
1

 Using Economic Models to Allocate Resources in
Database Management Systems

Mingyi Zhang, Patrick Martin, Wendy Powley
School of Computing, Queen's University, {myzhang | martin | wendy}@cs.queensu.ca

Paul Bird
IBM Toronto Lab, pbird@ca.ibm.com

Abstract

Resource allocation in database management sys-
tems is a performance management process in
which an autonomic DBMS makes resource allo-
cation decisions based on properties like workload
business importance. We propose the use of eco-
nomic models to guide the resource allocation
decisions. An economic model is described in
terms of business concepts and has been success-
fully applied in computer system resource alloca-
tion problems. In this paper, we present an
approach that uses economic models to allocate
multiple resources, such as main memory buffer
space and CPU shares, to workloads running con-
currently on a DBMS. The economic model en-
ables workloads to meet their service level
objectives by allocating resources through parti-
tioning the individual DBMS resources and mak-
ing system-level resource allocation plans for the
workloads. The resource allocation plans can be
dynamically changed to respond to changes in
workload performance requirements. Experiments
are conducted on IBM® DB2® databases to verify
the effectiveness of our approach.

1 Introduction
The emerging trend of enterprises consolidating
workloads onto a single database server makes the

Copyright  2008 Mingyi Zhang, Patrick Martin,
Wendy Powley, and IBM Canada Ltd. Permission
to copy is hereby granted provided the original copy-
right notice is reproduced in copies made.

management of the diverse variety of workloads
running on a database management system
(DBMS) increasingly complex and costly. Work-
loads submitted by different applications, or from
different business units, might have unique per-
formance requirements which are normally de-
scribed in terms of Service Level Objectives
(SLOs) that must be satisfied. Workloads concur-
rently running on a server inevitably compete for
shared system resources, such as CPU, main
memory and disk I/O. As a result, it is possible
that the workloads do not meet their SLOs by
failing to acquire sufficient system resources.

To meet the performance requirements of
workloads, database administrators (DBAs) need
workload management policies and techniques to
help manage the workloads running on a DBMS.
An importance policy, which is an important fac-
tor in management, applies business metrics to
classify workloads into multiple importance
classes based on the workloads’ business impor-
tance. A workload might be considered important
if it is generated by an organization’s CEO or if it
is revenue producing. Less important workloads
might be those pertaining to functions such as
human resources or business report generation.

It is a challenge for DBAs to tune DBMSs
according to the workload business importance
policies as system-level metrics must be defined
to measure customer expectations. Also, the high-
level importance policies must be translated to
low-level tuning policies in order to impact these
metrics.

Autonomic computing suggests that DBMSs
are capable of becoming self-configuring, self-
tuning, self-protecting, and self-healing [2]. A key
feature of autonomic DBMSs is policy-driven

2

management, which includes making resource
allocation decisions based on properties such as
workload importance. This feature enables the
high-level business policies to be automatically
translated into low-level system tuning actions. In
addition, the feedback loop of autonomic DBMSs
verifies that workload SLOs are met and initiates
system reconfiguration if the system fails to meet
the SLOs. With autonomic DBMSs, system
administrators might concern themselves only
with the high-level business policies, and let the
system take care of the rest.

Resource allocation, as a workload manage-
ment technique, manages individual DBMS re-
sources and assigns the resource shares to
workloads based on their business importance.
With the allocated resources, the workloads can
be guaranteed to meet their unique performance
requirements when the workloads are simultane-
ously running on one database server. Economic
models have been successfully applied in com-
puter system resource allocation problems [1].
The models incorporate an implicit sense of busi-
ness trades and concepts. Business importance
policies can be easily implemented by economic
models and a DBMS can in turn be indirectly
managed by these policies.

The objective of our research is to provide a
method to allocate resources based on workload
importance policies in a DBMS as a step towards
a self-managing system. The main contribution of
the work is the specification of a framework for
resource allocation approaches that utilizes an
economic model to tune multiple-resource alloca-
tions for workloads having unique SLOs. We ex-
tend our previous work on allocating a single
resource [4][8] to the case of multiple resources.
A second contribution is a simulator of the eco-
nomic model to validate the framework. We simu-
late a DBMS environment with several workloads
of differing importance on a single database
server. The workloads compete for limited system
buffer pool memory space and CPU shares. Our
simulator suggests resource allocations for the
workloads as produced by the economic model.
We verify the performance of the server by run-
ning the workloads on an appropriately config-
ured DB2 system.

The remainder of the paper is organized as
follows. Section 2 discusses related work. Section
3 describes the framework of the economic model
and Section 4 explains the use of the economic
model to allocate multiple DBMS resources to

workloads based on their business importance.
The validation of the framework of the economic
model for multiple-resource allocations is pre-
sented in Section 5. We conclude and suggest
future work in Section 6.

2 Related Work

A number of approaches for resource manage-
ment in DBMSs have been proposed. In this sec-
tion, we discuss techniques that are specifically
relevant to policy-based or goal-oriented work-
load management in DBMSs.

Davison et al. [3] propose a framework for
resource allocation based on concepts from mi-
croeconomics. The central element of the frame-
work is a resource broker that schedules queries
and allocates resources among executing opera-
tors to achieve system-wide performance objec-
tives. They present a prototype broker that
manages memory and disk bandwidth for a multi-
user query workload.

Boughton et al. [4] present a framework for
resource allocation by utilizing an economic
model. In this framework, a limited number of
buffer pool memory resources are allocated
among competing workloads with different SLOs
and levels of importance. A utility function is
introduced to determine the maximum bids that
resource consumers are willing to provide for the
shares of the resource in order to achieve their
SLOs. The framework automatically translates the
high-level business workload importance policies
to the low-level buffer pool tuning actions.

The frameworks of Davison and Boughton
are both based on business concepts in order to
reduce the complexity of resource allocation prob-
lems and to provide stability. In both frameworks
consumers are assigned wealth to reflect their
performance objectives and resource brokers are
guided by the principle of profit maximization,
which in turn maximizes the system-wide per-
formance and workload objectives. Davison et al.
use an admission policy to control resource con-
tention by scheduling new queries for execution
and use an allocation policy to control a query’s
bid for resources when the query is scheduled [3].
Boughton et al. use a high-level business impor-
tance policy to determine a workload’s wealth and
then the workloads bid for the shared resources.
Wealthy workloads, therefore, achieve better per-
formance than poor workloads.

3

Brown et al. [5] propose an algorithm to
achieve a set of per-class response time goals for
a multi-class workload through automatically ad-
justing DBMS multiprogramming levels (MPL)
and memory allocations. They assume that the
system is configured such that it is possible to
satisfy the goals for all classes in steady state.
Since it is difficult to predict response times as a
function of MPL and memory, they avoid exhaus-
tively searching the entire solution space to find
optimal <mplc, memc> pairs for the workloads to
meet response time goals by proposing heuristics
and a feedback algorithm to search the <mplc,
memc> pairs. In our study, we use a queueing
network model [9] to predict the performance of a
workload with a certain amount of resources, and
apply a greedy algorithm to search for optimal
resource pairs.

 Niu et al. [6] propose a framework for work-
load adaptation in a DBMS. Their approach uses
an adaptable admission control mechanism to
ensure that multiple workloads with different im-
portance levels meet their performance goals. The
importance and performance goals of a workload
are expressed in a utility function.

Schroeder et al. [7] present a similar frame-
work to meet a set of OLTP workload quality of
service (QoS) targets. The framework has two
main components, the scheduler and the MPL
advisor. The core idea of the framework is to
maintain an upper limit on the number of transac-
tions executing simultaneously within the DBMS.
In their work, they divide transactions into differ-
ent classes based on the transaction business im-
portance, and obtain QoS targets and overall
performance of the DBMS through choosing MPL
levels.

The approaches of both Niu and Schroeder
perform workload management in DBMSs based
on the business importance policies and schedule
queries outside the DBMS. They do not directly
deal with resource allocations, and therefore, they
do not require low-level resource management
plans.

3 Resource Allocation
Framework

As described earlier, resource allocation in
DBMSs is a process of optimizing resource access
among competing workloads to achieve their
SLOs. The introduction of economic concepts to

solve resource allocation problems could poten-
tially reduce the inherent complexity. Our re-
source allocation framework, which is shown in
Figure 1, provides the ability to dynamically allo-
cate multiple resources to workloads in a DBMS
based on the workload business importance. It
extends our previous work on allocating a single
DBMS resource to manage workloads [4][8] by
replicating the structure for a single resource to
multiple resources and adding a method to select
the amounts for the individual resources. The
economic model consists of a set of resources,
resource brokers, a trade mechanism, and resource
consumers. It represents a price based economy
with a market mechanism of auctioning and bid-
ding on shared resources.

3.1 Shared Resources
We investigate the allocations of two DBMS re-
sources, namely buffer pool memory space and
system CPU shares, through utilizing our pro-
posed economic model. We choose these two
resources since they are key factors in database
performance management. We apply the eco-
nomic model on a DBMS to simultaneously allo-
cate these two resources to competing workloads
based on the workload business importance po-
lices to achieve the workloads’ SLOs.

The buffer pool is an area of main memory in
which data and index pages are cached to reduce
disk access. The purpose of the buffer pool is to

Figure 1: Economic Model Framework

4

improve database system performance by attempt-
ing to reduce the number of physical reads. For
many workloads, a larger buffer pool size means
that a database can achieve better performance.
System CPU share is another main resource that
contributes significantly to database system per-
formance. A request in a database system needs a
certain amount of CPU service to complete its
work. If a database system obtains high CPU
utilization, then the database can process more
requests at a time and therefore achieves better
performance.

This research extends our previous work of
managing a single resource in a DBMS to the case
of handling multiple resources. We have investi-
gated the cases of buffer pool memory space and
system CPU resources respectively [4][8]. In this
study, we consider the case of allocating the two
resources at the same time to competing work-
loads on a DBMS through utilizing the economic
model.

3.2 Resource Brokers and the
Trade Mechanism

Resource brokers allocate resources to consumer
agents, who represent the workloads, through an
auction-based economy. Each broker owns one
type of resource and charges consumer agents for
the use of the resources. Two resource brokers,
namely the memory broker and the CPU broker,
correspond to the buffer pool memory and CPU
resources respectively. Consumer agents are as-
signed some amount of wealth to bid for the re-
source shares. The amount of wealth reflects a
workload’s business importance.

The principle behind the auction mechanism
is that the resource brokers and consumer agents
selfishly attempt to achieve their goals [1]. Re-
source brokers attempt to maximize their profits
through conducting auctions to sell the resources
they own and take the highest bids submitted by
consumer agents. Consumer agents, on the other
hand, attempt to maximize their workloads’ per-
formance by submitting the maximum bids they
can afford to win auctions and therefore gather
more resources. With resource brokers maximiz-
ing the profits, the optimal resource access among
competing workloads and the SLOs are automati-
cally achieved.

Several types of auctions, such as the Sealed
Bid auction, English auction, and Dutch auction,
are considered in an auction-based economy [1].

A sealed bid auction is used as the trade mecha-
nism in our model since it is efficient and easily
implemented. In sealed bid auctions, consumer
agents are not aware of the amounts bid by other
agents. Resource brokers collect the sealed bids
submitted by consumer agents and select the
highest bid as the winner, thus allocating the re-
sources to the consumer agent. To maximize prof-
its, resource brokers conduct auctions till there are
no remaining resources or until there are no fur-
ther bids. A lack of further bids indicates that the
consumer agents have depleted their wealth or
that their SLOs have been met using the current
allocation. The price of a resource share in an
auction is set by the highest bidder among the
consumer agents. Resource prices, therefore,
might vary through the process of all the auctions.

3.3 Consumer Agents
A consumer agent represents a workload running
on the DBMS and competes for the shared re-
sources with other consumer agents. Each agent
executes queries in the workload and strives to
meet the workload performance requirements. We
consider several competing workloads as de-
scribed earlier, thus there are the same number of
consumer agents in the model correspond to the
workloads respectively. A consumer agent typi-
cally consists of a workload, a certain amount of
wealth, and a multiple-resource utility function.
The interaction between the consumer agents and
the resource brokers is through the sealed bid auc-
tions, while there is no interaction among con-
sumer agents or resource brokers in the
framework.

A workload is conceptually divided into a se-
ries of resource allocation intervals of approxi-
mately equal number of requests [4]. At the
beginning of each interval, all the resources are
returned to resource brokers, and the consumer
agent is re-assigned some amount of wealth. This
amount is determined by two factors, namely the
workload business importance level and the cost
of the workload in the resource allocation interval.
In our case, we use the total number of I/O opera-
tions of queries of a workload in an interval to
represent the cost. If a consumer agent represents
a workload W with K queries in a resource alloca-
tion interval, then the wealth assigned to the con-
sumer agent, at the beginning of the resource
allocation interval, could be calculated using
equation (1)

5

)(cos*)(1∑ == k
i iw qtimpWWealth (1)

where, cost(qi) is the estimated cost of i-th query
of the workload W in the resource allocation in-
terval, and impw is the workload business impor-
tance level called the importance multiplier which
is defined in Section 3.4.

We use batch workloads in our studies, where
all queries are known in advance, so we are able
to estimate each workload’s query I/O operations
using the DB2 Explain utility [10].

Workload business importance levels can
significantly affect the amount of wealth of con-
sumer agents if the costs of the competing work-
loads are similar. A consumer agent might have
much more wealth than others if the workload
which it represents has the highest business im-
portance, while a consumer agent might have
much less wealth if its workload has less business
importance. A wealthy consumer agent is more
likely to win resource auctions, and therefore, its
workload will be allocated sufficient resources to
achieve high performance. The less important
workloads associated with less wealthy consum-
ers agents, on the other hand, might experience
low performance. In a resource allocation interval,
a consumer agent that wins an auction, gains the
resource shares, but loses wealth. This ensures,
therefore, that all consumer agents have a chance
to win auctions [4].

In the economic model, a resource utility
function helps consumer agents to determine the
workloads’ resource preferences. Bidding values
of a consumer agent are determined by its wealth
and marginal utility, that is, the difference in util-
ity between two consecutive resource allocations
[4]. If a consumer agent, representing the work-
load W, has the allocated resource pair <ccpu,
mmem>, and it is bidding on <xcpu, ymem> additional
resources, then the marginal utility can be calcu-
lated with equation (2)

),())(,)(()(memcpumemcpu mcUymxcUwMgl −++= (2)

where, U(x, y) is the multiple-resource utility
function which is defined in Section 4.3 Utility
Function. Its maximum bid can be determined by
the equation (3) [8]

)()()(wWealthwMglwBid ∗= (3)

3.4 Workload Importance and
the Importance Multiplier

In reality, workloads running concurrently on a
database server are diverse and complex. They
may have unique performance requirements and
dynamic resource demands. For example, a trans-
actional OLTP workload may have a high
throughput requirement, while a decision support
system workload may have a short response time
goal.

We introduce the concept of an importance
multiplier to capture the differences in the relative
importance of competing workloads. As an exam-
ple, consider a case where we wish to classify
workloads into three business importance classes,
which we label as high importance, normal im-
portance, and best effort. We may assign a value
of 1 to the importance multiplier of the best effort
class and then express the degree of importance of
the remaining classes relative to that value. For
instance, if the high importance class has its im-
portance multiplier as 10, then it is ten times more
important than the best effort class. If the normal
importance class has its importance multiplier as
5 then the class is five times more important than
the best effort class, and in turn, the high impor-
tance class is two times more important than the
normal importance class.

Through dynamically tuning importance
multipliers and conceptually dividing workloads
into a series of resource allocation intervals, we
implement autonomic computing feedback loop
feature in the economic model to verify the SLOs
are met. At the beginning of each resource
allocation interval, the consumer agents are re-
assigned wealth, and then the model re-allocates
resources to the workloads through sealed bid
auctions based on the consumer agents’ wealth.
With the workloads running on the DBMS, the
model verifies that the workloads’ SLOs are met.
If necessary, the model could dynamically adjust
the workload class importance multiplier values to
indirectly change the submitting bids of the con-
sumer agents in next resource allocation interval
and in turn to affect the amount of allocated re-
sources to the workloads in order to guarantee the
workloads’ SLOs are met.

6

4 Allocating Multiple
Resources

The economic model, as described above, directly
deals with multiple resource allocations in
DBMSs based on workload business importance
policies. In this paper we specifically consider
simultaneously allocating buffer pool memory
space and system CPU shares. There are three
main components of our approach:

• Resource model: The resource model deter-
mines how to partition the buffer pool mem-
ory space and system CPU resources and
what are reasonable total amounts of the two
resources.

• Resource allocation method: The resource
allocation method determines how to obtain
optimal buffer memory and CPU resource al-
locations in order to benefit the workload and
system-wide performance most and achieve
the SLOs.

• Performance model: The performance
model predicts the performance of a work-
load with certain amount of allocated re-
source shares in order to determine the
benefit of the resources.

4.1 Resource Model
We assume each workload is assigned its own
buffer pool so buffer memory pages can be as-
signed directly to a workload. CPU resources, on
the other hand, cannot be directly assigned to a
workload so we partition CPU resources by con-
trolling the number of database agents that are
available to serve requests on the database server,
where we assume one database agent maintains
one client connection. We conducted experiments
to verify the relationship between the number of
database agents and system CPU utilization for a
workload and assume that the more database
agents that are allocated to serve requests for a
particular workload, the more CPU resources this
workload receives [8].

We make the total amount of resources for
their allocations as parameters in the resource
allocation framework, so it could adapt to differ-
ent system configurations of database severs.
Once the parameter values of a specific database
server are detected, then the framework could
automatically suggest resource allocations to the

workloads based on a given workload business
importance policy on the database server.

4.2 Resource Allocation Method
Consumer agents attempt to acquire resources in
order to maximize the performance of their work-
load. They must capture resources in appropriate
amounts such that none of the resources become a
performance-limiting, bottleneck resource. Con-
sumer agents therefore need mechanisms to iden-
tify resource preferences of workloads in order to
obtain optimal <cpuopt, memopt> pairs for the
workloads.

In our approach, consumer agents use a
greedy algorithm to identify the optimal <cpuopt ,
memopt> pairs for their workload. The resource
allocation is determined iteratively. In an iteration
of the algorithm, a consumer agent bids for a unit
of the resource (either buffer pool memory or
CPU) that it predicts will yield the greatest benefit
to its performance.

Figure 2 shows a representation of the state

space of the search algorithm for the case of allo-
cating buffer memory and CPU resources to an
OLTP workload presented in our experiments.
The starting node, n1,1, represents the minimum
allocation given to each consumer agent (one unit

Figure 2: Buffer Pool Memory and CPU Pairs

7

of buffer memory and one unit of CPU). A con-
sumer agent then traverses the directed weighted
graph to search for the optimal <cpuopt , memopt>
pair for its workload in order to meet the SLOs.

A node ni,j, in the graph, represents a possible
resource allocation pair of i units of CPU and j
units of buffer memory. The weight on the edge
(ni,j, ni,j+1) represents the performance (in our case
throughput) that could be achieved for the work-
load if the consumer agent acquires one more unit
of buffer memory. Similarly, the weight on an
edge (ni,j, ni+1,j) represents the performance that
could be achieved if one more unit of CPU re-
source is acquired. A consumer agent always
chooses to bid for the resource that will yield the
best performance. If a consumer agent’s bid is
successful then conceptually it moves to the new
node in the graph for the next iteration of the al-
gorithm. If a consumer agent’s bid is not success-
ful then it remains at the same node in the graph.
The graph has no cycles and the weight on each
edge is determined by the performance model
described in Section 4.3. The boundary nodes
may have one or no outgoing edges when there is
no more associated resource left. The proof that,
for our problem, a greedy algorithm determines a
global optimum is straightforward since the addi-
tion of more resources will always result in a per-
formance improvement.

4.3 Performance Model
We model the DB2 DBMS used in our experi-
ments with a simple queueing network model
(QNM). This QNM is used to predict performance
in each step of the greedy algorithm, that is, as-
sign the weights to the edges of the graph in Fig-
ure 2. We use a closed QNM consisting of a CPU
service center and an I/O service center. The CPU
service center represents system CPU resources
and the I/O service center represents buffer pool
memory and disk system resources. We apply
mean value analysis (MVA) [9] on the closed
QNM to predict the performance of the DBMS
with a certain number of database agents and a
particular size of buffer pool.

For a specific database system and a specific
type of workload, the average CPU service de-
mand of the requests in the system is constant,
and it can be determined by equation (4) [9]

() CTUSCPU *= (4)

where, U is the CPU utilization, T is the total
workload execution time, and C is the number of
completed transactions in the experiment.

I/O service demand directly depends on the
buffer pool size. If a buffer pool size is large, then
it can reduce the number of I/O operations from
disk system, which in turn reduces the average
I/O service time of a request. On the other hand, if
the buffer pool size is small, it can increase the
number of I/O operations and so increase the av-
erage I/O service time of a request. The average
I/O service demand can be expressed as a function
of buffer pool memory size, using equation (5)
[11]

b
IO McS *= (5)

where, c and b are constant, and M is buffer pool
size. In the equation (5) the constants c and b can
be determined by equations (6) and (7) respec-
tively. Different database systems will have dif-
ferent b and c values.
For constant b:

















=

2
1ln

2
1ln

M
M

S
Sb

IO

IO (6)

For constant c:

() ()b
IO MSc 11= (7)

where, SIO1and SIO2 are I/O service demand val-
ues at buffer pool sizes of M1 and M2 buffer
pages, respectively. SIO1 and SIO2 are determined
through experimentation.

Figure 3: Validation of Performance Model

0

5

10

15

20

25

30

[1, 4]
[2, 6]

[5, 8]
[7, 12]

[10, 16]
[12, 24]

[15, 32]
[17, 48]

[20, 64]
[22, 96]

[25, 132]

Resource Pair [Database Agents, Buffer Pool Size (MB)]

Th
ro

ug
hp

ut
 (T

ra
ns

. /
 S

ec
.)

Actual Estimate

8

We use MVA on the closed QNM to predict
throughput for an OLTP workload running on the
database system with specific amounts of buffer
memory and CPU resources. Figure 3 shows a
validation of the model. It shows the predicted
and actual throughput values for various resource
pairs for the DBMS and TPC-C benchmark work-
load [12] described in section 5.

Utility Function
In the resource allocation framework, a utility
function [13] is a monotonically non-decreasing
function, and it maps performance achieved by a
workload with certain amount of resources into a
real number u, u œ [0, 1] [14]. If performance of a
workload is high, then the utility of resources al-
located to the workload is close to 1, while, if
performance of the workload is low, then utility
of resources allocated to the workload is close to
0. Consumer agents in the model employ a utility
function to calculate marginal utilities, as defined
in Section 3.3, to determine biding values in re-
source auctions.

We employ a utility function that normalizes
the predicted throughput from the performance
model relative to the maximum throughput that
the workload could achieve when all resources are
allocated to it. The utility function is given by

() =MEMCPU mcUtility ,
() MaxMEMCPUThroughput XmcMVA , (8)

where, MVAThroughput(x, y) is the throughput pro-
vided by the QNM, cCPU is the number of data-
base agents and mMEM is the number of buffer pool
memory pages. XMax is the maximum throughput
achieved by a workload with all resources allo-
cated.

The marginal utility value reflects potential
performance improvement, and by examining the
marginal utility values, consumer agents can de-
termine the preferred resource for the workloads.
The maximum bid, as shown in Section 3.3, is the
marginal utility multiplied by current wealth of a
consumer agent, and says that a consumer agent is
willing to spend the marginal-utility percentage of
its wealth to bid for resources.

5 Validation and Experi-
ments

Before integrating the economic model into a
DBMS, we implement a simulator of the eco-
nomic model outside of the DBMS to provide an
experimental environment to validate the ap-
proaches proposed in the resource allocation
framework. The validations address two main
issues in the multiple-resource management stud-
ies, namely:

• Does the resource allocation framework gen-
erate the multiple-resource allocations for
competing workloads on a DBMS so that the
resource allocations match the workload
business importance policies?

• Are the allocations resulting from the auc-
tions sufficient for the competing workloads
to meet their SLOs?

5.1 Experimental Environments
We apply the economic model using a single DB2
instance with three identical databases for three
competing workloads from different importance
classes. Each database is configured with one
buffer pool and some number of database agents.
Each database has one workload running on it,
thus each workload has its own buffer pool and
some system CPU shares while still having ac-
cesses to all the same database objects [4]. The
economic model allocates buffer pool memory
space and system CPU resources across the three
identical databases based on a given workload
business importance policy.

We experimentally determined the appropri-
ate amount of total resources for the given con-
figuration and set of workloads [8]. We selected a
minimum amount of each resource where maxi-
mum system performance was achieved. We use
32768 buffer memory pages as the total buffer
pool memory and 25 database agents as the total
CPU resources.

The unit sizes of buffer memory and CPU are
parameters in the economic model framework.
We take 1000 buffer memory pages as one unit of
buffer memory and 1 database agent as one unit
of CPU resources in this study as these
granularities give a reasonable workload perform-
ance increment and make the resource allocation
efficient.

9

In this study, all experiments were conducted
with DB2 Universal Database Version 8.2 [10]
running on an IBM xSeries® 240 PC server with
the Windows® XP operating system. The data-
base server is equipped with two 1 GHz Pentium®
3 processors, 2 GB of RAM and an array of 11
disks. To eliminate the need to account for CPU
parallelism in the QNM, as introduced in Section
4.3, we configure the system with one processor
available.

The database and workloads are taken from
the OLTP TPC-C benchmark [12]. The size of
each database is 10GB. The three workloads are
TPCC-like OLTP batch workloads stored in three
script files. The workloads send transactions to
the DBMS with zero think time during their run.
Each workload consists of 120,000 requests based
on the 5 different types of the transactions of
TPC-C benchmark. A workload is divided into 12
resource allocation intervals. The start of each
interval provides a checkpoint at which a resource
allocation process takes place to reallocate re-
sources to workloads based on their current im-
portance levels and wealth.

The simulator is written in JavaTM and the
workload script files are used as the simulator
input. The output of the simulator is resource al-
locations, that is, a list of the number of buffer
memory pages and database agents for the work-
loads at each of their checkpoints. According to
the output, database configuration commands are
inserted into the workload script files at the
checkpoints, allowing for a database to dynami-
cally reconfigure during a run. By running the
workloads on the DB2 database server, we verify
that their SLOs are met. Before each run of the
workloads, the databases are restored to their ini-
tial states. Buffer pool hit rate and workload
throughput are taken to measure the workloads’
performance. Each experiment was run five times,
and the average of the five runs is reported.

5.2 Resource Allocations
A set of experiments was conducted to determine
whether our approach generates the resource allo-
cations which match a given workload business
importance policy. The workloads are assigned
one of three different importance classes, namely
the high importance class, the normal importance
class, and the best effort class, as described in
Section 3.4. We experimented with three differ-
ent sets of importance multipliers to validate the

economic model. An importance multiplier set
represents the importance multiplier values of the
three importance classes in order of {best effort,
normal importance, high importance}. The three
sets used were {1, 1, 1}, {1, 5, 6}, and {1, 5, 10}.
These configurations were designed to examine
how resource allocation changes with the impor-
tance multipliers.

Figure 4 and Figure 5 show buffer memory
pages and database agents representing system
CPU resources, allocations produced by the eco-
nomic model using the three workload business
importance multiplier sets. The workload impor-
tance multiplier set {1, 1, 1} represents the case
where the three competing workloads are from
three different business importance classes of
equal importance. In this case, the three work-
loads are allocated approximately the same
amount of buffer memory and CPU resources as
shown in Figures 4 and 5. Using the importance

0

5000

10000

15000

20000

25000

[1, 1, 1] [1, 5, 6] [1, 5, 10]

Importance Multiplier Set

Bu
ffe

r P
oo

l M
em

or
y

P
ag

es

Best Effort Normal Importance High Importance

Figure 4: Buffer Pool Memory Allocations for
Different Importance Multiplier Sets

0

2

4

6

8

10

12

14

16

[1, 1, 1] [1, 5, 6] [1, 5, 10]

Importance Multiplier Set

D
at

ab
as

e
A

ge
nt

s

Best Effort Normal Importance High Importance

Figure 5: CPU Resource Allocations for
Different Importance Multiplier Sets

10

multiplier set {1, 5, 6}, the high importance and
the normal importance classes are much more
important than best effort class, and the high im-
portance class is also slightly more important than
the normal important class. When the economic
model is used to allocate resources in this case,
the high importance and normal importance work-
loads are allocated significantly more resources
than the best effort workload, while the high im-
portance workload is allocated slightly more re-
sources than the normal importance workload.
The set {1, 5, 10} represents the case where the
high importance class is much more important
than the normal importance class, and the normal
importance class is much more important than the
best effort class. In this case, the high importance
workload is allocated more resources than the
normal important workload, and the normal im-
portance workload wins significantly more re-
sources than the best effort workload.

We conclude that the resource allocations
generated by the economic model for competing
workloads match the workload business impor-
tance policies with more important workloads
winning more resources than less important work-
loads.

5.3 Workload Performance
A set of experiments was conducted to determine
whether the performance achieved by the work-
loads with allocated resources generated by the
economic model match the business importance
policy. The workload importance multiplier sets
used in these experiments were the same as the
sets used in the experiments shown in Section 5.2.
We can therefore observe the achieved perform-
ance of the workloads with the allocated resources
obtained in the first set of experiments. The work-
loads were run on DB2 using the resource alloca-
tions suggested by the simulator. Workload
throughput and buffer pool hit rate were measured
as performance metrics. The experimental results
are shown in Figure 6 and Figure 7 respectively.

In Figure 6 we observe that the throughput of
the workloads match the given business impor-
tance policies. When the workloads had the same
business importance, namely applying importance
multiplier set {1, 1, 1} on the economic model,
the workloads achieve a similar throughput. When
the workloads are of different business impor-
tance, namely applying multiplier sets {1, 5, 6}
and {1, 5, 10} on the model respectively, then the

important workloads achieve higher throughput
than the less important workloads. The trend
shows that the more important a workload is, the
more resources it receives and hence, the work-
load performance is greater.

Figure 7 shows the buffer pool hit rate of the
workloads for the three different importance mul-
tiplier sets.. The results show the same trend as
the throughput results shown in Figure 6. When
the workloads had the same business importance,
then buffer pool hit rates are similar, while with
different business importance levels, the impor-
tant workloads achieve higher buffer pool hit rates
than the less importance workloads. We notice
that the difference in the hit rate between the high
importance class and the normal importance class
is small when the difference between their impor-
tance multipliers is large (that is, with the multi-
plier set {1, 5, 10}). This is likely due to fact that
the total amount of buffer memory available for
allocation is small, about 132MB. So even if the
high importance workload obtained more buffer

Figure 7: Buffer Pool Hit Rate for Different
Importance Multiplier Sets

67.00%

71.00%

75.00%

79.00%

83.00%

87.00%

91.00%

95.00%

[1, 1, 1] [1, 5, 6] [1, 5, 10]

Importance Multiplier Set

Ac
tu

al
 B

uf
fe

r
Po

ol
 H

it
R

at
e

Best Effort Normal Importance High Importance

Figure 6: Workload Throughput for Different
Importance Multiplier Sets

0

5

10

15

20

25

[1, 1, 1] [1, 5, 6] [1, 5, 10]

Importance Multiplier Set

Ac
tu

al
 T

hr
ou

gh
pu

t
(T

ra
ns

./S
ec

.)

Best Effort Normal Importance High Importance

11

memory resources, it could not achieve signifi-
cantly larger buffer pool hit rate than the others
[8].

Based on these results, we conclude that us-
ing the economic model for resource allocation is
successful in obtaining workload performance
that matches the given workload business impor-
tance policies.

6 Conclusions and Future
Work

In this paper we present a framework that uses
economic models to simultaneously allocate mul-
tiple resources, namely buffer pool memory space
and system CPU shares, to workloads in a DBMS
based on the workload business importance. In the
resource allocation framework, we apply a queue-
ing network model to predict performance of the
workloads given a particular resource allocation.
A greedy algorithm is used to find an optimal
resource allocation for the workloads to maximize
their performance to meet the SLOs. By present-
ing the economic model, we have shown a way
that a high-level business importance policy can
be automatically translated into a DBMS system-
level multiple-resource tuning actions. Through a
set of experiments we have validated the effec-
tiveness of the framework.

An implementation issue of integrating the
resource allocation framework into a DBMS is to
predict the cost of a workload in an upcoming
resource allocation interval. There are several
possible approaches that could be used to address
this issue. One approach is to estimate a workload
cost for an upcoming interval based on the costs
of the workload in previous intervals. Another
approach is to allow consumer agents to request
additional resources at any time by utilizing the
feedback loop feature provided by the economic
model to verify the workload SLOs are met, and
not wait for the next resource allocation intervals.
The third approach is to intercept the workload
incoming requests by using the DBMS perform-
ance management component, such as DB2 Query
Patroller [15], to estimate the query costs in a
workload.

In the future, we plan to try exchange based
economy to replace the current price based econ-
omy to allow the consumer agents to directly ex-
change their resources in order to simplify the
trading mechanism in the economic model. We

plan to add OLAP workloads to examine the ef-
fectiveness of the economic model with more
complex workloads. In this study, we use batch
workloads in which all queries are known in ad-
vance. As a next step, we plan to extend the eco-
nomic model to accept random workloads to
make the resource allocation framework more
practical.

Acknowledgements

This research is supported by IBM Canada Ltd.,
Toronto, Ontario, Canada, Natural Science and
Engineering Council (NSERC) of Canada, and
Ontario Centre of Excellence for Communication
and Information Technology (OCE-CCIT).

About the Author

Mingyi Zhang is an MSc student in the School of
Computing at Queen’s University. His research
interests include: resource management in
DBMSs, autonomic DBMSs.

Patrick Martin is a Professor in the School of
Computing at Queen’s University. He holds a BSc
from University of Toronto, MSc from Queen’s
University and a PhD from University of Toronto.
He is also a Faculty Fellow with IBM's Centre for
Advanced Studies. His research interests include:
database management systems, web services and
autonomic computing systems.

Wendy Powley is a Research Associate and Ad-
junct Lecturer in the school of Computing at
Queen’s University. She holds a BA in psychol-
ogy, a BEd, and an MSc in Computer Science
from Queen’s University. Her research interests
include: database management systems, web ser-
vices and autonomic computing systems.

Paul Bird is a Senior Technical Staff Member in
the DB2 Database for Linux®, UNIX®, and Win-
dows development organization within the Infor-
mation Management group of IBM. His areas of
interest include: workload management, security,
monitoring, and general SQL processing.

References

[1] D. F. Ferguson, C. Nikolaou, J. Sairamesh, Y.
Yemini. “Economic Models for Allocating

12

Resources in Computer Systems”. In Scott
Clearwater, Editor, Market-Based Control: A
Paradigm for Distributed Resource Alloca-
tion, Scott Clearwater. World Scientific,
Hong Kong, 1996.

[2] J. O. Kephart, D. M. Chess. “The Vision of

Autonomic Computing”. IEEE Computer,
Volume 36, Issue 1, pages 41-50, 2003.

[3] D. L. Davison, G. Graefe. “Dynamic Re-

source Brokering for Multi-User Query Exe-
cution”. In Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data pages 281-292,
1995.

[4] H. Boughton, P. Martin, W. Powley, and R.

Horman. “Workload Class Importance Policy
in Autonomic Database Management Sys-
tems”, Seventh IEEE Intl. Workshop on Poli-
cies for Distributed Systems and Networks,
pages 13-22, London, Canada, June 5 - 7,
2006.

[5] K. P. Brown, M. Mehta, M. J. Carey, and M.

Livny. “Towards Automated Performance
Tuning for Complex Workloads”, Proc. of
the 20th Intl. Conf. of Very Large Data Bases,
pages 72-84, Santiago, Chile, Sept. 1994.

[6] B. Niu, P. Martin, W. Powley, R. Horman,

and P. Bird. “Workload Adaptation in Auto-
nomic DBMSs”, Proc. of the 2006 Conf. of
the Centre for Advanced Studies on Collabo-
rative Research, Article No. 13, Toronto,
Canada, Oct. 2006.

[7] B. Schroeder, M. Harchol-Balter, A. Iyengar,

and E. Nahum. “Achieving Class-Based QoS
for Transactional Workloads”, Proc. of the
22nd Intl. Conf. on Data Engineering
(ICDE’06), page 153, Apr. 03 - 07, 2006.

[8] M. Zhang. “Using Economic Models to Tune

Resource Allocations in Database Manage-
ment Systems”. M.Sc. Thesis, School of
Computing, Queen's University, 2008.

[9] E. Lazowska, J. Zahorjan, G. S. Graham and

K. C. Sevcik “Quantitative System Perform-
ance: Computer System Analysis Using
Queueing Network Models”. Prentice-Hall
Inc., Englewood Cliffs, New Jersey, 1984.

[10] IBM DB2 Universal Database Version 8.1

Administrative Guide: Performance, 2003.

[11] H. Zawawy, P. Martin, H. Hassanein. “Sup-

porting Capacity Planning for DB2 UDB”,
Proc., of the 2002 Conf. of the Center for
Advanced Studies on Collaborative Research,
Toronto, Canada, 2002.

[12] Transaction Processing Performance Council.

http://www.tpc.org/tpcc/

[13] W. E. Walsh, G. Tesauro, J. O. Kephart, R.

Das. “Utility Functions in Autonomic Sys-
tems”. In Proc. of Intl. Conf. on Autonomic
Computing (ICAC’04), pages 70 - 77, New
York, USA, May 17 - 18, 2004.

[14] G. Pacifici, M. Spreitzer, A.Tantawi, and

A.Youssef. “Performance Management for
Cluster Based Web Services”, IEEE Journal
on Selected Areas in Communications, Vol-
ume 23, Issue 12, page 2333-2343, Dec. 2005.

[15] IBM DB2 Query Patroller Guide: Installation,

Administration, and Usage, 2003.

Trademarks
IBM, DB2, DB2 Universal Database, and xSeries
are trademarks or registered trademarks of Inter-
national Business Machines Corporation in the
United States, other countries, or both.

Java is a trademark of Sun Microsystems, Inc. in
the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds
in the United States, other countries, or both.

Pentium is a registered trademark of Intel Corpo-
ration or it subsidiaries in the United States and
other countries.

UNIX is a trademark of The Open Group in the
United States, other countries, or both.

Windows is a trademark of Microsoft Corporation
in the United States, other countries, or both.

Other company, product, or service names may be
trademarks or service marks of others.

