, 1990.

[39] K. Harrison, B. Munro, and T. Spiller. Security through uncertainty. Elsevier

- Network Security, pages 4–7, February 2007.

REFERENCES 178

[40] R.H. Hassen, A. Bouabaallah, H. Bettahar, and Y. Challal. Key management

for content access control in a hierarchy. Computer Networks, (51):3197–3219,

2007.

[41] C.L. Hsu and T.S. Wu. Cryptanalyses and improvements of two cryptographic

key assignment schemes for dynamic access control in a user hierarchy. Com-

puters and Security, 22(5):453–456, 2003.

[42] V.C. Hu, E. Martin, J. Hwang, and T. Xie. Conformance checking of access

control policies specified in xacml. In Proceedings of the 31st Annual Interna-

tional Computer Software and Applications Conference, 2007. COMPSAC 2007

- Vol. 2., pages 275–280, 2003.

[43] Q. Huang and C. Shen. A new mls mandatory policy combining secrecy and

integrity implemented in highly classified secure level os. Proc. of 7th Interna-

tional Conf. on Signal Processing (ICSP ’04), 3:2409–2412, 2004.

[44] M.-S. Hwang, C.-C. Chang, and W.-P. Yang. Modified chang-hwang-wu access

control scheme. IEE Electronics Letters, 29(24):2095–2096, 1993.

[45] P. Jalote. Fault Tolerance in Distributed Systems. Pearson Education: Prentice

Hall, NJ, 1998.

[46] M-A. Jeong, J-J. Kim, and Y. Won. A flexible database security system using

multiple access control policies. In Proceedings. 4th International Conference

on Parallel and Distributed Computing, Applications and Technologies (PD-

CAT’2003), pages 236–240, 2003.

REFERENCES 179

[47] Y. Jiang, L. Chuang, Y. Hao, and Z. Tan. Security analysis of mandatory access

control model. In Proceedings. IEEE International Conference on Systems,

Man. and Cybernetics, 6:5013–5018, 2004.

[48] S.E. Johnston, R. Sterritt, E. Hanna, and P. O’Hagan. Reflex autonomicity in

an agent-based security system: The autonomic access control system. 4th IEEE

International Workshop on Engineering Autonomic and Autonomous Systems

(EASe’07), pages 68–78, 2007.

[49] N. Jukic, S. Nestorov, and S. Vrbsky. Closing the key loophole in mls databases.

SIGMOD Record, 32(2):15–20, 2003.

[50] A.V.D.M. Kayem, S.G. Akl, and P. Martin. An independent set approach

to solving the collaborative attack problem. Proc. of 17th IASTED Interna-

tional Conf. on Parallel and Distributed Computing and Systems (PDCS 2005),

Phoenix, Arizona, pages 594–599, November 2005.

[51] A.V.D.M Kayem, S.G. Akl, and P. Martin. On replacing cryptographic

keys in hierarchical key management systems. Journal of Computer Security,

16(3):289–309, 2008.

[52] A.V.D.M. Kayem, P. Martin, and S.G. Akl. Heuristics for improving cryp-

tographic key assignment in a hierarchy. In Proceedings, 3rd IEEE Int’l

Symposium on Scecurity in Networks and Distributed Systems (Niagara Falls,

Canada), pages 531–536, May 21-23, 2007.

[53] A.V.D.M Kayem, P. Martin, S.G. Akl, and W. Powley. A self-protective key

REFERENCES 180

management framework. In Proceedings, 4th International Workshop on Engi-

neering Autonomic Software Systems 2007 (EASS 2007), held in conjunction

with CASCON 2007, Toronto, ON, Canada), (Position Paper), Oct 23-24, 2007.

[54] A.V.D.M Kayem, P. Martin, S.G. Akl, and W. Powley. A framework for self-

protecting cryptographic key management. In Proceedings, 2nd IEEE Interna-

tional Conference on Self-Adaptive and Self-Organizing Systems, Venice, Italy,

(To Appear), Oct 20-24, 2008.

[55] T.F. Keefe, W.T. Tsai, and J. Srivastava. Multilevel secure database con-

currency control. In Proceedings. 6th IEEE International Conference on Data

Engineering, pages Los Angeles, CA, USA, 1990.

[56] J.O. Kephart. Research challenges of autonomic computing. In Proceedings.

27th International Conference on Software engineering, St. Louis, MO, USA,

pages 15–22, 2005.

[57] J.O. Kephart and D.M. Chess. The vision of autonomic computing. IEEE

Computer, 36(1):41–50, 2003.

[58] D.E. Knuth. The Art of Computer Programming, Vol. 2, Seminumerical Algo-

rithms, Second Edition. Addison Wesley, Reading, MA, 1981.

[59] F. Kuo, V. Shen, T. Chen, and F. Lai. Cryptographic key assignment scheme

for dynamic access control in a user hierarchy. IEE Proceedings - Computers

and Digital Techniques, 146(5):235–240, 1999.

[60] L. Lamport. Concurrent reading and writing. ACM Communications, 20(11),

1997.

REFERENCES 181

[61] B.W. Lampson. A note on the confinement problem. Communications of the

ACM, 16(10):613–615, 1973.

[62] X. Li, Y. Yang, M. Gouda, and S. Lam. Batch rekeying for secure group

communications. WWW10, 99(7):525–534, January 1999.

[63] T.Y. Lin. Chinese wall security model and conflict analysis. 24th IEEE Com-

puter Society International Computer Software and Applications Conference

(COMPSAC 2000), Taipei, Taiwan, pages 122–127, Oct. 25 - 27 2000.

[64] T.Y. Lin. Managing information flows on discretionary access control models.

2006 IEEE International Conference on Systems, Man, and Cybernetics, pages

4759–4762, Oct. 8 - 11 2006.

[65] Y. Liu and X. Chen. A new information security model based on blp model and

biba model. In Proceedings. 7th International Conference on Signal Processing

(ICSP ’04), 3:2643–2646, 2004.

[66] S.J. Mackinnon, P.D. Taylor, H. Meijer, and S.G. Akl. An optimal algorithm for

assigning cryptographic keys to control access in a hierarchy. IEEE Transactions

on Computers, c-34(9):797–802, September 1985.

[67] T. Marshall and Dai Y-S. Reliability improvement and models in autonomic

computing. In Proceedings, 11th International Conference on Parallel and Dis-

tributed Systems, 2:468–472, July 20-22 2005.

[68] M. Mat Deris, J.H. Abawaly, and A. Mamat. An efficient replicated data ac-

cess approach for large-scale distributed systems. Future Generation Computer

Systems, (In Press.) 2007.

REFERENCES 182

[69] M. Mat Deris, J.H. Abawaly, and A. Mamat. Rwar: A resilient window-

consistent asynchronous replication protocol. In Proceedings, 2nd Int’l Conf.

on Availability, Reliability and Security, pages 499–505, 10-13 April 2007.

[70] J. McLean. The specification and modeling of computer security. IEEE Com-

puter, 23(1):9–16, January 1990.

[71] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied

Cryptography. Boca Raton:, CRC Press, 1996.

[72] A. Moreno, D. Sanchez, and D. Isern. Security measures in a medical multi-

agent system. Frontiers in Artificial Intelligence and Applications, 100:244–255,

2003.

[73] MySpace. Myspace. http://www.myspace.com/, 2008.

[74] X-W. Nie, D-G. Feng, J-J. Che, and X-P Wang. Design and implementation

of security operating system based on trusted computing. 2006 International

Conference on Machine Learning and Cybernetics, pages 2776–2781, Aug. 2006.

[75] S. Osborn. Integrating role graphs: A tool for security integration. Data and

Knowledge Engineering, 43:317–333, 2002.

[76] M. Parashar and S. Hariri. Autonomic Computing: An Overview. In Hot

Topics, Lecture Notes in Computer Science, Springer Verlag, 3566:247–259,

2005.

[77] B. Parducci, H. Lockhart, R. Levinson, and J. Bryce Clark. Representing and

evaluating access control policies. 2007.

REFERENCES 183

[78] C.P. Pfleeger and S.L. Pfleeger. Security in Computing. 3rd ed., Pearson Edu-

cation, Prentice Hall NJ, 2003.

[79] National Post. Credit card information stolen from winners,

http://www.canada.com/nationalpost/story.html. Jan. 2007.

[80] I. Ray and N. Narasimhamurthi. A cryptographic solution to implement access

control in a hierarchy and more. In Proceedings. 7th ACM Symposium on Access

Control Models and Technologies, Monterey, CA, pages 65–73, 2002.

[81] R. Rivest, A. Shamir, and L. Adleman. A method of obtaining digital signatures

and public key cryptosystems. ACM Communications, 21(2):120–126, 1978.

[82] W. Rjaibi. An introduction to multilevel secure relational database management

systems. In Proceedings. 24th Conference of the Center for Advanced Studies

on Collaborative Research, pages 232–241, 2004.

[83] W. Rjaibi and P. Bird. A multi-purpose implementation of mandatory access

control in relational database management systems. In Proceedings. 30th VLDB

Conference, Toronto, Canada, pages 1010–1020, 2004.

[84] R. Sandhu. Cryptographic implementation of tree hierarchy for access control.

Information Processing Letters, 27:1–100, January 1988.

[85] R.S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–

19, Nov. 1993.

[86] J. Schneider. The time-dependent travelling salesman problem. Physica A,

(314):151–155, 2002.

REFERENCES 184

[87] E.E. Schultz. Where have the worms and viruses gone? - new trends in malware.

Computer Fraud and Security, pages 4–8, July 2006.

[88] V. Shen and T. Chen. A novel key management scheme based on discrete

logarithms and polynomial interpolations. Computers and Security, 21(2):164–

171, 2002.

[89] A. Spalka, A.B. Cremers, and L. Hartmut. Protecting confidentiality against

trojan horse programs in discretionary access control system. Lecture Notes

In Computer Science, In Proceedings of the 5th Australasian Conference on

Information Security and Privacy, 1841:1–17, 2000.

[90] J. Staddon. Dynamic inference control. In Proceedings. 8th ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge discovery, San

Diego, CA, USA, pages 94–100, 2003.

[91] R. Sterritt, M. Parashar, and R. Tianfield, H. amd Unland. A concise introduc-

tion to autonomic computing. Advanced Engineering Informatics, (19):181–187,

2005.

[92] A.S. Tanenbaum and M. Van Steen. Distributed Systems: Principles and Par-

adigms. Prentice Hall, Upper Saddle River, NJ 07458, 2007.

[93] W-G. Tzeng. A time-bound cryptographic key assignment scheme for access

control in a hierarchy. IEEE Transactions on Knowledge and Data Engineering,

14(1):182–188, 2002.

[94] M. Verma. Xml security: Control information access with xacml.

http://www.ibm.com/developerworks/xml/library/x-xacml/, October 2004.

REFERENCES 185

[95] S-Y. Wang and C-S. Laih. Merging: An efficient solution for time-bound hier-

archical key assignment scheme. IEEE Transactions on Dependable and Secure

Computing, 3(1):91–100, 2006.

[96] R. West. The psychology of security: Why do good users make bad decisions.

Communications of the ACM, 51(4):34–41, April 2008.

[97] Wikipedia. Triple des. http://en.wikipedia.org/wiki/Triple-DES, June 2008.

[98] D. Woodruff and J. Staddon. Information flow: Private inference control. In

Proceedings. 11th ACM conference on Computer and communications security,

Washigton DC, USA, pages 188–197, 2004.

[99] Dai Y-S. Autonomic computing and reliability improvement. In Proceedings,

8th IEEE Symposium on Object-Oriented Real-Time Distributed Computing

(ISORC’05), pages 204–206, 2005.

[100] C. Yang and C. Li. Access control in a hierarchy using one-way functions.

Elsevier: Computers and Security, 23:659–644, 2004.

[101] X. Yi. Security of chien’s efficient time-bound hierarchical key assignment

scheme. IEEE Transactions on Knowledge and Data Engineering, 17(9):1298–

1299, September 2005.

[102] X. Yi and Y. Ye. Security of tzeng’s time-bound key assignment scheme for

access control in a hierarchy. IEEE Transactions on Knowledge and Data En-

gineering, 15(4):1054–1055, July. 2003.

[103] YouTube. Youtube. http://www.youtube.com/, 2008.

REFERENCES 186

[104] W. Yu, Y. Sun, and R. Liu. Optimizing the rekeying cost for contributory

group key agreement schemes. IEEE Transactions on Dependable and Secure

Computing, 4(3):228–242, July-Sept. 2007.

[105] Z-L. Zhang, F. Hong, and J-G. Liao. Modeling chinese wall policy using col-

ored petri nets. In Proceedings of the 6th IEEE International Conference on

Computer and Information Technology (CIT’06), pages 162–167, Sept. 2006.

[106] S. Zhu, S. Setia, and S. Jajodia. Performance optimizations for group key

management schemes. Proc. of 23rd International Conference on Distributed

Computing Systems (ICDCS ’03), pages 163–171, 2003.

[107] X. Zou and B. Ramamurthy. A gcd attack resistant crthacs for secure group

communications. In Proceedings. International Conference on Information

Technology: Coding and Computing (ITCC’04), 2:153–154, 2004.

Appendix A

Cryptographic Schemes:

Comparison Tables

This appendix presents tables summarizing our comparisons and discussions on

the CKM schemes that we presented in Chapter 2. Table A.1 summarizes the key

management schemes on the basis of the key management model on which they

are designed and the technique used by the key generation functions. Table A.2

summarizes the schemes in terms of suitability to hierarchy change and Table A.3 in

terms of the different hierarchy types supported by each of the schemes.

187

APPENDIX A. CRYPTOGRAPHIC SCHEMES: COMPARISON TABLES 188

Table A.1: A Summary of KM models of presented CKM schemes

Scheme Approach Technique

Ad-Hoc AT [2] Dependent Random Integers/Modulus
CAT [2] Dependent Primes/Modulus
Mackinnon et al. [66] Dependent Optimal assignment of Prime

chains / Modulus
Sandhu [84] Dependent Chaining (Lower

Key obtained from higher key)
Yang and Li [100] Dependent Chaining
Shen and Chen [88] Dependent polynomial interpolation
Ray et al. Dependent asymmetric encryption
Atallah et al. Dependent Chaining
Time-bound Schemes Dependent Chaining
Crampton et al. [25] Dependent/Independent Any
Ateniese at al. [6] and Dependent/Independent Master and Secondary Key
Blaze et al. [14] Proxy Re-encryption

Table A.2: Suitability to Key Updates

Scheme Key Updates

Ad-Hoc AT [2] Change One - Change All
CAT [2] Change One - Change All
Mackinnon et al. [66] Change One - Change All
Sandhu [84] Change One - Change All
Yang and Li [100] Change One - Change All
Shen and Chen [88] polynomial interpolation
Ray et al. [80] Change One - Change All
Atallah et al. Change One - Change one and only access keys
Time-bound Schemes No change needed
Crampton et al. [25] Lazy Re-encryption: Any
Ateniese at al. [6] and Update Master
Blaze et al. [14] and Secondary Key

APPENDIX A. CRYPTOGRAPHIC SCHEMES: COMPARISON TABLES 189

Table A.3: Hierarchy Styles supported by CKM schemes presented and Vulnerability
to Collusion attacks. (**DG: Directed Graph)

Scheme Style Vulnerable
to Collusion?

Ad-Hoc AT [2] DG Yes
CAT [2] DG No
Mackinnon et al. [66] DG No
Sandhu [84] Tree No
Yang and Li [100] Tree No
Shen and Chen [88] DG No
Ray et al. [80] DG No
Atallah et al. DG No
Crampton et al [25] Any No Usually
Time-bound Schemes No change needed Yes for most

and No for newer schemes
Crampton et al. [25] Lazy Re-encryption: Any No
Ateniese at al. [6] and Update Master No
Blaze et al. [14] and Secondary Key

Appendix B

Hierarchies used in Experiments

This appendix presents diagrams of the hierarchies that were used to conduct the

experiments. We observed that in wider hierarchies, key generation was faster than

in deeper hierarchies because of the exponent generation algorithm that we use (see

Algorithm 1). Data encryption times remain relatively the same irrespective of the

structure of the hierarchy.

Figure B.1: Hierarchies of size 3 to 31

190

APPENDIX B. HIERARCHIES USED IN EXPERIMENTS 191

Figure B.2: Hierarchies of size 43 to 111)

