
Clustering WSDL Documents to Bootstrap the
Discovery of Web Services

Khalid Elgazzar, Ahmed E. Hassan, Patrick Martin
School of Computing, Queen’s University, Canada
{elgazzar, ahmed, martin}@cs.queensu.ca

Abstract—The increasing use of the Web for everyday tasks is
making Web services an essential part of the Internet customer’s
daily life. Users query the Internet for a required Web service
and get back a set of Web services that may or may not satisfy
their request. To get the most relevant Web services that fulfill
the user’s request, the user has to construct the request using
the keywords that best describe the user’s objective and match
correctly with the Web Service name or location. Clustering
Web services based on function similarities would greatly boost
the ability of Web services search engines to retrieve the most
relevant Web services. This paper proposes a novel technique to
mine Web Service Description Language (WSDL) documents and
cluster them into functionally similar Web service groups. The
application of our approach to real Web services description files
has shown good performance for clustering Web services based
on function similarity, as a predecessor step to retrieving the
relevant Web services for a user request by search engines.

Index Terms—clustering WSDL documents, Web service, fea-
ture extraction, Web service clustering.

I. INTRODUCTION

Service-oriented Architecture (SOA) has become a driv-
ing force for Web applications development. Service-oriented
Computing (SOC) is a computing paradigm that is driven by
SOA. SOC uses services as the basic constructs to support
rapid, low-cost, and easy composition of distributed appli-
cations even in heterogeneous environments [1]. In SOA, a
service is defined by a Web interface that supports interpretable
operations between different software applications using a
standard messaging protocol [2]. Web services are a popular
implementation of SOA. A Web service is described by means
of the Web Services Description Language (WSDL) [3], and
that description is published in a public Universal Description
Discovery and Integration (UUDI) registry. XML is used to
construct the basic blocks of Web service communication by
means of some form of XML messaging, such as Simple
Object Access Protocol (SOAP) request or response or XML-
Remote Procedure Call (XML-RPC).

Major providers of Web services, such as Google, Amazon
and Yahoo, have decided to publish their Web services through
their own websites instead of using public registries or brokers.
This trend is forcing users to discover Web services using a
search-engine model. Al-Masri et al. [4] show that services
registered in public registries are decreasing in contrast with
services crawled by search engines’s crawlers. The authors
point out that more that 53% of the UDDI Business Registry
(UBR) registered services are invalid, whereas 92% of Web
services cached by search engines are valid and active.

Searching for Web services using search engines, however,
can result in a bottleneck in the discovery process, especially
for non-semantic Web services because search engines do
not understand the Web service functionalities outlined in
the description file. Search engines partially match the search
terms entered by the user with the Web service name, location,
business, or tModel [5] defined in the Web service description
file to get the results back. The use of these kinds of keywords
are, by design, limited in WDSL specifications. If the search
query does not contain part of the Web service name exactly,
then the service may not be retrieved. It is therefore essential
for the user to be aware of the concise and correct keywords
in order to retrieve the most relevant services that match the
request. This is difficult for users who are ultimately concerned
with service functionality. A user may even miss services that
use synonyms or variations of these keywords. For example,
a service that contains ”car” in its name may not be retrieved
from a query looking for ”vehicle”.

The problem of poor recall for search for non-semantic Web
services using search engines can be approached in two ways.
The first approach is to perform a broad matching process and
return a potentially large number of unranked services, most of
which may not be of interest to the user. The second approach
is to improve search engine retrieval with mechanisms to
cluster services into similar functional groups while they crawl
their description files. This latter approach can effectively
reduce the search space of Web services while improving the
matching process. In addition, it can take advantage of the
continuous crawling feature of search engines’s crawlers by
enabling adaptive re-clustering and self-organization to cope
with the highly dynamic nature of Web services [6].

In this paper, we seek to improve Web services discov-
ery with search engines by proposing a novel approach to
clustering Web service description files (WSDL documents)
into functionally similar groups prior to answering discovery
requests.

Our main contributions are as follows:
• We present an approach that uses five key features

extracted from WSDL documents in order to group Web
services into functionality-based clusters.

• We experimentally demonstrate that our proposed ap-
proach outperforms (higher precision and recall) other
approaches.

The rest of this paper is organized as follows. Section II
gives a brief background on related work. Section III describes

the WSDL documents structure. Section IV introduces our
proposed clustering approach. Section V explains how to
extract features from WSDL documents. Section VI presents
the integration of the extracted features to establish the relation
between Web services. Section VII discusses the experiments
and results. Finally, Section VIII concludes the paper and
outlines future research avenues.

II. BACKGROUND AND RELATED WORK

Research in Web mining has recently gained much attention
due to the popularity of Web services and the potential benefits
that can be achieved from mining Web services description
files. Non-semantic Web services are described by WSDL
documents while semantic Web services use Web ontology
languages (OWL-S) [7] or Web Service Modeling Ontology
(WSMO) [8] as a description language. Non-semantic Web
services are more popular and supported by both the industry
and development tools. The discovery process is quite different
according to the Web services description method. Semantic
Web services are discovered by high level match-making
approaches [9], whereas non-semantic Web services discovery
uses information retrieval techniques [10]. In our approach, we
target the discovery of non-semantic Web services.

Nayak [5] proposes a method to improve the Web service
discovery process using the Jaccard coefficient to calculate the
similarity between Web services. He provides the user with
related search terms based on other users’ experiences with
similar queries. In contrast, our approach clusters Web services
based on their functionality in order to reduce the search space
and improve query matching. We make use of five features
extracted from the description files to calculate the similarity
among Web services.

Many efforts have been made to overcome the drawbacks
of UDDI-based discovery techniques. Guan et al. [11] propose
two discovery mechanisms based on the cooperation between
UDDI and Directory Facilitator (DF) to improve the efficiency
of the UDDI-based Web service discovery. However, the study
do not give enough evidence to show the effectiveness of their
approach in improving the Web services discovery. Shuiguang
et al. [12] propose an information model for registered services
to improve the match-making in the discovery process. The
authors use precision and recall to measure the performance
of their approach. Xin et al. [13] propose the Web services
search engine Woogle that is capable of providing Web
services similarity search. Their engine, however, does not
adequately consider data types, which usually reveal important
information about the functionalities of Web services [14].

Liu and Wong [15] use a proposal similar to ours and
apply text mining techniques to extract features such as service
content, context, host name, and name, from Web service
description files in order to cluster Web services. They propose
an integrated feature mining and clustering approach for Web
services as a predecessor to discovery, hoping to help in build-
ing a search engine to crawl and cluster non-semantic Web
services. We differ in our choice of features. We believe that
the service context and service host name features offer little

help in the clustering process. Providers tend to advertise the
services they provide on their own website, which means they
provide different Web services on the same site. Hence, mining
the surrounding Web pages (service context) or considering
the host name does not help with the meaning of the Web
service, which is not the case in UDDI. In addition, some Web
services do not make use of the <documentation> element
in the WSDL document, which means there is insufficient
information for the content feature. Relying on attributes’
names as a Web service content may also be misleading since
the names may not follow any naming conventions and they
may not be descriptive or even correct English words.

III. WSDL DOCUMENT STRUCTURE

WSDL is an XML-based language that provides a model
for describing non-semantic Web services [3]. It is also used
to describe the operations that can be performed by a certain
Web service as well as its location. In our feature extraction
we consider the structure of WSDL specification version 1.1
as it is most often supported by software development tools.

A WSDL document describes a Web service using six major
components:
• <types> element is an XML type definition that de-

scribes the data containers used in message exchanges.
• <messages> element is an abstract representation of

the transmitted information. Typically, a message contains
one or more logical parts (parameters). These parts are
associated with a type definition.

• <portType> is an important component in WSDL doc-
uments, in which a set of abstract operations (functions)
that can be performed by the Web service are defined.
Each operation is associated with an input and/or output
message.

• <binding> component specifies the communication
protocol and data format for each operation and message
defined in a particular portType element.

• <service> element is a composite operation that ag-
gregates multiple related ports or functions.

IV. PROPOSED CLUSTERING APPROACH

Our proposed approach is inspired by the information
available in Web services description document. We mine
the WSDL documents to extract features that describe the
semantic and behavior of the Web service, specifically the
WSDL content, WSDL types, WSDL messages, WSDL ports
and the Web service name. These features describe and reveal
the functionality of a Web service [13]. Integrating these
features together, we cluster Web services into functionally
similar groups. This is a predecessor step to assist a service
search engine in identifying the Web service functionality and
match Web services with users’ requests. Figure 1 illustrates
graphically our proposed approach to cluster WSDL docu-
ments to aid a service search engine. A search engine’s crawler
crawls WSDL documents from the internet and applies offline
our proposed clustering approach to group similar functionally
services. When a user queries the service search engine for a

Our approach

Offline Clustering

Features Extraction

(Section V)

Features Integration

and clustering

(Section VI)

Search Engine

User Query

WSDL

Documents

Match making

Clustered

WSDLs

Query Response

1

3

2

Web Crawler

Fig. 1. Schematic block diagram illustrates the big picture that inspired our
WSDL clustering approach.

Parsing WSDL

Function word removal

Word stemming

Tag removal

Feature 1

(WSDL contents)

Extract types,

messages, and ports
Extract service name

Feature 5

(service name)

Feature 4

(WSDL ports)

Feature 3

(WSDL messages)

Feature 2

(WSDL types)

<wsdl:definitions target...

−<s:complexType> . . .

−<wsdl:message>. . .

−<wsdl:portType name= . . .

http://www.webservicex.net/WeatherForecast.asmx?wsdl

Content word recognition

WSDL

Fig. 2. Block diagram of the features extraction process.

desirable objective (step 1), it uses the clustered Web services
to match semantically the query (step 2) and return the most
relevant Web services (step 3) that satisfies the requested
objective.

V. EXTRACTING FEATURES FROM WSDL DOCUMENTS

In this Section we describe how we extract the five proposed
features from WSDL documents. Figure 2 illustrates the steps
for feature extraction.

Feature 1: WSDL Content

We begin by reading the WSDL document contents directly
from the WSDL URI. Each WSDL document fi describes
a Web service si. We process the contents of the WSDL
document in order to extract a vector of meaningful content
words for the Web service si. Our approach to building the
vector consists of the following five steps (shown in Figure
2):

1) Parsing WSDL: The contents of the document are
parsed based on white spaces to produce a vector of
tokens Ti.

2) Tag removal: The next step removes all tokens from Ti

that are part of a XML tag so that only valid content
words remain in the vector. Removing XML tags from

the tokenized vector is straightforward since all XML
tags used in a WSDL document are predefined.

3) Word stemming: In this step, all words in Ti are
reduced to their base words using a Porter stemmer
[16]. Tokens with a common stem will usually have
the same meaning, for example, ‘connect’, ‘connected’,
‘connecting’, ‘connection’, and ‘connections’ all have
the same stem ‘connect’. Having one or all of them will
not make a difference in terms of word variations in
the semantic of a Web service. However, words which
appear more often are more important than others. We
consider the number of occurrence in the following
steps.

4) Function word removal: Function words tend to be
independent of one another. Often, function words can
be distinguished from content words using a Poisson
distribution to model word occurrence in documents[15].
This step is intended to remove all function words
from the service word vector. To decide whether a
certain word w is a function word, we calculate the
overestimation factor for all words in the word vector
as follows:

Λw =
estimatedDocumentFreq

observedDocumentFreq
=

n̂w

nw
(1)

where nw is the number of documents that contain the
word w (we use the occurrence in Web documents), n̂w

and is the number of estimated documents that contain
the word w. To estimate the document frequency for a
word we need to have the document frequency for a sin-
gle occurrence of that word in the Web corpus. While it
is not feasible for a search engine to identify documents
that contain a single occurrence of a particular search
term, there are techniques, such as the K-mixture word
distribution model [17], to estimate the word frequency
using page count. In this paper, we use the Yahoo search
engine to obtain a single occurrence page count for a
certain search term as follows. We first search the Web
using the Yahoo search engine for all pages that contain
the desired word, for example ”weather”. This gives the
Web document frequency regardless of how many times
the search term ”weather” appears in a document. We
then search using the term ”weather * weather”, which
gives all documents containing at least two occurrences
of the word ”weather”. The difference between these
two page counts is an estimate for the Web document
frequency for a single occurrence of the term ”weather”.
We can then calculate the overestimation factor (dis-
cussed in more detail in [15]) for all words in Ti as
well as the average avg[Λ] of all overestimation factors.
An overestimation factor threshold (Λthre) is defined as
follows [15].

Λthre =

{
avg[Λ] if avg[Λ] > 1
1 otherwise (2)

Any word that has an overestimation factor above the
Λthre is considered to be a content word. Otherwise the

<wsdl:definitions targetNamespace="http://www.webservicex.net">

.

−<s:complexType>

 -<s:sequence>

 <s:element minOccurs="0" maxOccurs="1" name="ZipCode" type="s:string"/>

 </s:sequence>

 </s:complexType>

.

−<wsdl:message name="GetWeatherByZipCodeHttpGetIn">

 <wsdl:part name="ZipCode" type="s:string"/>

 </wsdl:message>

−<wsdl:portType name="WeatherForecastHttpGet">

 −<wsdl:operation name="GetWeatherByZipCode">

 <wsdl:input message="tns:GetWeatherByZipCodeHttpGetIn"/>

 <wsdl:output message="tns:GetWeatherByZipCodeHttpGetOut"/>

 </wsdl:operation>

 </wsdl:portType>

complexType

message

PortType

Fig. 3. An excerpt from the WeatherForecast Web service
(http://www.webservicex.net/WeatherForecast.asmx?wsdl) that shows
the structure of types, messages, and ports.

word is considered to be a function word and is removed
from the vector Ti.

5) Content word recognition: WSDL documents usu-
ally contain general computing content words such as
’data’,’web’,’port’, etc. These words appear in most
Web service description files and so can not be used to
discriminate between Web services. The objective of this
step is to remove words that do not describe the specific
semantics of the Web service. We first apply the k-means
clustering algorithm [18] with k = 2 on Ti to cluster the
remaining words into two groups, one group describing
the meaning of the Web service and the other group is
for general computing words. We use K-means because
it is simple, fast, and efficient if the number of clus-
ters is known beforehand. We use Normalized Google
Distance (NGD) [19] as a featureless distance measure
between words. We use a cluster selection method
to automatically recognize which cluster contains the
Web-service-specific words. A number of sophisticated
cluster selection algorithms have been proposed such as
the one based on iterative propagation of penalty weights
[15]. We chose, however, to use a simple approach based
on calculating the average NGD between each of the two
clusters and a predefined vector of general computing
words such as { runtime, bind, web, service, module,
data, post, developer }. The cluster closest to this oracle
is determined to be the non-Web-service-specific cluster
and its words are removed from the word vector Ti.

Feature 2: WSDL Types (complexType)

WSDL documents contain a section that defines data con-
tainers which will be used by messages to transmit information
between Web services. Figure 3 shows an example of a com-
plexType definition that appears in the WeatherForecast Web
service. WSDL specifications use XML Schema Definition
(XSD) as their canonical type system. Types can be as simple
as a single element or as complex as an array of elements.
Each element has a name attribute and a type attribute. While
the name attribute is sometimes not a useful feature, the type
attribute is a good candidate for describing the functionality
of a service. Xin et. al [13] show that complex data types

are the most informative element in WSDL documents. We
therefore extract element types and determine the number of
type matches between a pair of Web services using

match(si, sj) =
M(si, sj)

avg(Esi , Esj)
(3)

where si and sj are different Web services, M(si, sj) is the
number of matched types between Web services si, sj , and
Esi and Esj are the total numbers of defined types in Web
service si and sj respectively.

Feature 3: WSDL Messages

Messages encompass one or more logical parameters. Each
parameter is associated with one of the system types. Multiple
parameters (part elements) are used if the message has multiple
logical units, such as a message containing a purchase order
with order items and its invoice. Message definitions are
typically considered as an abstract definition of the message
content. A message binding section defines how the abstract
content is mapped into a concrete format [3]. Figure 3 shows
an example of a simple message definition that appears in
the WeatherForecast Web service. The message may contain
multiple parts and the order in which these parts appear is
important to the message definition. In our approach, we
match the messages’ structure between Web services and use
Equation (3) to calculate this match. In this case, M(si, sj)
is number of matched messages between Web services si and
sj , and Esi , Esj are the total number of defined messages in
Web services si, and sj respectively.

Feature 4: WSDL Ports

A <portType> defines the combination and sequence of
messages for an operation. WSDL 1.1 supports four types of
message exchange patterns [20]:
• One-way: The service receives a single input message.
• Request-response: The service receives a request message

and responds with an output message.
• Solicit-response: The service first sends an output mes-

sage and then waits for an input message in response.
• Notification: The service sends an output message with-

out waiting for anything in return as, for example, in the
case of state updates.

Figure 3 illustrates a <portType> definition section in the
WeatherForecast Web service. We evaluate how many port-
Types are similar, with respect to both message sequence and
message structure, between two Web services using Equation
(3).

Feature 5: Web Service Name

We consider the Web service name used in
the URI of the WSDL document. For example,
the URI of the WeatherForecast Web service is
http://www.webservicex.net/WeatherForecast
.Asmx?WSDL, and so the name of the Web service is
”Weather Forecast”. This name could be totally different
from the name used inside the WSDL document itself. In

case of composite names, such as ‘WeatherForecast’, we
split the composite name into multiple names based on the
assumption that a capital letter indicates the start of a new
word. Using NGD we find the similarity between services
names as follows:

sim(snamei, snamej) = 1−NGD(snamei, snamej) (4)

where snamei and snamej are the names of the Web services
si and sj respectively.

VI. FEATURE INTEGRATION

We use the Quality Threshold (QT) clustering algorithm
[21] to cluster similar Web services based on the five similarity
features presented above. We decided to use QT because it
returns consistent results across multiple runs with the same
input, and it can be used to cluster particular groups. The
drawback of QT, however, is that it is more computationally
expensive than other clustering algorithms [21]. We measure
the similarity factor Θ(si, sj) between Web services si and sj
as follows:

Θ(si, sj) =0.2S(Ti, Tj) + 0.2sim(snamei, snamej)+

0.2match(typi, typj) + 0.2match(msgi,msgj)+

0.2match(porti, portj) (5)

Θ(si, sj) is equal to ”1” if the two services are identical and
Θ(si, sj) is equal to ”0” if they are completely different. We
normalize Θ(si, sj) by assigning weights of 0.2 to each of
the five similarity features. We determined experimentally that
these weights give reasonable results. In Equation (5) Ti and
Tj are the content word vectors of services si, sj respectively.
S(Ti, Tj) is the average similarity between the content word
vectors Ti, and Tj and is calculated with

S(Ti, Tj) =

∑
a∈Ti

∑
b∈Tj

sim(a, b)

|Ti||Tj |
(6)

where sim(a, b) is the featureless similarity factor computed
between words a and b using NGD based on the word co-
existence in Web pages. sim(a, b) is calculated using

sim(a, b) = 1−NGD(a, b) (7)

where a and b are the content vector words belong to Ti and
Tj respectively.

VII. EXPERIMENTS AND RESULTS

We use two criteria to evaluate the performance of our
approach, namely Precision and Recall. ”Precision can be
seen as a measure of exactness or fidelity, whereas Recall is
a measure of completeness” [22]. Precision and Recall have
been often used to evaluate information retrieval schemes [12].
We extend the use of these two measures to evaluate our
approach as follows:

precision =

∑
i∈C Pci

length(C)
, Pci =

succ(ci)

succ(ci) + mispl(ci)
(8)

recall =

∑
i∈C Rci

length(C)
, Rci =

succ(ci)

succ(ci) + missed(ci)
(9)

weather

forecast

document

tempertature

zip

document

place

weather

zipcode

us

0

response

post

bound

data

bind

sequence

target

string

schema

port

1 oper

Fig. 4. The output of the content words recognition phase for the Weather-
Forecast Web service.

where ci is the cluster i, Pci and Rci are precision and recall
for cluster ci respectively, succ(ci) is the number of Web
services successfully placed in the proper cluster ci, mispl(ci)
is the number of Web services that are incorrectly clustered
into ci (i.e. they should not be there), missed(ci) is the
number of Web services that should be clustered into ci but
are incorrectly placed in other clusters, and length(C) is the
number of clusters.

Our experiments are based on the WSDL documents of
400 online Web services gathered from real-world Web ser-
vice providers and Web service repositories such as Webser-
viceList, WebserviceX, and xMethods. We do not download
each WDSL document, instead, our approach reads the con-
tents directly from the WSDL document URI. We perform a
manual classification of the WSDL documents to serve as a
comparison point for the clustering algorithms. We distinguish
the following categories: ”Currency exchange”, ”Weather”,
”Address validation”, ”E-mail verification”, and ”Credit card
services” as shown in Table I.

We first mine the contents of the WSDL documents to
extract the content words vector Ti where 1 ≥ i ≥ 400,
describing the meaning of the Web services. Using the java
library WVTool 1, each line is uploaded as an instance of
WVTDocumentInfo class. The output is a vector of words
without the XML tags. These vectors are taken to the next
phase using the Porter stemmer to reduce all the words in each
vector to their roots. Then we calculate the overestimation
factor for all the words in each vector to distinguish between
function words and content words. We use the Yahoo
search engine to find the document frequency and estimated
document frequency for each word. We next identify the
content words for the Web services by clustering each
word vector into two groups using the k-means clustering
algorithm, in which we use NGD as a featureless similarity
measure between words. Figure 4 shows a sample output
of this phase for the WeatherForecast Web service. Finally,
we use a cluster selection algorithm to pick out the cluster
of non-content words by calculating the clusters’ similarity,
using Equation (6), with a group of general computing words
including {runtime, bind, web, service, module, data, post,
developer}. We create the types feature for the Web services
by extracting all the defined complexTypes along with their

1http://wvtool.sf.net

TABLE I
THE MANUALLY IDENTIFIED CATEGORIES FOR CLUSTERING VERIFICATION.

Category WSDL URI

http://www.atlaz.net/webservices/GetCurrencyExchange.wsdl http://www.webservicex.net/CurrencyConvertor.asmx?WSDL
http://server1.pointwsp.net/ws/finance/currency.asmx?WSDL http://allysoft.ru/BScurrency/currency.asmx?WSDL
http://www.freewebs.com/jimmy cheng/CurrencyExchangeService.wsdl http://fx.cloanto.com/webservices/CurrencyServer.asmx?wsdl
http://www.currencyserver.de/webservice/currencyserverwebservice.asmx?WSDL http://currencyconverter.kowabunga.net/converter.asmx?WSDL

Currency http://ws.soatrader.com/gama-system.com/1.0/CurrencyExchangeRates?wsdl http://tvazteca.viajez.com/WServicesDev/CurrencyRequest?WSDL
exchange http://ws.serviceobjects.com/ce/CurrencyExchange.asmx?WSDL http://ws2.serviceobjects.net/ce/CurrencyExchange.asmx?WSDL
(19) http://www.petermeinl.de/CurrencyConverter/CurrencyConverter.asmx?wsdl http://currency.niekutis.net/currency.asmx?wsdl

http://cs.daenet.de/webservice/CurrencyServerWebService.asmx?WSDL http://www.xignite.com/xCurrencies.asmx?wsdl
http://trial.serviceobjects.com/ce/CurrencyExchange.asmx?WSDL http://ws.strikeiron.com/ForeignExchangeRate3?WSDL
http://ws.soatrader.com/baydonhill.com/0.1/Currency?wsdl
http://www.webservicex.net/globalweather.asmx?wsdl http://www.webservicex.net/usweather.asmx?wsdl
http://www.webservicex.net/WeatherForecast.asmx?wsdl http://www.deeptraining.com/webservices/weather.asmx?WSDL
http://ws.soatrader.com/wopos.com/0.1/Weather?wsdl http://ws365.net/ws/weather.asmx?WSDL

Weather http://ws.soatrader.com/cs.uga.edu/0.1/WeatherFetcher?wsdl http://weather.shellware.com/weather.asmx?WSDL
(16) http://asyncpostback.com/WeatherService.asmx?WSDL http://ws.soatrader.com/bea.com/0.1/weather?wsdl

http://weather.cobbnz.com/weatherservice/webservice.asmx?wsdl http://209.162.186.60/globalweather.asmx?WSDL
http://trial.serviceobjects.com/fw/FastWeather.asmx?WSDL http://api.wxbug.net/weatherservice.asmx?wsdl
http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl http://lostsprings.com/weather/WeatherService.asmx?WSDL
http://services.postcodeanywhere.co.uk/us/lookup.asmx?wsdl http://ws.strikeiron.com/GlobalAddressLocator3?WSDL
http://ws.fraudlabs.com/postalcodeworldMexico webservice.asmx?wsdl http://ws.strikeiron.com/GlobalAddressVerification4?WSDL
http://ws.fraudlabs.com/zipcodeworldUS webservice.asmx?wsdl http://ws.serviceobjects.com/av/AddressValidate.asmx?WSDL

Address http://validator2.addressdoctor.com/addInteractive/Interactive.asmx?WSDL http://ws.cdyne.com/psaddress/addresslookup.asmx?wsdl
validation http://trial.serviceobjects.com/avca/ValidateCanada.asmx?WSDL http://arcweb.esri.com/services/v2/AddressFinder.wsdl
(16) http://ws.fraudlabs.com/postalcodeworldCanada webservice.asmx?wsdl http://ws.strikeiron.com/ZIPPostalCodeInfo5?WSDL

http://ws.soatrader.com/welho.fi/0.1/AddressAutoCompleteService?wsdl http://ws.soatrader.com/servicex.co.uk/0.1/Address?wsdl
http://142.176.62.103/GEONOVA WS/CivicAddressPointRange.asmx?WSDL http://ws.fraudlabs.com/areacodeworldwebservice.asmx?wsdl
http://ws.xwebservices.com/XWebEmailValidation/XWebEmailValidation.asmx?wsdl http://ws.cdyne.com/emailverifyws/emailverify.asmx?wsdl

E-mail http://www.siprod.net/webservices/xemail/xemailwebservice.asmx?WSDL http://trial.serviceobjects.com/ev2/emailvalidation2.asmx?WSDL
verification http://ws2.fraudlabs.com/mailboxvalidator.asmx?wsdl http://soap.towerdata.com/validate.wsdl
(8) http://ws.cdyne.com/emailverify/Emailvernotestemail.asmx?wsdl http://ws.strikeiron.com/EmailVerify?WSDL

http://webservices.tiscali.com/CreditCardServices.asmx?wsdl http://www.webservicex.net/CreditCard.asmx?wsdl
Credit https://webservices.optimalpayments.com/creditcardWS/CreditCardService/v1?wsdl http://www.webservicex.net/CreditCard.asmx?wsdl
card http://www.cbr.ru/CreditInfoWebServ/CreditOrgInfo.asmx?wsdl http://webservices.primerchants.com/creditcard.asmx?wsdl
check http://secure.cdyne.com/creditcardverify/luhnchecker.asmx?wsdl http://webservices.primerchants.com/creditcard.asmx?WSDL
(10) http://ws.strikeiron.com/FraudLabs/CreditCardFraudDetection?WSDL http://ws.fraudlabs.com/fraudlabswebservice.asmx?wsdl

TABLE II
CALCULATING COMPLEXTYPE MATCHES BETWEEN FOUR WEB SERVICES.

Service complexType complexType matches
element name type WS1 WS2 WS3 WS4

WS1

GetWeather CityName string

1.0 0.86 0.67 0.25

CountryName string
GetWeatherResponse GetWeatherResult string
GetCitiesByCountry CountryName string
GetCitiesByCountryResponse GetCitiesByCountryResult string

WS2
GetWeatherReport ZipCode string

1.0 0.80 0.26GetWeatherReportResponse GetWeatherReportResult string
null string string

WS3 GetWeather City string 1.0 0.29GetWeatherResponse GetWeatherResult string

WS4

testAddressResponse testAddressReturn string

1.0

displayAddress

x double
y double
scale double
objectId long
imgHeight int
imgWidth int
dpi long

displayAddressResponse displayAddressReturn string

testAddress
objectId long
centreX double
centreY double

elements in each WSDL document and determine the number
of matching elements for every pair of Web services using
Equation (3). Table II shows the results for four sample
Web services, webservicex.net/globalweather
(WS1), webservicex.net/usweather (WS2),
deeptraining.com/weather (WS3), and
nsw.gov.au/AddressImageWS (WS4). We also
extract the information for the messages and ports features
and calculate the similarity for each pair of services.

We cluster the feature sets of the 400 Web services using

More clusters

Currency exchange

Weather

FP(1), FN(0)

Address validation

FP(3), FN(1)

E-mail verification

viajez.com/CurrencyRequest
soatrader.com/Currency

webservicex.net/globalweather

webservicex.net/WeatherForecast
webservicex.net/usweather

deeptraining.com/weather

ws365.net/weather
wopos.com/Weather

cs.uga.edu/WeatherFetcher
asyncpostback.com/WeatherService

shellware.com/weather

bea.com/weather

209.162.186.60/globalweather

cobbnz.com/webservice

lostsprings.com/WeatherService

weather.gov/ndfdXML
wxbug.net/weatherservice

serviceobjects.com/FastWeather

postcodeanywhere.co.uk/lookup
strikeiron.com/GlobalAddressLocator3

fraudlabs.com/postalcodeworldMexico_webservice

addressdoctor.com/Interactive
serviceobjects.com/AddressValidate

fraudlabs.com/zipcodeworldUS_webservice
strikeiron.com/GlobalAddressVerification4

serviceobjects.com/ValidateCanada
cdyne.com/addresslookup

fraudlabs.com/postalcodeworldCanada_webservice
strikeiron.com/ZIPPostalCodeInfo5

servicex.co.uk/Address
strikeiron.com/IPligenceGeoIPLocation

welho.fiAddressAutoCompleteService

arcweb.esri.com/AddressFinder
fraudlabs.com/areacodeworldwebservice

xwebservices.com/XWebEmailValidation
strikeiron.com/EmailVerify

Credit card services

cbr.ru/CreditOrgInfo
primerchants.com/creditcard

clearforest.com/1.1/SWS

serviceobjects.com/gpp/GeoPinpoint

strikeiron.com/PhoneNumberEnhancement5
WSDLs

Fig. 5. A snippet from the our clustering approach output focuses on the
identified groups and indicating false positives(FP) and false negatives(FN).

QT clustering algorithm, which uses the composite relatedness
measure in Equation (5) to calculate similarity between Web
services. We use 0.7, which was determined experimentally, as
the minimum similarity threshold between any pair of services
in a cluster. Figure 5 shows a snippet from the clustering
output, which focuses on the groups that we identified
manually. In each cluster there may be some Web services
incorrectly placed in it (false positives, which are marked by
a dark background in Figure 5), as well as others that are
supposed to be there but are placed in other clusters (false
negatives). For example, Web services described by http://

ws.strikeiron.com/IPligenceGeoIPLocation?WSDL,

http://trial.serviceobjects.com/gpp/

GeoPinpoint.asmx?WSDL, and http://ws.strikeiron.

com/PhoneNumberEnhancement5?WSDL are incorrectly
placed in the ”Address validation” group, whereas, the
Web service from the same group that is described by the
WSDL document http://142.176.62.103/GEONOVA_

WS/CivicAddressPointRange.asmx?WSDL is misplaced
in another cluster. Examining the WSDL documents of
these Web services we see that the first three Web services
are either mapping ip addresses to geographic locations
or enhancing phone directories by associating addresses
to phone records. The descriptive text inside the WSDL
documents leads to a confusion with civic addresses and
the WSDL contains the same complexTypes and elements
structures of the ”Address validation” group. That is why
our approach added them incorrectly to this group. On the
other hand, our approach incorrectly clusters the service with
the WSDL document http://142.176.62.103/GEONOVA_
WS/CivicAddressPointRange.asmx?WSDL because the
document defines addresses in a different manner than the
other Web services and it uses a large number of acronyms.

For the sake of performance comparison, we implemented
the clustering approach proposed by Liu and Wong [15]
and applied it on our dataset. This proposed clustering
mechanism relies on less information from the description
files and mines for features from surrounding pages of
the Web service and the host name. We used the Quality
Threshold clustering algorithm in our implementation instead
of the Tree-Traversing Ant (TTA) algorithm used in the
original paper as QT is the one we used in our approach.
The results shows that, for example, services described by
http://www.webservicex.net/ConvertTemperature.

asmx?wsdl, http://weather.terrapin.com/axis2/

services/HurricaneService?wsdl, http://ws.

soatrader.com/syromlya.ru/0.1/Prediction?wsdl,
and http://webservices.daehosting.com/services/

TemperatureConversions.wso?WSDL, are incorrectly
placed the ”Weather” cluster. Investigating these WSDL
documents, we see that the first three do not make use of the
<documentation> element to provide a description of the
Web service’s functionality and their attributes’ names can be
confused with the weather Web services. The fourth of the
above incorrectly placed Web services has text to describe its
functionality but uses weather-like terms in the description. In
all these services, however, the <complexType> definitions
and <message> structures are completely different from
the other weather Web services, which explains why our
approach is able to recognize them.

On the other hand, the Web service described by
http://ws.fraudlabs.com/fraudlabswebservice.

asmx?wsdl, for example, is not correctly placed in the
”Credit card services” cluster by either approach. A closer
look to this Web service shows that it does not have a
<documentation> element and neither its name nor its
contents imply that it provides a credit check. It is worthwhile
noting that our approach failed to correctly cluster this

TABLE III
PERFORMANCE MEASURES RELATED TO THE FIVE IDENTIFIED CLUSTERS.

Cluster Our approach [15]’s approach
Precision% Recall% Precision% Recall%

Currency exchange 90.0 94.7 84.2 88.9
Weather 94.1 100 70.0 87.5
Address validation 83.3 93.7 60.0 93.7
E-mail verification 80.0 100 58.3 87.5
Credit card services 90.0 90.0 60.0 90.0

TABLE IV
EVALUATING THE SIGNIFICANCE OF DIFFERENT CLASSIFICATION

FEATURES.

Cluster Precision% Recall%
Currency exchange 82.6 78.9
Weather 72.3 93.7
Address validation 60.0 93.3
E-mail verification 56.0 77.7
Credit card services 60.0 88.9

service because it uses very different <complexType> and
<message> structures than the ones used by other credit
card Web services.

Table III shows the performance comparison (in terms of the
precision and recall) for our approach versus Liu and Wong’s
approach [15] relative to the five manually identified groups in
our test set of Web services. We could not calculate the overall
precision and recall since we could not manually identify all
clusters in our dataset. We note that the low precision of
our approach for the ”Address validation” and ”E-mail veri-
fication” clusters in Table III is due to the mutual correlation
between these two groups as well as some individual services
from the ip-to-country Web services domain. We also note
that all Web services that are supposed to belong to ”E-mail
verification” and ”Weather” groups are successfully placed in
the clusters, as indicated by 100% recall value.

Looking at the performance results of the two approaches in
Table III, we note that our approach has higher precision and
higher recall for all the identified categories. For example, our
approach improved the precision for the ”Address validation”
group by 23.3% and 30% for ”Credit card services” group.

We also conducted an experiment to evaluate the signif-
icance of the common features used by our approach and
Liu and Wong’s approach on the classification process. We
ran our approach clustering only the service name and the
content features. Table IV shows the performance measure
form this experiment. Comparing the results in Table IV and
Table III, we conclude that, performance is slightly increased,
in general, by adding context and host name features. However,
sometimes precision gets better and recall becomes higher if
context and host name are not considered such as the case
of increasing the precision from 70.0% to 72.3% for the
”Weather” group. We believe that this negative contribution
of these two features is due to the fact that Web services
are published through providers’ website or public access
uncategorized repositories, in which the surrounding pages of
the WSDL documents have no relations to the functionality of

the Web services that described by these WSDLs. On the other
hand, our approach performs well by adding features such
as complexTypes, messages and ports. The impact of these
features improved the clustering reliability by increasing our
precision and enhancing our recall.

VIII. CONCLUSION

Effective Web service discovery is an important issue,
especially for non-semantic Web services. Traditional UDDI-
based and search engine-based Web service discovery lacks the
ability to recognize the content of the Web service description
file. In this paper, we propose an approach to improve service
discovery of non-semantic Web services by clustering similar
services through mining WSDL documents. We identify five
key features that are extracted and integrated in order to group
Web services into functionality-based clusters.

Our clustering approach can be integrated into search en-
gines to improve the quality of Web service discovery by
helping to identify the Web services relevant to a user request.
This will, in turn, add value to the discovery process by
providing users with better quality options in selecting a
service. Experiments show a performance improvement in the
quality of the retrieval compared with previous approaches.
As future work, we plan to improve features integration by
choosing optimized weights for each feature using a linear
programming approach.

REFERENCES

[1] Michael P. Papazoglou, Paolo Traverso, Istituto Ricerca,
Scientifica Tecnologica, “ Service-Oriented Computing:
State of the Art and Research Challenges,” Computer,
VOL. 40, NO. 11, pp 38-45, Nov. 2007.

[2] “Web Services Architecture,” February 11, 2004. [on-
line] Available: http://www.w3.org/TR/ws-arch.
[Accessed: Feb. 26, 2010].

[3] “Web Services Description Language (WSDL) Ver-
sion 2.0 Part 1: Core Language,” June 26, 2007.
[Online]. Available: http://www.w3.org/TR/wsdl20.
[Accessed: Feb. 26, 2010].

[4] Eyhab Al-Masri, Qusay H. Mahmoud, “Investigating web
services on the world wide web,” International World
Wide Web Conference (WWW 2008), pp. 795-804, 2008.

[5] Richi Nayak, “ Data mining in Web services discovery
and monitoring ,” International Journal of Web Services
Research, Vol. 5, No. 1, pp. 63-81, January, 2008.

[6] Wei Liu, “Trustworthy Service Selection and Composi-
tion Reducing the Entropy of Service-oriented Web,”
3rd International Conference on Industrial Informat-
ics(INDIN 2005), pp. 104-109, 2005.

[7] M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S.
Mcilraith, S. Narayanan, M. Paolucci, B. Parsia, T.
Payne, E. Sirin, N. Srinivasan, K. Sycara, D. Martin (ed.)
“OWL-S: Semantic Markup for Web Services,” W3C
Member Submission, 2004.

[8] H. Lausen, A. Polleres, “Web Service Modeling Ontol-
ogy (WSMO),” W3C Member Submission, 2005.

[9] Matthias Klusch, Benedikt Fries, Katia Sycara, “Au-
tomated semantic web service discovery with owls-
mx,” Proceedings of 5th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS),
2006.

[10] John D. Garofalakis, Yannis Panagis, Evangelos
Sakkopoulos and Athanasios K. Tsakalidis,
“Contemporary Web Service Discovery Mechanisms,”
Journal of Web Engineering, Vol. 5, No. 3, pp. 265-290,
September 2006.

[11] Guan Hong-Jie, Meng Fan-Rong, Sun Jin-Fei, Du Peijun,
“Web service discovery based on the cooperation of
UDDI and DF,” 4th International Conference on Wireless
Communications, Networking and Mobile Computing
(WiCOM), pp. 1-4, 2008.

[12] Shuiguang Deng, Zhaohui Wu, Jian Wu, Ying Li, Jian-
wei Yin, “An Efficient Service Discovery Method and
its Application,” International Journal of Web Services
Research, Vol. 6, No. 4, pp. 94-117, 2009.

[13] Xin Dong, Alon Halevy, Jayant Madhavan, Ema Nemes,
Jun Zhang, “Similarity Search for Web Services,” Pro-
ceedings of the 30th VLDB Conference, Toronto, Canada,
pp. 372-383, 2004.

[14] Natallia Kokash, “A Comparison of Web Service Inter-
face Similarity Measures,” Frontiers in Artificial Intelli-
gence and Applications, Vol. 142, pp.220-231, 2006.

[15] Wei Liu, Wilson Wong, “Web service clustering using
text mining techniques,” International Journal of Agent-
Oriented Software Engineering, Vol. 3, No. 1, pp. 6-26,
2009.

[16] M. F. Porter, “An Algorithm for Suffix Stripping”, Pro-
gram, Vol. 14, No. 3, pp. 130-137, 1980.

[17] Slava M. Katz, “Distribution of content words and
phrases in text and language modeling,” Natural Lan-
guage Engineering, Vol. 2, No. 1, pp. 15-59, March 1996.

[18] Jain AK, Dubes RC, Algorithms for clustering data.
Prentice-Hall, Englewood Cliffs, 1988.

[19] Cilibrasi, Rudi L, Vitnyi, Paul M. B., “ The Google
similarity distance,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 19, No. 3, pp. 370-383,
March 2007.

[20] Ethan Cerami, Web Services Essentials. O’Reilly & As-
sociates, ISBN:0-596-00224-6, February 2002.

[21] Laurie J. Heyer, Semyon Kruglyak, Shibu Yooseph,
“Exploring Expression Data: Identification and Analysis
of Coexpressed Genes,” Genome Research, Vol. 9, No.
11, pp. 1106-1115, November 1999.

[22] John Makhoul, Francis Kubala, Richard Schwartz, Ralph
Weischedel, “Performance measures for information ex-
traction,” DARPA Broadcast News Workshop, Herndon,
VA, February 1999.

