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Abstract
Today’s database management systems (DBMSs) 
are required to handle diverse, mixed workloads 
and to provide differentiated levels of service to 
ensure that critical work takes priority. In order to 
meet these needs, it is necessary for a DBMS to 
have control over the workload executing in the 
system.  Lower priority workloads should be 
limited to allow higher priority workloads to 
complete in a timely fashion.  In this paper we 
examine query throttling techniques as a method 
of workload control. In our approach, a workload 
class may be slowed down during execution in 
order to release system resources that can be used 
by higher priority workloads.   We examine two 
methods of throttling; constant throttling 
throughout query execution, and a single 
interruption in which a query is paused for a 
period of time.  A set of experiments using 
Postresql 8.1 provides insights regarding the 
performance of these different throttling 
techniques under different workload conditions 
and how they compare to using operating system 
process priority control as a throttling mechanism. 
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1. Introduction 
Several recent usage trends are forcing DBMSs 
into a position where they must be able to 
effectively manage their workload. First,  DBMSs 
have traditionally handled two distinct types of 
workload; on-line transaction processing (OLTP), 
characterized by frequent short data lookups or 
updates, and on-line analytical processing 
(OLAP) which are typically more complex, 
longer running and often read-only queries.  
Today’s 24/7 operational requirements mean that 
it is no longer feasible to limit competition among 
these workload types by running OLAP queries at 
“off-peak” times such as evenings or weekends, 
as such  periods are essentially becoming non-
existent.   

Second, the emerging trend towards server 
consolidation has led to more diversity in 
workloads, and increased competition for shared 
resources between applications executing queries 
in a single instance of the DBMS.  Current 
workloads may consist of hundreds or thousands 
of queries running simultaneously.  Workloads 
are no longer simply characterized as an “OLTP 
workload” or an “OLAP workload” as in the past, 
but instead consist of a mix of transactional and 
decision support queries.   

Third, in a corporate environment, the 
demands of customers, management, human 
resources, marketing and finance, among others, 
must be met in a timely fashion with the correct 
business prioritization.  These demands require 

  
 



the provision of differentiated services, placing 
some workload classes as a higher priority than 
others.  To provide differentiated services, a 
DBMS must be able to recognize, characterize, 
and prioritize the workloads presented to it, and to 
effectively control the execution of the different 
workloads so that each workload meets its pre-
defined goals, or service level agreements.  The 
importance of the workload to the business 
determines the processing priority regardless of 
the actual characteristics of the workload or 
whether it is convenient for the system. Workload 
management is a challenging task and solutions 
typically involve low level resource allocation or 
admission control. 

Simultaneously executing multiple workloads 
on a system often taxes the system resources and 
can result in the degradation of performance.  
Figure 1 shows an example of this where the 
performance of one OLTP-type workload 
declines when a second OLTP-type workload is 
introduced to the system (at sample period 30). 
As shown in Figure 1, the average throughput of 
the workload executing in isolation (sample 
periods 0 - 30) is approximately 360 transactions 
per second.  When the second workload is 
introduced, the throughput of initial workload 
drops dramatically.  In an underutilized system, 
adjusting the DBMS tuning parameters may 
improve performance, but in a system that is 
saturated, the only viable solution is workload 
control. 
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Figure 1:  Detrimental effect of running 

simultaneous workloads. 

In this paper we examine throttling as a means 
of DBMS workload control.  Throttling involves 
slowing down an executing query, or query class, 
to free resources for other workloads executing in 
the system.   We analyze two approaches to 

throttling, namely a constant slowing mechanism 
that institutes short pauses throughout the query 
and a mechanism that initiates a single 
interruption of the workload for a period of time.  
We examine the effects of different pause lengths 
and timing, the total throttle time and the effects 
of throttling on workloads of different types with 
varying degrees of lock contention.  We also 
compare our approach to the use of operating 
system priority control as a throttling mechanism. 

The contributions of the paper include an 
implementation of the two throttling approaches 
within PostgreSQL 8.1 and an experimental 
analysis of their effectiveness.  Based on these 
experiments, we provide observations on 
appropriate situations in which throttling may be 
useful and comment on the effectiveness of the 
different throttling techniques under different 
conditions. 

The remainder of the paper is structured as 
follows.    Section 2 provides an overview of 
previous work found in the literature related to 
DBMS workload control mechanisms.  In Section 
3 we outline our approach which uses query 
throttling as a means to control the DBMS 
workload.  In Section 4 we present a set of 
experiments using PostgreSQL 8.1 to illustrate 
the effects of our approach.  Finally, we conclude 
in Section 5 and provide our ideas for future 
research directions in Section 6. 

 
2. Related Work 
Research related to workload management 
focuses on two approaches, namely dynamic 
resource allocation and workload adaptation, 
including admission control.   Brown et al. [3] 
propose an algorithm that automatically adjusts 
multi-programming levels and memory allocation 
to achieve a set of per-class response time goals 
for a complex workload in DBMSs.  Pang et al. 
[8] propose an algorithm for multi-class query 
workloads called Priority Adaptation Query 
Resource Scheduling. They use admission 
control, allocating memory and assigning 
priorities based on current resource usage, 
workload characteristics and performance 
statistics.  Niu et al. [7] present a framework and a 
prototype query scheduler that manages multiple 
classes of queries through admission control.  A 
resource allocation plan is derived by maximizing 
an objective function that encapsulates the 

  
 



performance goals of the classes and their 
importance to the business.     

Some commercial systems currently support 
resource-oriented workload control. Teradata 
Active System Management [2]  and IBM® DB2® 
Query Patroller [4] control the workload 
presented to a DBMS by using predefined rules 
based on thresholds of the workload such as 
multi-programming levels, number of users, and 
estimated query costs. 

Throttling techniques are used by Baryshnikov 
et al. [1] to reduce the amount of memory used 
for query compilation in a DBMS in order to 
improve throughput. In their approach, 
compilations are blocked at certain periods of 
their execution until resources become available.  
Lang et al. [6] use throttling to slow down table 
scans to keep multiple scans progressing at a 
similar rate as part of their approach to controlling 
multiple relational table scans.  Few details are 
provided regarding their throttling technique. 

Our approach is based on work by Parekh et 
al. [9] who apply a throttling technique to limit 
the impact of on-line database utilities such as 
backup/restore, data re-organization, or automatic 
statistic collection on user work.  In their 
approach, a self-imposed sleep is used to slow 
down, or throttle, the utility by a configurable 
amount.  This prototype system is autonomic in 
that the system self-monitors and reacts according 
to high level policies to decide when to throttle 
the utilities and to determine the appropriate 
amount of throttling.   Our plan is to eventually 
implement an autonomic approach similar to that 
described by Parekh et al. [9] to throttle portions 
of the user work as opposed to the administrative 
utilities.  In this paper, we examine the feasibility 
of throttling DBMS workloads in a controlled 
environment where throttling is imposed 
manually. 
 
3. Query Throttling  
We examine throttling as a means of workload 
control in a DBMS. Throttling involves slowing 
down a specific portion of the work that is 
currently executing in the system, thus freeing 
resources for other, higher priority work.  
Throttling can be instituted on a per-query basis 
or on an entire workload.  In this paper, we 
assume that throttling is done on a per-workload 
basis, involving the throttling of each query 

contained in that workload.   Typically, one or 
more low priority workloads could be throttled to 
benefit a workload with higher priority. 

We employ two methods of throttling which 
we call constant throttle and interrupt throttle 
respectively.  The constant throttle approach 
involves frequent, very short pauses that are 
consistent during the query execution, thus 
slowing the query throughout its execution.  The 
interrupt throttle technique involves a one time 
delay, or pause, of the query for some specific 
length of time.  Figure 2 depicts the two methods.   

 
Constant Throttle 

 
Figure 2:  Throttling Techniques 

Using the constant throttle technique, the 
length of each pause during query execution is 
very short (from a few nanoseconds up to a 
second) and at regular intervals.  The amount of 
throttling can be controlled by either increasing 
the frequency of the pauses or by increasing the 
length of each pause.   

In the interrupt technique, each query is 
paused once and only once for a period of time 
during the query execution.  Pauses are longer 
than for the constant throttle method (from 
seconds to possibly minutes). This technique is 
similar to known admission control techniques 
except that the control occurs during query 
execution.  Instead of preventing queries from 
executing, this method allows the queries to begin 
execution, but then interrupts them for a period of 
time. Important parameters in this approach are 
the length of the interruption and the positioning 
of the pause within a query.   

Lock contention is a concern with throttling.  
Pausing a workload for a significant length of 
time while it is holding locks on data required by 
the competing workload defeats the goal of 
throttling.  To account for this, the ability to 
suspend a throttle is necessary. An advanced 
implementation of our throttling approach 
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included this capability. When a throttled 
workload is holding a lock that a competing 
workload requires, the throttling is temporarily 
suspended until the lock is released.  At this point, 
the throttle is reinstated.   Depending on the 
amount of lock contention, a throttled workload 
may spend a significant amount of its execution 
time in a non-throttled state. 

 
3.1 Implementation 
To examine the effectiveness of the throttling 
approaches, we modified PostgreSQL 8.1 running 
on Windows® XP to support throttling.  Our 
general architecture is illustrated by Figure 3. 

For our experiments, each workload class is 
handled by a separate PostgreSQL backend 
process, the PostgreSQL process that handles 
query execution. Having a separate backend for 
each workload class allows for simple 
characterization and prioritization of workloads.  
Information about each backend process is 
maintained in shared memory.  We augment this 
structure to include throttling information such as 
that shown in Figure 3.   Setting “Throttle” to 
“ON” for a particular backend with this structure 
initiates throttling for the workload class handled 
by the backend.   

We employ the PostgreSQL interrupt checker 
routine to implement the workload control.  The 
interrupt checker runs with low overhead, and is 
called repeatedly throughout the execution of 
each query to check for interrupts. Throttling is 
enforced using the nanosleep(nanoseconds) 
function called from within the interrupt checking 
routine.  A counter local to each query is 
incremented each time the interrupt handler is 
called, providing a mechanism by which to 
govern the amount, timing, and length of the 
throttling on a per-workload (or even a per-query) 
basis. 

Suspension of the throttling approach is 
implemented within the lock handling code.   
When a query is placed on the lock wait queue, it 
determines which backend is holding the 
requested lock.  If the backend that holds the 
requested lock is currently throttled, then the 
backend’s “Throttle” value is toggled to “OFF”, 
thus suspending the throttling. Once the lock is 
released and granted to the waiting backend, a 
message is sent to the previously throttled 
backend, which resets its “Throttle” value to 
“ON”. 

 

Shared Memory 
Pid = 3001
Throttle = ON
Throttle Type =  interrupt 
Pause Length =  3 seconds 
Pause Location = 1 

Pid = 5612 
Throttle = OFF

 
Figure 3:  Implementation in PostgreSQL 8.1 

 
4. Experimental Evaluation 
A series of experiments were performed to 
examine the effectiveness of throttling on both the 
important workload and the throttled workloads.  
We examined the effects of varying the degree of 
throttling, that is, the total amount that we throttle 
a workload.  For the constant throttle we varied 
the length of the pauses to examine the effects of 
pause length on the workload performance.  For 
the interrupt throttle, we examined the effects of 
instituting the pause at various positions in the 
workload.  The experiments were run under 
different workload conditions including different 
workload types (OLTP/OLAP) with varying 
degrees of lock contention. We also compare 
throttling to that of assigning priorities to the 
workloads using operating system priorities.  

All experiments were run on an IntelTM 
PentiumTM 4 2.0 GHz machine with 512 MB of 
RAM with the data on a single disk.   Each set of 
experiments was run multiple times and the 
average throughputs and response times were 
calculated and reported.  The default PostgreSQL 
configuration was used in all experiments. Given 
the limited hardware environment and the modest 
default PostgreSQL configuration, our system 
was easily saturated by minimal workloads, which 
is the desired system state for our experimental 
environment. 
 
4.1 Workloads 

Two tables, ACCOUNTS and LINEITEM, 
were used for our experiments.  The ACCOUNTS 
table was part of the pgbench database which was 
included with the PostgreSQL distribution.   The 
LINEITEM table was from the TPC-H database 

Query Executor

counter = counter + 1
if (Workload Throttle) then

if (throttle type = interrupt) then 
if (counter == pause_location ) then  nanosleep(pause length)

else if (throttle type = constant)  then 
if ((counter mod percent throttle) == 0) then  nanosleep(pause length)

else continue with interrupt check 
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specifications [10].  The ACCOUNTS table 
consisted of 10 million tuples and the LINEITEM 
table contained 3 million tuples.  Several simple 
workloads were used for our experiments and are 
described as follows: 
 
OLTP Workload –  The pgbench workload was 
used for the OLTP workload.  Ten clients issued 
random queries accessing the ACCOUNTS table. 
The average throughput for this workload running 
alone under the default PostgreSQL 8.1 
configuration on our test-bed environment was 
approximately 400 transactions per second (tps) 
in select-only mode (no updates). 
 
OLAP Lineitem – This workload consisted of a 
single query involving an aggregation over the 
entire LINEITEM table.  Running alone in our 
test-bed environment, this query took, on average, 
12 seconds to complete. 
 
OLAP Accounts – This workload consisted of a 
single query involving an aggregation over the 
entire ACCOUNTS table. Running alone in our 
test-bed environment, this query took, on average, 
40 seconds to complete. 
 
Lock Accounts – This workload consisted of a 
select only workload on the ACCOUNTS table.  
One of the queries explicitly holds a lock for 
approximately 5 seconds.  This workload is a 
mixture of the “lock” transactions as well as 
simple select queries that do not require locks.   
 
4.2 A Comparison of Constant Throttle 
and Interrupt Throttle (No Data 
Sharing) 
The first set of experiments compared the 
performance of the constant throttle and the 
interrupt throttle approaches as well as 
investigated a number of factors related to the two 
different throttling approaches.   The workloads 
used for these experiments access different tables, 
thus there is no sharing of data and, therefore, no 
lock contention. 

For the constant throttling approach, we 
examined the effects of varying the length of the 
pause as well as the impact of increased amounts 
of throttling under varying workload conditions.  
We tested the granularity of the throttle length to 
determine the effects of using a very short throttle 

time (.01 seconds), but pausing more frequently 
during the query execution, versus a longer pause 
time (1 second), but pausing less frequently. We 
also varied the length of the total throttle time, 
that is, the total amount of time the throttled query 
spends waiting.  

The important parameters in the interrupt 
throttle technique are the pause length (which, in 
this case, equals the total amount of throttle time) 
and the positioning of the pause within the query, 
that is, where in the query the pause occurs.   
Thus, experiments varied the pause length and the 
location of the pause.  Approximate locations of 
the pause included the start of the query, the 
middle of the query, and the end of the query.   

The timing of the pause was implemented 
using the incremental counter associated with 
each query which was incremented each time the 
interrupt check routine was called during query 
execution.  The value of the counter was used to 
position the pause. The number of interrupt 
checks, which we denote here as It, was constant 
(and known in advance) for a particular query. To 
pause mid-query, the nanosecond routine was 
called when the counter reached It/2. A pause at 
the start of a query occurred during the first 
interrupt check whereas a pause at the end of the 
query occurred when the counter reached It. 

Each experiment was run under two different 
workload conditions; OLTP/OLAP and 
OLAP/OLAP.  In the OLTP/OLAP case, the 
OLTP workload was the higher priority workload 
and the OLAP Lineitem workload was the 
competing workload that was throttled.  In the 
OLAP/OLAP case, the OLAP Accounts workload 
was the high priority workload, and the OLAP 
Lineitem workload was throttled.   

The low priority OLAP Lineitem workload 
consisted of a query that ran alone in 
approximately 12 seconds.  We ran experiments 
that throttled the OLAP Lineitem query for a total 
of 3, 20, 30, 50, 100, 150, 200, 250 and 300 
seconds to examine the effects of increased 
throttle time on the more important workload. 

 
OLTP/OLAP Workloads 
The results of the constant throttle experiments 
with competing OLTP/OLAP workloads are 
shown in Figure 4 and those of the interrupt 
throttle approach are shown in Figure 5.  In each 
case, the OLAP workload is the lower priority, 
throttled workload.   The throughput (tps) for the 

  
 



OLTP workload is shown on the left y-axis of the 
graph whereas the response time (seconds) for the 
OLAP query is shown on the right y-axis The first 
point in each graph shows the response time 
(OLAP workload) or the throughput (OLTP 
workload) of each workload run independently, 
that is, without a competing workload and without 
throttling.  The second point shows the two 
workloads executing simultaneously with no 
throttling.   
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Figure 4:  Constant Throttle, OLTP/OLAP 

The points labeled 3-300 along the x-axis of 
the graphs represent the total throttle time (in 
seconds) for the OLAP Lineitem workload.  For 
example, at x=3, the OLAP Lineitem query was 
throttled for a total of 3 seconds during the query 
execution.   In the case of constant throttle, with 
the 1 second throttle length, the query was paused 
3 times during execution, each pause lasting 1 
second, and the delays were (approximately) 
evenly spaced throughout the query execution.  
For the .01 second pause length, the OLAP 
Lineitem query was paused 300 times, each pause 
lasting .01 seconds, with the delays 
(approximately) evenly spaced throughout the 
query execution.    In the case of the interrupt 
throttle, the query was paused once, either at the 
start, middle or end of the query for a total of 3 
seconds. 

With the constant throttle approach, we note 
that although the performance of the OLTP 
workload improves with increased throttling, it is 
not until we reach an OLAP throttle time of 100 
seconds that we see any reasonable improvement. 
The OLTP performance actually remains quite 
steady with OLAP throttling times of 20 to 100 
seconds of throttling followed by a large increase 
in throughput between 100 and 150 seconds.  
This trend is consistent when using either a one 

second pause or a .01 second pause.  We also note 
that with 50 seconds of throttle time, the response 
time for the OLAP workload increases 
dramatically.  It appears from our results that the 
shorter pause length for the constant throttle 
technique is more detrimental to the OLAP 
workload than when a longer pause length is 
used, however, the pause length has no effect on 
the performance of the OLTP workload. 

In contrast, with the interrupt throttle 
approach, we observe a steady increase in the 
OLTP performance with increased throttling of 
the OLAP workload, especially when the pause 
occurs at the beginning of the OLAP query.  
Overall, OLTP performance is better when the 
OLAP query is paused at the beginning of the 
query, before it has acquired resources.   

With both the constant throttle and the 
interrupt throttle, a maximum performance of 350 
tps is reached with increased amounts of 
throttling, however, performance improves more 
steadily and at a slightly faster pace using the 
interrupt throttle approach when the pause is 
instituted at the beginning of the query. 
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Figure 5:  Interrupt Throttle, OLTP/OLAP 

 
OLAP/OLAP Workloads 
The results of the constant throttle and the 
interrupt throttle with competing OLAP 
workloads are shown in Figure 6 and Figure 7, 
respectively.   The OLAP Lineitem and OLAP 
Accounts workloads were run simultaneously 
with the OLAP Lineitem workload throttled.    
The y-axis shows the average response time (in 
seconds) for each workload whereas the x-axis 
shows the total throttle length (in seconds). 

The average response time for each query 
running in isolation is shown as the first point in 

  
 



each graph.  The average response time for each 
workload when the two are running 
simultaneously with no throttling is illustrated by 
the second point in the graph.  The remaining 
points indicate the average response time for each 
workload when the OLAP Lineitem is throttled 
by a total of x seconds.  The constant graph shows 
two cases; a pause length of 1 second and a pause 
length of .01 seconds.  The graph for the interrupt 
throttle case illustrates 3 cases; the pause 
instituted at the beginning, middle or end of each 
query. 

 

0

100

200

300

400

500

600

Alon
e

Tog
ether 3 20 30 50 10

0
15

0
20

0
25

0
30

0

Total Throttle Length (seconds)

Re
sp

on
se

 T
im

e 
(s

ec
on

ds
)

 Accounts 1s
Lineitem 1s
Accounts .01s
Lineitem .01s

 
Figure 6: Constant Throttle, OLAP/OLAP 

Based on Figure 6, we note that there is a more 
rapid performance improvement for the important 
workload (as seen by the decline in response 
time) when the one second pause mechanism is 
used with the constant throttle technique than 
when more frequent, shorter pauses are used.  In 
fact, in this case, using a .01 second pause length, 
it is not until a total throttle length of greater than 
30 seconds occurs that we observe significant 
improvement in the response time for the OLAP 
Accounts workload.  Conversely, with the 1 
second pause length, we see an immediate 
improvement in the OLAP Accounts response 
time, even with a total throttle time of just 3 
seconds.  Unlike the OLTP/OLAP case, the pause 
length did not seem to have an effect on the 
performance of the throttled workload. 

In the interrupt throttle case, we observed 
similar results to the constant throttle approach 
using one second pauses.  In this case, with even 
short pause lengths, as little as 3 seconds, we see 
some improvement, and with a 20 second pause 
length, the response time is cut in half.   As can be 
seen by Figure 7, the location of the pause 
appears to be irrelevant in the OLAP/OLAP case. 
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Figure 7:  Interrupt Throttle, OLAP/OLAP 

 
4.2.1 Effects on Non-throttled 
Workloads 
As we have seen by the experiments thus far, 
throttling the low priority OLAP workload 
generally leads to an overall increase in 
performance in the high priority OLTP workload, 
however, it is interesting to look at the more 
subtle effects of throttling a competing workload 
on the high priority workload. 

Figure 8 shows the variation in the 
performance of the OLTP workload when a 
constant throttle is imposed on the OLAP 
Lineitem workload.  This case shows a constant 
throttle using .01 second pauses for a total of 20 
seconds (a total of 2000 pauses).  In this graph, 
each sampling period represents an average of 
1500 OLTP queries that have executed while the 
OLAP query runs simultaneously.  
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Figure 8:  Constant Throttle - .01 second pause 
length, 20 seconds total throttle 

 
Figure 9 shows the effects on the OLTP 

workload when the OLAP workload is throttled 

  
 



for 20 seconds using a pause duration of 1 second 
(a total of 20 pauses). Figure 10 shows the effect 
of an interrupt throttle of the OLAP workload on 
the OLTP workload.  In this case, the OLAP 
workload is paused only once for 20 seconds. 

From these figures, we see that although the 
average OLTP throughput is more or less the 
same (approximately 250 tps) using either 
constant or interrupt throttling, there is 
considerable variation in the OLTP performance 
with longer pause lengths.  The standard 
deviations are 31.8, 49.4, 99.6 for the three 
samples, respectively.  We observe surges in the 
OLTP workload during the pauses followed by a 
drop in performance when the throttled workload 
is allowed to run.   The performance of the OLTP 
workload is much more consistent when constant 
throttling is used to slow the OLAP workload 
with shorter, more frequent pauses.  Although not 
shown here, this trend is consistent for the 
OLAP/OLAP workloads. 
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Figure 9: Constant Throttle - 1 second pause 

length, 20 seconds total throttle 
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Figure 10:  Interrupt Throttle – 20 second total 
pause at the start of the query 

 

4.2.2 Overhead 
Our constant throttle approach called the 
nanosleep(nanoseconds) function to throttle the 
query by some number of nanoseconds, possibly 
thousands of times during query execution.  In 
order to measure the overhead involved in making 
these calls, we ran the OLAP Lineitem workload 
with up to three million calls to nanosleep(0).   
With zero sleep time, the delay in the queries is 
only due to the overhead of calling the function.  

The results, shown in Figure 11, indicated that 
although significant overhead was incurred with 
increased numbers of invocations of the 
nanosleep() function, it was negligible given the 
number of calls made by the throttling technique.  
In our experiments, the maximum number of calls 
during the execution of the OLAP Lineitem query 
was 30,000, which, using the constant throttle 
technique with .01 second pauses introduced a 
delay of 300 seconds.  Figure 11 shows that the 
response time remains unchanged from 0 – 30000 
calls.  We conclude that the overhead of our 
approach is insignificant with “reasonable” 
amounts of throttling.  The cumulative effects of 
overhead, however, must be taken into 
consideration. 

 

0

10

20

30

40

50

60

70

80

90

100

0 30000 75000 125000 250000 500000 1 million 3 million

Number of calls to nanosleep(0)

Re
sp

on
se

 T
im

e 
(s

ec
on

ds
)

OLAP Lineitem

 
Figure 11:  Overhead Results 

 
4.3 Constant Throttle with Lock 
Contention (Data Sharing) 
So far our experiments have involved select-only 
workloads, thus involving no data sharing.  Lock 
contention, however, plays an important role in 
the use of throttling for workload control.  
Throttling a workload while it holds locks 
required by a competing workload degrades the 
performance of both workloads, thus defeating 
the goal of throttling.  The basic constant throttle 
approach institutes a constant slowing of the 

  
 



workload by pausing at constant intervals while 
the workload is running.  Of course, this may 
result in locks being held for a longer period of 
time than is necessary.  If competing workloads 
are not waiting on these locks, this presents no 
problem.  However, if the locked objects are 
needed by the more important workloads, 
throttling will slow not only the progress of the 
less important workload, but that of the important 
workload as well.   To remedy this situation, the 
constant throttle approach was augmented with 
logic such that, if a competing workload is 
waiting on a lock held by a throttled workload, 
the throttling is suspended until the lock is 
released.  

In this experiment we examined the effects of 
throttling when there is potential for lock 
contention.  We compared the basic constant 
throttle approach (No Logic) with the throttle 
approach augmented with logic to suspend the 
throttling (Logic). 

Two select-only workloads accessing the 
ACCOUNTS table were run simultaneously; the 
OLTP workload used for the previous 
experiments and the Lock Accounts workload 
described in Section 4.1.1. The Lock Accounts 
workload (referred to hereafter as simply the 
“Lock” workload) is comprised of simple select 
queries on the ACCOUNTS table interspersed by 
queries that request and hold an exclusive lock on 
the ACCOUNTS table for approximately 5 
seconds.  The amount of potential lock contention 
was varied based on the number of locking 
transactions in the workload.  We show results for 
25, 50 and 75 percent lock contention, meaning 
that there was potential for lock contention 25, 50 
or 75 percent of the time that the workloads were 
running.  The Lock workload was considered to 
be the less important workload and hence was the 
workload that was throttled in the experiments.  
The throttling approach was a constant throttle 
with .01 second pause lengths with a total pause 
length of 3 seconds.   Other configurations 
yielded similar results. 

The results are shown in Figure 12.  We show 
only the performance of the important workload, 
that is, the non-throttled workload. Each case 
shows the performance of the important workload 
when the competing Lock workload is not 
throttled (No Throttle), the performance when the 
basic throttling approach is applied (No Logic) 
and also the performance of the important 

workload when the throttling of the Lock 
workload is suspended each time the important 
workload is waiting on a lock that is being held 
by the Lock workload (Logic).  
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Figure 12:  Constant Throttle with Lock 

Contention 

We see from Figure 12 that throttling the less 
important workload improved the performance of 
the more important workload when the amount of 
lock contention is low.  Suspending the throttling 
when the competing workload is waiting on a 
lock, in this case, resulted in only a very slight 
improvement.  With increasing lock contention, 
however, throttling the Lock workload with no 
throttle suspension resulted in reduced 
performance for the important workload and only 
minor improvements with throttle suspension. 
 
 
4.4 A Comparison of Constant Throttle 
and Operating System Priority Control 
In this set of experiments we compared our 
constant throttling approach to the use of 
operating system (OS) process priority control to 
slow down the less important workload.  The 
Cygwin [5] “nice” command was used to lower 
the priority of the PostgreSQL process that is 
servicing the less important workload.  We 
compared different “nice” values (5, 10, 15, 19 
where higher values represent lower priority) and 
found that the nice factor, because we are running 
only two workloads, had little to no effect.  We 
therefore report results only for a nice factor of 5.  

In the first experiment, we ran the 
OLAP/OLTP workloads with no lock contention 
using the operating system priority (the nice 
command) to throttle the OLAP workload.  The 
results are shown in Figure 13. This figure shows 
the performance (transactions per second for the 
OLTP workload, response time for the OLAP 

  
 



workload) of the workloads running separately 
(ideal performance), together (conflicting) and 
with the OLAP workload throttled by lowering 
the OS priority of the PostgreSQL backend 
handling this workload.   The performance of the 
OLTP workload improved dramatically when the 
OLAP workload was throttled using a reduced OS 
priority level.  The OLTP workload reaches on 
average 314 transactions per second.    

Comparing these results to those of our 
constant and interrupt throttling approaches, all 
resulted in an increase in performance for the 
important (OLTP) workload.  With our throttling 
approach, however, the OLTP workload was able 
to reach a maximum of 350 transactions per 
second as compared to the maximum 314 
transactions per second achieved by the OS 
priority approach. 

Both the OS priority control technique and the 
throttling approaches incurred a significant 
performance decrement to the OLAP workload.  
Using the OS priority control, the resulting OLAP 
workload performance was, on average, 500 
seconds whereas with the throttling approaches it 
averaged approximately 400 seconds for best 
overall OLTP performance.   In fact, to reach the 
same level of OLTP performance achieved by the 
OS priority technique (that is, 314 tps), the 
throttling techniques slowed the OLAP workload 
to less than 200 seconds (as compared to 500 
seconds for the OS priority technique).  Thus the 
throttling approaches allowed the less important 
workload to continue at a faster pace than with 
the OS priority approach while, at the same time, 
improving the OLTP performance. 
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Figure 13:  OLAP/OLTP Using Operating System 
Priority Control (no lock contention) 

Figure 14 shows the results of throttling using 
OS priority control with competing OLAP 
workloads.  In this case, the Lineitem workload 
was throttled using the “nice” command.    Using 
this technique, the response time of the important 

workload improves to, on average, 297 seconds.  
As shown in Figure 6 and Figure 7, using the 
constant or interrupt throttling approaches, the 
response time for the important workload can be 
reduced to less than 200 seconds with little impact 
on the throttled workload.   Therefore, although 
both our throttling approaches and the OS priority 
control improve the performance of the important 
workload class, our throttling approaches show 
greater improvement with the added benefit of 
less impact to the throttled workload.  
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Figure 14:  OLAP/OLAP Using Operating 

System Priority Control  (no lock contention) 

In the final experiment, we introduced lock 
contention into the workloads.  The same 
workloads were used as in Section 4.4.  The 
amount of potential lock contention was varied 
based on the number of locking transactions in 
the workload.  We show results for 25, 50 and 75 
percent lock contention.  The Lock workload was 
considered to be the less important workload and 
hence was the throttled workload. 

The experiments compared the best results 
obtained by our throttling techniques with the OS 
priority control technique.  We show only the 
performance of the important workload, that is, 
the OLTP workload, in Figure 15. 
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Figure 15:  OS Priority Control vs Constant 

Throttle with Lock Contention 

We see that as the amount of lock contention 
increased, using the OS priority control was 
clearly superior over our throttling approaches.  
However, the reason for this phenomenon lies in 
the implementation of the throttling approach.  In 

  
 



the throttling technique, the timing of the throttle 
is based on the number of times the interrupt 
handler routine is called during the execution of 
the workload.  The timing of the pauses is 
determined by the total number of interrupt 
checks for the workload and the pauses are 
inserted when the incremental counter reaches a 
certain number.  Due to the fact that longer 
queries have more interrupt checks than shorter 
queries, the pauses are more likely to occur 
during these longer queries.  The Lock workload 
consists of short queries interspersed with longer 
queries that hold exclusive locks.  Obviously 
more interrupt checks are done throughout the 
longer query.  Because of this, the throttling is 
more likely to occur during the queries that hold 
the locks, thus delaying not only the throttled 
workload, but the important workload that is 
waiting on the lock.  In the OS Priority control 
technique, the throttling is more consistent 
throughout the workload, slowing both the simple 
select queries as well as those queries bthat hold 
the locks. 

 
5. Conclusions  
Competing workloads in a DBMS can have a 
detrimental effect on performance.  In order to 
provide differentiated levels of service and to 
ensure that high priority workloads are favoured 
over lower priority workloads, some degree of 
workload control is required.  Slowing a 
workload class by way of constant throttling or by 
interrupting the queries is suggested as a means of 
controlling the amount of work executing in a 
system simultaneously.  We provide a set of 
experiments to show how these approaches 
perform under a variety of workloads and 
conditions.  

The results of our experiments show that 
slowing down a workload class by throttling or 
pausing can result in improved performance for a 
competing class.  In most cases, however, this 
benefit is achieved only with a significant 
sacrifice to the performance of the workload that 
is throttled.   Our experiments showed that the 
pause length was significant in determining the 
net effect on the throttled workload.  Longer 
pause lengths, in the case of the constant throttle, 
were less detrimental to the throttled workload 
than shorter, more frequent pauses. 

The need to slow a workload down 
significantly may be acceptable in some 

conditions, such as when the low priority 
workload is “best effort”, or has no service level 
agreements that must be satisfied.  Delaying such 
a workload allows the work to continue, just at a 
slower pace.  With other workload control 
mechanisms, this “best effort” class may be 
prevented from entering the system for long 
periods of time when there is a high volume of 
high priority work. 

The variation in the performance of the high 
priority workload is substantial when the low 
priority workload is slowed using the interrupt 
throttle method.  In contrast, this variation is 
lower when the constant throttling technique is 
used.  Therefore, the importance of performance 
consistency for the high priority workload may 
influence the mechanism used to slow down the 
low priority workload. If improving overall 
throughput is the only goal, then either constant 
or interrupt throttle is suitable.  However, if 
consistent performance for the high priority 
workload is crucial, then constant throttling 
techniques are more advisable. 

Our experiments suggest that, for the interrupt 
throttle, in the case of high priority OLTP 
workload and low priority OLAP workload, 
pausing the OLAP query at the start of the query 
before it begins execution is superior to pausing 
the query at the middle or the end of the query.  

The amount of expected lock contention 
among competing workloads will have an impact 
on the effectiveness of throttling the less 
important workloads.  When the amount of lock 
contention is high, measures must be taken to 
ensure that throttled workloads do not hold locks 
for unnecessary amounts of time.  The throttling 
technique must take this into consideration; 
otherwise throttling such workloads should be 
avoided. 

The constant throttle technique was compared 
to the use of operating system process priority to 
control a workload.  In most cases, the throttling 
techniques resulted in greater improvement to the 
important workload with less impact on the 
throttled workload.  The exception to this claim 
was when there was lock contention.  In this case, 
the OS priority technique performed better due to 
the fact that it was more consistent in slowing the 
entire workload as opposed to our approach 
which had a tendency to throttle more often 
during the longer queries that were holding the 
locks.    

  
 



 
6. Future Work 
We have provided some insights into the 
advantages and disadvantages of using constant 
throttle and interrupt throttle on different 
combinations of workload types and also 
compared these approaches to that of using 
process priority control. These are very 
preliminary results to examine the feasibility of 
this approach.  It is clear from our findings that 
workload throttling for DBMSs is a promising 
research area.  

In the current work, we have a priori 
knowledge regarding query response times, 
making it easy to control the throttling by placing 
constant pauses throughout the workload.  In 
reality, however, the system does not have this 
knowledge about the workloads being handled. 
We will investigate methods for controlling the 
amount and timing of throttling for ad hoc 
queries. 

Our long-range plan is to implement workload 
class throttling as an autonomic feature of a 
DBMS.  As an autonomic workload control 
mechanism, the system will react to high level 
policies, and will adjust the mix of workloads 
currently executing in the system without human 
intervention.   The system will determine which 
workload classes it should slow down, choose a 
mechanism for throttling the workload, and 
determine the amount and length of throttling 
required.  
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