
 

A Reflective Database-Oriented Framework for Autonomic Managers 
 
 

Wendy Powley and Pat Martin 
School of Computing, Queen’s University 

Kingston, ON Canada 
{wendy, martin}@cs.queensu.ca 

 
 

Abstract 
 

The trend towards autonomic systems emphasizes 
the need for implementation frameworks for 
autonomic features.  In this paper we describe a 
general framework for the development of autonomic 
managers, that is, components that can manage their 
own behaviour.  Our approach uses concepts and 
tools from relational database management systems as 
well as reflective programming techniques to 
implement the components of the autonomic manager.  

 
1. Introduction 
 

Advances in software technologies and practices 
have enabled developers to create larger, more 
complex applications to meet the ever increasing user 
demands. The unpredictability of how the applications 
will behave and interact in a widespread, integrated 
environment poses great difficulties for system testers 
and managers.  Management of such systems involves 
not only management of individual components, but 
management of an environment that changes 
dynamically and, at the same time, strives to meet 
system-wide objectives.  Human understanding of 
such an environment is complex, manual management 
of such a system is near impossible.   

The Autonomic Computing initiative, spawned by 
IBM in 2001, proposes a solution to software 
management problems in which the responsibility for 
software management shifts from the human 
administrator to the software system itself.  The IBM 
Architectural Blueprint for Autonomic Computing 
provides a set of guidelines for building autonomic 
capability into an on-demand computing environment 
[4].  The blueprint discusses some of the emerging 
standards and identifies several building blocks for the 
implementation of Autonomic Computing features.  In 
this paper we outline a general methodology for the 
implementation of one of the key building blocks 
identified by the IBM blueprint, the autonomic 

manager.  The autonomic manager implements the 
management capabilities of a resource, or a set of 
resources, called managed elements.    

The autonomic manager consists of a feedback 
loop consisting of 4 components;  Monitor, Analyze, 
Plan and Execute, sometimes referred to as the MAPE 
loop.  Sensors provide mechanisms to collect 
information about the current state of an element.  
Effectors are mechanisms that change the state or 
configuration of an element.   Central to all of the 
MAPE functions is knowledge about the system such 
as performance data reflecting past, present and 
expected performance, system topology, negotiated 
Service Level Agreements (SLAs), and policies and/or 
rules governing system behaviour.   

The MAPE loop is typically implemented as a 
feedback control loop.  Thus, there is a need for 
mechanisms to maintain logic flow as well as 
communication channels that allow the various 
components to communicate and pass messages.  
Furthermore, autonomic managers rarely operate 
solely in isolation.   Instead they cooperate with other 
managers to maintain overall system performance, 
thus requiring communication between autonomic 
managers. If external management capabilities are 
required for a component, management interfaces to 
the autonomic manager must be exposed.    In this 
paper we describe a general framework for the 
development of autonomic managers that meet these 
requirements. 

Data management is an important aspect of the 
autonomic manager.  Much of the logic flow of the 
MAPE loop depends upon changes or updates to the 
data stored in the database, or knowledge store, of the 
autonomic manager. Our framework for the 
development of autonomic managers takes advantage 
of the rich capabilities of the database management 
system, not only to manage the data, but also to 
control the logic flow in the system and to implement 
pieces of the logic of the components themselves. 

A reflective system maintains a model of self-
representation and changes to the self-representation 



 

are automatically reflected in the underlying system.  
Reflection enables inspection and adaptation of 
systems at run-time [7] thus making reflection a viable 
approach to implanting autonomic features in 
computing systems.  In our approach, we consider the 
autonomic element's controllable features, along with 
their current status, to be the component's self-
representation.  This information is stored as part of 
the system knowledge.  Whenever a change is made to 
the self-representation data, a corresponding change is 
made to the actual system. 

The remainder of the paper is structured as 
follows.  Related work is presented in Section 2. 
Section 3 presents our proposed reflective database-
oriented framework for autonomic managers and 
illustrates our approach using an example autonomic 
Web services environment. In Section 4 we summarize 
the contributions of the paper and outline future 
directions. 

 
 
2. Related Work 
 

The IBM Architectural Blueprint for Autonomic 
Computing [4] defines a general architecture for 
building autonomic systems.  Many approaches to 
building autonomic systems are based on this blueprint 
document and some extend the blueprint by specifying 
component interfaces as well as component behaviours 
and interactions [12].  

Several proposed approaches use control theory 
techniques to implement the feedback loop [3][10].  
Some approaches use an ontology to extend the 
capabilities of autonomic components [5][10].  Liu & 
Parashar [6] present a component-based programming 
framework to support the development of autonomic 
self-managed applications.  The concept of reflection 
has been used for autonomic computing systems, 
particularly in terms of adaptive middleware [1].  

Our approach builds on the IBM Architectural 
blueprint and proposes a novel framework for 
autonomic systems that exploits the powerful 
capabilities of a database management system for 
system control as well as to manage and store the vast 
array of knowledge required for an autonomic system.  
Our approach uses common tools provided by most 
database management systems as well as reflective 
programming techniques to incorporate self-awareness 
into the autonomic system. 

 
3. Framework for Autonomic Managers 
 

In our approach, relational database tables store 
the knowledge related to an autonomic manager and  
database triggers defined on the tables control the 

logic flow of the system.  Database triggers are 
routines that are stored in a database and are executed 
or "fired" when a table is modified.  Two types of 
triggers are used in our approach;  insert triggers (fired 
upon insert of new data into a table) and update 
triggers (fired upon update of a particular attribute in a 
table).   The trigger action may be coded within the 
trigger definition or the action may be coded within 
external code that is called by the trigger.  Logic for 
the autonomic manager may be implemented as a 
stored procedure (code that is stored within the 
database system), a user defined function (code that 
can be used within an SQL query), or as an external 
program that can be called by a database trigger.   

In the following sections we describe our 
framework and outline how the various components of 
an autonomic manager are implemented using a 
reflective database-oriented approach.  As an example, 
we introduce an autonomic Web services environment 
and describe in detail one of the autonomic managers 
employed in this prototype environment, namely an 
autonomic manager for the buffer pool of a database 
management system.   

 
Autonomic Web Services System  

An architecture for an Autonomic Web Services 
Environment is shown in Figure 1.  A Web services 
environment typically consists of a collection of 
components including HTTP servers, application 
servers, database servers, and Web service 
applications.   We refer to a site as a collection of 
components and resources necessary for hosting a 
Web service system.   A site can span multiple 
platforms and can be distributed across multiple 
physical nodes.  Each component of the site is 
assumed to be autonomic, that is, self-aware and 
capable of self-configuration to maintain a specified 
level of performance [11].   

An autonomic environment requires some control 
at the system level to achieve system-wide goals.  The 
autonomic Web services environment can be viewed 
as a hierarchy of autonomic managers.  Each 
component may consist of one or more autonomic 
element(s) and each autonomic element employs an 
autonomic manager that implements the self-managing 
features of the autonomic element.  At the highest 
level, a site manager, also an autonomic manager, 
provides service provisioning and management of the 
components, if necessary, to ensure overall system 
performance. 

Our approach, as shown in Figure 2, is illustrated 
in detail by describing the autonomic manager for the 
buffer pool area of a database management system 
(DBMS), a key resource for performance in a database 
system.    The DBMS buffer pool acts as a cache for 



 

all data requested from the database.   Given the high 
cost of I/O accesses in a database system, it is 
important for the buffer pool to function as efficiently 
as possible, which means dynamically adapting to 
changing workloads to minimize physical I/O 
accesses.  Configuring a DBMS buffer pool involves 
sizing the buffer pool properly and controlling the 
asynchronous writes to flush “dirty” pages from the 
buffer pool back to disk as efficiently as possible to 
make room for newly requested pages.  
 
 

Query/Signal 

 

 

HTTP Server 

                                      Application 
                                     Server SOAP Engine 

WS1 

   DB  Legacy 

XML 

Objects

JDBC Wrapper SOAP 

 HTTP Server 
Goal 

Interface 
Performance 

Interface 

Application Server 
Goal 

Interface 
Performance 

Interface 

Set 

WS2 WS3  
Web service 

Goal 
Interface 

Performance 
Interface 

DB Server 
Goal 

Interface 
Performance 

Interface 

Ext.WS

SLA Negotiator 

Site Manager 

 
Site Manager 

Goal 
Interface 

Performance 
Interface 

 
Figure 1:  Autonomic Web Services Environment 
[11] 

 
Knowledge 

The MAPE loop requires knowledge about the 
system topology, performance metrics (of both its 
managed element and, on occasion, that of other 
managed elements), component-based and system 
wide policies, and the expectations, or system goals.  
Knowledge used by the MAPE loop is stored in a set 
of database tables that can be accessed internally by 
the autonomic element, or externally by other 
autonomic managers via standard interfaces.   For our 
example DBMS buffer pool autonomic manager, the 
basic system knowledge is represented by the set of 
tables shown in Figure 3.   These tables include 
BP_Perf_Data (the performance data for the buffer 
pools), Self-Representation (the current buffer pool 
configuration), Analyzer_Result (the results from the 
analyzer), Goals (performance expectations for the 
buffer pools) and Policy (policies governing the buffer 
pools). The BP_Perf_Data table is specific to the 
performance data for the DBMS buffer pools, 
however, the other tables are general tables shared by 
other autonomic managers. 
 

PolicyGoal

Sensor Effector

Monitor

Analyze

Execute

Plan

Trigger BP_Perf_Data

TriggerAnalyzer_Result

Trigger

Self-Representation

Knowledge PolicyGoal

Sensor Effector

Monitor

Analyze

Execute

Plan

Trigger BP_Perf_Data

TriggerAnalyzer_Result

Trigger

Self-Representation

Knowledge PolicyGoal

SensorSensor Effector

Monitor

Analyze

Execute

Plan

Trigger BP_Perf_DataTrigger BP_Perf_Data

TriggerAnalyzer_Result TriggerAnalyzer_Result

Trigger

Self-Representation

Knowledge

 
Figure 2:  Autonomic Manager for DBMS Buffer 
Pools 

 
For the buffer pool autonomic manager, the data 

that most reliably predicts and most accurately depicts 
potential problems related to buffer pool performance 
is placed in the table BP_Perf_Data (see Figure 3).  It 
includes information about the types of I/O required 
by the database (data versus index reads, physical 
versus logical reads, asynchronous versus synchronous 
I/O) and, most notably, the buffer pool hit rate (the 
likelihood of finding a requested page in the buffer 
pool) which is, in most cases, a good indicator of 
buffer pool performance.   

The self-representation of the autonomic manager 
reflects the status of the controllable features of the 
autonomic element.  This information is stored in the 
Self_Representation table.  A number of DBMS 
configuration parameters are related to buffer pool 
usage including the buffer pool size, the size of the 
sort area, and the number of asynchronous processes 
that can be spawned for pre-fetching data or for 
writing dirty pages back to disk.  These parameters are 
the controllable features of the buffer pool and 
modifying the values of these settings has an effect on 
the efficiency of the buffer pool.   In our approach, 
these parameters and their current values form the self-
representation of the DBMS buffer pool.  The self-
representation table is initially populated using an 
SQL query to the DBMS catalog tables that store the 
DBMS configuration information. 

Goals and policies for the DBMS buffer pools are 
stored in the Goal and Policy tables respectively.  
Buffer pool goals are typically specified in terms of hit 
rate and/or response time goals. Policies describe the 
rules used to adjust buffer pool sizes. For example, in 
our case, an increase in the average data access time of 
greater than 5% triggers a greedy algorithm to reduce 
the access time by shifting pages among buffer pools 
[8].  
 
 



 

 
 

Figure 3:  Database Tables for DBMS Buffer Pool 
Autonomic Manager     

 
Monitor/Sensors 

The implementation of the sensors for a managed 
element is dependent upon the type of interface and/or 
the instrumentation provided by the element. The 
sensor for our buffer pool autonomic manager is an 
application program that uses the monitoring API for 
the DBMS to retrieve the data relevant to buffer pool 
performance.  The sensor collects the data periodically 
and inserts the data into the BP_Perf_Data table.  The 
monitor component of the MAPE loop is used to filter 
and correlate sensor data.   In our DBMS buffer pool 
manager, raw data is used for analysis, so a monitor 
component is not required.  
 
Analyzer/Planner 

The analyzer and planner modules of the MAPE 
loop are custom built components specific to the 
autonomic element.  The analyzer is responsible for 
examining the current state of the system and flagging 
potential problems.  The planner module determines 
what action(s) should be taken to correct or 
circumvent a problem.  These components may be 
policy-driven, or they may require complex logic 
and/or specialized algorithms. 

In the DBMS buffer pool example, the analyzer 
defines the logic that examines the performance data 
in light of the defined policies and goals for the buffer 
pools, and determines whether or not the component is 
meeting its expectations.   

The planner implements the algorithm(s) that 
define the adjustment(s) required to achieve the 
expectations for the managed element.   For the buffer 
pool example, specialized tuning algorithms have been 
developed that predict buffer pool performance under 
various configurations and select a configuration that 

minimizes the overall data access cost [8]. These 
algorithms are incorporated into the planner logic. 

Both the analyzer and the planner for the DBMS 
buffer pool autonomic manager are implemented as 
user defined functions and are thus stored in, and are 
accessible from within, the database management 
system. 
  
Execute Module/Effectors 

The concept of reflection is used in our approach 
to implement the effectors for an autonomic manager.  
The self-representation of the system embodies the 
current configuration settings for the managed 
element.  These represent the features of the managed 
element that can be controlled.  In our example, the 
self-representation for the DBMS buffer pools 
includes the current settings for tunable parameters 
such as the size of the buffer pool, the number of I/O 
prefetchers, the number of I/O cleaners (threads to 
asynchronously write pages back to disk)  etc.  The 
value of each parameter is adjustable and, when 
changed, affects the system performance.  

The self-representation information for a managed 
element is stored in the Self_Representation table.  An 
update trigger on the value attribute in this table is 
used to implement the effectors, that is, the 
mechanisms that effect change to the managed 
element.  When a change is made to the self-
representation, the trigger is fired, thus invoking the 
execute module which in turn invokes the effector that 
makes the actual configuration change(s).  In the 
DBMS buffer pool example, the trigger calls the 
external code which implements the logic that makes 
the actual change to the DBMS system configuration.   
 
Logic Flow 

The MAPE loop is implemented as a feedback 
control loop that repeatedly monitors the component, 
analyzes its status, and makes necessary adjustments 
to maintain a pre-defined level of performance.  The 
control of the feedback loop in our approach is largely 
implemented by database triggers defined on the 
database tables that store the system knowledge.  This 
is illustrated in Figure 2. 

We describe the flow of control using the DBMS 
buffer pool autonomic manager beginning with the 
sensors. The sensors periodically collect data and 
insert this data into the performance data tables.  An 
insert trigger is defined on the performance data table 
that invokes the analyzer module whenever new data 
arrives.  Depending on the frequency of data collection 
the trigger may be modified to fire only periodically, 
as opposed to every time new data is inserted.   The 
trigger defined on the BP_Perf_Data table is defined 
(using an IBM DB2 database) as: 



 

 
CREATE TRIGGER NewDataTGR 
AFTER INSERT ON BP_Perf_Data  
FOR EACH ROW MODE DB2SQL  
BEGIN ATOMIC  VALUES(AnalyzeBPData()); 
 

The analyzer code may be implemented as a 
stored procedure, a user defined function, or as an 
external program that can be called by the database 
trigger.  In our example, the analyzer code is defined 
as a user defined function called “AnalyzeBPData”.   
If the analyzer detects a problem, it places a result, or 
a notification in the Analyzer_Result table in the 
database.  An insert trigger on the Analyzer_Result 
table calls the planner module whenever the result 
indicates that some action may be required.   

The planner determines the appropriate action to 
take and, to effect the change, it updates the 
appropriate data in the Self-Representation table.  The 
update trigger on this table signals the execute module 
to take the suggested action.  In the IBM blueprint, the 
execute module effects change to the monitored 
element by way of the effectors, that is, it makes 
changes to the configuration of the managed element.  
In our reflective approach, the planner makes a change 
to the managed element’s self-representation and an 
update trigger defined on this table acts as the effector, 
the mechanism that actually makes the change to the 
managed element. The implementation of the routine 
to make the change depends upon the nature of the 
managed element.  Changes may be implemented via 
the element's API, or they may involve updating 
configuration files and possibly restarting the 
component.   
 
Communication 

System-wide management of the Web services 
environment is facilitated by a hierarchy of autonomic 
managers that query other managers at the lower level 
to acquire current and past performance statistics, 
consolidate the data from various sources, and use pre-
defined policies and Service Level Agreements 
(SLAs) to assist in system-wide tuning.  Autonomic 
managers, therefore, must be able to communicate to 
share information.  In our approach, this is done via 
standard Web Services interfaces.  Two management 
interfaces are defined for each autonomic element; the 
Performance Interface and the Goal Interface. The 
Performance Interface exposes methods to retrieve, 
query and update performance data.  Each element 
exposes the same set of methods, but the actual data 
each provides varies.  Meta-data methods allow the 
discovery of the type of data that is stored for each 
element.  The Goal Interface provides methods to 
query and establish the goals for an autonomic 

element, thus allowing external management of a 
component.  Meta-data methods promote the 
discovery of associated goals and additional methods 
allow the retrieval of current goals. 

 
 

4. Summary and Future Directions 
 

Autonomic Computing is a promising approach to 
solving the problem of effectively managing today’s 
large and complex software systems. The IBM 
Architectural Blueprint for Autonomic Computing 
provides a set of guidelines for building autonomic 
capability into an on-demand computing environment.  
In this paper we described a general methodology for 
implementing autonomic managers, which are of one 
of the key building blocks of the blueprint.  

We outlined a reflective database-oriented 
approach to the implementation of autonomic 
managers for autonomic computing systems.  This 
approach makes use of reflective programming in 
which a system maintains a self-representation and 
changes to the self-representation are reflected in the 
actual system.  Our approach uses relational tables to 
store the self-representation and the system knowledge 
and implements triggers to effect the changes to the 
managed element.    The logic flow of the managed 
element is implemented via database triggers that 
invoke the appropriate components.  Information is 
shared among cooperating autonomic managers by 
way of standard Web Services interfaces. 

We plan to continue our work on the framework 
in several areas. First, we will make our interfaces and 
interactions compliant with the OASIS Web Services 
Distributed Management (WSDM) standards [9]. This 
will allow us to enhance the interactions among 
autonomic managers and will strengthen the case for 
autonomic management of Web services. Second, we 
will adopt a specification language for manager 
policies and develop an interpreter for these policies. 
The interpreter will form the skeleton for the analyzer 
and planner modules, which will make the modules 
much more generic since customization of the actions 
will be embodied in the policies. Third, we will 
develop a wider range of prototype autonomic 
managers using the framework. 

 
References 
 
[1]  G. Agha (ed).  Special Issue on Adaptive Middleware, 
Communications of the ACM, 2002, 45(6). 
 
[2]  P. Bruni, N. Harlock, M.H. Hong, and J. Webber.  DB2 
for z/OS and OS/390 Tools for Performance Management.  
IBM Redbooks, November 2001. 
 



 

[3] Y. Diao, J.L. Hellerstein, G. Kaiser, S. Parekh, D. Phung.  
Self-Managing Systems:  A Control Theory Foundation.  
IBM Research Report RC23374 (W0410-080) , October 13, 
2004. 
 
[4]  IBM, An Architectural Blueprint for Autonomic 
Computing, June 2005. 
 
[5] G. Lanfranchi, P. Della Peruta, A. Perrone, and D. 
Calvanese.  Toward a New Landscape of Systems 
Management in an Autonomic Computing Environment.  
IBM Systems Journal, 42(1), pp. 119-128. 
 
[6] H. Liu and M. Parashar.  A Component Based 
Programming Framework for Autonomic Applications.  
Proceedings of the International Conference on Autonomic 
Computing (ICAC 2004),  May 17-18, 2004, New York, 
NY, pp. 10-17. 
 
[7]  P. Maes. Computational Reflection, The Knowledge 
Engineering Review, pp.1-19, Fall 1988. 
 
[8]  P. Martin, W. Powley, M. Zheng and K. Romanufa. 
Experimental Study of a Self-Tuning Algorithm for DBMS 
Buffer Pools. Journal of Database Management, Vol 16(2), 
April - June, 2005, pp. 1-20. 
 
[9] OASIS. Web Services Distributed Management: 
Management Using Web Services (MUWS 1.0) Part 1, 
OASIS Standard, March 2005. 
 
[10] G. Tziallas and B. Theodoulidis.  Building 
Autonomic Computing Systems Based on Ontological 
Component Models and a Controller Synthesis Algorithm.  
Proceedings of the 14th International Workshop on Database 
and Expert Systems Applications (DEXA’03),  Sept 1-5, 
2003, Prague, Czech Republic, pp. 674-680. 
 
[11] W. Tian, F. Zulkernine, J. Zebedee, W. Powley 
and P. Martin.  An Architecture for an Autonomic Web 
Services Environment.  Proceedings of the Joint Workshop 
on Web Services and Model-Driven Enterprise Information 
Systems WSMDEIS (ICEIS 2005), May 2005, Miami, Fl. 
 
[12]  S.R. White, J.E. Hanson, D.M. Chess and J.O. 
Kephart.  An Architectural Approach to Autonomic 
Computing, Proceedings of the International Conference on 
Autonomic Computing (ICAC’04),  May 17-18, 2004, New 
York, NY, pp. 2-9. 
 


