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Abstract 
 

Resource allocation in database management sys-
tems is a performance management process in 
which an autonomic DBMS makes resource allo-
cation decisions based on properties like workload 
business importance. We propose the use of eco-
nomic models to guide the resource allocation 
decisions. An economic model is described in 
terms of business concepts and has been success-
fully applied in computer system resource alloca-
tion problems. In this paper, we present an 
approach that uses economic models to allocate 
multiple resources, such as main memory buffer 
space and CPU shares, to workloads running con-
currently on a DBMS. The economic model en-
ables workloads to meet their service level 
objectives by allocating resources through parti-
tioning the individual DBMS resources and mak-
ing system-level resource allocation plans for the 
workloads. The resource allocation plans can be 
dynamically changed to respond to changes in 
workload performance requirements. Experiments 
are conducted on IBM® DB2® databases to verify 
the effectiveness of our approach. 

1 Introduction 
The emerging trend of enterprises consolidating 
workloads onto a single database server makes the 
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management of the diverse variety of workloads 
running on a database management system 
(DBMS) increasingly complex and costly. Work-
loads submitted by different applications, or from 
different business units, might have unique per-
formance requirements which are normally de-
scribed in terms of Service Level Objectives 
(SLOs) that must be satisfied. Workloads concur-
rently running on a server inevitably compete for 
shared system resources, such as CPU, main 
memory and disk I/O. As a result, it is possible 
that the workloads do not meet their SLOs by 
failing to acquire sufficient system resources. 

To meet the performance requirements of 
workloads, database administrators (DBAs) need 
workload management policies and techniques to 
help manage the workloads running on a DBMS. 
An importance policy, which is an important fac-
tor in management, applies business metrics to 
classify workloads into multiple importance 
classes based on the workloads’ business impor-
tance. A workload might be considered important 
if it is generated by an organization’s CEO or if it 
is revenue producing. Less important workloads 
might be those pertaining to functions such as 
human resources or business report generation. 

It is a challenge for DBAs to tune DBMSs 
according to the workload business importance 
policies as system-level metrics must be defined 
to measure customer expectations. Also, the high-
level importance policies must be translated to 
low-level tuning policies in order to impact these 
metrics. 

Autonomic computing suggests that DBMSs 
are capable of becoming self-configuring, self-
tuning, self-protecting, and self-healing [2]. A key 
feature of autonomic DBMSs is policy-driven 
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management, which includes making resource 
allocation decisions based on properties such as 
workload importance. This feature enables the 
high-level business policies to be automatically 
translated into low-level system tuning actions. In 
addition, the feedback loop of autonomic DBMSs 
verifies that workload SLOs are met and initiates 
system reconfiguration if the system fails to meet 
the SLOs. With autonomic DBMSs, system 
administrators might concern themselves only 
with the high-level business policies, and let the 
system take care of the rest. 

Resource allocation, as a workload manage-
ment technique, manages individual DBMS re-
sources and assigns the resource shares to 
workloads based on their business importance. 
With the allocated resources, the workloads can 
be guaranteed to meet their unique performance 
requirements when the workloads are simultane-
ously running on one database server. Economic 
models have been successfully applied in com-
puter system resource allocation problems [1]. 
The models incorporate an implicit sense of busi-
ness trades and concepts. Business importance 
policies can be easily implemented by economic 
models and a DBMS can in turn be indirectly 
managed by these policies. 

The objective of our research is to provide a 
method to allocate resources based on workload 
importance policies in a DBMS as a step towards 
a self-managing system. The main contribution of 
the work is the specification of a framework for 
resource allocation approaches that utilizes an 
economic model to tune multiple-resource alloca-
tions for workloads having unique SLOs. We ex-
tend our previous work on allocating a single 
resource [4][8] to the case of multiple resources. 
A second contribution is a simulator of the eco-
nomic model to validate the framework. We simu-
late a DBMS environment with several workloads 
of differing importance on a single database 
server. The workloads compete for limited system 
buffer pool memory space and CPU shares. Our 
simulator suggests resource allocations for the 
workloads as produced by the economic model. 
We verify the performance of the server by run-
ning the workloads on an appropriately config-
ured DB2 system. 

The remainder of the paper is organized as 
follows. Section 2 discusses related work. Section 
3 describes the framework of the economic model 
and Section 4 explains the use of the economic 
model to allocate multiple DBMS resources to 

workloads based on their business importance. 
The validation of the framework of the economic 
model for multiple-resource allocations is pre-
sented in Section 5. We conclude and suggest 
future work in Section 6. 

2 Related Work 

A number of approaches for resource manage-
ment in DBMSs have been proposed. In this sec-
tion, we discuss techniques that are specifically 
relevant to policy-based or goal-oriented work-
load management in DBMSs. 

Davison et al. [3] propose a framework for 
resource allocation based on concepts from mi-
croeconomics. The central element of the frame-
work is a resource broker that schedules queries 
and allocates resources among executing opera-
tors to achieve system-wide performance objec-
tives. They present a prototype broker that 
manages memory and disk bandwidth for a multi-
user query workload. 

Boughton et al. [4] present a framework for 
resource allocation by utilizing an economic 
model. In this framework, a limited number of 
buffer pool memory resources are allocated 
among competing workloads with different SLOs 
and levels of importance. A utility function is 
introduced to determine the maximum bids that 
resource consumers are willing to provide for the 
shares of the resource in order to achieve their 
SLOs. The framework automatically translates the 
high-level business workload importance policies 
to the low-level buffer pool tuning actions. 

The frameworks of Davison and Boughton 
are both based on business concepts in order to 
reduce the complexity of resource allocation prob-
lems and to provide stability. In both frameworks 
consumers are assigned wealth to reflect their 
performance objectives and resource brokers are 
guided by the principle of profit maximization, 
which in turn maximizes the system-wide per-
formance and workload objectives. Davison et al. 
use an admission policy to control resource con-
tention by scheduling new queries for execution 
and use an allocation policy to control a query’s 
bid for resources when the query is scheduled [3]. 
Boughton et al. use a high-level business impor-
tance policy to determine a workload’s wealth and 
then the workloads bid for the shared resources. 
Wealthy workloads, therefore, achieve better per-
formance than poor workloads. 
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Brown et al. [5] propose an algorithm to 
achieve a set of per-class response time goals for 
a multi-class workload through automatically ad-
justing DBMS multiprogramming levels (MPL) 
and memory allocations. They assume that the 
system is configured such that it is possible to 
satisfy the goals for all classes in steady state. 
Since it is difficult to predict response times as a 
function of MPL and memory, they avoid exhaus-
tively searching the entire solution space to find 
optimal <mplc, memc> pairs for the workloads to 
meet response time goals by proposing heuristics 
and a feedback algorithm to search the <mplc, 
memc> pairs. In our study, we use a queueing 
network model [9] to predict the performance of a 
workload with a certain amount of resources, and 
apply a greedy algorithm to search for optimal 
resource pairs. 

 Niu et al. [6] propose a framework for work-
load adaptation in a DBMS. Their approach uses 
an adaptable admission control mechanism to 
ensure that multiple workloads with different im-
portance levels meet their performance goals. The 
importance and performance goals of a workload 
are expressed in a utility function. 

Schroeder et al. [7] present a similar frame-
work to meet a set of OLTP workload quality of 
service (QoS) targets. The framework has two 
main components, the scheduler and the MPL 
advisor. The core idea of the framework is to 
maintain an upper limit on the number of transac-
tions executing simultaneously within the DBMS. 
In their work, they divide transactions into differ-
ent classes based on the transaction business im-
portance, and obtain QoS targets and overall 
performance of the DBMS through choosing MPL 
levels. 

The approaches of both Niu and Schroeder 
perform workload management in DBMSs based 
on the business importance policies and schedule 
queries outside the DBMS. They do not directly 
deal with resource allocations, and therefore, they 
do not require low-level resource management 
plans. 

3 Resource Allocation 
Framework 

As described earlier, resource allocation in 
DBMSs is a process of optimizing resource access 
among competing workloads to achieve their 
SLOs. The introduction of economic concepts to 

solve resource allocation problems could poten-
tially reduce the inherent complexity. Our re-
source allocation framework, which is shown in 
Figure 1, provides the ability to dynamically allo-
cate multiple resources to workloads in a DBMS 
based on the workload business importance. It 
extends our previous work on allocating a single 
DBMS resource to manage workloads [4][8] by 
replicating the structure for a single resource to 
multiple resources and adding a method to select 
the amounts for the individual resources. The 
economic model consists of a set of resources, 
resource brokers, a trade mechanism, and resource 
consumers. It represents a price based economy 
with a market mechanism of auctioning and bid-
ding on shared resources. 
 

 

3.1 Shared Resources 
We investigate the allocations of two DBMS re-
sources, namely buffer pool memory space and 
system CPU shares, through utilizing our pro-
posed economic model. We choose these two 
resources since they are key factors in database 
performance management. We apply the eco-
nomic model on a DBMS to simultaneously allo-
cate these two resources to competing workloads 
based on the workload business importance po-
lices to achieve the workloads’ SLOs. 

The buffer pool is an area of main memory in 
which data and index pages are cached to reduce 
disk access. The purpose of the buffer pool is to 

Figure 1: Economic Model Framework 
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improve database system performance by attempt-
ing to reduce the number of physical reads. For 
many workloads, a larger buffer pool size means 
that a database can achieve better performance. 
System CPU share is another main resource that 
contributes significantly to database system per-
formance. A request in a database system needs a 
certain amount of CPU service to complete its 
work. If a database system obtains high CPU 
utilization, then the database can process more 
requests at a time and therefore achieves better 
performance. 

This research extends our previous work of 
managing a single resource in a DBMS to the case 
of handling multiple resources. We have investi-
gated the cases of buffer pool memory space and 
system CPU resources respectively [4][8]. In this 
study, we consider the case of allocating the two 
resources at the same time to competing work-
loads on a DBMS through utilizing the economic 
model. 

3.2 Resource Brokers and the 
Trade Mechanism 

Resource brokers allocate resources to consumer 
agents, who represent the workloads, through an 
auction-based economy. Each broker owns one 
type of resource and charges consumer agents for 
the use of the resources. Two resource brokers, 
namely the memory broker and the CPU broker, 
correspond to the buffer pool memory and CPU 
resources respectively. Consumer agents are as-
signed some amount of wealth to bid for the re-
source shares. The amount of wealth reflects a 
workload’s business importance. 

The principle behind the auction mechanism 
is that the resource brokers and consumer agents 
selfishly attempt to achieve their goals [1]. Re-
source brokers attempt to maximize their profits 
through conducting auctions to sell the resources 
they own and take the highest bids submitted by 
consumer agents. Consumer agents, on the other 
hand, attempt to maximize their workloads’ per-
formance by submitting the maximum bids they 
can afford to win auctions and therefore gather 
more resources.  With resource brokers maximiz-
ing the profits, the optimal resource access among 
competing workloads and the SLOs are automati-
cally achieved. 

Several types of auctions, such as the Sealed 
Bid auction, English auction, and Dutch auction, 
are considered in an auction-based economy [1]. 

A sealed bid auction is used as the trade mecha-
nism in our model since it is efficient and easily 
implemented. In sealed bid auctions, consumer 
agents are not aware of the amounts bid by other 
agents. Resource brokers collect the sealed bids 
submitted by consumer agents and select the 
highest bid as the winner, thus allocating the re-
sources to the consumer agent. To maximize prof-
its, resource brokers conduct auctions till there are 
no remaining resources or until there are no fur-
ther bids. A lack of further bids indicates that the 
consumer agents have depleted their wealth or 
that their SLOs have been met using the current 
allocation. The price of a resource share in an 
auction is set by the highest bidder among the 
consumer agents. Resource prices, therefore, 
might vary through the process of all the auctions. 

3.3 Consumer Agents 
A consumer agent represents a workload running 
on the DBMS and competes for the shared re-
sources with other consumer agents.  Each agent 
executes queries in the workload and strives to 
meet the workload performance requirements. We 
consider several competing workloads as de-
scribed earlier, thus there are the same number of 
consumer agents in the model correspond to the 
workloads respectively. A consumer agent typi-
cally consists of a workload, a certain amount of 
wealth, and a multiple-resource utility function. 
The interaction between the consumer agents and 
the resource brokers is through the sealed bid auc-
tions, while there is no interaction among con-
sumer agents or resource brokers in the 
framework. 

A workload is conceptually divided into a se-
ries of resource allocation intervals of approxi-
mately equal number of requests [4]. At the 
beginning of each interval, all the resources are 
returned to resource brokers, and the consumer 
agent is re-assigned some amount of wealth. This 
amount is determined by two factors, namely the 
workload business importance level and the cost 
of the workload in the resource allocation interval.  
In our case, we use the total number of I/O opera-
tions of queries of a workload in an interval to 
represent the cost. If a consumer agent represents 
a workload W with K queries in a resource alloca-
tion interval, then the wealth assigned to the con-
sumer agent, at the beginning of the resource 
allocation interval, could be calculated using 
equation (1) 
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where, cost(qi) is the estimated cost of i-th query 
of the workload W in the resource allocation in-
terval, and impw is the workload business impor-
tance level called the importance multiplier which 
is defined in Section 3.4. 

We use batch workloads in our studies, where 
all queries are known in advance, so we are able 
to estimate each workload’s query I/O operations 
using the DB2 Explain utility [10].  

Workload business importance levels can 
significantly affect the amount of wealth of con-
sumer agents if the costs of the competing work-
loads are similar. A consumer agent might have 
much more wealth than others if the workload 
which it represents has the highest business im-
portance, while a consumer agent might have 
much less wealth if its workload has less business 
importance. A wealthy consumer agent is more 
likely to win resource auctions, and therefore, its 
workload will be allocated sufficient resources to 
achieve high performance. The less important 
workloads associated with less wealthy consum-
ers agents, on the other hand, might experience 
low performance. In a resource allocation interval, 
a consumer agent that wins an auction, gains the 
resource shares, but loses wealth. This ensures, 
therefore, that all consumer agents have a chance 
to win auctions [4]. 

In the economic model, a resource utility 
function helps consumer agents to determine the 
workloads’ resource preferences. Bidding values 
of a consumer agent are determined by its wealth 
and marginal utility, that is, the difference in util-
ity between two consecutive resource allocations 
[4]. If a consumer agent, representing the work-
load W, has the allocated resource pair <ccpu, 
mmem>, and it is bidding on <xcpu, ymem> additional 
resources, then the marginal utility can be calcu-
lated with equation (2) 
 
    ),())(,)(()( memcpumemcpu mcUymxcUwMgl −++=      (2) 
 
where, U(x, y) is the multiple-resource utility 
function which is defined in Section 4.3 Utility 
Function. Its maximum bid can be determined by 
the equation (3) [8] 
 

)()()( wWealthwMglwBid ∗=                        (3) 

3.4 Workload Importance and 
the Importance Multiplier 

In reality, workloads running concurrently on a 
database server are diverse and complex. They 
may have unique performance requirements and 
dynamic resource demands. For example, a trans-
actional OLTP workload may have a high 
throughput requirement, while a decision support 
system workload may have a short response time 
goal. 

We introduce the concept of an importance 
multiplier to capture the differences in the relative 
importance of competing workloads. As an exam-
ple, consider a case where we wish to classify 
workloads into three business importance classes, 
which we label as high importance, normal im-
portance, and best effort. We may assign a value 
of 1 to the importance multiplier of the best effort 
class and then express the degree of importance of 
the remaining classes relative to that value. For 
instance, if the high importance class has its im-
portance multiplier as 10, then it is ten times more 
important than the best effort class. If the normal 
importance class has its importance multiplier as 
5 then the class is five times more important than 
the best effort class, and in turn, the high impor-
tance class is two times more important than the 
normal importance class. 

Through dynamically tuning importance 
multipliers and conceptually dividing workloads 
into a series of resource allocation intervals, we 
implement autonomic computing feedback loop 
feature in the economic model to verify the SLOs 
are met. At the beginning of each resource 
allocation interval, the consumer agents are re-
assigned wealth, and then the model re-allocates 
resources to the workloads through sealed bid 
auctions based on the consumer agents’ wealth. 
With the workloads running on the DBMS, the 
model verifies that the workloads’ SLOs are met. 
If necessary, the model could dynamically adjust 
the workload class importance multiplier values to 
indirectly change the submitting bids of the con-
sumer agents in next resource allocation interval 
and in turn to affect the amount of allocated re-
sources to the workloads in order to guarantee the 
workloads’ SLOs are met. 
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4 Allocating Multiple      
Resources 

The economic model, as described above, directly 
deals with multiple resource allocations in 
DBMSs based on workload business importance 
policies. In this paper we specifically consider 
simultaneously allocating buffer pool memory 
space and system CPU shares. There are three 
main components of our approach: 

• Resource model: The resource model deter-
mines how to partition the buffer pool mem-
ory space and system CPU resources and 
what are reasonable total amounts of the two 
resources. 

• Resource allocation method: The resource 
allocation method determines how to obtain 
optimal buffer memory and CPU resource al-
locations in order to benefit the workload and 
system-wide performance most and achieve 
the SLOs. 

• Performance model: The performance 
model predicts the performance of a work-
load with certain amount of allocated re-
source shares in order to determine the 
benefit of the resources. 

4.1 Resource Model 
We assume each workload is assigned its own 
buffer pool so buffer memory pages can be as-
signed directly to a workload. CPU resources, on 
the other hand, cannot be directly assigned to a 
workload so we partition CPU resources by con-
trolling the number of database agents that are 
available to serve requests on the database server, 
where we assume one database agent maintains 
one client connection. We conducted experiments 
to verify the relationship between the number of 
database agents and system CPU utilization for a 
workload and assume that the more database 
agents that are allocated to serve requests for a 
particular workload, the more CPU resources this 
workload receives [8]. 

We make the total amount of resources for 
their allocations as parameters in the resource 
allocation framework, so it could adapt to differ-
ent system configurations of database severs. 
Once the parameter values of a specific database 
server are detected, then the framework could 
automatically suggest resource allocations to the 

workloads based on a given workload business 
importance policy on the database server. 

4.2 Resource Allocation Method 
Consumer agents attempt to acquire resources in 
order to maximize the performance of their work-
load. They must capture resources in appropriate 
amounts such that none of the resources become a 
performance-limiting, bottleneck resource. Con-
sumer agents therefore need mechanisms to iden-
tify resource preferences of workloads in order to 
obtain optimal <cpuopt, memopt> pairs for the 
workloads. 

In our approach, consumer agents use a 
greedy algorithm to identify the optimal <cpuopt , 
memopt> pairs for their workload. The resource 
allocation is determined iteratively. In an iteration 
of the algorithm, a consumer agent bids for a unit 
of the resource (either buffer pool memory or 
CPU) that it predicts will yield the greatest benefit 
to its performance. 
 

 
Figure 2 shows a representation of the state 

space of the search algorithm for the case of allo-
cating buffer memory and CPU resources to an 
OLTP workload presented in our experiments. 
The starting node, n1,1, represents the minimum 
allocation given to each consumer agent (one unit 

Figure 2: Buffer Pool Memory and CPU Pairs 
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of buffer memory and one unit of CPU). A con-
sumer agent then traverses the directed weighted 
graph to search for the optimal <cpuopt , memopt> 
pair for its workload in order to meet the SLOs. 

A node ni,j, in the graph, represents a possible 
resource allocation pair of i units of CPU and j 
units of buffer memory.  The weight on the edge 
(ni,j, ni,j+1) represents the performance (in our case 
throughput) that could be achieved for the work-
load if the consumer agent acquires one more unit 
of buffer memory.  Similarly, the weight on an 
edge (ni,j, ni+1,j) represents the performance that 
could be achieved if one more unit of CPU re-
source is acquired. A consumer agent always 
chooses to bid for the resource that will yield the 
best performance. If a consumer agent’s bid is 
successful then conceptually it moves to the new 
node in the graph for the next iteration of the al-
gorithm. If a consumer agent’s bid is not success-
ful then it remains at the same node in the graph. 
The graph has no cycles and the weight on each 
edge is determined by the performance model 
described in Section 4.3. The boundary nodes 
may have one or no outgoing edges when there is 
no more associated resource left. The proof that, 
for our problem, a greedy algorithm determines a 
global optimum is straightforward since the addi-
tion of more resources will always result in a per-
formance improvement. 

4.3 Performance Model 
We model the DB2 DBMS used in our experi-
ments with a simple queueing network model 
(QNM). This QNM is used to predict performance 
in each step of the greedy algorithm, that is, as-
sign the weights to the edges of the graph in Fig-
ure 2. We use a closed QNM consisting of a CPU 
service center and an I/O service center. The CPU 
service center represents system CPU resources 
and the I/O service center represents buffer pool 
memory and disk system resources. We apply 
mean value analysis (MVA) [9] on the closed 
QNM to predict the performance of the DBMS 
with a certain number of database agents and a 
particular size of buffer pool. 

For a specific database system and a specific 
type of workload, the average CPU service de-
mand of the requests in the system is constant, 
and it can be determined by equation (4) [9] 
 

( ) CTUSCPU *=                                       (4) 
 

where, U is the CPU utilization, T is the total 
workload execution time, and C is the number of 
completed transactions in the experiment. 

I/O service demand directly depends on the 
buffer pool size. If a buffer pool size is large, then 
it can reduce the number of I/O operations from 
disk system, which in turn reduces the average 
I/O service time of a request. On the other hand, if 
the buffer pool size is small, it can increase the 
number of I/O operations and so increase the av-
erage I/O service time of a request. The average 
I/O service demand can be expressed as a function 
of buffer pool memory size, using equation (5) 
[11] 
 

b
IO McS *=                                                (5) 

 
where, c and b are constant, and M is buffer pool 
size. In the equation (5) the constants c and b can 
be determined by equations (6) and (7) respec-
tively. Different database systems will have dif-
ferent b and c values. 
For constant b: 
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For constant c: 
 

( ) ( )b
IO MSc 11=                                         (7) 

 
where, SIO1and SIO2 are I/O service demand val-
ues at buffer pool sizes of M1 and M2 buffer 
pages, respectively. SIO1 and SIO2 are determined 
through experimentation. 
 
 

 

Figure 3:  Validation of Performance Model
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We use MVA on the closed QNM to predict 
throughput for an OLTP workload running on the 
database system with specific amounts of buffer 
memory and CPU resources. Figure 3 shows a 
validation of the model. It shows the predicted 
and actual throughput values for various resource 
pairs for the DBMS and TPC-C benchmark work-
load [12] described in section 5. 

Utility Function 
In the resource allocation framework, a utility 
function [13] is a monotonically non-decreasing 
function, and it maps performance achieved by a 
workload with certain amount of resources into a 
real number u, u œ [0, 1] [14]. If performance of a 
workload is high, then the utility of resources al-
located to the workload is close to 1, while, if 
performance of the workload is low, then utility 
of resources allocated to the workload is close to 
0. Consumer agents in the model employ a utility 
function to calculate marginal utilities, as defined 
in Section 3.3, to determine biding values in re-
source auctions. 

We employ a utility function that normalizes 
the predicted throughput from the performance 
model relative to the maximum throughput that 
the workload could achieve when all resources are 
allocated to it. The utility function is given by 
 

( ) =MEMCPU mcUtility ,  
( ) MaxMEMCPUThroughput XmcMVA ,              (8) 

 
where, MVAThroughput(x, y) is the throughput pro-
vided by the QNM, cCPU is the number of data-
base agents and mMEM is the number of buffer pool 
memory pages. XMax is the maximum throughput 
achieved by a workload with all resources allo-
cated. 

The marginal utility value reflects potential 
performance improvement, and by examining the 
marginal utility values, consumer agents can de-
termine the preferred resource for the workloads. 
The maximum bid, as shown in Section 3.3, is the 
marginal utility multiplied by current wealth of a 
consumer agent, and says that a consumer agent is 
willing to spend the marginal-utility percentage of 
its wealth to bid for resources. 

5 Validation and Experi-
ments 

Before integrating the economic model into a 
DBMS, we implement a simulator of the eco-
nomic model outside of the DBMS to provide an 
experimental environment to validate the ap-
proaches proposed in the resource allocation 
framework. The validations address two main 
issues in the multiple-resource management stud-
ies, namely: 

• Does the resource allocation framework gen-
erate the multiple-resource allocations for 
competing workloads on a DBMS so that the 
resource allocations match the workload 
business importance policies? 

• Are the allocations resulting from the auc-
tions sufficient for the competing workloads 
to meet their SLOs? 

5.1 Experimental Environments 
We apply the economic model using a single DB2 
instance with three identical databases for three 
competing workloads from different importance 
classes. Each database is configured with one 
buffer pool and some number of database agents.  
Each database has one workload running on it, 
thus each workload has its own buffer pool and 
some system CPU shares while still having ac-
cesses to all the same database objects [4]. The 
economic model allocates buffer pool memory 
space and system CPU resources across the three 
identical databases based on a given workload 
business importance policy. 

We experimentally determined the appropri-
ate amount of total resources for the given con-
figuration and set of workloads [8]. We selected a 
minimum amount of each resource where maxi-
mum system performance was achieved. We use 
32768 buffer memory pages as the total buffer 
pool memory and 25 database agents as the total 
CPU resources. 

The unit sizes of buffer memory and CPU are 
parameters in the economic model framework. 
We take 1000 buffer memory pages as one unit of 
buffer memory and 1 database agent as one unit 
of CPU resources in this study as these 
granularities give a reasonable workload perform-
ance increment and make the resource allocation 
efficient. 
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In this study, all experiments were conducted 
with DB2 Universal Database Version 8.2 [10] 
running on an IBM xSeries® 240 PC server with 
the Windows® XP operating system.  The data-
base server is equipped with two 1 GHz Pentium® 
3 processors, 2 GB of RAM and an array of 11 
disks. To eliminate the need to account for CPU 
parallelism in the QNM, as introduced in Section 
4.3, we configure the system with one processor 
available. 

The database and workloads are taken from 
the OLTP TPC-C benchmark [12].  The size of 
each database is 10GB. The three workloads are 
TPCC-like OLTP batch workloads stored in three 
script files. The workloads send transactions to 
the DBMS with zero think time during their run. 
Each workload consists of 120,000 requests based 
on the 5 different types of the transactions of 
TPC-C benchmark. A workload is divided into 12 
resource allocation intervals. The start of each 
interval provides a checkpoint at which a resource 
allocation process takes place to reallocate re-
sources to workloads based on their current im-
portance levels and wealth. 

The simulator is written in JavaTM and the 
workload script files are used as the simulator 
input. The output of the simulator is resource al-
locations, that is, a list of the number of buffer 
memory pages and database agents for the work-
loads at each of their checkpoints. According to 
the output, database configuration commands are 
inserted into the workload script files at the 
checkpoints, allowing for a database to dynami-
cally reconfigure during a run. By running the 
workloads on the DB2 database server, we verify 
that their SLOs are met. Before each run of the 
workloads, the databases are restored to their ini-
tial states. Buffer pool hit rate and workload 
throughput are taken to measure the workloads’ 
performance. Each experiment was run five times, 
and the average of the five runs is reported. 

5.2 Resource Allocations 
A set of experiments was conducted to determine 
whether our approach generates the resource allo-
cations which match a given workload business 
importance policy. The workloads are assigned 
one of three different importance classes, namely 
the high importance class, the normal importance 
class, and the best effort class, as described in 
Section 3.4.  We experimented with three differ-
ent sets of importance multipliers to validate the 

economic model. An importance multiplier set 
represents the importance multiplier values of the 
three importance classes in order of {best effort, 
normal importance, high importance}. The three 
sets used were {1, 1, 1}, {1, 5, 6}, and {1, 5, 10}. 
These configurations were designed to examine 
how resource allocation changes with the impor-
tance multipliers. 

 
 

Figure 4 and Figure 5 show buffer memory 
pages and database agents representing system 
CPU resources, allocations produced by the eco-
nomic model using the three workload business 
importance multiplier sets.  The workload impor-
tance multiplier set {1, 1, 1} represents the case 
where the three competing workloads are from 
three different business importance classes of 
equal importance. In this case, the three work-
loads are allocated approximately the same 
amount of buffer memory and CPU resources as 
shown in Figures 4 and 5.  Using the importance 
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multiplier set {1, 5, 6}, the high importance and 
the normal importance classes are much more 
important than best effort class, and the high im-
portance class is also slightly more important than 
the normal important class. When the economic 
model is used to allocate resources in this case, 
the high importance and normal importance work-
loads are allocated significantly more resources 
than the best effort workload, while the high im-
portance workload is allocated slightly more re-
sources than the normal importance workload. 
The set {1, 5, 10} represents the case where the 
high importance class is much more important 
than the normal importance class, and the normal 
importance class is much more important than the 
best effort class. In this case, the high importance 
workload is allocated more resources than the 
normal important workload, and the normal im-
portance workload wins significantly more re-
sources than the best effort workload. 

We conclude that the resource allocations 
generated by the economic model for competing 
workloads match the workload business impor-
tance policies with more important workloads 
winning more resources than less important work-
loads. 

5.3 Workload Performance 
A set of experiments was conducted to determine 
whether the performance achieved by the work-
loads with allocated resources generated by the 
economic model match the business importance 
policy. The workload importance multiplier sets 
used in these experiments were the same as the 
sets used in the experiments shown in Section 5.2. 
We can therefore observe the achieved perform-
ance of the workloads with the allocated resources 
obtained in the first set of experiments. The work-
loads were run on DB2 using the resource alloca-
tions suggested by the simulator. Workload 
throughput and buffer pool hit rate were measured 
as performance metrics. The experimental results 
are shown in Figure 6 and Figure 7 respectively. 

In Figure 6 we observe that the throughput of 
the workloads match the given business impor-
tance policies. When the workloads had the same 
business importance, namely applying importance 
multiplier set {1, 1, 1} on the economic model, 
the workloads achieve a similar throughput. When 
the workloads are of different business impor-
tance, namely applying multiplier sets {1, 5, 6} 
and {1, 5, 10} on the model respectively, then the 

important workloads achieve higher throughput 
than the less important workloads. The trend 
shows that the more important a workload is, the 
more resources it receives and hence, the work-
load performance is greater. 
 

Figure 7 shows the buffer pool hit rate of the 
workloads for the three different importance mul-
tiplier sets.. The results show the same trend as 
the throughput results shown in Figure 6. When 
the workloads had the same business importance, 
then buffer pool hit rates are similar, while with 
different business importance levels, the impor-
tant workloads achieve higher buffer pool hit rates 
than the less importance workloads. We notice 
that the difference in the hit rate between the high 
importance class and the normal importance class 
is small when the difference between their impor-
tance multipliers is large (that is, with the multi-
plier set {1, 5, 10}). This is likely due to fact that 
the total amount of buffer memory available for 
allocation is small, about 132MB. So even if the 
high importance workload obtained more buffer 

Figure 7: Buffer Pool Hit Rate for Different 
Importance Multiplier Sets 
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memory resources, it could not achieve signifi-
cantly larger buffer pool hit rate than the others 
[8]. 

Based on these results, we conclude that us-
ing the economic model for resource allocation is 
successful in obtaining workload performance 
that matches the given workload business impor-
tance policies. 

6 Conclusions and Future 
Work 

In this paper we present a framework that uses 
economic models to simultaneously allocate mul-
tiple resources, namely buffer pool memory space 
and system CPU shares, to workloads in a DBMS 
based on the workload business importance. In the 
resource allocation framework, we apply a queue-
ing network model to predict performance of the 
workloads given a particular resource allocation. 
A greedy algorithm is used to find an optimal 
resource allocation for the workloads to maximize 
their performance to meet the SLOs. By present-
ing the economic model, we have shown a way 
that a high-level business importance policy can 
be automatically translated into a DBMS system-
level multiple-resource tuning actions. Through a 
set of experiments we have validated the effec-
tiveness of the framework. 

An implementation issue of integrating the 
resource allocation framework into a DBMS is to 
predict the cost of a workload in an upcoming 
resource allocation interval. There are several 
possible approaches that could be used to address 
this issue. One approach is to estimate a workload 
cost for an upcoming interval based on the costs 
of the workload in previous intervals. Another 
approach is to allow consumer agents to request 
additional resources at any time by utilizing the 
feedback loop feature provided by the economic 
model to verify the workload SLOs are met, and 
not wait for the next resource allocation intervals. 
The third approach is to intercept the workload 
incoming requests by using the DBMS perform-
ance management component, such as DB2 Query 
Patroller [15], to estimate the query costs in a 
workload. 

In the future, we plan to try exchange based 
economy to replace the current price based econ-
omy to allow the consumer agents to directly ex-
change their resources in order to simplify the 
trading mechanism in the economic model. We 

plan to add OLAP workloads to examine the ef-
fectiveness of the economic model with more 
complex workloads. In this study, we use batch 
workloads in which all queries are known in ad-
vance. As a next step, we plan to extend the eco-
nomic model to accept random workloads to 
make the resource allocation framework more 
practical. 
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