

Reputation-Enhanced QoS-based Web Services Discovery

Ziqiang Xu, Patrick Martin, Wendy Powley and Farhana Zulkernine
School of Computing, Queen's University, Kingston, ON, Canada K7L 3N6

E-mail: {xu, martin, wendy, farhana}@cs.queensu.ca

Abstract

With an increasing number of Web services
providing similar functionalities, Quality of Service
(QoS) is becoming an important criterion for selection
of the best available service. Currently the problem is
twofold. The Universal Description, Discovery and
Integration (UDDI) registries do not have the ability to
publish the QoS information, and the authenticity of
the advertised QoS information available elsewhere
may be questionable.

We propose a model of reputation-enhanced QoS-
based Web services discovery that combines an
augmented UDDI registry to publish the QoS
information and a reputation manager to assign
reputation scores to the services based on customer
feedback of their performance. A discovery agent
facilitates QoS-based service discovery using the
reputation scores in a service matching, ranking and
selection algorithm. The novelty of our model lies in its
simplicity and in its coordination of the above
mentioned components. We present experiments to
evaluate the effectiveness of our approach using a
prototype implementation of the model.

1. Introduction

If multiple Web services provide the same

functionality, then a Quality of Service (QoS)
requirement can be used as a secondary criterion for
service selection. QoS is a set of non-functional
attributes like service response time, throughput,
reliability, and availability [12][15]. The current
Universal Description, Discovery and Integration
(UDDI) registries only support Web services discovery
based on the functional aspects of services [12]. The
problem, therefore, is firstly to accommodate the QoS
information in the UDDI, and secondly to guarantee
some extent of authenticity of the published QoS
information. QoS information published by the service
providers may not always be accurate and up-to-date.

To validate QoS promises made by providers, we
propose that consumers rate the various QoS attributes
of the Web services they use. These ratings are then

published to provide new customers with valuable
information that can be used to rank services for
selection. Web service QoS reputation can be
considered as an aggregation of QoS ratings for a
service from consumers over a specific period of time.
This provides a general estimate of the reliability of a
service provider. With service reputation taken into
consideration, the probability of finding the best
service can be increased. However, the assumption is
that the customer ratings are considered non-malicious
and fairly accurate.

There are two major problems in using QoS for
service discovery. First is the specification and storage
of the QoS information, and second is the specification
of the customer’s requirements and matching these
against the information available. Major efforts in this
area include Web Services Level Agreements (WSLA)
[5] by IBM, Web Services Policy Framework (WS-
Policy) [2], and the Ontology Web Language for
Services (OWL-S) [3]. Most of these efforts represent
a complex framework focusing not only on QoS
specifications, but on a more complete set of aspects
relating to Web services. Some researchers propose
other simpler models and approaches [7][10][14] for
dynamic Web services discovery. However, they all
struggle with the same challenges related to QoS
publishing and matching.

We propose a Web services discovery model that
contains an extended UDDI to accommodate the QoS
information, a reputation management system to build
and maintain service reputations, and a discovery agent
to facilitate the service discovery. We develop a
service matching, ranking and selection algorithm
based on a matching algorithm proposed by
Maximilien and Singh [9]. Our algorithm finds a set of
services that match the consumer’s requirements, ranks
these services using their QoS information and
reputation scores, and finally returns the top M services
(M indicates the maximum number of services to be
returned) based on the consumer’s preferences in the
service discovery request.

The goal of this research is to investigate how
dynamic Web service discovery can be realized to
satisfy a customer’s QoS requirements using a new
model that can be accommodated within the existing

 Page 2

basic Web service protocols. We present simulation
results executed on a prototype model in our laboratory
environment. The results show the effectiveness of
using a reputation management system together with
the QoS information published by the service
providers. It further demonstrates the efficiency of
using a discovery agent with service matching, ranking
and selection algorithms.

The remainder of the paper is organized as
follows. Section 2 outlines the related research
conducted in the area of Web services discovery, QoS
and reputation. Our proposed discovery model is
illustrated in Section 3. Section 4 presents simulation
experiments that evaluate the effectiveness of our
model and the matching, ranking and selection
algorithm. We conclude in Section 5 with a summary
of our work and possible future research in this
direction.

2. Related Work

A number of research efforts have studied either

QoS-based service discovery or reputation
management systems. We provide an overview of
some of this work as a context for the research
discussed in the remainder of the paper.

2.1. QoS and Web Services Discovery

Blum [1] proposes to extend the use of

categorization technical models, (tModels), within the
UDDI to represent different categories of information
such as version and QoS information. A Web service
entry in the UDDI can refer to multiple tModels [13]
that are registered with the UDDI, which in turn can
contain multiple property information. Each property is
represented by a keyedReference [13], which is a
general-purpose structure for a name-value pair in the
tModel. We use this approach of using tModels to
include QoS information in the UDDI.

Ran [12] proposes an extended service discovery
model containing the traditional components – the
Service Provider, Service Consumer and the UDDI
Registry, along with a new component called a
Certifier. The Certifier verifies the advertised QoS of a
Web service before its registration. The consumer can
also verify the advertised QoS with the Certifier before
binding to a Web service. Although this model
incorporates QoS into the UDDI, it does not integrate
consumer feedback into the service discovery process.

Gouscos et al. [4] propose a simple approach
where important Web service quality and price
attributes are identified and categorized into two
groups, namely static and dynamic attributes. The
Price, Promised Service Response Time (SRT) and

Promised Probability of Failure (PoF) are considered
static in nature and can be accommodated in the UDDI
registry. The actual SRT and PoF values, which are
subject to dynamic updates, can be stored either in the
UDDI registry or in the WSDL document, or can be
inferred at run time through a proposed information
broker. The advantage of this model is its low
complexity and potential for straightforward
implementation.

Maximilien and Singh [8] propose an agent
framework and ontology for dynamic Web services
selection. Service quality can be determined
collaboratively by participating service consumers and
agents via the agent framework.

Although these approaches tackle the issues of
incorporating QoS information into the Web services
discovery process, none consider feedback from
consumers.

2.2. Web Services Reputation System

Majithia et al. [6] propose a framework for

reputation-based semantic service discovery. Ratings
of services in different contexts, referring to either
particular application domains, or particular types of
users, are collected from service consumers by a
reputation management system. A coefficient (weight)
is attached to each particular context. The weight of
each context reflects its importance to a particular set
of users. A damping function is used to model the
reduction in the reputation score over time. This
function, however, only considers the time at which a
reputation score is computed, and ignores the time at
which a service rating is made. Our framework is
similar to the one proposed by Majithia et al. however,
we employ a different damping function and we do not
consider contexts for service ratings.

Wishart et al. [16] present SuperstringRep, a
service discovery protocol with a built in reputation
system. The reputation system collects and manages
consumer ratings of a service and provides a reputation
score that reflects the overall QoS to rank the services
during the service discovery process. An aging factor
for the reputation score is applied to each of the ratings
for a service, thus newer ratings are more significant
than older ones. The value of the factor is examined in
the paper. Small aging factors are found to be more
responsive to changes in service activity while large
factors achieve relatively stable reputation scores. We
designed a reputation system based on this work,
however, we consider both QoS data published by the
provider and the reputation scores for service
discovery.

Maximilien and Singh [7] propose an approach
where software agents assist in quality-based service

 Page 3

selection using a specialized agency to disseminate
reputation and endorsement information. Reputation is
built from the aggregation of consumer ratings of a
service based on historic transaction records. New
services with no reputation are endorsed by trustworthy
service providers or consumers before their reputation
is established. No details are provided as to how the
reputation score of a service is computed. Our work
provides the computation details of the reputation
scores and accounts for the impact of reputation on
service selection.

3. Reputation-Enhanced QoS-based

Service Discovery

We extend the traditional Web service model
consisting of a service provider, a service consumer
and a UDDI to include a discovery agent and a
reputation manger, and use an augmented UDDI that
contains QoS information to allow QoS-based service
discovery (as shown in Figure 1). The discovery agent
acts as a broker between a service consumer, a UDDI
registry and a reputation manager and helps to discover
Web services that satisfy the consumer’s functional,
QoS and reputation requirements. The reputation
manager collects and processes service ratings from
consumers, stores service reputation scores in a Rating
Database (Rating DB), and provides the scores when
requested by the discovery agent.

3.1. UDDI Registry and QoS Information

QoS information is represented in the UDDI

registry by a tModel, which is typically used to specify
the technical details of a Web service. A tModel
consists of a key, a name, an optional description, and
a Uniform Resource Locator (URL), which points to a
place where details about the actual concept
represented by the tModel can be found. When a
provider publishes a service in the UDDI registry, a

tModel is created to represent the QoS information of
the service, registered with the UDDI registry, and
referenced in the bindingTemplate that represents the
deployment information of the Web service. An
Application Programming Interface (API) to the UDDI
registry, such as UDDI4J [13], may be used to
facilitate the operations with the UDDI. In the tModel,
each QoS metric is represented by a keyedReference,
which contains the name of a QoS attribute as
keyName, and a keyValue, which contains the value.

Figure 2 shows an example of a tModel containing
QoS information. The units of QoS attributes are not
represented in the tModel and should ideally refer to a
schema definition, which we leave to future work. For
now, we assume the default units for price, response
time, availability and throughput are CAN$ per
transaction, seconds, percentage, and transactions per
second, respectively. The example above shows the
tModel for a Stock Quote service that charges CAN
$0.01 per transaction, promises an average response
time of 0.05 seconds, 99.99% availability, and a
throughput of 500 transactions per second.

With the Web service QoS information stored in a
UDDI registry, service consumers can find the services
that match their QoS requirements by querying the
UDDI registry. The details of this process are
discussed in the following sections. A service provider
should also regularly update the QoS information of

<tModel tModelKey = "somecompany.com:
 StockQuoteService:PrimaryBinding:QoSInformation">
 <name>QoS Information for Stock Quote Service</name>
 <overviewDoc>
 <overviewURL>
 http://<URL describing schema of QoS attributes>
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:QoS:Price"
 keyName="Price Per Transaction"
 keyValue=" 0.01" />
 <keyedReference
 tModelKey="uddi:uddi.org:QoS:ResponseTime"
 keyName="Average ResponseTime"
 keyValue="0.05" />
 <keyedReference
 tModelKey="uddi:uddi.org:QoS:Availability"
 keyName="Availability"
 keyValue="99.99" />
 <keyedReference
 tModelKey="uddi:uddi.org:QoS:Throughput"
 keyName=" Throughput"
 keyValue="500" />
 </categoryBag>
 </tModel>

 Figure 2: The tModel with the QoS information

Figure 1: Model of Reputation-enhanced Web
Services Discovery with QoS

QoS info.

Reputation
Manager

Discovery
Agent

Service
Consumer

Reputation
Scores

Ratings Discovery
Request

Service
Provider

Service
Info.

UDDI
Registry

QoS

Rating
DB

 Page 4

the services it publishes to ensure that the QoS
information is accurate and up-to-date. To update the
QoS information of a service, a service provider
searches the UDDI registry to find the corresponding
tModel, updates the QoS information in the tModel,
and then saves it back using the same tModelKey that
was assigned to the tModel when it was created.

3.2. Reputation Manager

The reputation manager collects feedback
regarding the QoS of the Web services from the service
consumers, calculates reputation scores, and updates
these scores in the Rating DB. For this work, we
assume that all ratings are available, objective and
valid. Service consumers provide a rating indicating
the level of satisfaction with a service after each
interaction with the service. A rating is simply an
integer ranging from 1 to 10, where 10 means extreme
satisfaction and 1 means extreme dissatisfaction.

Our service rating storage system is similar to the
one proposed by Wishart et al. [16]. A local database
contains the reputation information which consists of
service ID, consumer ID, rating value and a timestamp.
The service key in the UDDI registry of the service is
used as the service ID, and the IP address of the
consumer is used as the consumer ID. Only the most
recent rating by a customer for a service is stored in the
table. New ratings from the same customers for the
same service replace older ratings. The timestamp is
used to determine the aging factor of a particular
service rating.

The reputation score (U) of a service is computed
as the weighted average of all ratings the service
receives from customers, where:

N is the number of ratings for the service,
Si is the ith service rating,
λ is the inclusion factor, 0 < λ < 1,
di is the age of the ith service rating in days.
The inclusion factor λ is used to adjust the

responsiveness of the reputation score to the changes in
service activity. A smaller λ means that the more
recent ratings have a larger impact on the reputation
score and a larger λ means more of the ratings affect
the score.

3.3. Discovery Agent

A discovery agent receives service requests
containing specifications for functional, QoS, and

reputation requirements from the service consumer,
finds the services that meet the specified criteria, and
then returns a list of services to the consumer. Figure 3
shows a SOAP message for a discovery request in a
general form. The strings in bold are replaced by the
corresponding values in an actual discovery request.
Generation of such SOAP messages could be
automated by software, which would accept QoS as
parameters and generate discovery requests as output.
As shown in Figure 3, customers can specify the
following in the discovery request:
 The maximum number of services to be returned

by the discovery agent.
 Functional requirements, which are keywords in

the service name and description.
 Service price is the maximum service price a

customer is willing to pay.
 Service performance and other QoS requirements

such as response time, throughput, and
availability.

 The dominant QoS attribute.
 Service reputation requirements.
 Weights for the QoS and reputation requirements.

We assume that the same default units as
described earlier for the tModel are used for the QoS
values in the request. In future work, the units would
be queried from a published schema definition and
used in the query.

The dominant QoS attribute is the attribute
deemed by the consumer to be the most important in
the search criteria and is used in the calculation of the

idN

i
iSU λ∑

=
=

1

 <?xml version="1.0" encoding="UTF-8" ?>
 <envelope xmlns =
 "http://schemas.xmlsoap.org/soap/envelope/">
 <body>
 <find_service generic="1.0" xmlns="urn:uddi-org:api">
 <functionalRequirement>

 Keywords in service name and description
 </functionalRequirement>
 <qualityRequirement weight=QoS Weight>
 <dominantQoS>Dominant QoS</dominantQoS>
 <QoS attribute 1>Value</QoS attribute 1>
 <QoS attribute 2>Value</QoS attribute 2>
 <QoS attribute 3>Value</QoS attribute 3>
 …
 <QoS attribute n>Value</ QoS attribute n>
 </qualityRequirement>
 <reputationRequirement weight=Reputation Weight>
 <reputation>Reputation Score</reputation>
 </reputationRequirement>
 <maxNumberService>Value</maxNumberService>
 </find_service>
 </body>
 </envelope>
 </xml>
 Figure 3: Service discovery request

 Page 5

QoS score as described later. We assume that it is
easier, and more realistic, for consumers to specify one
dominant QoS attribute instead of separate weights for
all various QoS attributes. Average response time is
considered as the default dominant QoS attribute if
none is specified by the consumer. A consumer can
specify only QoS requirements in the request, or both
QoS and reputation requirements using separate
weights for each to indicate their relative importance,
where the weights for QoS and reputation requirements
must sum to 1. Higher weights represent greater
importance.

The calculation of QoS scores of services is
performed by the equation below where QoSScorei is
the QoS score of service i, i being the position of the
service in the list of matched services, DominantQoSi
is the value of the dominant QoS attribute of service i,
BestDominantQoS is the highest or lowest value of the
dominant QoS of the matched services when the
dominant attribute is monotonically increasing or
decreasing, respectively. A monotonically increasing
QoS attribute means increases in the value reflects
improvements in the quality, while monotonically
decreasing means decreases in the value reflects
improvements in the quality.

After the agent receives the discovery request, it
contacts the UDDI registry to find services that match
the customer’s functional requirements, and retrieves
their QoS information from the corresponding
tModels. The agent then uses the service matching,
ranking and selection algorithm described in the next
section to select the top M services (M is specified by
the customer in the discovery request) to return to the
customer. If no service is found, the discovery agent
returns an empty result to the customer.

3.4. Service Matching, Ranking and Selection
Algorithm

Figure 4 shows a simplified version of our service

selection algorithm where the leftmost numbers denote
the line numbers. When the discovery agent receives a
discovery request, it executes fMatch (line 2) which
returns a list of services LS1 that meet the functional
requirements. If QoS requirements are specified,
qosMatch (line 4) is executed next on the set of

services LS1 and it returns a subset of services LS2
that meet the QoS requirements. selectServices (line 6)
always returns a list of M services to the customer
where M denotes the maximum number of services to
be returned as specified in the discovery request. If
QoS requirements are not specified, selectServices
returns M randomly selected services from LS1. If only
one service satisfies the selection criteria, it returns this
service to the customer.

In the case where no reputation requirement is
specified, qosRank (line 11) calculates QoS scores of
the services in LS2 and returns a list of services LS3
where the services are sorted in descending order based
on their QoS scores. The QoS score is calculated in the
range of 0 to 1 for each service based on the dominant
QoS attribute value. The service with the best
dominant QoS value is assigned a score of 1. From
LS3, selectServices (line 12) returns the top M services
to the customer. If M is not specified, one service is
randomly selected and returned from LS3 whose QoS
score is greater than the user-specified threshold
LowLimit. For example, if LowLimit is 0.9, it means all
services whose QoS score is greater than 0.9 will be
considered in the random selection. The random
selection prevents the service with the highest QoS
score from always being selected, and thus helps to
balance the workload among the services that provide
the same functionality and similar QoS.

 /*Web services matching, ranking and selection algorithm */
1 findServices (functionRequirements, qosRequirements,
 repuRequirements, maxNumServices) {
 // find services that meet the functional requirements
2 fMatches = fMatch (functionRequirements);
3 if QoS requirements specified {
 // match services with QoS information
4 qMatches = qosMatch (fMatches, qosRequirements); }
5 else {
 // select max number of services to be returned
6 return selectServices (fMatches, maxNumServices,
 "random"); }
7 if reputation requirements specified {
 // matches with QoS and reputation information
8 matches = reputationRank (qMatches,
 qosRequirements, repuRequirements);
 // select max number of services to be returned
9 return selectServices (matches, maxNumServices,
 "byQoS"); }
10 else {
 // matches with QoS information
11 matches = qosRank (qMatches, qosRequirements);
 // select max number of services to be returned
12 return selectServices (matches, maxNumServices,
 "byOverall"); }
 }

 Figure 4: Service matching, ranking and selection
 algorithm

 --- --------- (1)

 --------- (2)

(1) when dominant QoS attribute is monotonically increasing
(2) when dominant QoS attribute is monotonically decreasing

QoSScore i = {

BestDominantQoS

DominantQoS i
 BestDominantQoS

 DominantQoS i

 Page 6

In the case where a reputation requirement is
specified, reputationRank (line 8) calculates reputation
scores of the services in LS2 and returns a filtered list
of services LS4 containing only those services that
have a reputation score equal to or above the specified
required value. Reputation scores are adjusted in the
range of 0 to 1 by normalizing their reputation scores
relative to the highest reputation score in the set of
services as shown in the following equation.
AdjRepuScorei is the adjusted reputation score of
service i, i is the position of the service in the list of
matched services, RepuScorei is the original reputation
score of service i, and h is the highest original
reputation scores of the matched services.

If there is more than one service in LS4, it also
calculates the QoS scores of these services as described
previously. Finally, it calculates the overall scores as
shown in the equation below of the services in LS4
from their corresponding QoS and reputation scores
and returns a sorted list of services LS5 in descending
order based on the overall score. selectServices (line 9)
then returns a list of top M services. If M=1, one
service is randomly selected from LS5 whose overall
score is greater than the specified threshold LowLimit.

In the equation, OverallScorei is the overall score
of service i, where i is the position of the service in the
list of matched services, QoSScorei is the QoS score of
service i, QoSWeight is the weight of QoS requirement
specified by consumers, AdjRepuScorei is the adjusted
reputation score of service i, RepuWeight is the weight
of reputation requirement specified by consumers.

4. Evaluation

This section presents experimental results to

evaluate the effectiveness of our discovery algorithm.
A number of programs are used to simulate various
roles in the model.
 A customer simulation program generates service

requests with different QoS and reputation
requirements.

 A rating generator program produces new service
ratings.

 A reputation manager program calculates
reputation scores when requested by the discovery
agent.

 A discovery agent program receives simulated
requests, retrieves service QoS information, and

reputation scores, if necessary, and finally runs the
algorithm to select services for the consumer.
In the following experiments, we assume that all

the services provide the same functionality and that
every consumer request has the same functional
requirements which are satisfied by all the services.
We consider price, response time, availability, and
throughput to be the QoS parameters and use service
price to categorize services, since in most cases,
customers are more sensitive to price. As the
simulation progresses, new service ratings are
generated, and the service reputation scores change.
Experimentation showed that λ=0.75 provides
relatively stable reputation scores and we will use this
value in our experiments [17].

4.1. Experiment 1

This experiment demonstrates that the probability
of selecting a service, which best meets a customer’s
requirements, is improved if the customer specifies
detailed QoS and reputation requirements in the
discovery request. Table 1 summarizes the reputations,
QoS data, and prices of 27 services (S1 - S27). A Low
QoS value means long response time, low availability,
and low throughput while Intermediate and High
denote acceptable and high QoS ratings respectively.
Reputation classes of Poor, Acceptable and Good
correspond to scores of 2, 5 and 8 respectively out of
10 for example. Similarly, in our experiments price
classes of Low, Intermediate and High correspond to
costs of 0.01, 0.02 and 0.03 CAN$ per transaction,
respectively.

Table 1: Summary of QoS and reputation
information of Services

Price Reputation QoS Low Intermediate High
Low S1 S10 S19

Intermediate S2 S11 S20 Poor
High S3 S12 S21
Low S4 S13 S22

Intermediate S5 S14 S23 Acceptable
High S6 S15 S24
Low S7 S16 S25

Intermediate S8 S17 S26 Good
High S9 S18 S27

Table 2: Summary of QoS and reputation
requirements of consumers

Requirements
Consumer Price

(CAN$/tr)
Performance QoS
(RT, AV, THR) Reputation

C1 No None No
C2 0.01 None No
C3 0.01 0.03 s, 99.95%, 700 tps No
C4 0.01 0.03 s, 99.95%, 700 tps 8

 RepuScorei
 AdjRepuScorei =
 h

 OverallScorei = (QoSScorei × QoSWeight) +
(AdjRepuScorei × RepuWeight)

 Page 7

Table 2 summarizes the QoS (RT: response time
in seconds, AV: availability in percentage, THR:
throughput in transactions per second, and price in
CAN$ per transaction) and reputation requirements of
4 service consumers. The dominant QoS attribute in
the QoS requirements of consumers C3 and C4 is
response time. The weights for both QoS and
reputation requirements are 0.5. All consumers specify
that the maximum number of services to be returned is
1. C1 is only concerned about functionality, C2 and C3
have QoS preferences, and C4 has both QoS and
reputation concerns for services.

For each consumer, the same service discovery
request was run 50 times and the service selected for
each run is shown in Figure 5. For C1, a service is
randomly selected as no requirements are specified.

For C2, a service in the low price group (S1...S9) is
randomly selected. One of S3, S6 or S9 (low price,
high QoS) is randomly selected for C3. S9 (low price,
high QoS, good reputation) is always selected for C4.

4.2. Experiment 2

This experiment verifies that services that do not

provide stable QoS performance are less likely to be
selected than those which provide consistent QoS
performance to customers. There are four groups of
services and each group contains 4 services labeled S1,
S2, S3, and S4. Table 3 shows the price and QoS
advertisements for services in the four groups.

Services within the same group have different
values for their actual QoS performance, and therefore,
they receive different ratings from the consumers. In
each group, service S1 receives average ratings from
the customers during the first 10 runs of the simulation
and low ratings in the next 90 runs. S2 always receives
average ratings during the simulation. S3 receives
average ratings during the first 10 runs and fluctuating
ratings in the next 90 runs, while S4 receives average

ratings during the first 10 runs of the simulation and
high ratings in the next 90 runs.

The QoS (including price) and reputation
requirements of the four consumers (C1...C4) are
summarized in Table 4. The dominant QoS attribute of
consumers C3 and C4 is response time. The weights
for both QoS and reputation requirements are 0.5. All
consumers specify the maximum number of services to
be returned as 1.

We ran the experiment for each consumer for all 4
groups of services. For each consumer and group, the
same service discovery request was run 100 times and
the service selected was recorded. A service is
randomly selected for customers C1, C2 and C3 from
services S1, S2, S3 and S4, since all four services meet
the QoS and/or reputation requirements of the three
customers. S4 is selected most of the time for C4
because it provides a stable QoS performance, receives
good ratings from consumers, and meets both the QoS
and reputation requirements of C4. S3 is occasionally
selected for C4 because it meets the QoS requirements
of C4 and its fluctuating reputation score occasionally
meets C4’s reputation requirement. Figure 6 shows the
results for consumer C4 and the services of Group 1.
The results of the runs with the other groups of

Table 3: Services’ price and QoS information
QoS

 Price
(CAN$/tr) Response

Time (s)
Availability

(%)
Throughput

(tps)
Grp. 1 Low (0.01) Avg. (0.05) Avg. (99.9) Avg. (500)
Grp. 2 High (0.03) Short (0.02) Avg. (99.9) Avg. (500)
Grp. 3 High (0.03) Avg. (0.05) Avg. (99.9) High (800)
Grp. 4 High (0.03) Avg. (0.05) High (99.99) Avg. (500)

Table 4: Consumers’ QoS and reputation
requirements

Requirements
Consumer Price

(CAN$/tr)
Performance QoS
(RT, AV, THR) Reputation

C1 No None No
C2 0.03 None No
C3 0.03 0.05 s, 99.9%, 500 tps No
C4 0.03 0.05 s, 99.9%, 500 tps 8

Figure 6: Experiment 2 - Service selection for
consumer C4

0

1

2

3

4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
Discovery Request Sequence

Se
rv

ic
e

Customer 4

Service Selection

Discovery Request Sequence

Service Selection

0
3
6
9

12
15
18
21
24
27

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Se
rv

ic
e

Se
le

ct
ed

C1 C2 C3 C4

Figure 5: Experiment 1 - Service selection

 Page 8

services are similar and not shown here. Further details
can be found in [17].

5. Conclusions

Due to the increasing popularity of Web service
technology and the potential of dynamic service
discovery and integration, multiple service providers
are now providing similar services. Consumers are,
therefore, concerned about the service quality in
addition to the required functional properties. We
propose a simple yet novel approach to provide QoS-
based service discovery. Our model builds on existing
Web service technology. QoS information published
by the service providers in the tModel structure of the
UDDI is used with a reputation manager to allow
authentic QoS-based service discovery. A discovery
agent helps finding services that meet the functional
and QoS requirements specified by the consumers.
With the assumption that the consumers provide non-
malicious and mostly accurate QoS ratings to the
reputation manager, these matched services are then
ranked based on both their reputation scores generated
by the reputation manager and their non-functional
QoS attributes values. The top ranked services are
returned to the service consumers. This way services
that have high, but inaccurate, QoS values are likely to
be filtered out by their low reputation scores. The
paper presents an algorithm for effective service
matching, ranking and selection, and demonstrates the
effectiveness of the algorithm with a set of simulation
experiments.

The research leads to a number of interesting
avenues for future research. The model could be
expanded to allow customers to specify a reputation
preference. An ontology could be defined to
standardize the specification of QoS attributes and their
units [11]. The reliability of the reputation
management system could be increased by allowing
selected groups of consumers to provide the rating
information or getting the raters themselves to be rated
[18]. A new stability score may be introduced to assert
the stability of the published QoS information and thus
allow services that always provide good quality of
service to be selected with a higher probability.

References

[1] Blum, A. (2004). “UDDI as an Extended Web Services
Registry: Versioning, quality of service, and more”. White
paper, SOA World magazine, Vol. 4(6).
[2] W3C WS-Policy Framework ver.1.2 (2006). Available
at: http://www.w3.org/Submission/WS-Policy/.

[3] DAML-S / OWL-S (2006). Available at:
http://www.daml.org/services/owl-s/.
[4] Gouscos, D., Kalikakis, M., and Georgiadis, P. (2003).
“An Approach to Modeling Web Service QoS and Provision
Price”. In Proc. of the 1st Int. Web Services Quality
Workshop - WQW 2003, Rome, Italy, pp.1-10.
[5] IBM Corporation (2003). “Web Service Level
Agreement (WSLA) Language Specification” Ver. 1.0.
Retrieved April 30, 2006 from
http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf
[6] Majithia, S., Shaikhali, A., Rana, O., and Walker, D.
(2004). “Reputation-based Semantic Service Discovery”. In
Proc. of the 13th IEEE Intl. Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WETICE), pp.297-302, Modena, Italy.
[7] Maximilien, E.M. & Singh, M.P. (2002). “Reputation
and Endorsement for Web Services”. ACM SIGecom
Exchanges, Vol. 3(1), pp.24–31.
[8] Maximilien, E.M. & Singh, M.P. (2004). “A Framework
and Ontology for Dynamic Web Services Selection”. IEEE
Internet Computing, Vol. 8(5), pp.84-93.
[9] Maximilien, E. and Singh, M. (2004). “Toward
Autonomic Web Services Trust and Selection”. In Proc. of
the 2nd Intl. conf. on Service Oriented Computing, pp.212-
221, New York City, USA.
[10] Maximilien, E. and Singh, M. (2005). “Self-Adjusting
Trust and Selection for Web Services. In extended Proc. of
2nd IEEE Intl. conf. on Autonomic Computing (ICAC),
pp.385-386.
[11] Papaioannou, I., Tsesmetzis, D., Roussaki, I., and
Anagnostou, M. (2006). “A QoS Ontology Language for
Web-Services”. In Proc. of 20th Intl. conf. on Advanced
Information Networking and Applications (AINA), Vol. 1,
Vienna, Austria.
[12] Ran, S. (2004). “A Model for Web Services Discovery
with QoS”. SIGEcom Exchanges, Vol. 4(1), pp.1–10.
[13] OASIS UDDI Spec TC, UDDI Ver. 2.03 “Data
Structure Reference”, Retrieved April 30, 2006 from
http://uddi.org/pubs/DataStructure-V2.03-Published-
20020719.htm
[14] Vu, L., Hauswirth, M., and Aberer, K. (2005). “QoS-
based service selection and ranking with trust and reputation
management”. In Proc. of the Intl. conf. on Cooperative
Information Systems (CoopIS), Agia Napa, Cyprus.
[15] W3C (2003). “QoS for Web Services: Requirements and
Possible Approaches”. Available: http://www.w3c.or.kr/kr-
office/TR/2003/NOTE-ws-qos-20031125/.
[16] Wishart, R., Robinson, R., Indulska, J., and Josang, A.
(2005). “SuperstringRep: Reputation-enhanced Service
Discovery”. In Proc. of the 28th Australasian conf. on
Computer Science, Vol. 38, pp.49-57.
[17] Xu, T. (2006). “Reputation-Enhanced Web service
discovery with QoS”, Ph.D. Dissertation, School of
Computing, Queen’s University, Canada.
[18] Yu, B. and Singh, M. (2002). “An evidential model of
distributed reputation management”. In Proc. of the 1st Intl.
joint conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS), Bologna, Italy, pp.294–301.

