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Abstract 

Workload adaptation is a performance management process in which an autonomic 

database management system (DBMS) efficiently makes use of its resources by filtering 

or controlling the workload presented to it in order to meet its Service Level Objectives 

(SLOs). It is a challenge to adapt multiple workloads with complex resource 

requirements towards their performance goals while taking their business importance into 

account. This thesis studies approaches and techniques for workload adaptation.  

 First we build a general framework for workload adaptation in autonomic DBMSs, 

which is composed of two processes, namely workload detection and workload control. 

The processes are in turn made up of four functional components - workload 

characterization, performance modeling, workload control, and system monitoring.  

 We then implement a query scheduler that performs workload adaptation in a 

DBMS, as the test bed to prove the effectiveness of the framework. The query scheduler 

manages multiple classes of queries to meet their performance goals by allocating DBMS 

resources through admission control in the presence of workload fluctuation. The 

resource allocation plan is derived by maximizing the objective function that 

encapsulates the performance goals of all classes and their importance to the business. 

First-principle performance models are used to predict the performance under the new 

resource allocation plan. Experiments with IBM® DB2® are conducted to show the 

effectiveness of the framework. 
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 The effectiveness of the workload adaptation depends on the accuracy of the 

performance prediction. Finally we introduce a tracking filter (Kalman filter) to improve 

the accuracy of the performance prediction. Experimental results show that the approach 

is able to reduce the number of unpredicted SLO violations and prediction errors. 
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Chapter 1 

Introduction 

Workload adaptation is a performance management process in which an autonomic 

database management system (DBMS) efficiently makes use of its resources by filtering 

or controlling the workload presented to it in order to meet its Service Level Objectives 

(SLOs). The basic idea behind workload adaptation is that by filtering and controlling 

work requests from different applications against DBMSs, the resources allocated to the 

applications can be adjusted accordingly and their SLOs brought under control. For 

example, if a DBMS is experiencing a heavy load from a less important application, it 

could delay the queries from that application in order to allow queries from more 

important applications to meet their performance goals. Workload adaptation does not 

directly deal with resource allocation, and therefore, it does not require low-level 

resource control in the DBMS or operating system support. Although workload 

adaptation does not directly manipulate resource allocations, it can still perform workload 

control at a fine granularity by admitting individual work requests. 

 Performance management for DBMSs is becoming increasingly important to 

businesses as their workloads become more diverse and complex. The emerging trend of 

server consolidation [HP03] has led to an environment with increased competition for 
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shared resources between applications from potentially disjoint organizations in a single 

instance of a DBMS. This results in a workload with diverse and dynamic resource 

demands and with competing performance objectives for the applications. In addition, 

Web-based applications introduce a need for flexible and guaranteed application service 

levels because they tend to involve unpredictable workloads, and a high rate of overall 

growth in workload size [DHBA02]. 

 Allocating DBMS resources to competing workloads to meet performance 

objectives is a challenge. Simply maximizing overall resource utilization does not 

guarantee that individual performance objectives will be met in a consolidated server. 

Performance management is complicated by the fact that the performance objectives for 

each application or workload class often have no strong relation to their resource 

demands, and can vary widely across applications. Workload classes with similar 

performance objectives might have different resource demands, while workload classes 

with similar resource demands may have different performance objectives. The business 

importance of each class must also be considered in performance management. Finally, 

the complex resource allocation must be done on the fly, which calls for autonomic 

computing techniques. 

 Autonomic computing [GC03] is intended to simplify management complexity by 

providing self-configuring, self-healing, self-optimizing and self-protecting systems. By 

incorporating autonomic techniques into the performance management process, DBMSs 

can better deal with the complexity of the management. 
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 The goal of our research is to solve the resource allocation problem through using 

autonomic computing techniques. We define a general framework for workload 

adaptation for DBMSs and present a set of key techniques that are necessary to 

implement the framework. Under this framework a DBMS is able to manage multiple 

classes of queries to meet their performance goals by allocating DBMS resources through 

admission control in the presence of workload fluctuation. To achieve this objective, the 

system detects workload changes and controls the workload on a regular basis. The set of 

techniques used for these purposes includes workload characterization, performance 

modeling, workload control and system monitoring. This research discusses these 

techniques and focuses on their use for tasks such as performance prediction and resource 

allocation. 

 The research makes several contributions to realizing workload control in 

autonomic DBMSs. The first contribution is a general framework for performance-

oriented workload adaptation in autonomic DBMSs. The framework classifies queries 

based on their performance goals and schedules the execution of queries from these 

classes based on the performance goals, the real performance, and resource utilization. 

The framework is based on a feedback loop that continually monitors system 

performance and the utilization of the various resources of the database system while, at 

regular intervals, determining the best scheduling plan that efficiently uses available 

resources to meet the different SLOs for the current workload. 

 The second contribution is a prototype implementation, called Query Scheduler, 

which adapts the workload for an instance of DB2. Query Scheduler manages multiple 
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classes of queries to meet their SLOs by allocating DBMS resources through admission 

control in the presence of workload fluctuation. The resource allocation plan is derived 

by maximizing an objective function, which encapsulates the performance goals of all 

classes and their importance to the business. A performance model is used to predict the 

performance of the DBMS under the new resource allocation plan. 

 The third contribution is a cost-based performance model, which is a queuing 

network model [LZGS84] using query cost as resource demand. Under this model, 

different performance goals, such as response time and execution velocity can be used. A 

performance model is used to predict the performance of a resource allocation plan, so 

that an optimal plan can be picked up from the plan space. 

 The fourth contribution is the introduction of tracking techniques to improve the 

accuracy of performance prediction. The tracking filter is a Kalman filter [Kalm60, 

WB01], which strikes a balance between the predictions made by the performance model 

and the actual measured performance. 

 The rest of the thesis is structured as follows. Chapter 2 reviews the literature of 

workload adaptation. A brief history of workload management is first presented and then 

followed by a discussion of the state of the art of workload management. Chapter 3 

explains the general framework for workload adaptation. Chapter 4 discusses the Query 

Scheduler, which is a prototype implementation of the framework. The key techniques 

for the framework of workload adaptation are discussed. The evaluation of Query 

Scheduler is provided in Chapter 5. The further improvement of the accuracy of 
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performance prediction using Kalman Filters is discussed and evaluated in Chapter 6. We 

conclude and suggest future work in Chapter 7. 

 



 

  6

Chapter 2 

Literature Review 

Workload adaptation is an autonomic computing technique for workload management, in 

which workload control is performed automatically in a timely manner when workload 

changes cause performance degradation and inefficient use of resources. To better 

understand the state of the art techniques for workload adaptation, we first introduce the 

concept of autonomic computing in Section 2.1, and present a brief introduction of 

workload management in Section 2.2. We then discuss the state of the art of workload 

adaptation in Section 2.3. 

2.1 Autonomic Computing 

Autonomic computing is the discipline with the mission to simplify environment and 

infrastructure complexity by governing all computations within a given system [Ange02]. 

The concept was introduced by Paul Horn, senior vice president of IBM Research, in 

2001 [GC03]. 

 The drivers for autonomic computing are from both industry and the marketplace. 

In industry, “the spiraling cost of managing the increasing complexity of computing 

systems is becoming a significant inhibitor that threatens to undermine the future growth 
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and societal benefits of information technology” [GC03]. In the marketplace, there is an 

increasing management focus on “return on investment” while human costs exceed the 

technology costs. To address the problems, Horn suggested developing autonomic 

computing systems that regulate themselves much in the same way our autonomic 

nervous system regulates and protects our bodies. 

 There is also another reason why autonomic computing is necessary for workload 

management. The dynamic and diversified workloads cannot be manipulated consistently 

and effectively by human operators. Human operators allocate resources to workloads by 

predicting the trends of workloads when the workloads are relatively stable. When 

workloads change in a fast and unpredictable way, allocating resources in a timely 

manner is beyond the human operators’ abilities. 

 Autonomic computing systems have four fundamental characteristics [GC03]: 

self-configuring, self-healing, self-optimizing and self-protecting. Self-configuring means 

systems can automatically adapt to dynamically changing environments. New features, 

applications and servers can be dynamically added to the enterprise infrastructure with no 

disruption of services. Self-healing is the ability of systems to discover, diagnose and 

react to disruptions. Such a system needs to be able to predict problems and take 

necessary actions to prevent the failures from having impact on services. For a system to 

be self-optimizing, it should monitor itself and tune resources automatically to maximize 

resource utilization to meet users’ performance requirements. Self-protecting means 

systems are able to anticipate, detect, identify, and protect themselves from attacks from 

anywhere.  
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 To implement autonomic computing, the industry must take an evolutionary 

approach and deliver improvements to current systems that will provide significant self-

managing value to customers without requiring them to completely replace their current 

IT environments [GC03]. Figure 1 shows the evolution roadmap of autonomic 

computing.  Most commercial products are at the managed or predictive levels. 

 At the basic level, IT components are manually managed by IT professionals. At 

the managed level, systems management technologies are used to collect information 

from systems, which reduce the time to collect and synthesize information. At the 

predictive level, as new technologies are introduced that provide correlation among 

several components of the system, the system itself can begin to recognize patterns, 

predict the optimal configuration, and provide advice on what course of action the 
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administrator should take. At the adaptive level, systems themselves can automatically 

take the correct actions based on the information that is available to them and the 

knowledge of what is happening in the systems. Finally, at the fully autonomic level, the 

system operation is governed by business policies and objectives. Users interact with the 

system to monitor the business processes or alter the objectives [Ligh04] [GC03]. 

2.2 Workload Management 

Workload management is concerned with three entities: workload, management 

objectives, and computing resources. The relationships among them are shown in Figure 

2. Whether the management objectives can be achieved or not is determined by the 

amount of resources allocated to the workload. If the workload gets its desired resources, 

the management objectives can be achieved, otherwise, they cannot. Different types of 

workload management take different approaches to how resources are allocated or 

managed.

 

Has

Allocate to 

Consume 

 

Workload 

Management 

Objectives 

 

Resources 

Meet by 

Figure 2 Relationships among workload, management objective and resources 
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 Workload management has evolved mainly from off-line analysis in the early 

days, focusing on workload characterization and performance modeling, to on-line 

adaptation, emphasizing system monitoring and workload control. The main impetus is 

the progress of computer technologies, especially the evolution of computer systems, 

which continues to offer new capabilities and solutions. To better understand how 

workload management has reached its current level of complexity such that autonomic 

properties of workload management are urgently needed, it is imperative to understand 

how the progress of technologies has changed the objectives of workload management. 

 In the early days, mainframes were the only computer systems to gain wide 

acceptance in commercial areas. The strengths of mainframes, such as power, high 

utilization rate, multiprogramming, and well defined processes and procedures, made 

them valuable to large-scale data processing or enterprise computing [HP03]. Because of 

the high cost involved in purchasing, deploying and maintaining them, it was necessary 

that the mainframes be able to run multiple applications to amortize the cost, which 

introduced time-sharing systems. At this time, the earliest workload management was 

born. The primary objective was cost sharing. The management objective was to maintain 

system availability. SLOs were defined as fairness among applications. 

 Deploying a mainframe was a time consuming task and it took years to produce 

the system and develop the applications. Business changes over time, thus the workload 

at the time of purchase might differ from the workload at the time the system is put into 

production. Capacity planning was introduced to project budget requirements prior to 

purchase, and to predict the future workload requirements. 
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 Capacity planning is a process to ensure that the processing capacity can, and 

always will, deliver the services needed to meet the productivity goals within their budget 

requirement [LD86]. It is concerned with the management of resources, system 

configuration, and the prediction of service impact due to workload changes. The primary 

means to carry out capacity planning are workload characterization and performance 

modeling, which are part of workload management. Although capacity planning and 

workload management are not inclusive of each other, the main processes overlap. 

Historically, workload management was part of capacity planning. 

 During the 1970s and 1980s, minicomputers became an attractive alternative to 

mainframes. They were much smaller than mainframes, were much less expensive, and 

gave developers more freedom in terms of the rules and processes used. In many ways, 

minicomputers were the first step towards freedom from mainframe computing [HP03]. 

The low cost of minicomputers relaxed the need for capacity planning, because buying a 

new minicomputer was not a strain on the budget. The weak processing power of 

minicomputers prompted the need for better resource utilization in order to deliver a good 

level of service. In the late 1980’s, research in the area of capacity planning was sparse. 

Workload management was gradually entering into a new phase: resource-oriented 

workload management, a process to allocate resources to different applications by 

maximizing the resource utilization to maintain service levels. The popularity of the 

UNIX operating system accelerated this trend [HP03]. 

 The widespread use of UNIX made applications portable and gave businesses the 

freedom to choose their hardware and software, thus dramatically decreasing the cost and 
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time to deploy new applications. UNIX also is the origin of modern computer networks, 

which in turn heralded the birth of distributed computing systems. The emergence of 

distributed computing scaled up processing power and in some ways, simplified the 

process of capacity planning. When capacity is in short supply, or when new applications 

are introduced, the solution might be simply adding an inexpensive desktop server. 

 Distributed computing, however, introduced new challenges in the form of more 

complex resource management and system management in general. Applications became 

more mission-critical and desktops were used as data processing servers. The number of 

servers grew, which made the job of managing this disparate environment increasingly 

complex. Lower service levels and higher service costs usually resulted from increased 

complexity. To reverse this process, server consolidation began [HP03]. 

 Server consolidation involves running more than one application in a single 

instance of the operating system. The motivation is that reducing the number of servers 

simplifies the infrastructure, and improves efficiency and consistency, thereby, reducing 

the total cost of ownership (TCO). Centralization once again became fashionable. The 

difference is that, in the past, the most urgent priority for a business was to get their 

business applications up and running [HP03], but now much more attention is placed on 

the performance of the applications. 

 Server consolidation results in a workload with diverse and dynamic resource 

demands and service level objectives. Web-based applications also introduce a need for 

flexible and guaranteed application service levels, because they tend to involve widely 
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unpredictable workloads, with a high rate of overall growth in workload size [DHBA02]. 

This requires workload management to be business objective oriented and to provide 

efficient differentiated service at fine granularity to maintain high utilization of resources 

with low management costs. Resource-oriented workload management has become 

unable to meet the complex business objective oriented performance requirements. 

Instead, performance-oriented workload management is required. 

 Performance-oriented workload management involves monitoring and allocating 

data processing resources to applications according to SLOs or informal objectives. It 

involves an ongoing cycle of measuring, planning, and modifying [IBM04]. The goal of 

performance-oriented workload management is to make the best use of available 

resources and to meet the objectives without an excessive tuning effort. Unlike capacity 

planning, which is characterized as off-line analysis, and resource-oriented workload 

management that features predefined resource constraints, performance-oriented 

workload management involves on-going workload characterization, continuous 

monitoring, and control based on business objectives or policies, which calls for little 

human intervention. Such a system or a process is self-managing since it can adapt to 

workload changes by performing self-configuration and self-optimization. This adaptive 

workload management is commonly known as autonomic workload management 

[Ligh04]. 

 To sum up, workload management has evolved through three phases, from its 

infancy as a means for capacity planning, focusing on cost sharing, to resource-oriented 

workload management, with the primary goal being resource utilization, and finally to 
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today’s performance-oriented workload management, with a focus on business 

objectives. This evolution has been driven by the advancement of technologies and has as 

its basis, cost sharing and SLOs. Its focus has shifted from cost sharing to performance; 

its style has changed from off-line analysis to on-line adaptation. 

2.3 The State of the Art of Workload Adaptation 

Workload adaptation, as an autonomic technique for workload management, is a 

performance-oriented workload management technique. The most important feature of 

workload adaptation techniques is their adaptability: how systems detect workload 

changes and react to the changes by controlling the workload. In this section we discuss 

the state of the art of workload adaptation techniques, focusing on the mechanisms by 

which they adapt to workload changes.  

2.3.1 Adaptive Mechanisms 

The area of workload adaptation in DBMSs has been examined by a number of 

researchers. Brown et al. [BMCL94] propose an algorithm that automatically adjusts 

MPLs and memory allocation to achieve a set of per-class response time goals for a 

complex workload in DBMSs. The adjustment mechanism takes a heuristic approach. 

Each class has its heuristics for calculating its MPL and memory allocation parameters. 

Workload changes are detected by monitoring performance data. For simplicity, the 

heuristics disregard the interference between classes. The interdependency between 
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classes that results from the competition for shared resources is solved by performance 

feedback.  

 Pang et al. [PCL95] propose an algorithm called Priority Adaptation Query 

Resource Scheduling to minimize the number of missed deadlines for a multi-class query 

workload, while at the same time ensuring that any deadline misses are scattered across 

the different classes according to an administratively-defined miss distribution. This 

objective is achieved by admission control, allocating memory and assigning priorities 

based on current resource usage, workload characteristics and performance experienced. 

Workload changes are detected by constantly monitoring the resource demand. A 

workload change causes the system to calculate a new MPL, reallocate memory and 

adjust priorities. The new MPL is calculated by applying two techniques: a miss ratio 

projection and resource utilization heuristics. The miss ratio projection uses a least 

squares fit to produce a quadratic equation based on the previous observations of the 

MPL and miss ratio. The current miss ratio is then projected to a new MPL based on the 

equation. The resource utilization heuristic tries to minimize the miss ratio by keeping the 

resource utilization within a healthy range. The system divides queries into two priority 

groups, called a regular group and a reserve group, and assigns each query class a quota 

for the regular group. Queries in the regular group are assigned a priority based on their 

time deadlines, while queries in the reserve group are assigned a priority lower than those 

in the regular group. This ensures the queries in the regular group are admitted and get 

resources first. The miss ratio distribution is maintained by adjusting the regular group 

quota for each class.  
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 Both Brown et al. and Pang et al. use heuristics to determine new workload 

control plans. Performance objectives are dealt with individually. While the predefined 

heuristics are simple to implement, they disregard system dynamics and resource tuning 

is at a coarse level. In our study, we use performance objective encapsulation techniques 

to manage multiple classes collectively to reflect the interdependence between classes, 

and take a performance model based approach to find a solution for workload control to 

reflect the system dynamics, hence, fine tuning resource allocation. 

 Commercial systems currently support resource-oriented workload control, 

despite the fact that they have begun to introduce performance objectives as the 

secondary management objective. Teradata’s Active System Management [Ball02] 

(ASM) controls the workload presented to a DBMS by using predefined rules based on 

thresholds of the workload such as MPLs and number of users. Workload classification is 

the basis for managing resources and translating performance goals into resource 

requirements.  

 ASM uses workload definition to define a performance class based on the 

properties of queries and how they are managed. A workload definition is a tuple 

<classification rule, MPL, exception, service level goal>. Classification rules define the 

attributes of the request that qualify the query to run under this Workload Definition. 

MPL defines how many queries can be running at one time under the Workload 

Definition. When the threshold is exceeded, new queries are placed on the delay queue. 

Exceptions trigger workload control actions and are produced when certain abnormal 

characteristics such as high skew or too much CPU processing are detected after a query 
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begins execution. Service level goals (SLG) specify the objective to be achieved for the 

workload class.  

 ASM does not predict resource demand for each performance class. It maps a 

performance class to an allocation group with a fixed weight. Allocation groups compete 

for resources based on their weight. A performance class can have several periods and 

maps to different allocation groups in different periods. Administrators make the 

assignments based on their understanding about the workload. ASM takes a preventive 

approach to workload changes. It reacts to the exceptions defined in the workload 

definition with admission control. Resource reallocation can be triggered when the 

resources allocated to an allocation group are under utilized. 

 Since ASM allocates resources to allocation groups, resource allocation might not 

reflect the requirements of all the performance classes mapped into the allocation groups. 

In our study, resources are directly allocated to the service classes in need and the SLOs 

can be directly addressed. 

 DB2 Query Patroller (QP) [IBM03B] uses estimated query costs and MPLs to 

perform admission control. It can dynamically control the admission of queries against 

DB2 databases so that small queries and high-priority queries can be run promptly, and 

system resources are used efficiently.  

 DB2 QP provides three mechanisms to help control query flow, namely, cost-

based query classification, threshold management, and submitter queue prioritization. A 

query class is defined by specifying a cost range and an MPL threshold. Queries are 
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assigned to a query class based on the cost of the query, which is the resource demand 

estimated by the query optimizer. The MPL threshold is the maximum number of queries 

in that class that can execute concurrently. When the threshold is reached, new queries 

are placed on the query class queue and are submitted for execution when the MPL falls 

below the threshold. This allows queries with different resource demands to be treated 

differently by specifying several query classes with potentially different MPL thresholds 

and so uses system resources more effectively. By setting optional system level cost 

thresholds, DB2 QP automatically puts large queries on hold so that they can be 

cancelled or scheduled to run during off-peak hours. Submitter queue prioritization 

assigns high priorities to queries submitted by certain users so that these queries are run 

with shorter delays than others in the same query class queue. Unlike our approach, DB2 

QP does not use performance objectives as guides. 

 Workload adaptation techniques have also been applied in the area of web 

services. Menascé et al. [MAFM99] [MB03] [MBD01] propose a Quality of Service 

(QoS) Controller to manage workloads in an E-commerce environment. The QoS 

Controller adjusts system configuration parameters so that the Quality of Service 

requirements of the system are constantly met. As a general approach for workload 

management, QoS Controller deals with three performance goals, namely average 

response time, average throughput and probability of rejection, and manages them 

collectively.  

 A QoS metric is devised to encapsulate all the performance goals and strikes a 

balance among them. QoS is defined as the weighted sum of relative deviations of the 
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three performance metrics with respect to their desired goals. QoS Controller takes a 

performance model based approach to adapt to the workload changes. A queuing model 

is used to predict the performance for maximizing the QoS metric. This approach requires 

that QoS Controller is able to acquire both workload characteristics and actual 

performance. QoS Controller analyzes the workload and computes statistics for the 

workload, such as average arrival rate, at regular intervals and uses statistical techniques 

to forecast the intensity of the workload in the next interval. The current and predicted 

workload intensity values and the measured performance data are used as input 

parameters of a queuing model to predict the performance for the next interval. This 

approach requires no human intervention and automatically adapts to workload changes. 

 Pacifici et al. [PSTY05] present an architecture and prototype implementation of a 

performance management system for cluster-based web services. In this approach, web 

service workloads are partitioned into multiple service classes in each gateway and server 

resources are reactively allocated through admission control by adjusting MPLs for each 

gateway and service class to maximize the expected value of a given cluster utility 

function in the face of workload changes.  As a function of the performance delivered to 

the various service classes, the cluster utility function plays a key role in providing 

differentiated service. Service levels are maintained by feedback control that incorporates 

a performance model. 

 Both Menascé and Pacifici assume that the work requests are similar in size to 

simplify the performance model and perform admission control based on MPLs. 

Although this assumption may be valid in a web services environment, it does not hold 
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true in DBMSs. Queries vary widely in size and in resource demand, which calls for 

more sophisticated performance models and admission control techniques. 

2.3.2 Comparison of the State of the Art Techniques 

We have investigated workload adaptation techniques in terms of their adaptability. We 

summarize our observations below and in Table 1. For ease of presentation, we name the 

techniques as follow: 

 M & M  Brown’s algorithm  

 PAQRS  Pang’s algorithm  

 ASM   Teradata’s Active System Management 

 DB2 QP  DB2 Query Patroller  

 QoS Contorller Menascé’s Quality of Service (QoS) Controller 

 WSWLM  Pacifici’s performance management system 

 Except for QoS Controller, all other workload adaptation mechanisms use 

classification rules to partition workloads into classes. Two of them (M & M, DB2 QP) 

use resource demand as a criteria, and three of them (WSWLM, PAQRS, ASM) use 

performance goals. Workload classification based on resource demand makes it easy to 

control resource allocation, while workload classification based on performance goals 

makes performance tracking easy. A two level classification based on both criteria is 

desirable for translating high level performance goals into low level resource allocation, 

which involves both performance tracking and resource allocation. 
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 There are two approaches to detecting workload changes: a workload 

characterization approach (PAQRS) and a performance monitoring approach (QoS 

Controller, WSWLM, M & M, ASM). A workload characterization approach tracks 

workload changes before performance is affected and makes proactive workload control 

possible. A performance monitoring approach, on the other hand, always takes control 

actions after workload performance degrades. 

 The three approaches for solving performance problems used in the systems are a 

performance model approach (QoS Controller, WSWLM), a heuristic approach (M & M, 

PAQRS), and threshold control (DB2 QP, ASM). A performance model approach is the 

best approach to adapt workload changes because it can catch system characteristics at a 

finer granularity than the others approaches. Both a heuristic approach and a threshold 

approach solve performance problems at a much coarser granularity than the performance 

model approaches. 

 There are three ways to define the control interval at which workload 

management systems periodically adapt to workload changes: regular time interval (QoS 

Controller, WSWLM), number of completions of work requests (PAQRS), and 

performance goal violation (M & M, ASM). As we can see from Table 1, none of the 

techniques discussed reaches the proactive level that requires that both workload changes 

are detected through workload characterization and performance is predicted through an 

evolving performance model. 
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Table 1 Comparison of workload adaptation techniques 

Systems Management Objective Adaptability System awareness Workload Control Methods 
QoS 
Controller 

Service availability: response 
time, throughput and 
probability of rejection 
encapsulated in QoS metric. 

Reactive level: Classification: no; Detection: 
performance monitoring; Solving: performance 
model; Interval: regular time. 

Closed-feedback: 
performance and 
resource usage 
metrics. 

Parameter tuning: 
optimization techniques guided 
by performance model. 

WSWLM Service availability: average 
response time encapsulated in 
utility functions. 

Reactive level: Classification: performance goal 
based; Detection: performance monitoring; 
Solving: performance model; Interval: regular 
time. 

Closed-feedback: 
performance metrics. 

Admission control-MPL: 
optimization techniques guided 
by performance model. 

M & M Service availability: average 
response time goal. 

Assisted level: Classification: performance goal 
based; Detection: performance monitoring; 
Solving: heuristic; Interval: goal violation. 

Closed-feedback: 
performance metrics. 

Resource allocation: heuristics
Admission control-MPL: 
heuristics, non-integral MPL 

PAQRS Service availability: time 
deadline with miss predefined 
distribution. 

Assisted level: Classification: performance goal 
based; Detection: workload characterization; 
Solving: heuristic; Interval: number of 
completions. 

Closed-feedback: 
performance and 
resource usage 
metrics. 

Parameter tuning: heuristics 
Resource allocation: heuristics
Admission control-MPL: 
heuristics 

DB2 QP System availability: keep 
DB2 in safe operation region.

Manual level: Classification: resource demand 
based; Detection: workload characterization; 
Solving: thresholds; Interval: no. 

Report: performance 
and resource usage 
metrics 

Admission control: MPL and 
cost set by administrators 

ASM Service availability: response 
time, throughput, and 
percentile response time 
associate with a weight. 

Assisted level: Classification: performance goal 
based; Detection: performance monitoring; 
Solving: thresholds; Interval: goal violation. 

Closed-feedback and 
report: performance 
and resource usage 
metrics. 

Resource allocation: period 
aging, relative weight 
Admission control: workload 
aggregates. 
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 We note that the most desirable workload characterization techniques are 

workload classification and statistics. Workload classification based on predefined 

classification rules, however, is not suitable for a fast changing workload. An 

unsupervised partitioning technique, such as clustering, is a better choice. Clustering 

groups work requests into classes such that the work requests in a class are similar to 

each other and dissimilar to the work requests in other classes. 

2.3.3 Component Specific Techniques 

Component specific techniques for workload adaptation mainly focus on workload 

characterization and performance modeling. There exists a large body of research on 

clustering [XW05] [JMF99] [Berk02] [JD88]. Various algorithms have been proposed for 

generalized clustering [Ande73] [DHS01] [DO74] [ELL01 [Hart75] [JD88] [XW05] and 

domain specific clustering [NH94] [JTZ04] [He99]. Workload adaptation calls for light-

weight and online clustering techniques, such as incremental clustering. Incremental 

clustering techniques handle work requests one at a time and do not require that the entire 

data set be stored. Typically, they are non-iterative, so the time requirements are minimal 

[JMF99]. Most incremental clustering algorithms are dependent on the order of the input 

pattern [Moor89]. Some typical incremental clustering algorithms are presented in 

[CG90], [SCH75], [Fish87], [Can93] and [CCFM04]. 

 There also is a large body of research in the area of performance modeling. Much 

work has been done in the area of queuing network theory [LZGS84] [Jain91] [MA98]. 

Woodside [Wood02] went one step further and proposed layered queuing network 



 

  24

models [Wood89] to adapt the queuing network model to complex computer systems, 

particularly for software design [ECW01] [ZW03] [XWP03]. With the emergence of 

autonomic computing, various on-line performance models [MB03] [CA02] have been 

proposed. To adapt to rapidly changing systems, Diao et al [DEFH03] developed a 

framework for discovering performance models on-line. Evolvable performance models 

require that the system be able to track changes of the model parameters such as resource 

demands, cluster centroids, etc. 

 Relevant workload control tricks found in the literature include the following: 

 Non-integer MPL: Admission control is usually performed at the granularity of a 

single query. Non-integer MPL can help tune the admission control at an even finer 

granularity. Non-integer MPL is produced by first finding the lowest integer MPL at 

which performance goals are exceeded, and then delaying the admission of the next query 

by an amount of time that is equal to the amount by which the previous query exceeded 

its goal. No delay is used if the previous query violated its goal. By delaying the 

admission of a new query, the average actual MPL is forced to be some fraction lower 

than the integer MPL. In effect, the delay makes the system behave as if each query’s 

response time exactly equals the goal for the class [BMCL94]. 

 Period aging mechanism: In order to avoid long running work requests consuming 

too many resources, IBM z/OS WLM [IBM03A] uses a period aging mechanism to 

control resources assigned to them without knowing their resource demand. The period 

aging mechanism runs work requests in periods. In each period, a work request can 
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consume a certain amount of resources. When the work request consumes its amount of 

resources for the current period, it enters the next period with less resources and lower 

importance. In this way short running work requests are honored. As shown in Figure 3, a 

work request is assigned 50% of CPU time during the first period with a high importance 

5% CPU 

10% CPU 

30% CPU 

50% CPU  

1 

2 

3 

4 

5 Importance 

CPU time Period 1 Period 2 Period 3 Period 4
 

Figure 3 Period aging mechanism 

level 4. If the work request continue running into Period 2, it is assigned 30% of CPU 

time with a lower importance level 3, and 10% of CPU time with importance level 2 in 

Period 3 and finally 5% of CPU time with importance level 1. 

 

2.4 Summary 

Workload adaptation is an autonomic computing technique for workload management. 

The four aspects of autonomic computing: self-configuring, self-healing, self-optimizing 

and self-protecting, can be condensed to one word, that is adaptive. That is to say, an 

autonomic computing system or technique must be able to predict and react to any 

changes in order to keep the system running in a healthy operation region. 



 

  26

 Workload management is concerned with three entities, namely the workload to 

be managed, the objectives to be achieved and the resource to be manipulated. Workload 

management has evolved through three phases, from the means for capacity planning, 

focusing on cost sharing, to resource-oriented workload management, with the primary 

goal being resource utilization, and finally to today’s performance-oriented workload 

management, with a focus on business objectives. Its style has changed from offline 

analysis to online adaptation. 

 We have discussed the state of the art of workload adaptation. Workload 

adaptation mechanism consists of workload detection and workload control. There are 

two approaches to detecting workload changes: a workload characterization approach and 

a performance monitoring approach. A workload characterization approach tracks 

workload changes before performance is affected and makes proactive workload control 

possible. A performance monitoring approach, on the other hand, always takes control 

actions after workload performance degrades.  

 There are three approaches for deriving workload control plan, namely, a 

performance model approach, a heuristic approach, and a threshold approach. A 

performance model approach is the best approach to adapt to workload changes because 

it can catch system characteristics at a finer granularity than the others approaches. Both 

a heuristic approach and a threshold approach solve performance problems at a much 

coarser granularity than the other approaches. 
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 We note that workload adaptation calls for light weight and online clustering 

techniques for workload characterization, and evolvable performance models for deriving 

workload control plans. 

 Among the adaptive mechanisms discussed, some are limited to the number of 

service classes can be handled, and others cannot handle business importance. Most of 

the mechanisms are heuristic based approaches. The difficulties for workload adaptation 

are how to manage multiple SLOs with different business importance, how to adapt to the 

workload changes while meeting the SLOs and how to prediction performance accurately. 

We will present a framework for workload adaptation to address these difficulties in 

Chapter 3. 
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Chapter 3 

General Framework for Workload Adaptation 

Generally speaking, the ultimate objectives of workload management are cost sharing and 

meeting SLOs. Cost sharing can be achieved by minimizing administrative cost and 

maximizing resource utilization. Minimizing administrative cost means minimizing 

human intervention and allowing systems to manage themselves automatically. 

Maximizing resource utilization requires efficient use of available computing resources to 

reduce the need for hardware expenditures. Meeting SLOs means ensuring critical 

business work is completed so that service requirements are achieved.  

 The three objectives of minimizing administrative cost, maximizing resource 

utilization and meeting SLOs may conflict. Meeting SLOs requires sufficient available 

resources and incurs administrative cost. Maximizing resource utilization compromises 

SLOs when unbalanced resource requirements are presented by business workloads, and 

also incurs administrative cost. Prior to autonomic computing, only one or two objectives 

could be achieved. Resource-oriented workload management [DHBA02] [CTYB01] 

[MCWV99] aims to maximize resource utilization, and performance-oriented workload 

management [HP04] [IBM03A] focuses on meeting business goals. With autonomic 
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computing technologies such as adaptive processing and automatic provisioning of 

resources, the conflict between the three objectives may be minimized. 

 To achieve the objectives, workload adaptation, which is one technique for 

workload management, must be able to detect the fluctuation of the workload (workload 

detection process), and react to the workload changes by controlling the workload 

(workload control process). Note that the word “process” here is not the same concept as 

the processes in operating systems. It consists of a series of actions or functions applied 

to underlying messages to bring desired results. We view workload adaptation as 

consisting of a workload detection process and a workload control process, which, in 

turn, involve four functional components - workload characterization, performance 

modeling, workload control, and system monitoring. The functional view of workload 

adaptation is shown in Figure 4. 

 

Workload 
Detection 
Process 

Workload 
Workload 

Characterization

System 
Monitoring 

Performance 
Modeling 

Workload Control 

System 

Workload 
Control 
Process 

Work 
Requests Path

Control Path 

Figure 4 Functional view of workload adaptation 
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3.1 Functional Components 

Workload characterization is concerned with measuring and modeling production 

workloads [LD86] [MA98]. The purpose of characterizing a workload is to understand 

and determine the resource usage and performance behavior for subsequent workload 

control. Most workload characterization performed in workload management is for 

predicting resource demands as input to performance models that are used to choose a 

resource allocation plan. 

 Performance modeling tries to predict the performance of the target system 

through a model that describes the features of the target system [MA98]. The inputs of a 

performance model are workload parameters, such as resource demand and arrival rate, 

generated by the workload characterization component. The outputs are system 

performance and resource utilization parameters. Performance models are usually 

developed off-line. In the autonomic era, systems are self-configurable, which calls for 

adaptive performance modeling techniques that can evolve performance models in 

response to changes in the system [DEFH03]. 

 Workload control components find and enforce an optimal workload control plan 

to meet the management objectives when the fluctuation of workload causes the system 

performance to degrade. Based on the support of the underlying system, the control plan 

can be steps to execute direct resource allocation, parameter tuning or admission control. 

Control actions are triggered by workload changes. 
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 System monitoring, or feedback, tells how well the system is performing by 

continuously acquiring the execution information of the workload and the resource usage 

of the system. The feedback information not only can be used as an indicator for 

workload changes and helps the workload characterization component to characterize the 

workload, but also helps the evolution of performance models by tracking changes to 

systems [IBM03A] [MB03] [BMCL94]. 

3.2 Workload Detection Process 

Workload detection identifies workload changes by monitoring and characterizing 

current workloads and predicting future workload trends. As shown in Figure 4, two 

functional components, workload characterization and system monitoring, are involved in 

the workload detection process. 

 The workload characterization component partitions the workload, analyzes 

workload characteristics, and calculates resource demands with the help of feedback 

information from the system monitoring component. Partitioning the workload reduces 

the complexity of workload characterization by reducing the population to be probed. 

Analyzing workload characteristics, such as arrival rate and composition of workload 

components, helps to formulate a workload control strategy.  

 Feedback information from system monitoring plays an important role in the 

process of workload detection. Alternatively, workload changes can be detected by 

monitoring the changes in performance and/or resource utilization [MB03] [PSTY05]. 

This is an effective approach to workload detection when workload characterization is 
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impossible or too costly, or some characteristics cannot be directly derived from the 

workload itself. 

3.3 Workload Control Process 

Workload control involves system management via efficient allocation of resources. 

There are three approaches to workload control. First, direct resource allocation provides 

a certain amount of resources to a workload, a workload class, or a single piece of work. 

Private memory for a process is usually allocated in this way. Second, parameter tuning 

regulates resources allocated to the work by changing the parameters related to resource 

usage. For example, increasing the buffer pool size in a DBMS improves the performance 

of an OLTP (On Line Transaction Processing) workload. There is no explicit assignment 

of resources to the OLTP workload, but an OLTP workload indeed benefits from 

increased buffer hit rates. Third, admission control regulates resource allocation by 

controlling the contention level on resources within a service class or across service 

classes. The more work requests that are admitted, the heavier the resource contention.  

 One of the main issues regarding workload control is how to determine the 

appropriate amount of control. This involves performance prediction under the suggested 

workload control plan or configuration. Performance administrators can determine the 

new configuration manually based on their experiences. Performance management 

systems require performance models to predict performance in order to be self-managing 

[MB03] [DEFH03].  
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 When workload changes are detected, the workload control component 

determines whether or not an adjustment is needed. In the positive case, it generates 

workload control plans and submits them to the performance modeling component for 

evaluation. It then chooses the optimal plan to exert control over the workload.  

 Three functional components, the workload control, the performance modeling 

and the system monitoring, are involved in the workload control process (Figure 4). 

3.4 Performance Metrics 

The primary objective of workload adaptation is to meet SLOs, which are specified by 

performance metrics. Workload performance metrics provide an overall mechanism for 

workload management systems to assess how well work is passing through the system 

and to make adjustments accordingly. They should allow workload management systems 

to examine the workload for its importance and user defined service objectives, and 

evaluate whether the system is meeting those objectives. Usually three types of 

performance metrics [Adam01] are used for workload management systems, namely 

performance goal, workload importance, and performance index. 

Performance Goal 

Performance goal is the standard for determining whether or not the system is meeting its 

objectives. The most widely used performance goals are response time, execution 

velocity, and throughput. 

 Response time is well understood and defined as: 
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  Tr = Ts + Tw

Response time Tr consists of service time Ts, which is the time for doing the actual work, 

and wait time Tw, which is the time spent waiting for resources. 

 Execution velocity is defined as [IBM03A]: 

  Execution_Velocity = Ts / (Ts + Tw) 

A higher velocity goal means that fewer delays are allowed, while a lower velocity goal 

means that more delays are tolerated.  

 Throughput (X) is a measurement of the number of committed transactions per 

unit of time: 

  X = Number_of_Transactions / Elapsed_Time = N / (Tt + Tr) 

where N is the number of users, Tt is the average think time, and Tr is the average 

response time. A service objective based on throughput is difficult to attain because the 

only manageable variable is Tr, the average response time. 

 How these metrics are used is based on the nature of the workload. When the 

work requests in a service class behave in a consistent manner then response time is a 

reasonable measure for its performance goal. Since there may be some variation in 

response time, it is reasonable to use the response time goal with a percentile violation. 

Throughput is typically used to measure system capacity. It is commonly combined with 

response time to define the workload volume at a certain response time level. Execution 

velocity is used when the response time measure is difficult to define yet the throughput 
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of the workload is important. For example, velocity can be used for an OLAP (On Line 

Analysis Processing) workload since the response time varies greatly from one work 

request to another. In practice, response time goals are assigned to OLTP (On Line 

Transaction Processing) workload and execution velocity goals are assigned to OLAP 

workload, because response times for the former are critical, while the waiting time is 

significant to the latter. 

 There are two aspects that need to be considered when setting performance goals, 

namely system capacity and business requirements. A performance goal must be realistic 

and attainable with the available system resources so that the system operates in a healthy 

state that is not overloaded and not under used. This can be achieved through experiments 

to find the reasonable range of a performance goal. After this, a performance goal can be 

calibrated to a value to meet business requirements. 

Workload Importance 

Workload importance identifies the order in which service classes receive or donate 

resources when the system capacity is not sufficient for all service classes to meet their 

performance goals. 

 Let us look at a scenario where workload importance comes into play. Consider a 

system with both OLTP and OLAP workloads where the OLTP workload has higher 

importance. The relative importance of the workloads has no impact on resource 

reallocation as long as both workloads can meet their performance goals. Resources 

should be shifted to the OLTP workload when it violates its performance goal since the 
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OLTP workload is more important than OLAP workload. If the OLAP workload violates 

its performance goal, resources should be shifted to the OLAP workload as long as the 

OLTP workload can also meet its performance goal after this reallocation. When both 

workloads violate their performance goals, the more important workload, that is the 

OLTP workload, is given preference.  

 That is to say, the performance goals guide resource allocation as long as system 

resources are underutilized and workload importance comes into play when the system 

capacity is filled. Workload importance is therefore not synonymous with priority in 

operating systems. First, workload importance is a high level construct defined by users 

and priority is a low level concept used by the operating system. Second, workload 

importance only plays a role when a workload is not meeting its goal. Priority, on the 

other hand, is in effect all the time and operating systems schedule jobs based on their 

priority. Third, a less important workload may receive resources from a more important 

workload as long as the latter is meeting its performance goal and the former is failing to 

meet its performance goal. However, it is not possible for a process with a low priority to 

take over CPU resources from a process with higher priority. 

Performance Index  

Performance goals and workload importance define the service objectives to be achieved 

by workload management systems. The system may or may not be able to achieve the 

service objectives. Workload management systems should be able to report on system 

performance and to indicate how close the system is to meeting its service objectives. 
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 Adam [Adam01] uses the performance index (PI) for this purpose. It is calculated 

by dividing actual performance against the performance goal: 

  PI = Measured_Performance / Performance_Goal 

For a response time goal, if the value is less than 1, the system is exceeding the objective. 

If it is exactly one, the system is meeting the objective, and if it is greater than one, the 

system has missed the objective. The PI is not only used to evaluate how well the system 

is meeting its objectives, it is also useful to determine the accuracy of the defined 

objectives. There are other ways of calculating performance index, such as the QoS 

metric defined by Menasce and Bennani [MB03] and the system utility used by Pacifici 

et. al. [PSTY05]. 

3.5 Summary 

This chapter presents a general framework for workload adaptation. It consists of two 

processes, namely a workload detection process and a workload control process. The 

workload detection process detects workload changes and provides knowledge about the 

workload. The workload control process reacts to the workload changes by performing 

resource allocation, parameter tuning and admission control to maintain system service 

levels.  

 The framework also involves four functional components, namely workload 

characterization, performance modeling, system monitoring, and workload control. 

Workload characterization is concerned with measuring and modeling production 
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workloads. It is the starting point of workload management, which allows the system to 

manage individual work requests collectively and calculate the resource demand easily, 

thus simplifying the processes of workload management. Performance modeling tries to 

predict the performance of the target system through a model that describes the features 

of the target system. System monitoring, or feedback, tells how well the system is 

performing by continuously acquiring the execution information of the workload and the 

resource usage of the system. It is also useful in simplifying the performance model when 

the system is too complex to analyze and model. Workload control components try to 

find and enforce an optimal resource allocation plan to meet the management goals. 

 Three types of performance metrics, namely, performance goal, workload 

importance, and performance index, usually used for workload adaptation. Performance 

goals define the objective to be achieved. Workload importance identifies the order in 

which service classes receive or donate resources. Performance index measures the extent 

to which the system meeting the specified service objectives. 

 In Chapter 4, we present a prototype implementation of the framework, called 

Query Scheduler, for DB2, which adapts the workload for an instance of DB2. Query 

Scheduler manages multiple classes of queries to meet their SLOs by allocating DBMS 

resources through admission control in the presence of workload fluctuation. The 

effectiveness of the Query Scheduler is evaluated through experiments. 
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Chapter 4 

Query Scheduler 

This chapter discusses the implementation of the Query Scheduler, which is a proof-of-

concept implementation of the workload adaptation framework discussed in Chapter 3. It 

automatically controls workloads running on DB2 in order to satisfy defined SLOs. 

Section 4.1 describes the architecture of Query Scheduler and details the implementation 

of the two processes defined in our framework, namely the workload detection process 

and the workload control process. Section 4.2 presents the technique used to encapsulate 

SLOs. Sections 4.3 to 4.6 discuss the implementation of the four components of our 

framework, namely workload characterization, performance modeling, system monitor 

and workload control, respectively. 

4.1 The Architecture of Query Scheduler 

To implement our framework, we need to define its two processes. The key to defining 

the workload detection process is acquiring the workload information from DB2, and the 

main issue for defining the workload control process is determining the workload control 

methods that DB2 can provide. With this knowledge we can then design the four 

components of Query Scheduler. 
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 DB2 QP, the workload manager of DB2, provides users with interfaces to 

intercept queries, acquire query information and, via direct commands, release queries 

[IBM03B]. When a query comes into DB2, DB2 QP can intercept the query by blocking 

the agent responsible for the query and collect the query information, including query 

identification information, query cost and query execution information. Query 

identification information is useful for query classification. Query cost is expressed in 

timerons, which is a generic measure of resource usage of a query used by the DB2 

optimizer to express the combined resource demand to execute the query. We use query 

cost as the resource demand for a query. Controlling the total cost of all queries in the 

system or for a service class, we can control the resources used by the system or a service 

class. Query execution information records the times when a query arrives, starts to 

execute and completes or aborts, which can be used to calculate the performance of the 

query. The intercepted queries can be released for execution through DB2 QP’s 

unblocking API. 

 We make use of DB2 QP’s interfaces to define Query Scheduler. The interfaces 

for intercepting and releasing queries constitute a basic admission control mechanism for 

the workload control process. The query information acquired by DB2 QP is used for 

workload detection and making control decisions. As shown in Figure 5, DB2 QP is used 

by Query Scheduler to automatically intercept all queries, record detailed query 

information and block the DB2 agent responsible for executing the query until an explicit 

operator command is received. We modified DB2 QP to inform Query Scheduler each 

time a query was intercepted. 
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 The Monitor component then collects the information about the query from the 

DB2 QP control tables, including query identification information, query cost and query 

execution information. The Monitor passes the query information to the classifier and the 

scheduling planner. The Classifier assigns the query to an appropriate service class based 

on its performance goal and places the query in the associated queue manipulated by the 

dispatcher. The Dispatcher receives a scheduling plan from the Scheduling Planner and 

releases the queries in the class queues according to the plan. 
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 The workload control of Query Scheduler is cost-based instead of MPL-based. 

When queries vary widely in size, the cost-based approach is more reasonable than the 

MPL-based approach because resource demand measured in terms of cost is more 

accurate than in terms of MPL. For example, the cost-based approach can admit 10 small 

queries or 3 big queries with the same total cost, while the MPL-based approach allows 5 

queries regardless the query size. 5 big queries might be enough to saturate the system 

and 5 small queries might leave the system underused. In our implementation a workload 

control plan is a set of class cost limits. Each service class is assigned a class cost limit 

expressed in timerons, which is the maximum allowable total cost of all concurrent 

queries belonging to a service class. A query in a class queue is released only if the sum 

of the total cost of all executing queries of the service class plus the cost of the query 

does not exceed the class cost limit. The Dispatcher releases a query for execution by 

calling the unblocking API provided by DB2 QP, which releases the blocked agents. The 

Scheduling Planner consults with the Performance Solver at regular intervals to 

determine an optimal workload control plan, and passes this plan to the Dispatcher. 

4.2 SLO Encapsulation 

A SLO is often specified by an importance level and a performance goal [Adam01] and is 

associated with a service class. An importance level describes how important it is to the 

business for queries to meet the performance goal relative to the other work competing 

for the same set of system resources. A performance goal defines the desired performance 

objective. 
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 Managing multiple SLOs is complex. Not only does the complexity increase with 

the number of SLOs, but also the interdependencies among them makes it even more 

difficult to control the workload. It is not a trivial problem to translate a high-level 

performance goal into resource requirements for a single service class. Multiple service 

classes can interfere with each other’s performance through competing for shared 

resources. Because of the interdependencies, the amount of the control over one service 

class might result in the performance goal violation for some other service classes. It is 

desirable to collectively manage all the SLOs by taking into consideration the 

interdependencies among the classes. In this section we discuss our approach to 

encapsulating SLOs by using objective functions. 

4.2.1 Performance Goals 

The most widely used performance goals are response time, throughput, and execution 

velocity [IBM03A]. Response time and throughput are well understood. These measures, 

however, are only useful when the work requests are similar in size. For workloads with 

widely varying response times, execution velocity is a better choice. 

 OLTP workloads, such as TPC-C [TPC], consist of small queries with sub-second 

response time, so an average response time goal is reasonable. OLAP workloads, such as 

TPC-H, contain queries with widely varying response times. Therefore, a velocity-type 

goal is most appropriate for OLAP workloads. Motivated by the need to see a clear 

division between waiting and execution times when performing admission control, we 

use the metric Query_Velocity, which we define as  
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   _ _ /Query Velocity Execution Time Response_Time=

where Execution_Time is the amount of time a query runs in the DBMS and 

Response_Time is the time from when a client issues a query until it receives a response. 

Response_Time therefore includes Execution_Time plus the time the query is held up by 

the workload adaptation mechanism.  

 Query velocity is a value between 0 and 1, and is a measure of how fast work is 

running compared to ideal conditions without delays. It reflects the impact of the 

workload adaptation mechanisms. A larger value means a shorter waiting time compared 

with execution time and hence better performance. The wait time for admission is 

dependent upon the policy governing admission control. If an admission control policy 

allows a query to be admitted earlier, the wait time for admission is small, otherwise, it is 

large.  

 In order to make a meaningful comparison between different admission control 

policies, it is necessary to ensure that the expected execution time for a query is stable 

when the system is busy. We do this by setting a total cost limit for concurrently 

executing queries. The total cost limit is a reasonable system saturation threshold and can 

be obtained through experiments. 

4.2.2 Workload Importance 

Managing workload importance is similar to managing performance goals of workloads 

in that both of them translate high level objectives into low level resource allocation 

plans. The performance of a workload directly relates to the resources allocated to it, 
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which can be described by a performance model. Enforcing the importance of a 

workload, however, not only has to do with the resources allocated to the workload itself, 

but also the other workloads, which is difficult to describe using a performance model. 

  We also need to answer the question, to what extent does workload importance 

affect the resource allocation when it comes into play? Generally speaking, there are two 

interpretations of workload importance when we say one workload is more important 

than another: 

 Absolute importance: the requirements of an important workload should be 

satisfied before those of less important workloads. Important workloads may 

be allocated all resources and less important workloads must wait. 

 Relative importance: all workloads share the resources and each workload is 

assigned the amount of resources commensurate with its importance relative 

to others. 

Absolute importance is relatively easy to implement. The general guideline is to allocate 

enough resources to meet workload performance goals in the order from the highest 

importance to the lowest importance until resources are used out or all the performance 

goals have been met [ABHG07] [SHIN06]. Relative importance, however, is difficult to 

implement. It not only has to do with the resources allocated to a workload itself, but also 

the resources allocated to other workloads. In the rest of the thesis, we discuss relative 

importance. 
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 In our implementation, we use the following process to quantify workload 

importance.  

 Assign an importance sequence number 1 to n to the workloads in increasing 

order of importance. 

 Create importance levels by scaling the sequence numbers with the 

importance freedom d, a user defined integer identifying the adjustable range 

of workload importance. 

 Determine α  through experiments so that the difference of importance 

between the two adjacent workloads and the most important workload meet 

the management expectation. 

 Adjust the importance levels of the other workloads in the range 

,
2
dd i d i⎡ • − • +⎢⎣ ⎦2

d ⎤
⎥  so that the resulting importance of each workload meets the 

management expectation. 

 In the following sections we discuss how to encapsulate importance levels and 

performance goals together. 

4.2.3 Objective Function 

Consider a system with n service classes, each assigned a SLO, denoted as ,i ig m , 

where ig is the performance goal of the ith service class to be achieved and is the 

importance of the i

im

th service class. We denote  as the predicted performance of 1 2, ,..., ng g g
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the service classes given a resource allocation plan , where  is the amount of 

resources allocated to the i

1 2, ,..., nr r r ir

th service class. The performance of the ith service class  can 

be predicted by a performance model 

ig

( )i i ig p r= . The utility [NMPH06] of the ith service 

class, , which describes how well the system meets its SLO, is a function of iu ,i ig m  and 

: ig ( , ,i i i i iu f g m g= ) . Multiple utilities can be encapsulated into an objective function 

1 2( , ,..., )nf u u u . The management problem becomes the problem of maximizing the 

objective function f . By properly choosing the if ’s and f , an optimal workload control 

plan can be derived to satisfy the management objective. Usually the objective function 

f  is chosen as if u=∑ , called system utility. Choosing the utility functions, however, 

is not easy. We discuss how to choose utility functions in the next section. 

4.2.4 Utility Function 

Utility functions are the key to encapsulating multiple SLOs into an objective function 

and play an important role in allocating resources among workloads. There is no single 

way to choose a utility function [PSTY05]. The principles in choosing utility functions 

are: 

 The utility should be larger when the performance experienced by a workload 

is better than its expected performance goal and vice versa. 

 The utility should increase as the performance experienced by a workload 

increases and decrease otherwise. 
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 The speed of utility increase should become less as the performance increases 

and the speed of utility decrease should become greater as the performance 

decreases. 

 The size and shape of the utility function should be controlled by one or two 

parameters that can be adjusted to reflect the importance of one workload over 

another [PSTY05]. 

 Based on our experiments we found the following general form of utility function 

satisfies the above principles: 

  ˆ1
g gmg gu e

α −
−= −  

where g  is the performance goal of the service class to be achieved, m is the importance 

level of the service class,  is the worst performance allowed, g is the real performance, 

and 

ĝ

α  is an importance factor, which is a constant that can be experimentally determined 

or adjusted to reflect the extent of the difference between two adjacent importance levels. 

α  controls the size and shape of a utility function. 

 This format of utility function complies with the above principles and 

encapsulates both the performance goal and the importance level of a workload. It also 

has good properties (the second derivative exists) and allows mathematical methods to be 

used to optimize the objective functions. Besides, it can be applied to both response time 

goals and execution velocity goals.  
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 Figures 6 and 7 show the utility functions applied to response time goals and to 

execution velocity goals, respectively. For response time goals, smaller values mean 

better performance, so the utility functions are a decreasing function. For velocity goals, 

large values mean better performance, so the utility functions are an increasing function. 

 From the shape of the utility functions, we observe that as performance improves, 

the curve becomes flatter. That is to say, when a service class achieves its performance 

goal, its utility increases slowly as its performance improves (the part of the curves in 

Figure 6 where g  is between 0 and 2 seconds and the part of the curves in Figure 7 

where g  is greater than 0.5). This dictates that the system should not assign more 

resources to the service class when the service class is already meeting its performance 

goal. When performance deteriorates, the curve becomes steeper. That is to say that when 

the service class violates its performance goal, the marginal utility rapidly increases as 

more resources are assigned to the service class (the part of the curves in Figure 6 where 

 is greater than 2 seconds and the part of the curves in Figure 7 where  is between 0 

and 0.5). In this case, allocating more resources to the service class should bring the class 

closer to meeting its performance goal. 

g g

 We also notice that the utility function of a service class with a higher importance 

level has a steeper curve.  In Figure 6 (a), the curve marked with the importance level 

 is steeper than the curve marked with the importance level . In Figure 7 (a), 

the curve marked with the importance level 

2m = 1m =

4m =  is much steeper than the curve marked 

with the importance level . 1m =
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Figure 6 Utility functions for response time goals 
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Figure 7 Utility functions for velocity goals 
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 The parameters can control the shape of the curve of the utility function. The 

worst performance parameter  defines the upper bound of the domain of the utility 

function for response time goals, and the lower bound for query velocity goals. As shown 

in Figures 6 (b), for response time goals, the curve with a lower worst performance 

( ) is steeper than the curve with a higher worst performance ( ). As shown in 

Figure 7 (b), for query velocity goals, the curve with a higher worst performance (

ĝ

ˆ 4g = ˆ 6g =

ˆ 0.3g = ) 

is steeper than the curve with a lower worst performance ( ˆ 0g = ). Both a lower worst 

performance for response time goals and a higher worst performance for query velocity 

goals, mean a narrower domain of the utility function, which results in a steeper curve of 

the utility function. 

 The importance factor parameter α  influences the shape of the utility function in 

the same way as the importance level. As show in Figures 6 (c) and 7 (c), the higher the 

importance factor the steeper the utility function. The role of the importance factor is to 

provide systems with a means to fine tune the importance levels defined by users to 

reflect a proper hierarchy of workload importance. 

4.3 Workload Characterization 

The workload characterization component is the Classifier in our implementation. It 

identifies the characteristics, mainly resource demand, of a query, and classifies it into an 

appropriate service class. The information used in the Classifier includes SLOs from 
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users, and query identification information and estimated query cost from the monitor 

component, which, in turn, comes from the DB2 QP (See Figure 5). 

 Resource demand must be acquired before making any control decisions in our 

framework. Acquiring resource demand for queries is difficult because a) queries vary 

widely in size, b) the resource demand of a query may be different during multiple 

executions because of the interference of other queries, and c) the resource demand of a 

query is dependent upon the configuration of the DBMS. Query costs estimated by the 

query optimizer roughly reflect the relative costs of queries in an ideal environment and 

we use these costs to represent the resource demand in the framework. 

 Query classification is based on performance goals. Each service class has a 

performance goal. The performance goals are predefined in SLOs and the query 

execution information from the monitor component is used to determine the performance 

of a query during runtime. The total cost of all queries in a service class is the resource 

demand of the service class, which is necessary to predict the performance of the service 

class and make resource control plans. 

 The workload classification method described above is a simple way to 

characterize the workload. We use it in Query Scheduler to show the feasibility of the 

general framework. There are other ways to classify queries. For example, queries can be 

classified based on query cost and then grouped into several groups according to size so 

that the queries can be manipulated based on their size. A two-level classification based 

on both performance goals and query cost can better characterize the workload by taking 
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both SLOs and query size into consideration, which allows more control over the 

workload. These alternatives are not the focus of this thesis and are left for future work. 

4.4 Performance Modeling 

Admission control is based on the principle that system resources are shared by the 

queries running in the system. If the volume or multiprogramming level of service class 

A is larger than those of service class B, service class A is proportionally assigned more 

resources, and is given preference. The performance modeling problem is to predict the 

performance of a new admission control plan: a set of class cost limits. 

 We denote the following symbols for a service class: 

 l: The number of terminal users in the service class. 

 : The class cost limit of the service class at the  control interval. iC thi

 : The query velocity of the service class at the  control interval. iV thi

 : The average response time of queries in the service class at the  control 

interval. 

iT thi

 : The average waiting time of queries in the service class at the  control 

interval. 

iW thi

 For a service class, the system can be viewed as a closed queuing model 

[LZGS84] with a single service center. There are l terminal users submitting queries 

interactively with zero think time to the service center, whose capacity is proportional to 
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the cost limit assigned to it. We are assuming that the system is always busy. Since the 

system total cost limit is fixed, the average service time of a query is fixed and we denote 

it as τ . Let us consider a standard service center with a cost limit equal to the average 

cost of a query, C. For this standard service center, there is only one query is served at a 

time. As per mean value analysis in queuing theory, the average queue length of the 

service center is . The average response timeT  and wait timeW  are: 1l −

 T lτ=           

 ( 1)W l τ= −  

 Now let us consider the performance of the service class at ( 1)stk −  control 

interval with the class cost limit 1kC − . A service center assigned to the cost limit 1kC −  

with l terminal users is equivalent to 1kC C−  standard service centers each with 

( )1kC C l−  terminal users. The average response time 1kT −  and wait time 1kW −  at the 

( 1)stk − control interval are: 

 (1k kT C C )1 lτ− −=         (4.1) 

 ( )( )1 1 1k kW C C l τ− −= −  

We have: 

 ( )1 1 1 11k k k kV W T C− − − −= − = Cl  

Similarly, at the control interval with the class cost limit , the average response 

time  and wait time  are: 

thk kC

kT kW
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 ( )k kT C C lτ=         (4.2) 

 ( )( )1k kW C C l τ= −  

We have: 

 ( ) 1 11k k k k k kV W T C Cl V C Ck− −= − = =  

 Because query velocity is less than 1, we have the performance prediction model 

for query velocity as follows: 

 
1 1 1 1

1 1
        if 1

1                            if 1

k k k k k k
k

k k k
V C C V C CV

V C C

⎧ − − − −
⎪
⎨ − −⎪⎩

≤=
>

   

 From the discussion about performance modeling for query velocity, we can 

easily derive the performance model for response time. Suppose the performance goals 

are changed from velocity goals to average response time goals. From Equations (4.1) 

and (4.2) we have the performance prediction model for average response time as 

follows: 

  ( )1

( )
    

k k

k k k

T C C l
C C T

τ
−

=

= 1−      

 Now given the new class cost limit, we can predict the performance for the next 

control interval for a service class based on the performance and the class cost limit of the 

current control interval. 
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 As shown in Figure 5, the performance modeling component is the Performance 

Solver in our implementation. It receives a new scheduling plan and a set of new class 

cost limits from the Scheduling Planner and predicts the performance of each service 

class under this scheduling plan based on the performance of the current control interval 

from the Monitor component. 

4.5 System Monitor 

The system monitoring component consists of the Monitor and a trigger in DB2 QP that 

informs the Query Scheduler of the arrival of new queries and the termination of running 

queries. When a query is submitted to the DBMS, the DB2 agent responsible for the 

query informs DB2 QP that a new query has arrived. DB2 QP (with the threshold 

MAX_QUERY_ALLOWED set to 0) intercepts the query and blocks the agent. 

Whenever a query is intercepted, a new entry is added to the 

TRACK_QUERY_INFORMATION control table of DB2 QP to store the query 

information which includes query identification information, query execution 

information, the query cost, etc. The query execution information is updated whenever 

the query is completed or aborted, and is used for evaluating the performance of each 

service class. 

 A trigger on insertion or update defined on this table calls a stored procedure to 

connect to the Query Scheduler (the Monitor component) via a TCP socket to inform 

Query Scheduler that a new query was intercepted or completed. The Monitor watches 

the arrival and departure of queries, collects query identification data, performance data 
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and resource usage data from DB2 QP and reports to the Classifier and the Scheduling 

Planner. 

4.6 Workload Control 

The workload control component finds an optimal workload control plan and executes 

the plan. In our implementation, it consists of the Scheduling Planner and the Dispatcher. 

The Scheduling Planner finds an optimal scheduling plan at regular intervals and the 

Dispatcher executes it. 

4.6.1 Performance Optimization 

Finding an optimal workload control plan can be described as the following optimization 

problem. We denote: 

 : The importance level of service class i. im

 ig : The performance goal of service class i. 

 : The worst performance allowed for service class i. ˆig

 : The performance of service class i at the control interval. k
ig thk

 : The class cost limit of service class i at the control interval. k
iC thk

 : The utility of service class i at the control interval. k
iu thk

 C: The total cost limit allowed for all service classes. 
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From the objective function in Section 4.2.3, the utility function in the Section 4.2.4, and 

the performance models in the Section 4.4, we have: 

 Objective function: ∑=       (4.3) k
iuf

 Utility function: ˆ1
k

i i
i k

ik
i

i

g gm
g gu e

α −
−= −      (4.4) 

 Performance model: 
1 1

1 1

     Velocity goals        
     Response time gaols

k k k
i i ik

i k k k
i i i

g C Cg
g C C

− −

− −

⎧⎪
⎨
⎪⎩

=    (4.5) 

Replacing in (4.4) with (4.5) and in (4.3) with (4.4), the objective function becomes 

the function of the new workload control plan :  

k
ig k

iu

1 2( , ,..., )k k k
nC C C

 1 2( , ,..., )k k k
ni
kf u f C C C= =∑  

with the constraint: 

 . 1 2 ...k k k
nC C C C+ + + =

 If the objective function has a global optimal value (maximum), we can find an 

optimal workload control plan for the next control interval. Since the utility function  

only has a single variable  after replacing  in (4.4) with (4.5), we have the second 

derivative for  as follow: 

k
iu

k
iC k

ig

k
iu

 
( ) ( )

2

2

2 32
ˆ ˆˆ ˆ2

( ) ˆ ˆ

k k
i i i i

i ik k
i i i i

k
i i i

i ik k ki i i i i

g g g gm m
g g g gg g g gm m

g g g g g

u e e
α α

α α
− −
− −

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝

∂ − −
∂ − −

= − i i

⎞
⎟
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⎟⎟
⎠

−  
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Both  and k
ig ig  are not less than  for a velocity goal and larger than  for a response 

time goal, so the second derivative for  is less than zero.  is therefore a concave 

function [Binm83]. As the sum of the utility functions, the objective function is also a 

concave function [Avri03]. It therefore has a global maximum, which corresponds to the 

optimal workload control plan. 

ˆig ˆig

k
iu k

iu

 The Scheduling Planner receives SLOs and the query execution information from 

the monitor component, and predicts the performance of each service class by consulting 

the Performance Solver to find an optimal scheduling plan. 

4.6.2 Solving Techniques 

As mentioned earlier, the problem to manage multiple service classes towards their SLOs 

can be solved by maximizing the objective function: 

 1 2( , ,..., )k k k
nf C C C ,  where 1 2 ...k k k

nC C C C+ + + = . 

 There exists a large body of research work for solving optimization problems. For 

concave functions, Ellipsoid methods, sub-gradient methods, cutting-plane methods, 

interior-point methods, etc [Avri03] [BV04] can be used to solve the optimization 

problems efficiently with the global optimum. If the objective function is not a concave 

function, there are other methods to solve the optimization problems, such as hill 

climbing, simulated annealing, quantum annealing, Tabu search, beam search, genetic 

algorithms, ant colony optimization, evolution strategy, stochastic tunneling, differential 

evolution, particle swarm optimization, harmony search, bees algorithm, etc [Avri03]. 
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The drawbacks of these algorithms are that they are inaccurate and may prematurely halt 

at a local optimum [MB03]. 

 Since the utility functions we choose have a second derivative, and the objective 

function has all second partial derivatives, we choose to solve it using quasi-Newton 

methods. The first step to solve the problem by using numerical methods is to apply the 

Lagrange method to produce a set of nonlinear equations [FB93]. 

 , 1 2

1 2

( , ,..., )
      ( ... )

k k k
n

k k k
n

F f C C C
C C C Cλ

=

+ + + + −

whereλ is the Lagrange multiplier. Setting the first partial derivatives of F to zero, we 

have 

 

1
1

2
2

1

0

0

0

0

k

k

n k
n

n

Fg
C
Fg

C

Fg
C

Fg
λ+

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

∂= =
∂
∂= =
∂

∂= =
∂
∂= =
∂

L  

We denote the set of equations as: 

  ( ) 0=G x

where , 1 2 1( , , , )t
ng g g +=G L 1 2 1 1 2( , , , ) ( , , , )t k k k

nnx x x C C C tλ+= =x L L  
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The classic method to solve the nonlinear equations ( ) 0=G x is Newton’s method 

[FB93]. However it is expensive with computational complexity. There are many 

quasi-Newton methods with reduced complexity [MC79]. Broyden’s method with  

computational complexity is one of the methods that can be implemented easily and 

efficiently. The algorithm is shown in Figure 8. 

3( )O n

2( )O n

,

Input: initial approximation ;  tolerance  and 
maximum number of iterations M
Output: solution  or a message that the number 
of iterations was reached
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13       1.
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Figure 8 Broyden algorithm 
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4.6.3 Admission Control 

Admission control is performed by the Dispatcher when a new query arrives or when a 

query completes or aborts. The Dispatcher uses the algorithm shown in Figure 9 to 

execute the scheduling plan and perform admission control: 

A query q arrived, completed or aborted;
 the service class of q;

the total cost of concurrent queries 
          of the service class ;

the class cost limit of service class ;
If (completed or

T
i

L
i

i
C

i
C i

←

←

←

 aborted)
      the cost of q;
      ;

the cost of the query at the front of
       the class queue ;
If ( )
      Release the query at the front of the
      class queue ;

T T
i i

T L
i i

c
C C c

c
i

C c C

i

←

← −

←

+ ≤

 

Figure 9 Admission control algorithm 

4.7 Summary 

Query Scheduler is a proof-of-concept implementation of the framework for workload 

adaptation. It is implemented outside DB2 and uses its workload manager DB2 QP. In the 

implementation, multiple SLOs are encapsulated into an objective function, which is the 

sum of the utilities of the service classes. The utility of a service class measures how well 

the system is meeting the SLO of the service class, and can be described by a function of 
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the performance goal and the workload importance of the service class. A general form of 

utility functions is proposed. Query Scheduler uses a queuing network model to predict 

the performance. A workload control plan, a set of class cost limits, is derived from 

maximizing the objective function, which is solved by numerical methods. 
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Chapter 5 

Evaluation of Query Scheduler 

In this Chapter we describe a set of experiments to study the effectiveness of Query 

Scheduler in providing differentiated service to workload classes with different SLOs. 

We also compare it with DB2 QP, which is typical of the level of control available in 

current DBMSs. 

 Because the Query Scheduler is currently implemented outside DB2, the overhead 

associated with managing queries with the Query Scheduler means that it is impractical 

to try to manage online transaction processing (OLTP) workloads (see Section 5.2.1), 

which are composed mainly of small queries. We first focus on management of large 

queries, such as OLAP queries found in decision support systems (DSSs), to evaluate the 

effectiveness of Query Scheduler in providing differentiated service to workload classes 

with different SLOs. We then try to adapt to mixed workloads with both OLTP and 

OLAP queries. The OLTP queries are managed indirectly through controlling OLAP 

queries to affect the performance of OLTP queries. 
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5.1 Evaluation with OLAP Workload 

We designed a set of experiments to show the effectiveness of Query Scheduler relative 

to that of DB2 QP. Section 5.1.1 introduces the OLAP workloads used for the 

experiments and the information about the experimental environment. Section 5.1.2 

describes the approach to determining the total cost threshold for the experiments. The set 

of experiments are presented in the Section 5.1.3, and Section 5.1.4 analyzes the 

experiment results. 

5.1.1 Workload 

The computer system used as the database server is an IBM xSeries® 240 machine with 

dual 1 GHZ CPUs, four PCI/ISA controllers, and 17 Seagate ST 318436LC SCSI disks. 

We use IBM DB2 Version 8.2 and Query Patroller as supporting components.  

 We use the TPC-H standard DSS benchmark as our workload. The workload 

consists of two classes of TPC-H queries submitted by interactive clients or batch jobs, 

each class having a performance goal. Each client submits queries one after another with 

zero think time. The database consists of 500MB of data. Four very large queries (queries 

16, 19, 20 and 21) are excluded from the workload. Workload intensity is controlled by 

the number of clients for each class. The intensity is varied overtime in each experiment 

as shown in Figure 10. Each test ran for 12 hours and consists of 6 2-hour periods. 

 Class 0 is deemed more important than Class 1. This is indicated by setting a 

stricter performance goal for Class 0 than for Class 1. The heaviest workload is in period  
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Figure 10 Workload intensity 

3 where 15 clients from Class 0 and 5 clients from Class 1 are issuing queries 

simultaneously. 

5.1.2 Determine the Total Cost Threshold 

The relationship between the total cost of concurrent queries in the system and the 

corresponding performance can be used to determine the system cost threshold – the total 

cost limit. Query admission is controlled by the total cost of active queries in the system 

and the corresponding average response time and throughput is calculated. The curves of 

total cost vs. average response time (Figure 11) and total cost vs. throughput (Figure 12) 

are plotted to determine the total cost limit that keeps the system saturated. We find that 

the circled point in Figure 11 and 12 with total cost limit of 300,000 timerons is the 

proper saturation point. If we increase the total cost limit further, we see a small increase  
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in throughput, but we note that the average response time still increases linearly. 
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Figure 11 Response time vs. total cost 
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Figure 12 Throughput vs. total cost 
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5.1.3 Experiments 

The following set of experiments shows the effectiveness of Query Scheduler relative to 

DB2 QP. All the experiments use the workload described in Section 5.1.1 with total cost 

limit determined in Section 5.1.2. The workload is generated by a workload generator and 

Query scheduler performs workload control every 10 minutes. 

No Class Control 

In this experiment, no control is exerted over the workload except for the total cost limit. 

This experiment serves as our baseline measure to observe how the performance changes 

with the changes of workload. The result is shown in Figure 13 

Class Control with DB2 QP 

In this experiment, we use DB2 QP as the performance controller. The typical way to use 

DB2 QP is to partition workload into three groups based on the cost of queries: large, 

medium and small and restrict the number of queries from the large and the medium 

groups. As suggested by IBM researchers, the cost threshold for the large query group is 

chosen as the lowest percentile cost of 95% of all queries and 80% for medium group: 

 Large: c  os      cos   95%t the lowest percentile t of>

 Medium:    cos   80% <cos    cos   95%the lowest percentile t of t the lowest percentile t of≤

 Small:  cos    cos   80%t the lowest percentile t of≤

The number of queries from the large and the medium groups are set as 2 and 5 

respectively for the workload we use. 
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 DB2 QP can also perform priority control over the workload to provide 

differentiated services. A service class can be assigned priority. The queries in a service 

class with higher priority are always admitted before the queries in a service class with 

lower priority. In order to demonstrate how DB2 QP provides differentiated services, we 

first perform service class control by setting priorities for the two classes. The priority of 

Class 0 is higher than that of Class 1, for example 600 for Class 0, and 500 for Class 1. 

The result of this experiment is shown in Figure 14. We then turn off priority control. The 

result is shown in Figure 15. 

Class Control with Query Scheduler 

This experiment uses Query Scheduler to control performance. The performance goals 

for Class 0 and Class 1 are set as 0.65 and 0.45 respectively, which are properly selected 

through experiments. The total cost limit is 300000 timerons. Class control is performed 

by setting class cost limits. The sum of all class cost limits is equal to the total system 

cost limit. Class cost limits are calculated during execution according to the performance 

of each workload class and predefined utility functions. In other words, class cost limits 

are calculated by optimizing the objective function. The results are shown in Figure 16 

for the query velocity and in Figure 17 for the adjustment of class cost limit. 

 To show the ability of Query Scheduler to adapt to the changes of performance 

goals, we ran a second experiment with a tighter performance goal (0.75) for Class 0. The 

results are shown in Figure 18 for the query velocity and in Figure 19 for the adjustment 

of class cost limits. 
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Figure 13 Query velocity with no control 

 

Query Velocity with QP with Priority Control 
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Figure 14 Query velocity with DB2 QP with priority control 
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Query Velocity with QP without Priority Control
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Figure 15 Query velocity with DB2 QP without priority control 

 

Query Velocity with Query Scheduler (0.65, 0.45)

0.0

0.2

0.4

0.6

0.8

1.0

0 120 240 360 480 600
Time (minute)

Q
ue

ry
 V

el
oc

ity

Class 0 Class 1

Class 0 Goal

Class 1 Goal

 

Figure 16 Query velocity with Query Scheduler with goals (0.65, 0.45) 
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Cost Limit with Query Scheduler (0.65, 0.45)

0

50000

100000

150000

200000

250000

300000

0 120 240 360 480 600
Time (minute)

C
os

t (
tim

er
on

)
Class 0 Class 1

 

Figure 17 Adjustment of class cost limits with Query Scheduler with goals (0.65, 

0.45) 

 

Query Velocity with Query Scheduler (0.75, 0.45)
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Figure 18 Query velocity with Query Scheduler with goals (0.75, 0.45) 
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Cost Limit with Query Scheduler (0.75, 0.45)
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Figure 19 Adjustment of class cost limits with Query Scheduler with goals (0.75, 

0.45) 

 

 

Figure 20 Comparison of number of violations of control methods 
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Table 2 Average query velocity in each period 

QS(0.65,0.45) QP QPNP NoControl 
Period 

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

1 0.91 0.92 0.97 0.94 0.94 0.94 0.95 0.95

2 0.77 0.75 0.84 0.57 0.74 0.79 0.74 0.77

3 0.63 0.45 0.72 0.29 0.59 0.60 0.59 0.60

4 0.68 0.44 0.82 0.35 0.57 0.61 0.59 0.62

5 0.82 0.70 0.89 0.66 0.76 0.72 0.78 0.75

6 0.70 0.50 0.85 0.49 0.58 0.61 0.67 0.58

 

5.1.4 Analysis of the Results 

Differentiated Services 

The results of our experiments show that both DB2 QP and Query Scheduler can provide 

differentiated services, while No class control cannot. DB2 QP provides differentiated 

services by assigning different priorities to different service classes. As shown in Figure 

14, with the higher priority assigned to Class 0, Class 0 always performs better than Class 

1. When priority control is turned off as shown in Figure 15, the query velocity curves of 

both classes are similar to the case of No class control (Figure 13). As shown in Figure 16 

and 18 for Query Scheduler, Class 0 can better meet its performance goals than Class 1 

because Class 0 is more important than Class 1. 
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Quality of Differentiated Services 

DB2 QP with priority control assigns static priorities to different service classes (600 to 

Class 0, and 500 to Class 1). Class 0 is always given higher priority, even when it is 

exceeding its performance goal and Class 1 is in violation of its goal in periods 2, 4 and 6, 

as shown in Figure 14. Query Scheduler dynamically adjusts the class cost limits based 

on the performance as shown in Figures 17 and 19. Although it always gives preference 

to the important class, Class 0, it never allocates too many resources to Class 0 to prevent 

Class 1 from meeting its performance goal if possible as shown in the periods 2, 4 and 6 

in Figures 16 and 18. When the workload is too heavy to meet both performance goals in 

periods 3 and 4, DB2 QP with priority control cannot meet the performance goals for 

Class 1 as shown in Figure 14, while Query Scheduler is able to keep both classes 

converging on their performance goals as shown in Figure 16 and 18. 

 Statistics also support the claim that Query Scheduler can provide better quality of 

differentiated service than the other control methods. Figure 20 shows the number of 

SLO violations for the four control methods. When the performance goals are set as 0.65 

and 0.45 for Class 0 and Class 1 respectively, Query Scheduler results in 27 SLO 

violations. The number is only 2 more than DB2 QP with priority control, and better than 

DB2 QP without priority control and No Control. If we relax the performance goals 5 

percent (0.4275 for Class 0 and 0.6175 for Class 1) and 10 percent (0.405 for Class 0 and 

0.585 for Class 1), Query Scheduler is much better than the other three control methods. 

This is to say Query Scheduler can keep the performance of the two classes in a narrower 

band around the performance goals than other control methods do. 
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 We further calculate the average query velocity for each period for all the control 

methods shown in Table 2. The real performance with Query Scheduler is better than the 

performance goals in Periods 1, 2, 5 and 6, except for Class 1 with DB2 QP without 

priority control. When workload is heavy in Period 3 and 4, the real performance with 

Query Scheduler control is closely aligned with the performance goals. The biggest 

violation is only (0.65  from the performance goal, compared with 

 for DB2 QP with priority control, (0.65

0.63) / 0.65 3.1%− =

(0.45 0.29) / 0.45 35.6%− = 0.57) / 0.65 12.3%− =  for 

DB2 QP without priority control, and 0.65 0.59 9.2%− =  for No Control.  

 In conclusion, Query Scheduler can anticipate the performance changes and 

control the performance of all service classes oscillating around their performance goals 

in a narrower band than the other control methods. 

Importance of Classes 

We notice that Query Scheduler can assure that both classes converge on their 

performance goals when the performance goals are 0.65 and 0.45 (Figure 16). When the 

performance goal of Class 0 is changed to a tighter goal 0.75, Query Scheduler cannot 

meet the performance goals for both classes in periods 3 and 4 (Figure 18). However, 

Query Scheduler recognizes that Class 0 is more important than Class 1 and attempts to 

minimize the goal violations for the important class, to the detriment of Class 1, as seen 

in Figure 18. Although Class 0 is more important than Class 1, Query Scheduler can 

assign more resources to Class 1 than DB2 QP with priority control when Class 0 meets 

its performance goals in periods 2 and 6. This means that the importance level of a class 
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is in effect only when the class violates its performance goals and is not synonymous 

with priority. 

Dynamic Resource Allocation 

From Figures 17 and 19, we observe that Query Scheduler adjusts the class cost limits 

according to the workload changes. A higher class cost limit means more resources are 

allocated to the class. The amount of resources allocated to a class is based on its need to 

meet its performance goal, as shown in periods 2, 5 and 6 in Figures 17 and 19. In the 

case of DB2 QP with priority control, Class 0 always has the privilege to possess more 

resources even when it exceeds its performance goal as shown in Figure 14. 

 To conclude, our framework for workload adaptation in autonomic DBMSs is 

effective for OLAP workloads. It is able to respond to the workload changes using 

admission control to give preference to important service classes, or to the service classes 

whose performance goals are violated. 

5.2 Evaluation with Mixed Workloads 

Mixed workloads consisting of both OLAP and OLTP queries are common. Controlling 

mixed workloads with our framework is more complex than controlling a homogenous 

OLAP workload. In this section we discuss an approach to adapting mixed workloads 

with both OLAP and OLTP queries. First, we analyze the overhead imposed by the 

Query Scheduler in Section 5.2.1 and conclude that it is not effective to manage OLTP 

workloads directly. Second, we propose an indirect approach to managing OLTP 
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workloads through managing the concurrent OLAP workloads in Section 5.2.2. We then 

present the mixed workloads for the experiments in Section 5.2.3 and describe the set of 

experiments in Section 5.2.4. Finally the analysis of the experimental results is presented 

in Section 5.2.5. 

5.2.1 The Overhead of Query Scheduler 

The overhead of Query Scheduler consists of query interception, acquisition of query 

information, control logic and query release as shown in Figure 21. DB2 provides query 

information to DB2 QP through TCP / IP connections at the points where a query arrives 

or terminates. DB2 QP maintains the TRACK_QUERY_INFORMATION table 

[IBM03B] to store the query information. When DB2 QP writes to the table, a trigger on 

the table is activated and sets up a TCP socket to inform Query Scheduler a query is 

intercepted or terminated. In either case, Query Scheduler requests the query information 

through the socket. There are four times of TCP / IP communication, two writes and two 

reads for DB2 QP. Query Scheduler acquires query information, makes a control decision 

to release a query at the two points where a query is intercepted and terminated. As we 

can see the overhead for Query Scheduler is mainly from DB2 QP, especially the two 

writes and two reads when compared to the other activities. 

 We measured the throughputs for OLAP and OLTP workloads with DB2 QP 

turned on and off. When DB2 QP is turned on, a pre-determined total cost limit is set to 

keep the system from overloading. The OLAP workload is composed of 22 TPC-H [TPC] 

queries and the OLTP workload consists of  5 types of  transactions  from  TPC-C  [TPC] 
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Figure 21 Overhead of Query Scheduler 
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benchmark. As shown in Figure 22, when DB2 QP is turned off, the throughput of the 

OLAP workload is smaller than when DB2 QP is turned on. This is because the benefit 

from DB2 QP protecting the system from overload is much bigger than the delay from 

DB2 QP. Besides, the delay is negligible compared with the long execution time of the 

OLAP queries. 

 On the other hand, as shown in Figure 23, when DB2 QP is turned off, the 

throughput of the OLTP workload is much higher than when DB2 QP is turned on. This 

suggests that the delay from DB2 QP is significant to the OLTP queries. The delay from 

DB2 QP is inherent unless the Query Scheduler is implemented in the kernel of DBMSs, 

which would eliminate the overhead shown in Figure 21 

 

Figure 22 The effect of controlling OLAP workload with DB2 QP 
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Figure 23 The effect of controlling OLTP workload with DB2 QP 

5.2.2 Adapting OLTP Workload 

Given the overhead significantly outweighs the sub-second execution time of the OLTP 

queries, we need to find approaches, besides direct DB2 QP control, to adapt the OLTP 

workloads. With a mixed workload, if we assume that OLTP queries are assigned the 

highest importance level, which is generally the case in production workloads, then we 

can indirectly control OLTP queries by controlling the competing OLAP classes. Query 

Scheduler can allocate more resources to OLTP queries by lowering the cost limits of 

competing OLAP classes and can decrease resources allocated to OLTP queries by 

raising the cost limits of competing OLAP classes. To do so, we configure DB2 QP to 

intercept OLAP queries and bypass OLTP queries. 
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Performance Modeling for the OLTP Class 

The performance model for OLAP classes is the same as we described in Section 4.4. 

The performance model for the OLTP class, however, is different. First, the system does 

not control the OLTP class directly so there is no clear division between waiting time and 

execution time. Second, the total cost of OLTP queries at any one time is unknown. 

Third, OLAP queries tend to be I/O intensive whereas OLTP are CPU intensive. 

 We experimentally justified our decision to indirectly manage OLTP workloads 

by directly managing the OLAP workloads. We measured the average response time of 

the OLTP class relative to the sum of cost limits of all OLAP classes (Figure 24). The 

number pairs shown in the legend indicate the number of OLTP clients, and the number 

of OLAP clients. The average response time of the OLTP class is almost linear with the 

increase of the total cost limit of OLAP classes when the system is not overloaded 

(system total cost less than 300K timerons).  

 Based on this knowledge, we can use the following linear equation to model the 

performance of the OLTP workload: 

 , 1 1( )k k k kt t s C C− −= + −

where and are the average response times of the OLTP class at 

the

1kt − kt

( 1)stk − and control intervals, respectively, thk 1kC − and are the class cost limits of 

the OLTP class at the

kC

( 1)stk − and control intervals, respectively, and s is a constant 

that is obtained using linear regression. 

thk
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Figure 24 OLTP performance vs. OLAP cost limit 

 

Monitoring OLTP Queries 

It is necessary to monitor the performance of the OLTP class, for which we use an 

average response time metric, in order to make control decisions for the mixed workload. 

Since we turned off DB2 QP for the OLTP workload, we need other approaches for 

acquiring the information. The DB2 snapshot monitor records the execution time of the 

most recently finished query for a client. We, therefore, can take snapshots at fixed 

intervals, for example every 10 seconds, to get samples of response times of OLTP 

queries from all the clients and average them to get the average response time of the 

OLTP workload. The sampling interval must not be too small, which incurs too much 

overhead, nor too large, which decreases accuracy.  
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5.2.3 Workloads 

The computer system used is the same as that described in Section 5.1.1. The TPC-H and 

TPC-C benchmarks [TPC] serve as the OLAP and OLTP workloads, respectively, for our 

experiments. The TPC-H database consists of 500MB of data. Four very large queries 

(queries 16, 19, 20 and 21) are excluded from the TPC-H workload. The TPC-C database 

contains 50 warehouses with 30GB data. The tables for the two workload types are 

placed in separate databases. This allows us to focus on the impact of the workload 

adaptation on the allocation of system resources, such as CPU and I/O, while ignoring 

other sources of contention between OLTP and OLAP workloads, such as buffer pools 

and lock lists. 

 The mixed workload consists of three workload classes; two classes of TPC-H 

queries and one class of TPC-C queries, all submitted by interactive clients. Each class 

has a performance goal. Each client submits queries one after another with zero think 

time. Workload intensity is controlled by the number of clients for each class (Figure 25). 

The number of clients for an OLAP class varies from 2 to 6 at any one time and the 

number of clients for the OLTP class varies from 15 to 25 at any one time. Each test run 

lasts 24 hours and is broken down into 18 80-minute periods. Workload intensity is 

consistent within a given period. 

 Class 1 and Class 2 are OLAP classes with importance levels of 1 and 2, and 

query velocity goals of 0.4 and 0.6, respectively. Class 2 is more important than Class 1 

and therefore has a higher query velocity goal, which means that its queries should be 

delayed less than queries of Class 1. Class 3 is the OLTP class with the highest 



 

 

Figure 25 Workloads
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importance level of 3, and is assigned an average response time goal 0.25 seconds as its 

performance goal. We determine experimentally that the goals for the three classes are 

reasonable. We see from Figure 25 that the heaviest workload is in period 18 where two 

clients from Class 1, six clients from Class 2 and twenty-five clients from Class 3 are 

issuing queries simultaneously. 

5.2.4 Experiments 

The following set of experiments shows the relative effectiveness of Query Scheduler, 

with dynamic workload adaptation, over the static control of DB2 QP, to handle mixed 

workloads. In all experiments, we use the workloads shown in Figure 25 with total cost 

limit 300,000 timerons. The OLAP and OLTP workloads are generated using different 

workload generators and Query scheduler performs workload control every 10 minutes. 

No Class Control 

In this experiment, no control is exerted over the workload except for the system cost 

limit. This experiment serves as our baseline measure to observe how the performance 

changes with the variations in the workloads. The results are shown in Figure 26. 

Class Control with DB2 QP 

In this experiment, we use DB2 QP as the performance controller. DB2 QP imposes 

significant overhead on sub-second queries in the OLTP class so it is turned off for Class 

3. Using the typical query control strategy of DB2 QP, the OLAP queries are partitioned 

into three groups (large, medium and small) based on the cost of the queries. Queries 

whose cost is in the top 5% of the workload are placed in the large group; queries whose 
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cost is in the next 15% are placed in the medium group and the remaining queries are 

placed in the small query group. 

 In order to observe how DB2 QP provides differentiated services, we run 

experiments with priority control turned on and off. For the case where priority control is 

turned on, we set the priority of Class 2 higher than that of Class 1. The results of this 

experiment are shown in Figure 27. For the case where priority control is turned off, we 

observe that the performance is similar to the case with no control so the results are not 

presented here. 

Class Control with Query Scheduler 

This experiment uses Query Scheduler to control performance. The total cost limit is 

300,000 timerons. Class control is performed by setting class cost limits. The sum of all 

class cost limits is equal to the total system cost limit. Class cost limits are calculated 

during execution according to the performance of each workload class and predefined 

utility functions. In other words, class cost limits are calculated by optimizing the 

objective function. The performance results are shown in Figure 28. Figure 29 shows the 

adjustment of class cost limits. 

5.2.5 Analysis 

Control over the OLTP Workload 

High overhead makes it impractical to directly control the OLTP workload using the 

current test framework. Both DB2 QP and Query Scheduler can control  the  OLTP  work 



 

 

Figure 26 No class control 
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Figure 27 DB2 QP priority control 
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Figure 28 Query Scheduler control 
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Figure 29 Adjustment of class cost limits with Query Scheduler control 
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-load indirectly by directly controlling the OLAP workload. DB2 QP can only set a static 

cost limit for the OLAP workload, while Query Scheduler can adjust cost limits for all 

service classes dynamically (Figure 29) to reflect the workload changes. 

Differentiated Services 

DB2 QP can only provide limited differentiated service within the OLAP classes by 

assigning priorities. As shown in Figure 27, Class 2 always performs better than Class 1. 

Figure 28 shows that Query Scheduler can provide differentiated service to both OLAP 

and OLTP classes.  Class 3 meets its performance goal nearly all the time. The 

performance of Class 2 is better than that of Class 1 in most cases. 

Quality of Differentiated Service 

Query Scheduler can provide better differentiated service than DB2 QP in this case of 

mixed workloads. DB2 QP sets a static cost limit on the OLAP workload to control its 

resource consumption and gives higher priority to Class 2 over Class 1. DB2 QP cannot 

adjust the limit to reflect resource requirements of Class 3. As shown in Figure 27, the 

performance goal of Class 3 is always missed during periods 3, 6, 9, 12, 15 and 18 where 

the intensity of OLTP workload is high, and during period 17 where the intensity of 

OLTP workload is medium and the intensity of OLAP workload is high.  

 Query Scheduler can detect workload changes for both the OLAP and OLTP 

workloads and adjust cost limits for each service class by maximizing the system utility. 

As shown in Figure 28, Class 3 meets its performance goal when its workload intensity is 

medium and low and oscillates around its performance goal when its workload intensity 
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is high. We also notice that the performance of Class 2 is better than that of Class 1 in 

most cases. 

 We summarized the number of SLO violations for all three services classes as 

shown in Table 3. The number of SLO violations for the OLTP workload with Query 

Scheduler control is much less than those with DB2 QP priority control and No Control 

at the cost of the OLAP workloads. If we look at the numbers with 5 percent and 10 

percent relaxation for the performance goal of the OLTP workload, Query Scheduler is 

much better than the other three control methods.  

Table 3 Number of SLO violations for OLAP and OLTP workloads 

QS Control QP Priority Control No Control 
Relaxation 

OLAP OLTP Total OLAP OLTP Total OLAP OLTP Total

Strict Violation 42 34 76 4 66 70 0 71 71

5% Relaxation 38 15 53 3 54 57 0 52 52

10 Relaxation 38 6 44 3 45 48 0 47 47

 

Table 4 Deviations from performance goals 

Control Method Class 1 Class2 Class 3 

QS Control 0.178 0.169 0.031 

QP Priority Control 0.315 0.231 0.034 

No Control 0.343 0.186 0.035 



 

  95

 We also calculated the deviations of the performance from their goals. The 

equation used is: 

 ( )2
1

1
i

N
k
i i

k
s g

N =
= −∑ g  

where  is the standard deviation of the service class i, N is the number of periods,  is 

the performance of the service class i in k

is k
ig

th period, and ig is the performance goal of the 

service class i. As shown in Table 4, the deviations of all three service classes with Query 

Scheduler control are better than those with DB2 QP priority control and No Control. 

 In conclusion, Query Scheduler can provide better differentiated service for a 

mixed workload than DB2 QP. 

Importance of Classes 

Query Scheduler supports the concept of business importance. A high importance level 

does not mean that the service class always possesses more resources than those with low 

importance levels. The importance level of a class is in effect only when the class violates 

its performance goals and is not synonymous with priority. As shown in Figure 29, Class 

3, which has the highest importance level, possesses few resources when its workload 

intensity is low (periods 1, 4, 7, 10, 13 and 16) and it can meet its performance goal. 

During periods 3, 6, 9, 12, 15 and 18, its workload intensity is high and its performance 

goal is violated.  In response, Query Scheduler assigns more than half of the total 

resources to Class 3 to meet its performance goal. In period 18, the workload intensity is 

the heaviest, however, the cost limit of Class 3 is less than that in periods 3, 6 and 9 
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where the workload intensity of Class 3 is same as in the period 18. This is because the 

workload intensity of other classes is the heaviest in period 18 and the competition for 

resources is more severe than the other periods. 

Dynamic Resource Allocation 

Using DB2 QP with priority control, Class 2 always has the privilege to possess more 

resources, even when it exceeds its performance goal, as shown in Figure 27. Query 

Scheduler, however, as shown in Figure 29, adjusts the class cost limits according to the 

workload changes thus allocating resources to where they are needed at the appropriate 

time. A higher class cost limit means more resources are allocated to the class. The 

amount of resources allocated to a class is based on its need to meet its performance goal 

and trade off among other classes. 

 To conclude, our framework for workload adaptation in autonomic DBMSs is 

effective for mixed workloads. It is able to respond to the workload changes using 

admission control to give preference to important service classes, or to the service classes 

whose performance goals are violated. 

5.3 Some Concerns about the Implementation 

As a proof-concept implementation of the framework for workload adaptation, Query 

Scheduler shows our framework is effective for adapting multiple workloads to meet 

their SLOs. From the evaluation, however, we notice that the oscillation of performance 

of service classes is big, even though the workloads are stable. The oscillation is partly 
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due to the nature of workloads, which is not a constant, and partly for the reason that the 

implementation is inaccurate. Further improvement of Query Scheduler is needed to 

make Query Scheduler more accurate. 

 First of all, performance prediction largely depends on the estimation of resource 

demand (workload characterization). Query cost, the estimate of resource demand of a 

query, reflects the combined resource requirements of a query, including the resource 

requirements of CPU, I/O, buffer pool, sort hip, lock list, etc. Using query cost as 

resource demand hides the fact that same amount of query cost may have different 

resource usage patterns. For example, 1000 timerons may consist of 100 timeron CPU 

cost plus 900 timeron I/O cost for a query, and 900 timeron CPU cost plus 100 timeron 

I/O cost for another query. Use of detailed query costs, instead of total query cost, is 

preferred to improve the accuracy of performance prediction. However, DB2 QP does not 

acquire detailed query costs, though the DB2 Explain Facility can. The use of DB2 

Explain Facility would introduce further overhead, which is much larger than that of DB2 

QP. Use of detailed query costs will be left as future issue until the overhead for 

acquiring it is reasonable. 

 Performance models also play an important role in performance prediction. 

Because modeling a complex system like a DBMS is difficult, we use simplified queuing 

network models, which are inaccurate for describing the systems and introduces some 

errors in performance prediction. Making use of system monitoring information or 

measurement can contribute a lot to rectify the inaccurate prediction of a performance 



 

  98

model. This can be done by updating the performance model parameters or directly 

updating the performance prediction. We discuss this issue in the next chapter. 

 Admission control can introduce errors. Although class cost limits can be adjusted 

smoothly, the finest control one can reach is a whole query. The difference between the 

class cost limit and the total cost of running query of a service class changes over time. 

This also constitutes a part of the oscillation. 

5.4 Comparison with Previous Techniques 

Compared to the techniques discussed in Section 2.3, Query Scheduler has several 

advantages. First, compared to M & M. and PAQRS, Query Scheduler uses a 

performance objective encapsulation technique to manage multiple classes collectively to 

reflect the interdependence between classes, instead of managing SLOs individually. This 

allows Query Scheduler to add or remove a service class easily. Query Scheduler takes a 

performance model based approach to find a solution for workload control, instead of 

predefined heuristics, which can reflect the system dynamics. 

 Second, compared to ASM, Query Scheduler can directly address the resource 

needs for a service class by adjusting its cost limit. Since ASM allocates resources to 

allocation groups, resource allocation might not reflect the requirements of all the 

performance classes mapped into the allocation groups. 

 Third, compared to QoS Controller and WSWLM, Query Scheduler takes the 

variation of query size into consideration and uses a cost-based approach to allocate 
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resources, which lifts the assumption that the work requests are similar in size in order to 

perform admission control based on MPLs. 

5.5 Summary 

This chapter evaluates the effectiveness of Query Scheduler in providing differentiated 

service to workload classes with different SLOs. Experimental results show that Query 

Scheduler is able to respond to the workload changes using admission control to meet the 

SLOs and gives preference to important service classes, or to the service classes whose 

performance goals are violated. Query Scheduler can provider better quality of 

differentiate services than DB2 QP. 

 To eliminate the overhead for directly controlling OLTP workload, an approach 

for adapting OLTP workload through controlling OLAP workloads is proposed. 

Experiment results show its effectiveness. 

 The inaccuracy of Query Scheduler is due to inaccuracy of query cost, 

performance models and the nature of admission control. Chapter 6 discusses the 

approach to improving the accuracy of performance prediction. 
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Chapter 6 

Improving the Accuracy of Performance 

Prediction 

 

Two sources contribute to the performance prediction in the autonomic control loops of 

workload adaptation: performance modeling and system monitoring. Performance 

modeling tries to predict the performance of the target system through a model that 

describes the features of the target system. Modeling a complex system like a DBMS is 

difficult. Simplified models like queuing models are inaccurate. Making use of system 

monitoring information or measurements can contribute to rectifying the inaccuracy of a 

performance model. This can be done by updating the performance model parameters or 

directly updating the performance prediction.  

 The Kalman filter, an optimal tracking filter, estimates the state of a time-varying 

process by taking advantages of both the state prediction derived from the process and the 

state measurement [WB06]. It provides us with a framework for making use of the 

performance measurement to improve the prediction accuracy of a performance model.  

 This chapter discusses an approach to applying the Kalman filter in the 

framework for workload adaptation to improve the accuracy of the performance 
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prediction, and hence, better meet the SLOs. The rest of the chapter is organized as 

follows. Section 6.1 introduces the Kalman filter. Section 6.2 models the process for 

performance prediction as a time varying process so that a Kalman filter can be applied to 

it, and gives the resulting process and measurement equations. Section 6.3 discusses how 

to determine the parameters in order to solve the Kalman filter. An evaluation of the 

Kalman filter in improving the accuracy of performance prediction is presented in 

Section 6.4. 

6.1 Kalman Filter 

A Kalman filter is a tracking filter. It is a set of mathematical equations that recursively 

estimate the state of a process, in a way that minimizes the mean of the squared error. 

The Kalman filter is very powerful in that it not only supports estimations of past, 

present, and even future states, but also works well even when the precise nature of the 

modeled system is unknown. 

 A simple Kalman filter [WB06] tries to estimate the state, consisting of n state 

variables 1 2, , , nx x L x , of a discrete-time controlled process that is governed by the linear 

stochastic difference equations:  

         (6.1) 
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with m measurements , which have the relation with the state variables as 

follows: 

1 2, , , my y yL

       (6.2) 
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where superscripts identify the parameters in the stated steps in both sets of equations. 

The factors  in the process equations (6.1) relate the state variable 1 ( 1,2, , )k
ia i n− = L

 ( 0,1, , )ix i = L n

)

 at the step k-1 to the step k, without considering the process noise. The 

factors  in the measurement equations (6.2) relate the state 

variables to the measurement 

1 2, , ,  ( 1,2, , )k k k
ini ih h h i m=L L

( 0,1, ,iy i m= L  without considering the measurement 

noise. The random variables 1 ( 1,2, )k
iw i n− = L  and  represent the 

process noise at the (

( 1,2,kv i mi = L )

1)stk −  step and measurement noise at the  step, respectively, and 

are assumed to be independent, white, and with normal probability distributions with the 

means equal to zero. 

thk
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 and  and  the covariance matrices for  and , respectively. We have the 

process and measurement equations in the matrix format:  

kQ kR kw kv

 Process equation:  1 1 1k k k k− −= +x A x w −

k

    (6.3) 

 Measurement equation k k k= +y H x v      (6.4) 
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k

k

]

 The state at the step k can be predicted as  from the process equation given the 

state estimation  at step k-1: 

kx%

1ˆ k−x

          (6.5) 1 1ˆk k k− −=x A x%

 It also can be calculated from the measurement equation by making measurement 

 in current step k. The essence of the Kalman filter is that it estimates the current state 

 by striking the balance between the prediction and measurement based on both the 

accuracy of the process and the accuracy of the measurement. The estimation is optimal 

in terms of the least square error and converges quadratically. The difference between the 

measurement and the prediction, also known as the innovate, is 

ky

ˆ kx

          (6.6) k k k= −z y H x%

It is used to rectify the prediction errors in order to give a good estimate: 

          (6.7) ˆk k k= +x x K z%

where  is called the Kalman gain, which can be recursively calculated with the 

following equations. 

kK

 1[T T
k k k k k k k
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] k

k

       (6.8) 

         (6.9) ˆ [k k k= −P I K H P%

         (6.10) 1
ˆ T

k k k k+ = +P A P A Q%

where the superscript T represents transpose of a matrix.  and  are the a prior 

estimation error covariance and the a posteriori estimation error covariance and are 

ˆ
kP 1k+P%
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updated during the recursive calculation. The discrete algorithm for the Kalman filter is 

shown in Figure 30. 

ˆˆInitial:Given the initial estimate , and the estimate error covariance : 0
1. Predict the state

ˆ                1 1
2. Project the prediction error covariance

ˆ                1 1

k

k k k

k k k

= − −

=− − −
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x A x

P A P
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%
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1                [ ]
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Figure 30 The discrete algorithm of the Kalman filter 

 The Kalman filter guarantees optimality when the process and measurement 

equations are linear. For nonlinear process and measurement equations, the extended 

Kalman filter [Ribe04] can be applied with sub-optimality. 

6.2 Process and Measurement Equations 

In the framework for workload adaptation, we use the following performance model to 

predict the SLOs for the next control interval and help to find an optimal resource 

allocation plan: 

 1 1k k k k
i i i ix x C C− −=  
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where 1k
ix −  and k

ix  are the performance (execution velocity) of service class i at the  

( 1)stk −  and  control intervals, respectively. thk 1k
iC −  and are the class cost limits of 

service class i at the 

k
iC

( 1)stk −  and  control intervals, respectively. thk

There are at least two sources that contribute to the inaccuracy of the model:  

 Inaccuracy of the performance model: 

  1 1k k k k k
i i i i i

1x x C C w− −= −+        (6.11) 

 where is the noise of the performance model. 1k
iw −

 Inaccuracy of the measurement  of k
iy k

ix , partially due to workload 

fluctuation and partially due to the measurement method. This can be 

expressed as:   

          (6.12) 

 where  is the measurement noise. 
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k

We have: 

         (6.13) 1 1 1k k k k− − −= +x A x w

 k k k= +y H x v          (6.14) 
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Taking equations (6.13) and (6.14) as the process and measurement equations, 

respectively, we can apply the Kalman filter to our framework for workload adaptation. 

That is to say, we can make a better estimate of the performance at the current control 

interval by considering both the predicted and measured performance for the current 

control interval, so that the predicted performance for the next control interval is more 

accurate. In the next section, we discuss the roles that the parameters  and  play in 

the Kalman filter and how to determine them. 

kQ kR

6.3 Parameter Determination 

To use the Kalman filter, we need to determine the initial estimation error covariance , 

the process error covariance  and the measurement error covariance . Before we 

discuss how to determine them, let us first find out how these parameters affect the 

Kalman filter. Intuitively, the larger the elements in , the more inaccurate the process 

0P%

kQ kR

kQ
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and the smaller the contribution to the estimate by the prediction. The larger the elements 

in , the more inaccurate the measurement and the smaller the contribution to the 

estimate by the measurement. The same observation can be derived from the equations 

(6.10) and (6.8). A large  results in large estimation error covariance and suggests that 

the measurement is more accurate. A large  produces a small Kalman gain which puts 

less weight on the innovate and suggests that prediction is more accurate. A good Kalman 

filter can be obtained by carefully tuning  and . 

kR

kQ

kR

kQ kR

  is the initial estimation error covariance. Because the Kalman filter converges 

quickly [WB06], it is does not matter how the elements in  are chosen as long as the 

elements at the main diagonal are not zero.  and  vary from interval to interval and 

should be determined dynamically, which is difficult.  In practice, both  and  are 

supposed to be diagonal and determined prior to operation [Ribe04]. If a process can be 

observed directly, which is true for our case, we can calculate the process error 

covariance  beforehand by taking some off-line sample observations. In most cases, it 

is not possible to directly observe the process, and a simple process noise model with 

enough uncertainty can be used as the process error covariance . The measurement 

error covariance , on the other hand, generally can be determined beforehand by 

taking some off-line sample measurements.  

0P%

0P%

kQ kR

kQ kR

kQ

kQ

kR

 Even we can directly observe the process, it is difficult to accurately determine 

the process error covariance . This is because the measurement matrix kQ 1k−A  varies 
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from interval to interval, which makes it impossible to observe the process with every 

single . However, we can approximately determine the process error covariance  

regardless the variation of the measurement matrix 

1k−A kQ

1k−A  with some off-line samples. 

Suppose we have L predicates ( ) and measures ( ). The 

difference between the predicted value and the measured value ( ) 

roughly reflects the errors resulting from the process, so we calculate the diagonal 

elements  of process noise covariance  as the variance of the difference, which can 

be formulated as: 

, 1, 2, ,
i
k kx = L L L, 1, 2, ,

i
k ky = L

, 1,2, ,
i i
k k k Lx y =− L

iiq kQ
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.      (6.15) 

 Now we have the fixed process noise covariance  calculated by off-line 

samples. We can also dynamically calculate the process noise covariance  by applying 

the equation with the nearest L historical predicates and measures. To reduce the 

computation complexity, we can simply use the predication and the measure in current 

control interval to calculate the diagonal elements : 

kQ

kQ

iiq

 .         (6.16) 2)(ii i i
k kq x y= −

 When it comes to calculate the measurement noise covariance , it is important 

to know that the accuracy of a measure depends on the number of queries measured. The 

more queries the accurate the measure. As per the central limit theorem, the diagonal 

kR
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element  of measurement noise covariance  is inversely proportional to the number 

of queries measured (N): 

iir kR

 ii Constant
Nr = .        (6.17) 

If we know *N , the number of queries needed to reach the predefined measurement 

accuracy, for example 95% confidence interval of ±5% measurement
i
ky , then we have: 
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Through experiments we determined that . Combining the result with equations 

(6.17) and (6.18), we have:  

* 1402N =

 ( )20.912 k
i

ii
y

Nr = .        (6.19) 

 If workload is relatively stable,  can be determined through experiments as a 

fixed parameter. Otherwise, it can be calculated dynamically using the equation (6.19). 

kR

6.4 Evaluation 

In order to examine the ability of the Kalman filter to improve the performance prediction 

accuracy, we designed a set of experiments with both deterministic and random 

workloads. Section 6.4.1 presents the metrics for measuring the improvement of the 
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performance prediction accuracy. Section 6.4.2 gives the experimental settings, including 

the system environments, workloads and the choice of performance metrics for the 

workloads. Section 6.4.3 describes the set of experiments. The results of the experiments 

and the analysis of the results are given in Section 6.4.4. 

6.4.1 Improvement Metrics 

The improvement is measured by the performance prediction error and the percentage 

unpredicted SLO violation. The performance prediction errors are calculated as the root-

mean-square (RMS) of n prediction errors using the following equation: 

 2

1

1 )(
n

k
i in
k kRMS x y

=

= −∑  

There are two types of SLO violations: predicted SLO violations and unpredicted SLO 

violations. A predicted SLO violation is a violation that has been predicted by the system 

due to heavy workload. A predicted SLO violation is unavoidable and inherent, and 

hence, should not be included when measuring the improvement. An unpredicted SLO 

violation is a SLO violation that the system did not predict due to the inaccuracy of the 

performance model, and should be accounted for when measuring the improvement. The 

percentage of unpredicted SLO violations is calculated as the number of control intervals 

with unpredicted SLO violations divided by the total number of control intervals. 
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6.4.2 Experimental Settings 

The computer system used as the database server is an IBM xSeries® 240 machine with 

dual 1 GHZ CPUs, four PCI/ISA controllers, and 17 Seagate ST 318436LC SCSI disks. 

We use IBM DB2 Version 8.2 and Query Patroller as supporting components. 

 We use the TPC-H standard DSS benchmark as our test database and workload. 

The database consists of 300MB of data. The workload consists of two classes of TPC-H 

queries submitted by interactive clients or batch jobs one after another with zero think 

time. Each class has a SLO consisting of a performance goal and an importance level. 

Class 0 is deemed more important than Class 1 by assigning a higher importance level. 

The performance goals are determined experimentally with the total cost limit 300,000 

timerons to ensure that they are achievable.  

 Workload intensity is controlled by the number of clients or batch jobs for each 

class. We divide the tests into 6 periods with different workload intensity. Each period 

consists of sixteen 5-minute intervals. For the deterministic workload, the number of 

clients in each period is fixed (Figure 31). Period 1 is the lightest period with 15 clients 

from both classes submitting queries simultaneously. Period 3 is the heaviest period with 

25 clients from the high importance class 1 and 15 clients from the low importance class 

2 submitting queries simultaneously. The order from light to heavy for the rest of the 

periods is: 4, 6, 2, and 5. For the random workload, we allow a maximum workload 

intensity change of 10% based on the deterministic workload. This setting simulates both 

small workload fluctuations within each period and major workload changes between  
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Figure 31 Deterministic workload 

 

 

Figure 32 Random workload 
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periods. Figure 31 shows the deterministic workload and Figure 32 is a sample random 

workload. 

 We use query velocity as the performance metric. The performance goals for class 

1 and class 2 are set as 0.55 and 0.45 respectively. They are carefully set such that the 

total system cost limit is in effect all the time to ensure the system is in a consistent state. 

6.4.3 Experiments 

The following set of experiments evaluates the improvement made by applying the 

Kalman filter. We compare three scenarios in the experiments. 

No Kalman Filter 

This scenario does not use the Kalman filter and serves as our baseline measure to 

observe the improvement of accuracy of performance prediction. We collect the 

prediction and measurement data to calculate the improvement metrics described in 

Section 6.4.1, and the prediction error covariance and measurement error covariance for 

the next experiment. 

Kalman Filter with Fixed Parameters 

This scenario incorporates the Kalman filter with the pre-calculated prediction error 

covariance and the measurement error covariance from the previous scenario, and is 

designed as the scenario with a priori knowledge of the workloads. The prediction error 

covariance is calculated by applying Equation (6.15) for each period and the 
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measurement error covariance is calculated by using Equation (6.19) with k
iy  replaced by 

the average of the measures in each period. The improvement metrics are calculated. 

Kalman Filter with Dynamic Parameters 

This scenario incorporates the Kalman filter with the prediction error covariance and the 

measurement error covariance calculated on the fly using Equations (6.16) and (6.19), 

respectively, in each interval and is served as the scenario without a priori knowledge of 

the workloads. The improvement metrics are calculated. 

 All three scenarios are run with both the deterministic workloads and the random 

workloads described in the Section 6.4.2. For the deterministic workloads, Table 5 shows 

the diagonal elements of prediction error covariance (  and ) and the measurement 

error covariance (  and ) calculated from the case with no Kalman filter. Figures 33 

and 34 show the prediction errors (RMS) and the percentage unpredicted SLO violation, 

respectively. 90% Confidence interval values are given on the tops of each bar. For the 

random workloads, Table 6 shows the diagonal elements of prediction error covariance 

(  and ) and the measurement error covariance (  and ) calculated from the 

base scenario. Figures 35 and 36 show the prediction errors (RMS) and the percentage 

unpredicted SLO violation, respectively. 90% Confidence interval values are given on the 

tops of each bar. 

00q 11q

00r 11r

00q 11q 00r 11r
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Table 5 Prediction error covariance and measurement error covariance for 

deterministic workload 

 00q  11q  00r  11r  00 00q r  11 11q r  

Period1 0.0051 0.0036 0.0025 0.0022 2.0610 1.6359

Period2 0.0048 0.0012 0.0017 0.0016 2.9018 0.7641

Period3 0.0022 0.0016 0.0012 0.0013 1.7653 1.2041

Period4 0.0039 0.0044 0.0016 0.0010 2.4458 4.5655

Period5 0.0046 0.0019 0.0024 0.0014 1.9262 1.4249

Period6 0.0023 0.0030 0.0022 0.0010 1.0509 3.1200

Average 0.0037 0.0025 0.0019 0.0013 2.0252 2.1191

 

 

 

Figure 33 Prediction errors (RMS) with deterministic workload 
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Figure 34 Percentage unpredicted SLO violation with deterministic workload 

 

Table 6 Prediction error covariance and measurement error covariance for random 

workload 

 00q  11q  00r  11r  00 00q r  11 11q r  

Period1 0.0027 0.0051 0.0026 0.0023 1.0385 2.2174 

Period2 0.0024 0.0030 0.0017 0.0019 1.4118 1.5789 

Period3 0.0029 0.0039 0.0014 0.0014 2.0714 2.7857 

Period4 0.0023 0.0032 0.0018 0.0011 1.2778 2.9091 

Period5 0.0045 0.0035 0.0024 0.0015 1.8750 2.3333 

Period6 0.0037 0.0017 0.0024 0.0010 1.5417 1.7000 

Average 0.0030 0.0032 0.0020 0.0015 1.5360 2.2541 
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Figure 35 Prediction errors (RMS) with random workload 

 

 

Figure 36 Percentage unpredicted SLO violation with random workload 
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6.4.4 Analysis of the Experiment Results 

Measurement vs. Prediction 

From Tables 5 and 6 we can see that except in the period 1 for Class 2, the measurement 

error covariance is consistently smaller than the prediction error covariance in every other 

period ( , ). This suggests that the measurement is more accurate than 

prediction. We also notice that the prediction error covariance changes randomly. For 

Class 1 the average prediction error covariance for deterministic workload is larger than 

that for random workload. For class 2, however, average prediction error covariance for 

deterministic workload is smaller than that for random workload. This justifies our choice 

to calculate the prediction error covariance using Equation (6.16) for the dynamic 

Kalman filter.  

00 00q r> 11 11q r>

Prediction Error 

The RMS of prediction errors is decreased after applying the Kalman filter. As shown in 

Figures 33 and 35, the RMS of prediction errors without the Kalman filter is greater than 

that with the Kalman filter. For the deterministic workloads, the fixed Kalman filter 

produces a smaller RMS of prediction errors than the dynamic Kalaman filter. There are 

two reasons for this result. First, the fixed Kalman filter possesses a priori knowledge of 

the workloads and the dynamic Kalman filter does not. Second, the workloads are stable 

in each period, which allows the fixed Kalman filter to have better parameter estimates 

than the dynamic Kalman filter by averaging all the predictions and measures in each 

period. The percentage reduction for the dynamic Kalman filter is 
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(0.058 0.054) / 0.058 6.9%− =  for Class 1 and (0.052 0.048) / 0.052 7.6%− =  for Class 2. 

This means there is at least 6.9% improvement of prediction accuracy for the 

deterministic workload after applying the Kalman filter.  

 For the random workloads, the dynamic Kalman filter produces a smaller RMS of 

prediction errors than the fixed Kalaman filter. This is because the fixed Kalman filter 

can not catch the dynamic characteristics of workloads. The parameter average of the 

fixed Kalman filter hides randomly changing property of the parameters. The percentage 

reduction for the fixed Kalman filter is (0.059 0.055) / 0.059 6.8%− =  for Class 1, and 

 for Class 2. This means there is at least a 6.8% 

improvement of prediction accuracy for the random workload after applying the Kalman 

filter. 

(0.053 0.049) / 0.053 7.5%− =

Number of Unpredicted SLO Violations 

The percentage unpredicted SLO violations is also decreased after applying the Kalman 

filter as shown in Figures 34 and 36. For the deterministic workloads the fixed Kalman 

filter outperforms the dynamic Kalman filter. For the random workloads the dynamic 

Kalman filter is more effective than the fixed Kalman filter. This also supports the 

explanations provided when we discussed the RMS of the prediction errors. 

Fixed Kalman Filter vs. Dynamic Kalman Filter  

From the previous analysis we can see that the dynamic Kalman filter is better than the 

fixed Kalman filter when workloads change randomly, and vice versa when workloads 

are relatively stable. Both Kalman filters can improve the accuracy of performance 
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prediction. They decrease the RMS of prediction errors and the percentage unpredicted 

SLO violation. 

6.5 Summary 

This chapter studies an approach to improving the accuracy of performance prediction 

using a Kalman filter. A Kalman filter is a tracking filter, which tracks the state changes 

of a time varying process. The discrete algorithm for the Kalman filter shown in Figure 

30 is the basis for applying it into real problem. We formulated the process and 

measurement equations for improving the accuracy of performance prediction by using 

the Kalman filter. The parameters, including the initial estimation error covariance, the 

process error covariance and the measurement error covariance, have a significant 

influence on the performance of the Kalman filter. We discussed the approaches to 

determining the parameters for the Kalman filter. The process error covariance and the 

measurement error covariance can be calculated offline as fixed parameters or online 

dynamically. The experiments with both deterministic and random workloads show that 

the Kalman filter can improve the accuracy of performance prediction. The Kalman filter 

with dynamically calculated parameters outperforms the Kalman filter with pre-

calculated fixed parameters when workloads change randomly, and vice versa when 

workloads are stable.  
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

In this thesis we study workload adaptation in autonomic DBMSs. When we review 

workload management techniques, we see a clear trend that workload management is 

evolving from resource-oriented workload management into performance-oriented 

workload management. The style of workload management has also changed from offline 

analysis to online adaptation. 

 As an autonomic technique for workload management, workload adaptation must 

be able to detect workload changes and make workload control plans. Workload changes 

can be detected through workload characterization and/or performance monitoring. 

Workload control plans can be derived using four approaches, namely, a performance 

model approach, a statistical approach, a heuristic approach, and a threshold approach. 

 We proposed a general framework for workload adaptation. It consists of two 

processes, namely a workload detection process and a workload control process. The 

workload detection process detects workload changes and provides knowledge about the 

workload. The workload control process reacts to the workload changes by performing 
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resource allocation, parameter tuning and admission control to maintain system service 

levels. The framework also involves four functional components, namely workload 

characterization, performance modeling, system monitoring, and workload control. 

Workload characterization is concerned with measuring and modeling production 

workloads. Performance modeling tries to predict the performance of the target system 

through a model that describes the features of the target system. System monitoring, or 

feedback, tells how well the system is performing by continuously acquiring the 

execution information of the workload and the resource usage of the system. Workload 

control components try to find and enforce an optimal resource allocation plan to meet 

the management goals. 

 In order to prove the effectiveness of the framework, we implemented Query 

Scheduler, which is a prototype of the framework for workload adaptation in autonomic 

DBMSs. We use query cost as resource demand and perform admission control based on 

SLOs and system resource utilization. Class cost limits are determined dynamically 

through optimizing an objective function that encapsulates the SLOs with utility 

functions. Through experiments we have shown the effectiveness of the framework. 

 We proposed a general form of utility functions, which encapsulates the workload 

importance and the performance goal of a workload, and describes how well a system 

meet its SLO. Both response time goals and velocity goals can be applied consistently. 

 We showed that Query Scheduler can directly control OLAP workloads towards 

their performance goals. However, the overhead to directly control OLTP workloads 

makes Query Scheduler impractical to directly manipulate OLTP queries. We therefore 
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developed a technique for enforcing indirect control over OLTP workload by directly 

controlling the OLAP workloads. This technique enables Query Scheduler to control the 

mixed workloads consist of both OLAP and OLTP queries to meet their performance 

goals. 

 The effectiveness of workload adaptation depends on the accuracy of performance 

prediction. We present an approach for improving the accuracy of performance prediction 

to better meet the SLOs. In this approach, we use a tracking filter, Kalman filter, to track 

performance changes, so that the performance prediction is always based on a more 

accurate estimate of the current state. Experiments show that this approach is effective. 

The accuracy of performance prediction is improved and the percentage unpredicted SLO 

violation drops. 

 In conclusion, this study makes four contributions to workload management. The 

first contribution is a general framework for performance-oriented workload adaptation in 

autonomic DBMSs.  The second contribution is a prototype implementation of the 

framework, called Query Scheduler, which adapts the workload for an instance of DB2. 

The third contribution is a cost-based performance model, which guides the making of 

workload control plans. The fourth contribution is the introduction of tracking techniques 

to improve the accuracy of performance prediction. These contributions together 

constitute an effective framework for workload adaptation in autonomic DBMSs. 
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7.2 Future Work 

While effective, there are still many issues that need to be addressed. One of them is 

quantifying workload importance. When users define a SLO, the performance goal can be 

objectively determined by experiments. Workload importance, however, is a subjective 

performance metric. It is necessary to develop a well defined process to quantify the 

workload importance. 

 The overhead of controlling OLTP workloads is another issue to be addressed. 

The most effective way to manage performance of OLTP workload is to directly control 

it. A possible approach is to implement the control mechanism inside the DBMS itself. 

DB2 Viper 2, a recent new version, has implemented the service class concept into its 

engine, which is originally implemented outside DB2 engine in DB2 QP. A recent 

declassified document [Bird07] shows that “In order to handle the higher volumes with 

minimal overhead and to provide the degree of control and monitoring desired, we 

needed to incorporate any new WLM technology directly into the DB2 engine 

infrastructure. The approach of using an auxiliary application to provide workload 

management for DB2, such as used by Query Patroller, simply would not be able to 

provide what was needed.” This is a natural path for incorporating workload adaptation 

into database engines. When direct control over OLTP workload is feasible, performance 

modeling for OLTP workload will be an issue that needs to be addressed.  

 Cost-based resource allocation is not accurate. On the one hand, a class cost limit 

sets an upper-bound for a service class and is seldom reached. The resources allocated to 
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a service class are usually underutilized, causing performance fluctuation when query 

size varies widely. On the other hand, query cost is a general estimate of the usage of 

various resources, at least including CPU, I/O, buffer pool, sort heap, and lock list. 

Different types of queries have different resource usage patterns. Query cost hides this 

fact, which may cause inaccuracy. The possible approaches to address this issue can be 

studying the approaches to reducing the difference between the class cost limit and the 

water marks of the total cost of a service class, and using detailed query costs instead of 

total query cost. Finally, estimating the detailed query costs will be a challenge in the 

foreseeable future. 
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