
A Middleware Solution to Monitoring
Composite Web Services-based Processes

Farhana H. Zulkernine and Patrick Martin
School of Computing, Queen’s University

Kingston, ON K7L 3N6, Canada
{farhana, martin}@cs.queensu.ca

Kirk Wilson, Ph.D.
Research Staff Member

CA Labs, CA, Inc.
Kirk.Wilson@ca.com

Abstract

Web services can be composed to create complex
business processes that span multiple organizations.
Quality of Service (QoS) of such a process is guaranteed
by a set of Service Level Agreements (SLAs) between the
service providers and the service consumers. Monitoring
is required at every service provider and at the service
consumer end in order to ensure satisfaction of the SLAs.
Distributed monitoring of business processes can be
complex and costly. We propose a middleware solution,
namely the Performance Monitor (PM) framework, to
enable outsourcing of the task of SLA monitoring of both
intra and inter-organizational composite Web service
processes. We present a prototype implementation of the
PM with experimental data to establish the effectiveness
of the framework in monitoring and verifying SLAs for a
composite process and discuss possible extensions to the
framework for more generalized applications.

1. Introduction

The World Wide Web is becoming the most efficient

communication media, and to follow the current trend
towards Service Oriented Architecture (SOA), business
organizations are offering different services on the
Internet. Web services offer the greatest potential of
weaving together multiple services dynamically into a
composite service system [7] representing a business
process [12], and thus, leveraging Business-to-Business
(B2B) and Business-to-Consumer (B2C) communications
[8]. However, the success of Web-based business
processes largely depends on Quality of Service (QoS)
which is guaranteed by Service Level Agreements (SLAs)
[5][10]. A set of SLAs are agreed upon between each
service provider and service consumer in a business
process with a view to maintaining service quality and
protecting the rights of the parties involved. To ensure
that the SLAs are satisfied, efficient monitoring of the

process is essential both on the service provider and the
service consumer’s ends.

SLAs typically define service quality attributes such as
response time, availability and reliability, which the
service consumer expects from the service provider. A
number of current software products [2][4][6] provide
extensive monitoring functionality. However, they all
work in organizational domains and are efficient for
server-side monitoring at the service provider’s site. The
difficulty lies in client-side monitoring of the Web
processes due to the distributed architecture,
compositional complexity, and network dependency. In
complex composite systems, a service may itself be a
composite service. As such there can be processes
containing sub-processes contributing further to the
complexity in distributed monitoring.

Service performance statistics can be monitored at the
workflow execution engine but these values include
network delay. For SLA verification more accurate
service performance statistics are necessary. Statistic
collection should also have little or no impact of the
network. To the best of our knowledge, a proper solution
for multi-organizational distributed process monitoring
currently does not exist.

In this paper, we expand and illustrate the Performance
Monitor (PM) module, originally proposed as a part of
our earlier work, the Comprehensive Service
Management Middleware (CSMM) [25] (as shown in
Figure 1). Our current research presents the detailed
design of the PM middleware framework, and implements
a proof-of-concept prototype to validate the PM
framework using an example Web services-based process.

The contribution of the research is twofold. First, we
present a framework for monitoring and verifying SLAs
of composite Web services-based processes. Second, we
implement a prototype and provide experimental results
to validate the proposed monitoring framework and to
examine the overhead of the monitoring technique used
by the framework. Additionally, the research also lays out
the ground work for automatic creation of a reputation

knowledgebase that can facilitate QoS-based service
discovery [24] using the performance data collected by
the monitoring middleware. The usability of the
framework can be extended to general Web process
monitoring, creating federated monitoring system for
broker services (that composes other services to provide a
higher level service), providing reputation broker
services, and monitoring services for low powered mobile
and embedded devices.

The rest of the paper is organized as follows. The next
section defines some concepts and methodologies for
monitoring Web services-based processes. Some related
works are highlighted in Section 3. The detailed design of
the PM and how it can be used for monitoring a

composite Web service process are described in Section
4. Section 5 illustrates and validates the prototype
implementation of the PM. A summary including a
discussion of the future work and a list of contributions of
the PM conclude the paper in Section 6.

2. Web Service-Based Workflows and
Monitoring Techniques

A Web service-based workflow typically contains

chains of Web services which constitute a business
process. Figure 2(a) shows a very simple workflow where
the client application calls two different Web services
consecutively. Figure 2(b) shows a more complex
workflow having multiple chains of Web services that
execute concurrently. Two of the three parallel branches
constitute a sub-process (enclosed by the dashed line),
which is composed of multiple Web services. Each sub-
process and individual Web service component in a
workflow has to satisfy a SLA, which is negotiated
between the service provider and the service consumer
before the process begins. When monitoring the SLAs, a
sub-process is considered as a single Web service and the
SLA is validated for the sub-process and not for its
component services. For example, in Figure 2(b) the SLA
is monitored for P, which is a composite service. We
demonstrate the functionality of the PM using a simple

A Service A returns

B Service B returns

Client app.
starts

Calls service A

Calls service B

Print results

Program ends

A
Service A
executes

D

Calls
service A

B

Calls process P

Client app.
starts

C
Services
return

E

Program ends

Pr
oc

es
s P

Services
return

Calls
services

Returns from
process P

Service
A returns

Figure 2: Petri net representation of (a) a simple
workflow, (b) a complex workflow

 Possible service call
Data communication
Data external to CSM

Certified
Reputation

knowledgebase

Reports from
WSs

Negotiation
policies

Extended UDDI
Ontology-based

service description

 CSMM (WS)

Error Tracking
and Recovery

C
SM

M

in
pu

ts

C
SM

M

ou
tp

ut
s

Service Req.
Handler (WS)

Selects services
given service
requirements
specifications

Workflow
Manager (WS)

Builds a
workflow and
executes the

given workflow

Negotiation
Broker (WS)

Applies policies
from both

consumer and
provider to

negotiate SLAs

Performance
Monitor (WS)

Monitors
component

service
performances
given SLAs

KB of negotiation
policies

Service
Req. Spec.

Selected
services

Policies &
Sel. Services

SLAs SLAs &
Workflow

QoS Report Services
& params

Work-
flow

Figure 1: Comprehensive Service Management Middleware (CSMM)

workflow as shown in Figure 2(a) but the same principles
apply to more complex workflows.

Communication with Web services is most commonly
done using the standard SOAP (Simple Object Access
Protocol) [23] messaging protocol. A SOAP message is
an XML document that contains an optional Header
section for metadata and processing information, and a
required Body section for the main message content. As a
result, message interception is typically used to monitor
Web services. There are two common ways of monitoring
Web services using message interception. One way is to
build internal agents into the messaging framework at the
servers that host Web services, which allow monitoring
and reporting of the performance data. The agent should
preferably be a standard part of the messaging framework
and can provide monitoring data as an additional service.
The other way is to build external intermediaries in
between the Web service environment and the consumer,
such as with CA’s Unicenter [6]. This approach allows
easy maintenance at the cost of management overhead, an
additional level of message redirection, possible
bottlenecks and points of failure.

Other monitoring techniques include code level
instrumentation with various monitoring and reporting
functions or APIs (Application Programming Interfaces).
Although this technique has the obvious advantage of
reporting extensive and accurate monitoring data, the cost
of maintaining the code can be considerable. Publishing
management Web services for querying performance data
or getting automated policy-based notification from the
service providers can provide an efficient solution to the
monitoring problem. The Site Manager in our Autonomic
Web services Environment (AWSE) [19] is an example of
such a management Web service. However, it requires the
service provider to implement custom management
frameworks such as AWSE. In this paper, we use the
internal agent-based technique because of its generality.

3. Related Work

Extensive research has been done on server-side

resource, network and intra-organizational process
monitoring. Several software products are available in the
market that can provide comprehensive monitoring data.
However, monitoring inter-organizational Web services-
based processes has received less attention.

Momm et al. [14] propose a conceptual manageability
infrastructure for SLA-driven management which uses the
Common Information Model (CIM) to model
management information along with the Web-based
Enterprise Management standard to monitor Web service
compositions. Our approach is validated using a prototype
that uses the basic Web services standards.

Vaculín and Sycara [21] describe an event-based
monitoring and error-handling mechanism for OWL-S
based semantic Web services using an OWL-S Virtual
Machine (OVM) middleware, which is a generic OWL-S
processor. The client needs a basic OWL-S processing
engine to process OWL events. Our framework does not
mandate the clients use any specific tool.

Tröger et al. [20] present Adaptive Services Grid
Services Infrastructure (SI) architecture that is basically a
thin and scalable abstraction layer between the service
consumer and the service provider. The SI is used for
stateful instantiation of services which allows monitoring
using the established Web service standards. The PM
relies on messaging and reporting tools for monitoring.

Sahai et al. [16] from Hewlett Packard Laboratory (HP
Lab) propose a Management Service Provider (MSP)
model for remote or outsourced monitoring using agent
technology where E-services are instrumented with APIs
to enable transaction monitoring by a manager. The basic
architecture resembles that of the PM but the
implementation details differ. A message tracking
algorithm is proposed by Sahai et al. [17] that uses a
special data structure for distributed monitoring of
services in a composite Web service process. Each service
provider executes the algorithm on the data structure that
cumulates all the data relating to the execution of the
process to confirm proper execution of the process or
recovery from failure. This approach adds a processing
overhead to each Web service, uses considerable network
bandwidth for the transfer of the data, and introduces
possible data loss due to failure of a service. The PM
applies a more centralized approach to data processing.

Both Web Service Management Network (WSMN)
Agent framework [13] proposed by HP Lab researchers
and CA’s Unicenter [6] use message interception at
intermediaries for federated service management. IBM’s
Enterprise Workload Manager (EWLM) [4] uses
reporting agents to collect monitoring data from services
instrumented with the Application Response
Measurement (ARM) [11] API. CA Wily SOA Manager
[3] is another very recent product from CA that uses
agents both at the service provider and the service
consumer’s ends to monitor and manage Web service
processes. Our approach is much simpler and more
standard-based, less intrusive to the service code, and may
be generalized for a wider scope of monitoring with an
updated message processing layer as a standard
monitoring tool.

4. The PM framework

The Performance Monitor (PM) can be used as an

independent service, as shown in this paper, or as one of
the main modules of the Comprehensive Service

Management Middleware (CSMM) [34]. The CSMM
provides a complete client-side service management
solution by facilitating service selection, SLA negotiation,
workflow orchestration and execution, and SLA
monitoring. The PM takes a set of negotiated SLAs and a
workflow description as input and monitors the
performance of the component services to verify that the
SLAs are satisfied. It can also be used independent of the
CSMM to provide third party distributed workflow
monitoring services. We show all the components in the
CSMM that are directly connected to the PM in Figure 1
to indicate how the PM is used in the CSMM.

The PM comprises two types of disjoint subsystems
namely, a Primary Subsystem (PS) and multiple
Secondary Subsystems (SS). The SSs monitor service
performance at service providers’ locations using one of
the monitoring techniques and send the reports to the PS.
The PS accepts monitoring requests, receives monitoring
reports, analyzes the reports to verify SLAs, and
accordingly generates notifications for the respective
service consumers. In this paper, we design the SS using
the internal agent-based message interception technique to
illustrate that the SS can be implemented as a standard
integrated part of the message processing layer at the
service provider’s site, which can be optionally enabled to
monitor selected services hosted by the server. This may
require collaboration with the service provider, like all
other approaches, but reduces additional system
maintenance and message redirection overhead. The
integrated approach provides on site monitoring data
which is independent of the network performance. Figure
3 shows the two sub-systems of the PM.

4.1. The Primary Sub-system (PS)

The Primary Subsystem (PS) collects and processes
monitoring requests and reports and communicates with
the other modules in the CSMM such as the Error
Tracking and Recovery module (ETR) and the Reputation
Knowledgebase (RepKB). It consists of four main
modules as described below.

Performance Monitor Web Service

The Performance Monitor Web Service (PMWS)
receives requests for the monitoring service from
consumers and reports from the SSs. The consumers
provide workflow definitions and SLAs for all the
component services as inputs when requesting the
monitoring service. The PMWS forwards the information
it receives to other modules for processing. After the
monitor request is processed it sends a reply message to
the service consumer, the SOAP header [23] of which
contains the information necessary for monitoring by the
SSs. This header information is included in every
message that is used to invoke the component Web

services in the workflow during its execution. If a
violation of an SLA is detected in the analysis of the
monitoring reports, the PMWS sends out notifications to
the designated receivers such as the service consumer,
workflow executor and the ETR.

Workflow Analyzer (WA)

The PMWS passes the workflow and the SLA
information it receives from the consumer to the
Workflow Analyzer (WA). The WA analyzes the
workflow and the SLA specifications of each of the
component Web services to determine their order of
execution in the workflow and the QoS attributes that
need to be monitored, and stores the information in a local
database. It generates a Process ID (PID) for the
workflow and a list of QoS attributes to be monitored for
each component Web service and sends the information to
the PMWS. The PMWS puts this information in the
SOAP header of the message to send as a reply to the
monitor request from the service consumer. The WA can
be built to support any workflow specification language,
such as the WS-BPEL [15], and SLA specification
language, such as the WSLA (Web Service Level
Agreement) [5].

Performance Monitor Database (PMDB)

A local Performance Monitor Database (PMDB) is
used to store temporary workflow and SLA information,

Figure 3: Architecture of the Performance Monitor

Reports to

SOAP Messaging
Framework

Custom
Handlers

Web Service

Secondary Subsystem – On the server
hosting Web services

SOAP
message

1

Primary Subsystem of the
Performance Monitor

Error Tracking
and Recovery

Certified QoS
Reputation

Knowledgebase

Reports
from WSs

1

SLAs &
Workflow

Performance
Monitor

 (WS)

Report
Analyzer

Workflow
Analyzer

PMDB

Expanded PM module

Report to the
client

(To other
components
in CSMM)

PIDs, and performance data from the reports collected
from the SSs.

Report Analyzer (RA)

Performance reports by the PMWS are forwarded to
the Report Analyzer (RA) module. The RA stores the
reports according to their respective PIDs and Web
service information in the PMDB. It then checks to verify
if the SLAs are satisfied. If a violation of the SLA is
detected, the RA prepares a report for the PMWS to send
to the designated receivers as requested by the consumer
and to the ETR.

4.2. The Secondary Sub-system (SS)

The Custom Performance Monitor Handler (CPMH)
makes up the Secondary Sub-system (SS) and is installed
as part of the SOAP message processing layer on the
server that hosts the Web service. A SOAP message
typically goes through several layers of processing after it
reaches the destination Web server prior to reaching the
appropriate Web service. One of these layers is the SOAP
message processing layer, which can contain multiple
handlers that intercept the messages, retrieve required
information from the SOAP header, and perform
necessary pre and post-processing.

The CPMH intercepts SOAP messages in both
directions, i.e., to and from the Web service, in order to
calculate the service response time. The CPMH checks
for the PID and the URL to which to send the monitor
report. In case of privacy and security concerns,
additional privacy policies and encryption techniques can
be used as proposed by Sahai et al. [17].

4.3. Associated CSMM Modules

The PM connects to an Error Tracking and Recovery
(ETR) module, a certified Reputation Knowledgebase
(RepKB) and the Workflow Manager (WM) in the
CSMM. When a violation of a SLA is detected, the PM
reports it to the ETR, which implements a policy-based
decision making system to initiate proper action for

recovery. In the recovery process, if a change in the
workflow and SLA occurs, the PM is notified by the WM
to make the necessary changes in its records for
monitoring. The RepKB is generated and updated from
the monitor data received by the PM. Statistics are
calculated from the monitor data based on which
reputation scores are assigned to the different Web
services monitored by the PM. The automation of
reporting certifies the accuracy and dependability of the
reputation information in the RepKB, which can be used
for efficient service discovery. Detailed descriptions of
these components are outside of the scope of this paper.

5. Prototype Implementation

We illustrate the functionality and validity of the PM

by a prototype implemented in our lab as shown in Figure
4. We use the prototype to monitor a workflow similar to
Figure 2(a). The workflow is composed of two
experimental Web services, WS1 (actual name
WSOMAroma) and WS2 (actual name WSCompany)
which are executed in sequence. A load generator
application written in Java is used as the consumer. It first
requests the PM for monitor service and then executes the
workflow. The PM (PS) resides on one server (S1), which
runs the HTTP server and the application server to host
the PMWS. WS1 and WS2 are hosted on a second server
(S2), where the CPMH (SS) is installed as a part of the
message processing layer. The consumer application runs
on a third machine (S3), which is similar to the server
machines but requires Java Virtual Machine (JVM) and
only the necessary libraries to run the application.

We use an Apache 2.2.3 HTTP server [2] with an
Apache Tomcat 6.0 application server and Axis2 as the
SOAP messaging framework for the Web services. The
PMDB is created using IBM DB2 version 9.1. We use
IBM Intel Pentium 4 Desktops with 2.66GHz CPU and
512MB of RAM as the server and the client machines
with the Microsoft Windows XP Professional Version
2002 Service Pack 2 operating system.

In the example scenario we monitor the response time
and availability of the services by using the two-way
Message Exchange Pattern (MEP) [22] i.e., all the
requests for services are matched with a reply. We use
simple XML specifications for the workflow and SLAs as
shown in Figure 5, which the service consumer sends to
the PM to request monitoring services. In response the
PM returns a reply message containing a SOAP header
block enclosed by the tag <reportLog> as shown in Figure
6 which states the necessary information for the SS.

After receiving the reply the service consumer starts
executing the workflow and embeds the header
information in the SOAP header of the messages used to
invoke the component services in the workflow. Figure 7

Figure 4: Layout of the servers for the
prototype implementation

S1

PMWS

WA RA PMDB

S2

WS1

WS2

C
PM

H

S3
Consumer Application

shows the message
sequence chart for
our example
scenario. As services
are invoked, the
CPMH sends the
monitoring data of
the specified QoS
attributes to the
URLs specified in the
SOAP header. The
dashed arrows
indicate reports from
the CPMH. In
absence of the
required information,
no monitoring is
done for the message.
The CPMH
correlates the
requests and replies
of a Web service by using the PID and other associated
context information in the messages. Upon receipt of the
reports, the PM validates the SLAs. If a violation of SLA
is detected it reports immediately, otherwise sends a
general report at the end of the process. We note that the
ability to specify multiple receivers, for example
Consumer_URL and Manager_URL in Figure 6, makes
the PM framework well-suited to distributed systems.

5.1. Validation

Our experimental Web service composition first calls
the executeQuery0 operation of the Web service
WSOMAroma (WS1) and then the companyQuery0
operation of the Web service WSCompany (WS2) in
sequence. executeQuery0 performs a sales related query
on the AromaDB [9], which is a DB2 database containing
11 tables with about 70,000 records in one table including

an XML data field. companyQuery0 retrieves employee
data from CompanyDB, another smaller DB2 database
containing 6 tables.

In all our experiments service performance is
monitored at three different points: at the host Web server
using a very basic code-level instrumentation; at the
messaging framework using the CPMH and the PM, and
at the consumer application. We implement connection
pools for the databases in the Web services to reduce the
significant impact of DB connection time on service
performance as we increase the number of clients. First
we show (Figure 8) the differences in response times
measured at the code and at the client due to the network
and associated software components which are necessary
to invoke a Web service.

Figure 9 shows the performance of WS2 with and
without monitoring at the three levels. Besides the
network factor, one of the reasons for the overhead in
response time measured at the client level is that all
clients are executed on the same machine. For the same
run, the overhead measured at the code level is
insignificant, which is more clearly shown in Figure 10.
Also compared to the client-level monitoring data, the PM
provides a much closer measurement to that of the code

Figure 6: SOAP header content for Web service calls

<soapenv:Header
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <tns:reportLog xmlns:tns="http://CSMM.server/xsd">
 <tns:PID>1</tns:PID>
 <tns:Consumer_Name>Farhana Zulkernine
 </tns:Consumer_Name>
 <tns:Consumer_URL>

http://cs.queensu.ca/home/farhana/index.htm
 </tns:Consumer_URL>
 <tns:Manager_URL>

http://localhost:8080/axis2/services/PerformanceMonitor
 </tns:Manager_URL>
 <tns:Create_Time>2007-06-09 03:01:39.14
 </tns:Create_Time>
 <tns:Response_Time />
 </tns:reportLog>
</soapenv:Header>

Figure 8: No monitoring

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10
Clients

R
es

po
ns

e
Ti

m
e

(m
s)

WS1_client
WS1_Code
WS2_Client
WS2_Code

Figure 5: Parameters for
the Monitor Request

 <monitorRequest>
 <Consumer_Info>
 <Consumer_Name>…</Consumer_Name>
 <Consumer_URL>…</Consumer_URL>
 <Manager_URL>…</Manager_URL/>
 </Consumer_Info>
 <Workflow_Info>
 <Service>
 <Service_Name>…</Service_Name>
 <Service_URL>…</Service_URL>
 <Operation_Name>…</Operation_Name>
 <Execution_Level>…</Execution_Level>
 <SLA>
 <Response_Time>…</Response_Time>
 </SLA>
 </Service>
 <Service>
 ...
 </Service>
 </Workflow_Info>
 </monitorRequest>

Figure 7: Message flow in monitoring using the PM

Monitor request

Consumer PMWS WS1 WS2

Reply with PID
Invoke WS1

Service response
Report for WS1

Invoke WS2

Report to client if
any error occurs

Report for WS2
Service response

Report to client
as process ends

CPMH

level, which justifies why the PM is a better tool for SLA
verification.

Figure 11 shows that without monitoring, the response
time of WS1 increases more linearly than with
monitoring. The reason behind this is the absence of a
workload adaptation technique on the server side causes
performance degradation with sudden increase in
workload for WS1. WS2 does not demonstrate such
behavior because the prior call to WS1 inserts a queuing
delay for WS2. Due to the same reason, WS1 performs
better with monitoring because then the first call is made
to the PM. We verified this hypothesis by inserting a
small delay for every process. Figure 12 confirms the
performance improvement of WS1although WS2 suffers.

5.2. Discussion

We encountered several obstacles in implementing the

prototype. We developed Axis2 handlers as SSs for our
prototype. When the services are down, the handlers do
not function. We implemented a timeout strategy to get
around this problem. Ideally the handlers should function
even if the services are down.

The handlers intercept messages to and from the
services to measure response time. For monitoring
operations that follow the InOnly Message Exchange
Pattern, i.e., Web service calls that do not generate any
response other reporting techniques will have to be used.

6. Conclusion

Monitoring distributed Web services-based processes

for the verification of the SLAs poses a challenging
problem due to the dependency on the network and the
distributed nature of composite processes. Business
processes need to be monitored at both service consumer
and service provider ends to maintain the QoS. We
propose the Performance Monitor (PM) middleware to
enable outsourcing of the task of client-side monitoring
using established Web service standards. The PM uses
multiple SSs which report performance data to a PS. We
envision that in future messaging frameworks will have
some built-in monitoring features that can be used by
tools such as the PM.. The Web service-based architecture
of the PM allows any SS to report monitoring data to the
PS with little customization and expand the usability of
the PM to general Web processes.

The PM reduces monitoring overhead on the clients
which can be very effective for embedded or limited
power mobile devices. It also allows reporting to multiple
endpoints, and enables computation of group statistics for
multiple processes such as, 98% availability, 5 seconds
average response time, or 99% reliability for all
transactions of an organization.

Although message interception has proven to be an

Figure 9: Monitoring overhead for WS2

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10
Clients

R
es

po
ns

e
Ti

m
e

(m
s)

WS2_Monitor_Client
WS2_NoMonitor_Client
WS2_Monitor_Code
WS2_NoMonitor_Code
WS2_Monitor_PM

Figure 10: Monitoring overhead for WS2

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10
Clients

R
es

po
ns

e
Ti

m
e

(m
s)

WS2_Monitor_Client
WS2_Monitor_PM
WS2_Monitor_Code
WS2_NoMonitor_Code

Figure 11: Effect of workload on WS1

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10
Clients

R
es

po
ns

e
tim

e
(m

s)

WS1_Monitor_Client
WS1_NoMonitor_Client
WS1_Monitor_Code
WS1_NoMonitor_Code
WS1_Monitor_PM

Figure 12: Effect of delay on WS1 and WS2

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10
Clients

R
es

po
ns

e
Ti

m
e

(m
s)

WS1_Monitor_Client
WS1_NoMonitorDelay_Client
WS1_NoMonitor_NoDelay_Client
WS2_Monitor_Client
WS2_NoMonitorDelay_Client
WS2_NoMonitor_NoDelay_Client

efficient approach to monitoring Web services, it does not
provide detailed monitoring data, such as, latency time,
database access time, and failure of a component or
resource the service is dependent upon. In-code
instrumentation can provide a more comprehensive
performance report and can be combined with a reporting
agent to work as a SS for the PM although it would incur
maintenance overhead. Security and privacy measures,
such as firewalls, authentication schemes, and different
access control policies can create hindrances for
monitoring applications by denying access to the
messages we need to monitor.

As future work, we intend to use other SSs such as our
server-side AWSE framework [19], which provides a
query interface to get performance data. Server-side
monitoring tools that allow subscription to events for
getting automated performance reports can also be used as
SSs. We would like to explore other QoS attributes that
can be monitored, use the PM with the CSMM for
comprehensive process management and policy-based
notifications, and use the performance data for creating a
reputation knowledge base for QoS-based service
discovery.

7. References

[1] Andonoff, E., Bouzguenda, L., and Hanachi, C., 2005.

Specifying Workflow Web Services Using Petri Nets with
Objects and Generating of Their OWL-S Specifications.
LNCS, Vol. 3590/2005, pp. 41-52, Springer.

[2] APACHE HTTP Server, TOMCAT, AXIS2. Retrieved
from: http://httpd.apache.org/ June 26, 2007.

[3] CA, 2007. CA Wily SOA Manager – Monitor and Manage
Web Services Performance. White paper. At: http://www.
wilytech.com/solutions/products/SOA-Manager.html.

[4] Chan, Y., Min, H., and Winkelbauer, L., 2006. Hardening
the EWLM Performance Data, IBM Red Paper, at:
http://www.redbooks.ibm.com/redpapers/pdfs/redp4018.pdf.

[5] Dan, Davis, Kearney, Keller, King, Kuebler, Ludwig,
Polan, Spreitzer, and Youssef, 2004. Web services on
demand: WSLA-driven automated management, IBM
Systems Journal, Vol. 43 (1).

[6] Dmitri Tcherevik 2004. Managing Web Services with
Unicenter® Web Services, White Paper, Office of the
CTO, retrieved June 4, 2007, at: http://www.ca.com/files/
WhitePapers/uni_wsdm_cto_wp.pdf.

[7] Dustdar, S. And Schreiner, W., 2005. A Survey on web
services composition. Int. Journal Web and Grid Services,
Vol. 1(1), pp. 1-30.

[8] Hogg, K. Chilcott, P., Nolan M., and Srinivasan, B., 2004.
An evaluation of Web services in the design of a B2B
application, in Proc. of the conference on Australasian
Computer Science, Vol. 26.

[9] IBM DB2 SQL and XQUERY Tutorial, Part 1. Retrieved
from: http://www.ibm.com/developerworks/edu/dm-dw-
dm-0607cao-i.html June 26, 2007.

[10] Iyengar, A., King, R., Ludwig, H., and Rouvellou, I., 2003.

Performance and Service Level Considerations for
Distributed Web Applications, in Proc. of the 7th World
Multi-conference on Systems, Cybernetics, and Informatics
(SCI), Orlando, Florida.

[11] Johnson, M., 2005. Monitoring and Diagnosing
Applications with ARM 4.0. MeasureIT, Issue 3.3,
Computer Measurement Group (CMG).

[12] Lipton, P., 2004. Composition and Management of Web
Services, White Paper, available at: http://www.sys-
con.com/story/print.cfm?storyid=43567.

[13] Machiraju, V., Sahai, A., and Van Moorsel, A., 2002. Web
Services Management Network: An Overlay Network for
Federated Service Management, Hewlett Packard
Technical Report HPL-2002-234.

[14] Momm, C., Mayerl, C., Rathfelder, C., and Abeck, S.,
2007. A Manageability Infrastructure for the Monitoring of
Web Service Compositions. To appear in: 14th HP-SUA
Workshop, München.

[15] OASIS WS-BPEL (Web Services Business Process
Execution Language) 2.0 Draft, 2006. At: http://www. oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel.

[16] Sahai, A., Machiraju, V., and Wurster, K., 2001.
Monitoring and Controlling Internet based Services, In
Proc. of the IEEE Workshop on Internet Applications
(WIAPP'01), San Jose, CA.

[17] Sahai, A., Machiraju, V., Ouyang, J., and Wurster, K. 2001.
Message Tracking in SOAP-based Web Services, Hewlett
Packard Technical Report. HPL-2001-199.

[18] Simon, L., Mallya, A., Bansal, A., Gupta, G., and Hite, T.
D., 2005. A Universal Service Description Language, Proc.
of the IEEE International Conference on Web Services,
Orlando, Fl.

[19] Tian, W., Zulkernine, F., Zebedee, J., Powley, W., and
Martin, P., 2005. An Architecture for an Autonomic Web
Services Environment. Proc. of the Workshop on Web
Services and Model-Driven Enterprise Information Systems
with ICEIS, Miami, Fl.

[20] Tröger, P., Meyer, H., Melzer, I. and Flehmig, M., 2007.
Dynamic Provisioning and Monitoring of Stateful Services.
In Proc. of the 3rd Int. Conf. on Web Information Systems
and Technology (WEBIST’07), pp. 434-438, INSTICC,
Madeira, Portugal.

[21] Vaculín R. and Sycara K., 2002. Automated SLA
Monitoring for Web Services Monitoring: An OWL-S
based Approach. In Proc. of IEEE/IFIP DSOM, (Ed.) Sirin
and Parsia.

[22] W3C Message Exchange Patterns, 2002. Available at:
http://www.w3.org/2002/ws/cg/2/07/meps.html.

[23] W3C SOAP Version 1.2 Part 1: Messaging Framework,
June 2004. At: http://www.w3.org/TR/soap12-part1/.

[24] Xu, Z., Martin, P., Powley, W., and Zulkernine, F., 2007.
Reputation-Enhanced QoS-based Web Services Discovery,
In Proc. of the IEEE Int. Conf. on Web Services (ICWS'07),
Salt Lake City, Utah, USA.

[25] Zulkernine, F., and Martin, P., 2007. Conceptual
Framework for a Comprehensive Service Management
Middleware, In Proc. of Int. IEEE Workshop on Service
Oriented Architectures in Converging Networked
Environments (SOCNE'07) in conjunction with AINA
2007, pp. 995-1000, Niagara Falls, Canada.

