
DBMS Workload Control using Throttling: Experimental
Insights

Wendy Powley, Pat Martin
School of Computing, Queen’s University, Kingston ON

{wendy, martin}@cs.queensu.ca

Paul Bird
 IBM Labs, Toronto, ON

pbird@ca.ibm.com

Abstract
Today’s database management systems (DBMSs)
are required to handle diverse, mixed workloads
and to provide differentiated levels of service to
ensure that critical work takes priority. In order to
meet these needs, it is necessary for a DBMS to
have control over the workload executing in the
system. Lower priority workloads should be
limited to allow higher priority workloads to
complete in a timely fashion. In this paper we
examine query throttling techniques as a method
of workload control. In our approach, a workload
class may be slowed down during execution in
order to release system resources that can be used
by higher priority workloads. We examine two
methods of throttling; constant throttling
throughout query execution, and a single
interruption in which a query is paused for a
period of time. A set of experiments using
Postresql 8.1 provides insights regarding the
performance of these different throttling
techniques under different workload conditions
and how they compare to using operating system
process priority control as a throttling mechanism.

Copyright © 2008 Wendy Powley, Pat Martin and IBM
Canada Ltd. Permission to copy is hereby granted
provided the original copyright notice is reproduced in
copies made.

1. Introduction
Several recent usage trends are forcing DBMSs
into a position where they must be able to
effectively manage their workload. First, DBMSs
have traditionally handled two distinct types of
workload; on-line transaction processing (OLTP),
characterized by frequent short data lookups or
updates, and on-line analytical processing
(OLAP) which are typically more complex,
longer running and often read-only queries.
Today’s 24/7 operational requirements mean that
it is no longer feasible to limit competition among
these workload types by running OLAP queries at
“off-peak” times such as evenings or weekends,
as such periods are essentially becoming non-
existent.

Second, the emerging trend towards server
consolidation has led to more diversity in
workloads, and increased competition for shared
resources between applications executing queries
in a single instance of the DBMS. Current
workloads may consist of hundreds or thousands
of queries running simultaneously. Workloads
are no longer simply characterized as an “OLTP
workload” or an “OLAP workload” as in the past,
but instead consist of a mix of transactional and
decision support queries.

Third, in a corporate environment, the
demands of customers, management, human
resources, marketing and finance, among others,
must be met in a timely fashion with the correct
business prioritization. These demands require

the provision of differentiated services, placing
some workload classes as a higher priority than
others. To provide differentiated services, a
DBMS must be able to recognize, characterize,
and prioritize the workloads presented to it, and to
effectively control the execution of the different
workloads so that each workload meets its pre-
defined goals, or service level agreements. The
importance of the workload to the business
determines the processing priority regardless of
the actual characteristics of the workload or
whether it is convenient for the system. Workload
management is a challenging task and solutions
typically involve low level resource allocation or
admission control.

Simultaneously executing multiple workloads
on a system often taxes the system resources and
can result in the degradation of performance.
Figure 1 shows an example of this where the
performance of one OLTP-type workload
declines when a second OLTP-type workload is
introduced to the system (at sample period 30).
As shown in Figure 1, the average throughput of
the workload executing in isolation (sample
periods 0 - 30) is approximately 360 transactions
per second. When the second workload is
introduced, the throughput of initial workload
drops dramatically. In an underutilized system,
adjusting the DBMS tuning parameters may
improve performance, but in a system that is
saturated, the only viable solution is workload
control.

0

50

100

150

200

250

300

350

400

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

Sample Period

Th
ro

ug
hp

ut
 (t

ps
)

Figure 1: Detrimental effect of running

simultaneous workloads.

In this paper we examine throttling as a means
of DBMS workload control. Throttling involves
slowing down an executing query, or query class,
to free resources for other workloads executing in
the system. We analyze two approaches to

throttling, namely a constant slowing mechanism
that institutes short pauses throughout the query
and a mechanism that initiates a single
interruption of the workload for a period of time.
We examine the effects of different pause lengths
and timing, the total throttle time and the effects
of throttling on workloads of different types with
varying degrees of lock contention. We also
compare our approach to the use of operating
system priority control as a throttling mechanism.

The contributions of the paper include an
implementation of the two throttling approaches
within PostgreSQL 8.1 and an experimental
analysis of their effectiveness. Based on these
experiments, we provide observations on
appropriate situations in which throttling may be
useful and comment on the effectiveness of the
different throttling techniques under different
conditions.

The remainder of the paper is structured as
follows. Section 2 provides an overview of
previous work found in the literature related to
DBMS workload control mechanisms. In Section
3 we outline our approach which uses query
throttling as a means to control the DBMS
workload. In Section 4 we present a set of
experiments using PostgreSQL 8.1 to illustrate
the effects of our approach. Finally, we conclude
in Section 5 and provide our ideas for future
research directions in Section 6.

2. Related Work
Research related to workload management
focuses on two approaches, namely dynamic
resource allocation and workload adaptation,
including admission control. Brown et al. [3]
propose an algorithm that automatically adjusts
multi-programming levels and memory allocation
to achieve a set of per-class response time goals
for a complex workload in DBMSs. Pang et al.
[8] propose an algorithm for multi-class query
workloads called Priority Adaptation Query
Resource Scheduling. They use admission
control, allocating memory and assigning
priorities based on current resource usage,
workload characteristics and performance
statistics. Niu et al. [7] present a framework and a
prototype query scheduler that manages multiple
classes of queries through admission control. A
resource allocation plan is derived by maximizing
an objective function that encapsulates the

performance goals of the classes and their
importance to the business.

Some commercial systems currently support
resource-oriented workload control. Teradata
Active System Management [2] and IBM® DB2®
Query Patroller [4] control the workload
presented to a DBMS by using predefined rules
based on thresholds of the workload such as
multi-programming levels, number of users, and
estimated query costs.

Throttling techniques are used by Baryshnikov
et al. [1] to reduce the amount of memory used
for query compilation in a DBMS in order to
improve throughput. In their approach,
compilations are blocked at certain periods of
their execution until resources become available.
Lang et al. [6] use throttling to slow down table
scans to keep multiple scans progressing at a
similar rate as part of their approach to controlling
multiple relational table scans. Few details are
provided regarding their throttling technique.

Our approach is based on work by Parekh et
al. [9] who apply a throttling technique to limit
the impact of on-line database utilities such as
backup/restore, data re-organization, or automatic
statistic collection on user work. In their
approach, a self-imposed sleep is used to slow
down, or throttle, the utility by a configurable
amount. This prototype system is autonomic in
that the system self-monitors and reacts according
to high level policies to decide when to throttle
the utilities and to determine the appropriate
amount of throttling. Our plan is to eventually
implement an autonomic approach similar to that
described by Parekh et al. [9] to throttle portions
of the user work as opposed to the administrative
utilities. In this paper, we examine the feasibility
of throttling DBMS workloads in a controlled
environment where throttling is imposed
manually.

3. Query Throttling
We examine throttling as a means of workload
control in a DBMS. Throttling involves slowing
down a specific portion of the work that is
currently executing in the system, thus freeing
resources for other, higher priority work.
Throttling can be instituted on a per-query basis
or on an entire workload. In this paper, we
assume that throttling is done on a per-workload
basis, involving the throttling of each query

contained in that workload. Typically, one or
more low priority workloads could be throttled to
benefit a workload with higher priority.

We employ two methods of throttling which
we call constant throttle and interrupt throttle
respectively. The constant throttle approach
involves frequent, very short pauses that are
consistent during the query execution, thus
slowing the query throughout its execution. The
interrupt throttle technique involves a one time
delay, or pause, of the query for some specific
length of time. Figure 2 depicts the two methods.

Constant Throttle

Figure 2: Throttling Techniques

Using the constant throttle technique, the
length of each pause during query execution is
very short (from a few nanoseconds up to a
second) and at regular intervals. The amount of
throttling can be controlled by either increasing
the frequency of the pauses or by increasing the
length of each pause.

In the interrupt technique, each query is
paused once and only once for a period of time
during the query execution. Pauses are longer
than for the constant throttle method (from
seconds to possibly minutes). This technique is
similar to known admission control techniques
except that the control occurs during query
execution. Instead of preventing queries from
executing, this method allows the queries to begin
execution, but then interrupts them for a period of
time. Important parameters in this approach are
the length of the interruption and the positioning
of the pause within a query.

Lock contention is a concern with throttling.
Pausing a workload for a significant length of
time while it is holding locks on data required by
the competing workload defeats the goal of
throttling. To account for this, the ability to
suspend a throttle is necessary. An advanced
implementation of our throttling approach

Pause length

Interrupt Throttle

Pause length

time

included this capability. When a throttled
workload is holding a lock that a competing
workload requires, the throttling is temporarily
suspended until the lock is released. At this point,
the throttle is reinstated. Depending on the
amount of lock contention, a throttled workload
may spend a significant amount of its execution
time in a non-throttled state.

3.1 Implementation
To examine the effectiveness of the throttling
approaches, we modified PostgreSQL 8.1 running
on Windows® XP to support throttling. Our
general architecture is illustrated by Figure 3.

For our experiments, each workload class is
handled by a separate PostgreSQL backend
process, the PostgreSQL process that handles
query execution. Having a separate backend for
each workload class allows for simple
characterization and prioritization of workloads.
Information about each backend process is
maintained in shared memory. We augment this
structure to include throttling information such as
that shown in Figure 3. Setting “Throttle” to
“ON” for a particular backend with this structure
initiates throttling for the workload class handled
by the backend.

We employ the PostgreSQL interrupt checker
routine to implement the workload control. The
interrupt checker runs with low overhead, and is
called repeatedly throughout the execution of
each query to check for interrupts. Throttling is
enforced using the nanosleep(nanoseconds)
function called from within the interrupt checking
routine. A counter local to each query is
incremented each time the interrupt handler is
called, providing a mechanism by which to
govern the amount, timing, and length of the
throttling on a per-workload (or even a per-query)
basis.

Suspension of the throttling approach is
implemented within the lock handling code.
When a query is placed on the lock wait queue, it
determines which backend is holding the
requested lock. If the backend that holds the
requested lock is currently throttled, then the
backend’s “Throttle” value is toggled to “OFF”,
thus suspending the throttling. Once the lock is
released and granted to the waiting backend, a
message is sent to the previously throttled
backend, which resets its “Throttle” value to
“ON”.

Shared Memory
Pid = 3001
Throttle = ON
Throttle Type = interrupt
Pause Length = 3 seconds
Pause Location = 1

Pid = 5612
Throttle = OFF

Figure 3: Implementation in PostgreSQL 8.1

4. Experimental Evaluation
A series of experiments were performed to
examine the effectiveness of throttling on both the
important workload and the throttled workloads.
We examined the effects of varying the degree of
throttling, that is, the total amount that we throttle
a workload. For the constant throttle we varied
the length of the pauses to examine the effects of
pause length on the workload performance. For
the interrupt throttle, we examined the effects of
instituting the pause at various positions in the
workload. The experiments were run under
different workload conditions including different
workload types (OLTP/OLAP) with varying
degrees of lock contention. We also compare
throttling to that of assigning priorities to the
workloads using operating system priorities.

All experiments were run on an IntelTM
PentiumTM 4 2.0 GHz machine with 512 MB of
RAM with the data on a single disk. Each set of
experiments was run multiple times and the
average throughputs and response times were
calculated and reported. The default PostgreSQL
configuration was used in all experiments. Given
the limited hardware environment and the modest
default PostgreSQL configuration, our system
was easily saturated by minimal workloads, which
is the desired system state for our experimental
environment.

4.1 Workloads

Two tables, ACCOUNTS and LINEITEM,
were used for our experiments. The ACCOUNTS
table was part of the pgbench database which was
included with the PostgreSQL distribution. The
LINEITEM table was from the TPC-H database

Query Executor

counter = counter + 1
if (Workload Throttle) then

if (throttle type = interrupt) then
if (counter == pause_location) then nanosleep(pause length)

else if (throttle type = constant) then
if ((counter mod percent throttle) == 0) then nanosleep(pause length)

else continue with interrupt check

PostgreSQLBackend
Process

Interrupt Checker

Shared Memory
Pid = 3001
Throttle = ON
Throttle Type = interrupt
Pause Length = 3 seconds
Pause Location = 1

Pid = 5612
Throttle = OFF

Query Executor

counter = counter + 1
if (Throttle = ON) then

if (throttle type = interrupt) then
if (counter == Pause Location) then nanosleep(Pause Length)

else if (throttle type = constant) then
if ((counter mod percent throttle) == 0) then nanosleep(Pause Length)

else continue with interrupt check

PostgreSQLBackend
Process

Interrupt Checker

specifications [10]. The ACCOUNTS table
consisted of 10 million tuples and the LINEITEM
table contained 3 million tuples. Several simple
workloads were used for our experiments and are
described as follows:

OLTP Workload – The pgbench workload was
used for the OLTP workload. Ten clients issued
random queries accessing the ACCOUNTS table.
The average throughput for this workload running
alone under the default PostgreSQL 8.1
configuration on our test-bed environment was
approximately 400 transactions per second (tps)
in select-only mode (no updates).

OLAP Lineitem – This workload consisted of a
single query involving an aggregation over the
entire LINEITEM table. Running alone in our
test-bed environment, this query took, on average,
12 seconds to complete.

OLAP Accounts – This workload consisted of a
single query involving an aggregation over the
entire ACCOUNTS table. Running alone in our
test-bed environment, this query took, on average,
40 seconds to complete.

Lock Accounts – This workload consisted of a
select only workload on the ACCOUNTS table.
One of the queries explicitly holds a lock for
approximately 5 seconds. This workload is a
mixture of the “lock” transactions as well as
simple select queries that do not require locks.

4.2 A Comparison of Constant Throttle
and Interrupt Throttle (No Data
Sharing)
The first set of experiments compared the
performance of the constant throttle and the
interrupt throttle approaches as well as
investigated a number of factors related to the two
different throttling approaches. The workloads
used for these experiments access different tables,
thus there is no sharing of data and, therefore, no
lock contention.

For the constant throttling approach, we
examined the effects of varying the length of the
pause as well as the impact of increased amounts
of throttling under varying workload conditions.
We tested the granularity of the throttle length to
determine the effects of using a very short throttle

time (.01 seconds), but pausing more frequently
during the query execution, versus a longer pause
time (1 second), but pausing less frequently. We
also varied the length of the total throttle time,
that is, the total amount of time the throttled query
spends waiting.

The important parameters in the interrupt
throttle technique are the pause length (which, in
this case, equals the total amount of throttle time)
and the positioning of the pause within the query,
that is, where in the query the pause occurs.
Thus, experiments varied the pause length and the
location of the pause. Approximate locations of
the pause included the start of the query, the
middle of the query, and the end of the query.

The timing of the pause was implemented
using the incremental counter associated with
each query which was incremented each time the
interrupt check routine was called during query
execution. The value of the counter was used to
position the pause. The number of interrupt
checks, which we denote here as It, was constant
(and known in advance) for a particular query. To
pause mid-query, the nanosecond routine was
called when the counter reached It/2. A pause at
the start of a query occurred during the first
interrupt check whereas a pause at the end of the
query occurred when the counter reached It.

Each experiment was run under two different
workload conditions; OLTP/OLAP and
OLAP/OLAP. In the OLTP/OLAP case, the
OLTP workload was the higher priority workload
and the OLAP Lineitem workload was the
competing workload that was throttled. In the
OLAP/OLAP case, the OLAP Accounts workload
was the high priority workload, and the OLAP
Lineitem workload was throttled.

The low priority OLAP Lineitem workload
consisted of a query that ran alone in
approximately 12 seconds. We ran experiments
that throttled the OLAP Lineitem query for a total
of 3, 20, 30, 50, 100, 150, 200, 250 and 300
seconds to examine the effects of increased
throttle time on the more important workload.

OLTP/OLAP Workloads
The results of the constant throttle experiments
with competing OLTP/OLAP workloads are
shown in Figure 4 and those of the interrupt
throttle approach are shown in Figure 5. In each
case, the OLAP workload is the lower priority,
throttled workload. The throughput (tps) for the

OLTP workload is shown on the left y-axis of the
graph whereas the response time (seconds) for the
OLAP query is shown on the right y-axis The first
point in each graph shows the response time
(OLAP workload) or the throughput (OLTP
workload) of each workload run independently,
that is, without a competing workload and without
throttling. The second point shows the two
workloads executing simultaneously with no
throttling.

0

50

100

150

200

250

300

350

400

Alon
e

Tog
ether 3 20 30 50 10

0
15

0
20

0
25

0
30

0

Total Throttle Length (seconds)

Th
ro

ug
hp

ut
 (T

P
S

)

0

50

100

150

200

250

300

350

400

450

500

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

OLTP 1s
OLTP .01s
OLAP 1s
OLAP .01s

Figure 4: Constant Throttle, OLTP/OLAP

The points labeled 3-300 along the x-axis of
the graphs represent the total throttle time (in
seconds) for the OLAP Lineitem workload. For
example, at x=3, the OLAP Lineitem query was
throttled for a total of 3 seconds during the query
execution. In the case of constant throttle, with
the 1 second throttle length, the query was paused
3 times during execution, each pause lasting 1
second, and the delays were (approximately)
evenly spaced throughout the query execution.
For the .01 second pause length, the OLAP
Lineitem query was paused 300 times, each pause
lasting .01 seconds, with the delays
(approximately) evenly spaced throughout the
query execution. In the case of the interrupt
throttle, the query was paused once, either at the
start, middle or end of the query for a total of 3
seconds.

With the constant throttle approach, we note
that although the performance of the OLTP
workload improves with increased throttling, it is
not until we reach an OLAP throttle time of 100
seconds that we see any reasonable improvement.
The OLTP performance actually remains quite
steady with OLAP throttling times of 20 to 100
seconds of throttling followed by a large increase
in throughput between 100 and 150 seconds.
This trend is consistent when using either a one

second pause or a .01 second pause. We also note
that with 50 seconds of throttle time, the response
time for the OLAP workload increases
dramatically. It appears from our results that the
shorter pause length for the constant throttle
technique is more detrimental to the OLAP
workload than when a longer pause length is
used, however, the pause length has no effect on
the performance of the OLTP workload.

In contrast, with the interrupt throttle
approach, we observe a steady increase in the
OLTP performance with increased throttling of
the OLAP workload, especially when the pause
occurs at the beginning of the OLAP query.
Overall, OLTP performance is better when the
OLAP query is paused at the beginning of the
query, before it has acquired resources.

With both the constant throttle and the
interrupt throttle, a maximum performance of 350
tps is reached with increased amounts of
throttling, however, performance improves more
steadily and at a slightly faster pace using the
interrupt throttle approach when the pause is
instituted at the beginning of the query.

0

50

100

150

200

250

300

350

400

Alon
e

Tog
ether 3 20 30 50 10

0
15

0
20

0
25

0
30

0

Pause Length (seconds)

Th
ro

ug
hp

ut
 (T

P
S)

0

50

100

150

200

250

300

350

400

450

Re
sp

on
se

 T
im

e
(s

ec
on

ds
)

OLTP Start
OLAP Start
OLTP Middle
OLTP End
OLAP Middle
OLAP End

Figure 5: Interrupt Throttle, OLTP/OLAP

OLAP/OLAP Workloads
The results of the constant throttle and the
interrupt throttle with competing OLAP
workloads are shown in Figure 6 and Figure 7,
respectively. The OLAP Lineitem and OLAP
Accounts workloads were run simultaneously
with the OLAP Lineitem workload throttled.
The y-axis shows the average response time (in
seconds) for each workload whereas the x-axis
shows the total throttle length (in seconds).

The average response time for each query
running in isolation is shown as the first point in

each graph. The average response time for each
workload when the two are running
simultaneously with no throttling is illustrated by
the second point in the graph. The remaining
points indicate the average response time for each
workload when the OLAP Lineitem is throttled
by a total of x seconds. The constant graph shows
two cases; a pause length of 1 second and a pause
length of .01 seconds. The graph for the interrupt
throttle case illustrates 3 cases; the pause
instituted at the beginning, middle or end of each
query.

0

100

200

300

400

500

600

Alon
e

Tog
ether 3 20 30 50 10

0
15

0
20

0
25

0
30

0

Total Throttle Length (seconds)

Re
sp

on
se

 T
im

e
(s

ec
on

ds
)

 Accounts 1s
Lineitem 1s
Accounts .01s
Lineitem .01s

Figure 6: Constant Throttle, OLAP/OLAP

Based on Figure 6, we note that there is a more
rapid performance improvement for the important
workload (as seen by the decline in response
time) when the one second pause mechanism is
used with the constant throttle technique than
when more frequent, shorter pauses are used. In
fact, in this case, using a .01 second pause length,
it is not until a total throttle length of greater than
30 seconds occurs that we observe significant
improvement in the response time for the OLAP
Accounts workload. Conversely, with the 1
second pause length, we see an immediate
improvement in the OLAP Accounts response
time, even with a total throttle time of just 3
seconds. Unlike the OLTP/OLAP case, the pause
length did not seem to have an effect on the
performance of the throttled workload.

In the interrupt throttle case, we observed
similar results to the constant throttle approach
using one second pauses. In this case, with even
short pause lengths, as little as 3 seconds, we see
some improvement, and with a 20 second pause
length, the response time is cut in half. As can be
seen by Figure 7, the location of the pause
appears to be irrelevant in the OLAP/OLAP case.

0

50

100

150

200

250

300

350

400

450

500

Alon
e

Tog
ether 3 20 30 50 10

0
15

0
20

0
25

0
30

0

Pause Length (seconds)

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

Accounts Start
Lineitem Start
Accounts Middle
Lineitem Middle
Accounts End
Lineitem End

Figure 7: Interrupt Throttle, OLAP/OLAP

4.2.1 Effects on Non-throttled
Workloads
As we have seen by the experiments thus far,
throttling the low priority OLAP workload
generally leads to an overall increase in
performance in the high priority OLTP workload,
however, it is interesting to look at the more
subtle effects of throttling a competing workload
on the high priority workload.

Figure 8 shows the variation in the
performance of the OLTP workload when a
constant throttle is imposed on the OLAP
Lineitem workload. This case shows a constant
throttle using .01 second pauses for a total of 20
seconds (a total of 2000 pauses). In this graph,
each sampling period represents an average of
1500 OLTP queries that have executed while the
OLAP query runs simultaneously.

Constant Throttle - 20 seconds total; .01s per pause

0

50

100

150

200

250

300

350

400

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210

Sample Period

Th
ro

ug
hp

ut
 (t

ps
)

Figure 8: Constant Throttle - .01 second pause
length, 20 seconds total throttle

Figure 9 shows the effects on the OLTP

workload when the OLAP workload is throttled

for 20 seconds using a pause duration of 1 second
(a total of 20 pauses). Figure 10 shows the effect
of an interrupt throttle of the OLAP workload on
the OLTP workload. In this case, the OLAP
workload is paused only once for 20 seconds.

From these figures, we see that although the
average OLTP throughput is more or less the
same (approximately 250 tps) using either
constant or interrupt throttling, there is
considerable variation in the OLTP performance
with longer pause lengths. The standard
deviations are 31.8, 49.4, 99.6 for the three
samples, respectively. We observe surges in the
OLTP workload during the pauses followed by a
drop in performance when the throttled workload
is allowed to run. The performance of the OLTP
workload is much more consistent when constant
throttling is used to slow the OLAP workload
with shorter, more frequent pauses. Although not
shown here, this trend is consistent for the
OLAP/OLAP workloads.

Constant Throttle - 1 second pauses (total 20 seconds)

0

50

100

150

200

250

300

350

400

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193

Sampling Period

Th
ro

ug
hp

ut
 (t

ps
)

Series1

Figure 9: Constant Throttle - 1 second pause

length, 20 seconds total throttle

Pause - 20 second total @ start of OLAP query

0

50

100

150

200

250

300

350

400

450

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210

Sample Period

Th
ro

ug
hp

ut
 (t

ps
)

Figure 10: Interrupt Throttle – 20 second total
pause at the start of the query

4.2.2 Overhead
Our constant throttle approach called the
nanosleep(nanoseconds) function to throttle the
query by some number of nanoseconds, possibly
thousands of times during query execution. In
order to measure the overhead involved in making
these calls, we ran the OLAP Lineitem workload
with up to three million calls to nanosleep(0).
With zero sleep time, the delay in the queries is
only due to the overhead of calling the function.

The results, shown in Figure 11, indicated that
although significant overhead was incurred with
increased numbers of invocations of the
nanosleep() function, it was negligible given the
number of calls made by the throttling technique.
In our experiments, the maximum number of calls
during the execution of the OLAP Lineitem query
was 30,000, which, using the constant throttle
technique with .01 second pauses introduced a
delay of 300 seconds. Figure 11 shows that the
response time remains unchanged from 0 – 30000
calls. We conclude that the overhead of our
approach is insignificant with “reasonable”
amounts of throttling. The cumulative effects of
overhead, however, must be taken into
consideration.

0

10

20

30

40

50

60

70

80

90

100

0 30000 75000 125000 250000 500000 1 million 3 million

Number of calls to nanosleep(0)

Re
sp

on
se

 T
im

e
(s

ec
on

ds
)

OLAP Lineitem

Figure 11: Overhead Results

4.3 Constant Throttle with Lock
Contention (Data Sharing)
So far our experiments have involved select-only
workloads, thus involving no data sharing. Lock
contention, however, plays an important role in
the use of throttling for workload control.
Throttling a workload while it holds locks
required by a competing workload degrades the
performance of both workloads, thus defeating
the goal of throttling. The basic constant throttle
approach institutes a constant slowing of the

workload by pausing at constant intervals while
the workload is running. Of course, this may
result in locks being held for a longer period of
time than is necessary. If competing workloads
are not waiting on these locks, this presents no
problem. However, if the locked objects are
needed by the more important workloads,
throttling will slow not only the progress of the
less important workload, but that of the important
workload as well. To remedy this situation, the
constant throttle approach was augmented with
logic such that, if a competing workload is
waiting on a lock held by a throttled workload,
the throttling is suspended until the lock is
released.

In this experiment we examined the effects of
throttling when there is potential for lock
contention. We compared the basic constant
throttle approach (No Logic) with the throttle
approach augmented with logic to suspend the
throttling (Logic).

Two select-only workloads accessing the
ACCOUNTS table were run simultaneously; the
OLTP workload used for the previous
experiments and the Lock Accounts workload
described in Section 4.1.1. The Lock Accounts
workload (referred to hereafter as simply the
“Lock” workload) is comprised of simple select
queries on the ACCOUNTS table interspersed by
queries that request and hold an exclusive lock on
the ACCOUNTS table for approximately 5
seconds. The amount of potential lock contention
was varied based on the number of locking
transactions in the workload. We show results for
25, 50 and 75 percent lock contention, meaning
that there was potential for lock contention 25, 50
or 75 percent of the time that the workloads were
running. The Lock workload was considered to
be the less important workload and hence was the
workload that was throttled in the experiments.
The throttling approach was a constant throttle
with .01 second pause lengths with a total pause
length of 3 seconds. Other configurations
yielded similar results.

The results are shown in Figure 12. We show
only the performance of the important workload,
that is, the non-throttled workload. Each case
shows the performance of the important workload
when the competing Lock workload is not
throttled (No Throttle), the performance when the
basic throttling approach is applied (No Logic)
and also the performance of the important

workload when the throttling of the Lock
workload is suspended each time the important
workload is waiting on a lock that is being held
by the Lock workload (Logic).

0
50

100
150
200
250
300
350
400
450

Alone 25 50 75

Percent Contention (time)

No Throttle
No Logic
Logic

Figure 12: Constant Throttle with Lock

Contention

We see from Figure 12 that throttling the less
important workload improved the performance of
the more important workload when the amount of
lock contention is low. Suspending the throttling
when the competing workload is waiting on a
lock, in this case, resulted in only a very slight
improvement. With increasing lock contention,
however, throttling the Lock workload with no
throttle suspension resulted in reduced
performance for the important workload and only
minor improvements with throttle suspension.

4.4 A Comparison of Constant Throttle
and Operating System Priority Control
In this set of experiments we compared our
constant throttling approach to the use of
operating system (OS) process priority control to
slow down the less important workload. The
Cygwin [5] “nice” command was used to lower
the priority of the PostgreSQL process that is
servicing the less important workload. We
compared different “nice” values (5, 10, 15, 19
where higher values represent lower priority) and
found that the nice factor, because we are running
only two workloads, had little to no effect. We
therefore report results only for a nice factor of 5.

In the first experiment, we ran the
OLAP/OLTP workloads with no lock contention
using the operating system priority (the nice
command) to throttle the OLAP workload. The
results are shown in Figure 13. This figure shows
the performance (transactions per second for the
OLTP workload, response time for the OLAP

workload) of the workloads running separately
(ideal performance), together (conflicting) and
with the OLAP workload throttled by lowering
the OS priority of the PostgreSQL backend
handling this workload. The performance of the
OLTP workload improved dramatically when the
OLAP workload was throttled using a reduced OS
priority level. The OLTP workload reaches on
average 314 transactions per second.

Comparing these results to those of our
constant and interrupt throttling approaches, all
resulted in an increase in performance for the
important (OLTP) workload. With our throttling
approach, however, the OLTP workload was able
to reach a maximum of 350 transactions per
second as compared to the maximum 314
transactions per second achieved by the OS
priority approach.

Both the OS priority control technique and the
throttling approaches incurred a significant
performance decrement to the OLAP workload.
Using the OS priority control, the resulting OLAP
workload performance was, on average, 500
seconds whereas with the throttling approaches it
averaged approximately 400 seconds for best
overall OLTP performance. In fact, to reach the
same level of OLTP performance achieved by the
OS priority technique (that is, 314 tps), the
throttling techniques slowed the OLAP workload
to less than 200 seconds (as compared to 500
seconds for the OS priority technique). Thus the
throttling approaches allowed the less important
workload to continue at a faster pace than with
the OS priority approach while, at the same time,
improving the OLTP performance.

0

100

200

300

400

500

600

Alone Together Nice 5Th
ro

ug
hp

ut
 (t

ps
) /

 R
es

po
ns

e
Ti

m
e

(s
)

OLTP
OLAP

Figure 13: OLAP/OLTP Using Operating System
Priority Control (no lock contention)

Figure 14 shows the results of throttling using
OS priority control with competing OLAP
workloads. In this case, the Lineitem workload
was throttled using the “nice” command. Using
this technique, the response time of the important

workload improves to, on average, 297 seconds.
As shown in Figure 6 and Figure 7, using the
constant or interrupt throttling approaches, the
response time for the important workload can be
reduced to less than 200 seconds with little impact
on the throttled workload. Therefore, although
both our throttling approaches and the OS priority
control improve the performance of the important
workload class, our throttling approaches show
greater improvement with the added benefit of
less impact to the throttled workload.

0
50

100
150
200
250
300
350
400
450
500

Alone Together Nice 5

Re
sp

on
se

 T
im

e
(s

)

Accounts
LineItem

Figure 14: OLAP/OLAP Using Operating

System Priority Control (no lock contention)

In the final experiment, we introduced lock
contention into the workloads. The same
workloads were used as in Section 4.4. The
amount of potential lock contention was varied
based on the number of locking transactions in
the workload. We show results for 25, 50 and 75
percent lock contention. The Lock workload was
considered to be the less important workload and
hence was the throttled workload.

The experiments compared the best results
obtained by our throttling techniques with the OS
priority control technique. We show only the
performance of the important workload, that is,
the OLTP workload, in Figure 15.

0
50

100
150
200
250
300
350
400
450

Alone 25% 50% 75%

Amount of Contention (time)

Th
ro

ug
hp

ut
 (t

ps
)

OS Priority
Throttle

Figure 15: OS Priority Control vs Constant

Throttle with Lock Contention

We see that as the amount of lock contention
increased, using the OS priority control was
clearly superior over our throttling approaches.
However, the reason for this phenomenon lies in
the implementation of the throttling approach. In

the throttling technique, the timing of the throttle
is based on the number of times the interrupt
handler routine is called during the execution of
the workload. The timing of the pauses is
determined by the total number of interrupt
checks for the workload and the pauses are
inserted when the incremental counter reaches a
certain number. Due to the fact that longer
queries have more interrupt checks than shorter
queries, the pauses are more likely to occur
during these longer queries. The Lock workload
consists of short queries interspersed with longer
queries that hold exclusive locks. Obviously
more interrupt checks are done throughout the
longer query. Because of this, the throttling is
more likely to occur during the queries that hold
the locks, thus delaying not only the throttled
workload, but the important workload that is
waiting on the lock. In the OS Priority control
technique, the throttling is more consistent
throughout the workload, slowing both the simple
select queries as well as those queries bthat hold
the locks.

5. Conclusions
Competing workloads in a DBMS can have a
detrimental effect on performance. In order to
provide differentiated levels of service and to
ensure that high priority workloads are favoured
over lower priority workloads, some degree of
workload control is required. Slowing a
workload class by way of constant throttling or by
interrupting the queries is suggested as a means of
controlling the amount of work executing in a
system simultaneously. We provide a set of
experiments to show how these approaches
perform under a variety of workloads and
conditions.

The results of our experiments show that
slowing down a workload class by throttling or
pausing can result in improved performance for a
competing class. In most cases, however, this
benefit is achieved only with a significant
sacrifice to the performance of the workload that
is throttled. Our experiments showed that the
pause length was significant in determining the
net effect on the throttled workload. Longer
pause lengths, in the case of the constant throttle,
were less detrimental to the throttled workload
than shorter, more frequent pauses.

The need to slow a workload down
significantly may be acceptable in some

conditions, such as when the low priority
workload is “best effort”, or has no service level
agreements that must be satisfied. Delaying such
a workload allows the work to continue, just at a
slower pace. With other workload control
mechanisms, this “best effort” class may be
prevented from entering the system for long
periods of time when there is a high volume of
high priority work.

The variation in the performance of the high
priority workload is substantial when the low
priority workload is slowed using the interrupt
throttle method. In contrast, this variation is
lower when the constant throttling technique is
used. Therefore, the importance of performance
consistency for the high priority workload may
influence the mechanism used to slow down the
low priority workload. If improving overall
throughput is the only goal, then either constant
or interrupt throttle is suitable. However, if
consistent performance for the high priority
workload is crucial, then constant throttling
techniques are more advisable.

Our experiments suggest that, for the interrupt
throttle, in the case of high priority OLTP
workload and low priority OLAP workload,
pausing the OLAP query at the start of the query
before it begins execution is superior to pausing
the query at the middle or the end of the query.

The amount of expected lock contention
among competing workloads will have an impact
on the effectiveness of throttling the less
important workloads. When the amount of lock
contention is high, measures must be taken to
ensure that throttled workloads do not hold locks
for unnecessary amounts of time. The throttling
technique must take this into consideration;
otherwise throttling such workloads should be
avoided.

The constant throttle technique was compared
to the use of operating system process priority to
control a workload. In most cases, the throttling
techniques resulted in greater improvement to the
important workload with less impact on the
throttled workload. The exception to this claim
was when there was lock contention. In this case,
the OS priority technique performed better due to
the fact that it was more consistent in slowing the
entire workload as opposed to our approach
which had a tendency to throttle more often
during the longer queries that were holding the
locks.

6. Future Work
We have provided some insights into the
advantages and disadvantages of using constant
throttle and interrupt throttle on different
combinations of workload types and also
compared these approaches to that of using
process priority control. These are very
preliminary results to examine the feasibility of
this approach. It is clear from our findings that
workload throttling for DBMSs is a promising
research area.

In the current work, we have a priori
knowledge regarding query response times,
making it easy to control the throttling by placing
constant pauses throughout the workload. In
reality, however, the system does not have this
knowledge about the workloads being handled.
We will investigate methods for controlling the
amount and timing of throttling for ad hoc
queries.

Our long-range plan is to implement workload
class throttling as an autonomic feature of a
DBMS. As an autonomic workload control
mechanism, the system will react to high level
policies, and will adjust the mix of workloads
currently executing in the system without human
intervention. The system will determine which
workload classes it should slow down, choose a
mechanism for throttling the workload, and
determine the amount and length of throttling
required.

Acknowledgements
The authors wish to thank Neil Conway of the
PostgreSQL development team for his valuable
insights regarding our implementation and IBM,
NSERC and OCE-CCIT for their financial
support.

About the Authors
Patrick Martin is a Professor in the School of
Computing at Queen’s University. He holds a
BSc from the University of Toronto, MSc from
Queen’s University and a PhD from the
University of Toronto. He is also a Faculty
Fellow with the IBM Centre for Advanced
Studies in Toronto, ON. His research interests
include database system performance, Web
services and autonomic computing systems.

Wendy Powley is a Research Associate and
Adjunct Lecturer in the school of Computing at
Queen’s University. She holds a BA in
psychology, a BEd, and an MSc in Computer
Science from Queen’s University. Her research
interests include database systems, web services
and autonomic computing.

Paul Bird is a Senior Technical Staff Member in
the DB2 Database for Linux®, UNIX®, and
Windows® Development organization within the
Information Management group of IBM. His
areas of interest include workload management,
security, monitoring, and general SQL processing.

References
[1] B. Baryshnikov, C. Clinciu, C. Cunningham, L.

Giakoumakis, S. Oks, and S. Stefani. “Managing
Query Compilation Memory Consumption to
Improve DBMS Throughput”, 3rd Biennial
Conference on Innovative Data Systems Research
(CIDR), January 7-10, 2007, Asilomar, California,
USA.

[2] D. P. Brown, A. Richards, R. Zeehandelaar, and

D. Galeazzi. “Teradata Active System
Management”, http://www.teradata.com/t
/page/145613/index.html.

[3] K. P. Brown, M. Mehta, M. J. Carey, and M.

Livny. “Towards Automated Performance Tuning
For Complex Workloads”, Proceedings of the 20th
Very Large Data Base Conference, Santiago,
Chile, 1994.

[4] IBM Corporation. DB2 Query Patroller Guide:

Installation, Administration, and Usage, 2003.

[5] CYGWIN http://www.cygwin.com/.

[6] C. Lang, S. Padmanabhan and K. Wong.

“Increasing Buffer-Locality for Multiple
Relational Table Scans through Grouping and
Throttling”, Proceedings of the 23rd International
Conference on Data Engineering (ICDE), Istanbul,
Turkey, April 17-20, 2007.

[7] B. Niu, P. Martin, W. Powley, R. Horman and P.

Bird. “Workload Adaptation in Autonomic
DBMSs”. Proceedings of CASCON 2006,
Toronto, October 16 – 19, 2003.

[8] H. Pang, M. J. Carey, and M. Livny. “Multiclass

Query Scheduling in Real-Time Database

Systems”, IEEE Transaction on Knowledge and
Data Engineering, Vol. 7, No. 4, Aug. 1995.

[9] S. Parekh, K. Rose, J. Hellerstein, S. Lightstone,

M. Huras and V. Chang, “Managing the
Performance Impact of Administrative Utilities”,
in Self Managing Distributed Systems, Springer
Berlin, Heidelberg, February 19, 2004, pp. 130-
142.

[10] Transaction Processing Performance Council,

TPC-H Specifications, http://www.tpc.org.

Trademarks
IBM and DB2 are trademarks or registered
trademarks of International Business Machines
Corporation in the United States, other countries,
or both.

Linux is a registered trademark of Linus Torvalds
in the United States, other countries, or both.

Windows is a trademark of Microsoft Corporation
in the United States, other countries, or both.

Intel and Pentium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

UNIX is a registered trademark of The Open
Group in the United States and other countries.

Other company, product, or service names may be
trademarks or service marks of others.

	1. Introduction
	2. Related Work
	3. Query Throttling
	3.1 Implementation

	4. Experimental Evaluation
	4.1 Workloads
	OLTP/OLAP Workloads
	OLAP/OLAP Workloads

	
	5. Conclusions
	6. Future Work
	Acknowledgements
	References
	Trademarks

