
Streaming Random Forests

Hanady Abdulsalam, David B. Skillicorn, and Patrick Martin
School of Computing
Queen’s University

Kingston, ON Canada, K7L 3N6
{hanady,skill,martin}@cs.queensu.ca

Abstract

Many recent applications deal with data streams, con-
ceptually endless sequences of data records, often arriving
at high flow rates. Standard data-mining techniques typi-
cally assume that records can be accessed multiple times
and so do not naturally extend to streaming data. Algo-
rithms for mining streams must be able to extract all nec-
essary information from records with only one, or per-
haps a few, passes over the data. We present the Stream-
ing Random Forests algorithm, an online and incremen-
tal stream classification algorithm that extends Breiman’s
Random Forests algorithm. The Streaming Random Forests
algorithm grows multiple decision trees, and classifies un-
labelled records based on the plurality of tree votes. We
evaluate the classification accuracy of the Streaming Ran-
dom Forests algorithm on several datasets, and show that
its accuracy is comparable to the standard Random Forest
algorithm.

Keywords Data mining, Classification, Decision trees,
Data-stream classification, Random Forests.

1. Introduction

Many applications such as internet traffic monitoring,
telecommunications billing, near-earth asteroid tracking,
closed-circuit television, and sales tracking produce huge
amounts of data to be analyzed. It is not usually cost-
effective to store all of this data. Such data is a conceptu-
ally endless, real-time, and ordered sequence of records and
so is modelled as a stream. In order to extract knowledge
from stream data, existing data-mining algorithms must be
adapted to reflect the properties of streams.

Data stream mining algorithms face several issues that
are not critical for ordinary data-mining algorithms:

• Algorithms must be online and incremental, so that re-

sults can be produced at any time (perhaps after some
initial starting period). In particular, the relationship of
the accuracy of the model to the amount of data seen
must be understood.

• Algorithms must be fast enough to handle the rate
at which new data arrives (which means effectively
amortized O(1) time for both learning and predic-
tion/clustering).

• Algorithms should be adaptive to changes in the distri-
bution of values in the underlying stream as the result,
for example, of concept drift, since they may run for
long periods of time.

• Results that depend on observing an entire data set can-
not be computed exactly, so the results of stream min-
ing must necessarily be an approximation.

Data-stream mining has attracted a great deal of atten-
tion, with research in, for example, detecting changes in
data streams [15, 16], maintaining statistics of data streams
[7, 20], data-stream classification, and data-stream cluster-
ing [3, 11]. In this paper, we consider the problem of clas-
sification for stream data.

Classification is normally considered as requiring three
phases, each with its associated data. In the first phase, a
model is built using labelled training data; in the second
phase, the model is tested using previously-unseen labelled
data (test data); and in the third phase, the model is deployed
on unlabelled data. In stream classification, there is only a
single stream of data, so the problem must be formulated in
a different way. We assume a setting in which some records
in the stream are labelled, which are used for building or
testing the model, while others are not, and the goal is to
predict the class of the unlabelled records.

Within this setting there are several different scenarios,
depending on how the (labelled) training examples are dis-
tributed through the stream. Some possibilities are shown
in Figure 1. In Scenario 0, labelled data records occur only
in some initial segment of the data stream. In this case, the



only new issues are related to performance. The classifier
can be built in a standard (offline) way, but must be built
quickly enough to keep up with the arrival rate of the la-
belled records. Similarly, classification must be fast enough
to keep up with the arrival rate of unlabelled records. Some
subset or suffix of the labelled records can be used as test
data. In this scenario, there is no way to respond to changes
in the underlying distribution of the records such as concept
drift.

In Scenario 1, labelled records occur regularly in the
stream but, when they occur, there are enough of them to
build and test a robust classifier. This classifier can then be
used to classify the subsequent unlabelled records. How-
ever, after some time, new labelled records arrive in the
stream, and the existing classifier must take these into ac-
count, either building a new model to reflect the structure of
the new labelled data, or altering the existing model (if nec-
essary) to reflect the new information. The decision about
which approach to take depends on how much variability is
expected, but a full range of responses are available.

In Scenario 2, labelled records again occur regularly in
the stream, but there are not enough of them in each batch
or block to build and test a robust classifier. Classification
of unlabelled records could begin very early, with appropri-
ate caveats about accuracy, or might be postponed until the
classifier is observed to be working well, which might re-
quire several batches of labelled records. However, in this
scenario, the classifier can be very sensitive to changes in
the labelled data, and reflect them in classification of unla-
belled records very rapidly. In both Scenarios 1 and 2, the
known frequency of labelled records enables the algorithm
to amortize the cost they induce to train the classifier more
efficiently.

In Scenario 3, labelled records occur at random in the
stream. This is the most challenging, but also the most re-
alistic, situation since the classifier must be able to keep up
with using the labelled examples to build or modify the clas-
sifier, even when they appear close together in the stream.

Classification of unlabelled records could be required
from the beginning of the stream, after some sufficiently
long sequence of labelled records, or at specific moments
in time and for a specific block of records selected by an
external analyst.

In many situations, records are able to be labelled be-
cause the passage of time has revealed the appropriate class
labels for each one. For example, a classification system
for approving mortgage applications is based on histori-
cal data about which applicants previously granted mort-
gages repaid them without problems. Clearly, the problem
is a two-class classification problem, that is either the ap-
plication is approved or not. Another example for stream
classification is spam detection, where an incoming stream
of emails (unlabelled records) could be supplemented by

Scenario 0

Scenario 1

Scenario 2

Scenario 3

Figure 1. Possible scenarios for the embed-
ding of labelled records in streams

emails that have already been delivered to users’ mailboxes
and have been (implicitly) labelled as spam or not based on
whether the user deleted them unread or read them. These
labelled records could help to improve the spam classifica-
tion model continuously based on user feedback.

In other situations, some records are labelled because
only some people or objects participate. For example, traf-
fic delays in congested areas are beginning to be predicted
based on the transit time of cell phones from tower to tower
(or from specialized traffic direction systems available in
some cars). Only a small percentage of cars provide this in-
formation, but the resulting data can be used to classify par-
ticular routes as free-flowing or congested. The data used to
provide these predictions matches Scenario 3, since the la-
belled records (cars with known transit times along a partic-
ular route) arrive at random compared to the requests from
cars for route classification.

Some applications, for example spam detection, do not
require that unlabelled records are classified all the time.
There may be periods where it is possible to ignore the un-
labelled records and only consider the labelled ones to train
the classifier. Such situation matches Scenario 1.

Decision trees have been widely used for data-stream
classification [9, 13]. These are typically based on Hoeffd-
ing bounds, which indicate when enough data have been
seen to make a robust decision about which attribute and
which split value to use to construct the next internal node.

Tree ensembles have also been used for stream classifi-
cation [8, 10, 12, 18, 19]. The Random Forest algorithm by
Breiman [5] is a classification algorithm that grows mul-



tiple binary decision trees, each from a bootstrap sample
of the data. The splitting decision at each node selects the
best attribute on which to split from a small set of attributes
chosen randomly. Classification is based on the plurality
of votes from all of the trees. The use of bootstrap samples
and restricted subsets of attributes makes it a more powerful
algorithm than simple ensembles of trees.

The contribution of this paper is to define a new al-
gorithm, Streaming Random Forests, a classification algo-
rithm that combines techniques used to build streaming de-
cision trees with the attribute selection techniques of Ran-
dom Forests. We demonstrate that the streaming version
of random forests achieves classification accuracy compa-
rable to the standard version on artificial and real datasets
using only a single pass through the data. Our Streaming
Random Forest algorithm handles only numerical or ordi-
nal attributes for which the maximum and minimum values
of each attribute are known, but it can be easily extended
to handle categorical attributes. It also handles multi-class
classification problems, in contrast to many stream classi-
fication techniques that have been designed and/or tested
only on two-class problems [8, 9, 13, 18, 19].

This paper is organized as follows: Section 2 describes
some background and related work. Section 3 defines the
Streaming Random Forest algorithm. Section 4 describes
experiments and results. Finally, Section 5 draws some con-
clusions.

2. Related work

2.1. Attribute selection for standard deci-
sion trees

Each internal node of a decision tree is built by deter-
mining the attribute whose values are most discriminative
among the target classes, based on one of a number of cri-
teria such as information gain or Gini index importance [6].
For numeric attributes, each internal node is an inequality
involving the selected attribute and the best split point for
the inequality must also be determined.

The Gini index is one example of a measure of impurity
among the data records that are considered at a node of the
tree. For a dataset D that contains n records from k classes,

Gini(D) = 1 −
k∑

i=1

p2
i

where pi is the ratio of the number of records in class i to
the total number of records in the set D. If the set D is
split into two subsets D1 and D2, each having a number of
records n1 and n2 respectively, then

Gini(D)split =
n1

n
Gini(D1) +

n2

n
Gini(D2)

The best attribute on which to split is the one that maximizes
Gini(D) − Gini(D)split.

2.2. Decision trees for data streams

The biggest problem in extending decision trees for data
streams is that the measures of attribute importance used
to determine the best choice of attribute require counts or
probabilities computed over all of the training data. Clearly
this is not possible when the data is a stream.

A tree under construction consists of internal nodes, con-
taining an inequality on one of the attributes, frontier nodes,
nodes that have not yet been either split or turned into
leaves, and leaf nodes. Initially, a tree consists of a sin-
gle frontier node. As each frontier node is considered, a
mechanism is needed to decide when to make a selection
of the ‘best’ attribute, or perhaps to not split this node fur-
ther and convert it to a leaf. The solution is to let each new
training record flow down the tree according to the inequal-
ities of the existing internal nodes until it reaches a fron-
tier node. When a frontier node has accumulated ‘enough’
records that the standard technique for splitting will give
a robust result, it is split and its descendants become new
frontier nodes. Alternatively, if a frontier node has accumu-
lated records that are predominantly from one class, it may
become a leaf.

The Hoeffding bound provides a way to estimate when
the number of records accumulated at a node is ‘enough’
for a robust decision [9]. The Hoeffding bound states that,
given a random variable r in the range R, and n independent
observations of r having mean value r, the true mean of r
is at least r − ε, where

ε =

√
R2 ln(1/δ)

2n

with probability 1 − δ, where δ is a user-defined threshold
probability [9]. The Hoeffding bound ensures that no split
is made unless there is a confidence of 1−δ that a particular
attribute is the best attribute for splitting at the current node.

The Hoeffding bounds is used in following way. Assume
that we have a general function G that checks an attribute’s
goodness for splitting at a specific internal node of the deci-
sion tree. At each point in tree construction, G is calculated
for all attributes and the best and second best attributes are
chosen to calculate ∆G = Ghighest−Gsecond highest. The
algorithm then recalculates G for all attributes as each new
record arrives, and updates ∆G continuously until it satis-
fies a stopping condition, ∆G > ε. At this point, the true
value of the largest G is within ε of the approximated G
with probability 1 − δ and therefore the attribute with the
highest G is the best choice for splitting at the current node
with confidence 1 − δ.



2.3. The standard Random Forest algo-
rithm

The Random Forests algorithm is a classification tech-
nique developed by Breiman [5]. Superficially, random
forests are similar to ensembles of binary decision trees.
Suppose that a dataset contains n records, each with m at-
tributes. A set of decision trees are grown, each from a sub-
set of the n records, chosen from the dataset at random with
replacement. Hence the training dataset for each tree con-
tains multiple copies of the original records. Random selec-
tion with replacement ensures that about n/3 of the records
are not included in the training set and so are available as a
test set to evaluate the performance of each tree.

The construction of a single tree uses a variant of the
standard decision tree algorithm. In the standard decision-
tree algorithm, the set of attributes considered at a node is
the entire set of attributes that have not yet been used in
parent nodes. By contrast, in the Random Forest algorithm,
the set of attributes considered at each internal node is a
randomly chosen subset of the attributes, of size M � m.
Trees are not pruned. A random forest is deployed as if it
was an ensemble classifier, that is the classification for each
new record is the plurality of the votes from each of the
trees.

The Random Forest algorithm classification error de-
pends on two things:

• The correlation among the trees: the smaller the cor-
relation among the trees the more variance cancelling
takes place as the trees vote, and therefore the smaller
the error rate.

• The strength of each individual tree: the more accurate
each tree is, the better its individual vote, and therefore
the smaller the error rate.

The value of M is a parameter to the algorithm and must
be chosen with care. A small value for M decreases the
correlation between the trees, while a large value increases
the strength of each individual tree.

3. The Streaming Random Forest algorithm

We extend the standard Random Forest algorithm so that
it can be applied to streaming data. The difficulty in do-
ing this is that the Random Forest algorithm makes multiple
passes over the training data, in two different ways. First,
a pass through the data is made to create the training data
for each tree that will be built. Second, for each tree, a pass
is made through (some columns of the data) for each inter-
nal node of the tree, to generate the counts that are used to
decide which attribute and split point to select for it.

A streaming algorithm does not have the luxury of mul-
tiple passes over the data. To build each tree, a separate
batch or block of labelled records is used. As a result, the
Streaming Random Forest algorithm requires substantially
more labelled data than the standard algorithm to build a set
of trees. It would be conceivable to use a separate batch of
labelled data to make the decision about each internal node,
but this would require an even larger amount of labelled
data, and would increase the time before robust classifica-
tions could be made for unlabelled records. Instead, we
adapt ideas from streaming decision tree algorithms [9, 13]
to route every labelled record to an appropriate node of the
tree under construction, so that every labelled record con-
tributes to a decision about one node.

The Streaming Random Forest algorithm builds a set of
trees, just as the standard Random Forest algorithm does.
For the time being, the algorithm takes the required number
of trees as a parameter, but extensions in which the number
of trees is derived from the classification accuracy, or the
set of trees has new members added and old ones deleted to
respond to changes in the labelled data are straightforward.

As a new labelled record arrives, it is routed down the
current tree, based on its attribute values and the inequali-
ties of the internal nodes, until it arrives at a frontier node.
At the frontier node, the attribute values of the record con-
tribute to class counts that are used to compute Gini in-
dexes. To be able to maintain information about the dis-
tribution of attribute values and their relationship to class
labels, attributes are discretized into fixed-length intervals.
The boundaries between these intervals are the possible split
points for each attribute.

The procedure for deciding when and how to change a
frontier node into another kind of node is somewhat com-
plex. A parameter, nmin, is used to decide how often to
check whether a frontier node should be considered for
transformation.

Whenever a node accumulates nmin labelled records, the
Gini index and the Hoeffding bound tests are applied. If the
Hoeffding bound test is satisfied, then the frontier node has
seen enough records to determine the best attribute and split
value. The Gini index test is then used to select the best at-
tribute and split point, and the frontier node is transformed
into an internal node with an inequality based on this at-
tribute and split point [5]. The two children of this node
become new frontier nodes.

If the number of records that have reached the frontier
node exceeds a threshold called the node window, and the
node has not yet been split, the algorithm checks to see if
this node should instead be transformed into a leaf. If the
node has accumulated records that are predominantly from
one class, then it is transformed into a leaf. Otherwise, the
node is transformed to an internal node using the best at-
tribute and split point so far.



The size of the node window threshold depends on the
depth of the node in the tree, because fewer records will
reach deeper nodes. We therefore define the node window
as a function of the tree window and the node level:

1
α

(tree window/(2nodelevel)

so that the node window shrinks linearly with depth in the
tree. The value of the parameter α is determined empiri-
cally.

The construction of a tree is complete when a total of
tree window records have been used in its construction. The
algorithm then begins the construction of the next tree, until
the required number of trees have been built.

A limited form of pruning is necessary, because a node
may have generated two descendant frontier nodes that do
not see enough subsequent records to be considered for
splitting themselves. If two sibling nodes have failed to re-
ceive enough records when the tree window is reached, the
node purity is calculated for both. Node purity is the ratio
of the number of instances of records labelled with the most
frequent class label to the total number of records. If both
siblings’ node purity is less than 1/number of classes, then
both nodes are pruned and their parent node is labelled as
a leaf rather than an internal node. Otherwise, the sibling
nodes become leaf nodes labelled with the majority class
among the records in their parent that would have flowed
down to them.

The entire tree building procedure for the Streaming
Random Forest is shown in Figure 2.
This algorithm handles a single phase of learning and classi-
fication in Scenario 1. It can be extended to multiple phases
by growing new trees from subsequent batches of labelled
records, and discarding the oldest trees from the previous
phase.

The standard Random Forest algorithm relies on sam-
ples chosen using random selection with replacement, both
to guarantee attractive properties of the learned models and
to provide a natural test set. Sampling with replacement is
not possible when the data arrives as a stream, so we must
consider whether this affects the properties of the new algo-
rithm.

For an infinite stream of data drawn from the same distri-
bution, the results produced by sampling with replacement
and sampling without replacement are not distinguishable,
since each outcome is independent of the previous one. This
is because the covariance between two records xi and xj ,
where i �= j, sampled without replacement, depends on the
dataset size: cov(xi, xj) = − σ2

n−1 , where σ2 is the popula-
tion variance and n is the set size. As n becomes large, the
covariance tends to zero, and sampling is effectively inde-
pendent, exactly as if sampling with replacement had been
used. Part of the motivation for sampling with replacement

procedure BuildTree
/*grow tree*/
while more data records in the tree window
read a new record
pass it down the tree
if it reaches a frontier node
if first record at this node
randomly choose M attributes

find intervals for each of the M attributes
update counters
if node has seen nmin records
if Hoeffding bounds test is satisfied
save node split attribute
save corresponding split value

if no more records in the node window
if node records are mostly from one class

mark it as leaf node
assign majority class to node

else
save best split attribute seen so far
save corresponding split value

end while
/* prune tree */
while more frontier nodes
if node has records arrive at it
mark it as leaf node
assign majority class to it

else /* node has zero records */
if sibling node is frontier with no records
calculate purities of both sibling nodes
if purities < pre-defined threshold
prune both nodes
mark parent node as a leaf
assign majority class to it

else
mark node as leaf node
assign dominant class to it

end while
end

Figure 2. Building a tree in Streaming Ran-
dom Forest algorithm

is also to increase the effective size of the training and test
sets, and this is clearly not necessary for infinite datasets.

However, during the very early stages of tree construc-
tion, only a very small number of records have been seen,
and the covariance will not be close to zero. To make sure
that sampling without replacement does not have a notice-
able effect, perhaps distorting the behaviour of the first few
trees, we performed experiments simulating sampling with
replacement. We did this by randomly retaining labelled
records, with probability 1/3, and applying them as train-
ing examples twice (by double incrementing the counts),
until the observed covariance values become small. The re-
sults of these experiments show that, in practice, sampling
without replacement does not decrease the accuracy of the
constructed forest.

4. Experimental Results

Our implementation of the Streaming Random Forest al-
gorithm is based on the open-source Random Forest Fortran
code by Breiman and Cutler [1]. We implement Scenario



1 from Figure 1. The labelled records at the beginning of
the stream are used as training records, with later labelled
records used as test records.

We evaluate the performance of the Streaming Random
Forests algorithm by comparing its classification accuracy
with that of the standard Random Forest algorithm using
the same datasets. The training set for standard Random
Forests is, however, a small randomly chosen subset of the
training set for Streaming Random Forests. The reason is,
as mentioned before, that the streaming algorithm observes
data records only once, and therefore requires much more
data than the standard algorithm, which can use data records
many times for building different nodes. We also consider
the classification time per unlabelled record for different
forest sizes to estimate the flow rate that the algorithm can
handle.

Results for each dataset are averages over 50 runs, select-
ing different random subsets of attributes for each run. The
number of attributes considered at each internal node is M ,
chosen as suggested by Breiman to be M = int(log2 m +
1).

4.1. Classification accuracy

Synthetic data

We generate synthetic data sets using the DataGen data-
generation tool [17]. Each dataset has 1 million records,
5 numeric attributes, and 5 target classes. We vary the noise
to generate 6 datasets containing 1%, 3%, 5%, 7.5%, 10%,
and 15% noise, respectively. Each dataset is used by both
the standard and streaming random forest algorithms. The
training set for the standard random forest is 1% of the
records randomly chosen from the original data set, giving
about 10,000 records. The test set for both the standard and
streaming algorithms is 0.2% of records randomly chosen
from the original dataset, giving about 2000 records. There
is no overlap between the training sets and the test set. The
training set for the Streaming Random Forest algorithm is
therefore the remaining 99.8% of the original data set, about
998,000 records.

For the Streaming Random Forest algorithm, we dis-
cretize each attribute’s values into 200 intervals, and set
nmin = 200 and α = 8. The tree window is set to be
the total number of training records divided by the number
of desired trees, giving around 19,960 records to be used
for growing each tree. This is a much smaller number of
records than the number used in other streaming decision
tree construction [9, 13, 14].

For each of the synthetic datasets, both algorithms grow
50 trees with M = 3 attributes considered at each node.
Figure 3 shows the classification error rates of both algo-
rithms for the six synthetic datasets.

Figure 3. Classification error rates for stan-
dard and streaming random forest algorithms

The algorithms have comparable classification error
rates. The confidence intervals for each test point at a con-
fidence level of 99% overlap except for the dataset with 3%
noise. The confidence intervals for this dataset are [2.02%–
2.08%] and [2.09%–2.19%] respectively.

Real data

We use the Forest CoverType dataset from the UCI repos-
itory [2]. The dataset has 12 attributes (10 numerical and
2 categorical), 581,012 records, and 7 classes with frequen-
cies of about 37%, 48.5%, 6%, 0.5%, 1.5%, 3%, and 3.5%,
respectively. This dataset has been widely used in exper-
iments reported in the literature. The classification error
rates reported by Blackard [4], for example, are 30% us-
ing a neural network and back propagation, and 42% using
linear discriminant analysis.

We first test the standard Random Forest algorithm by
randomly sampling 0.2% of the data records for training,
and 0.1% for testing. This gives a classification error of
23%. Deleting the 2 categorical attributes increases the er-
ror slightly to around 26%. Since the current implemen-
tation of the Streaming Random Forest algorithm handles
only numerical attributes, we deleted the two categorical at-
tributes. We also deleted the records for target classes 3
through 7, since they have very low frequencies compared
to target classes 1, and 2. The resulting dataset has two tar-
get classes with frequencies of 43% and 57%, respectively,
and ten attributes. This new dataset is used in our compara-
tive experiments.

The training set for the standard Random Forest algo-
rithm contains about 1000 records and the test sets for both
algorithms contains about 500 records. The training set for
the Streaming Random Forest algorithm therefore contains
about 496,000 records.

For both standard and streaming algorithms, we grow



Table 1. Classification errors and confusion matrices for the Forest CoverType data set

Standard Random Forest Streaming Random Forest
Classification Error% 24.73% 24.96%

Test Set
219 from class 1
285 from class 2

Confusion Matrix

True class
1 2

1 147 53
2 72 232

True class
1 2

1 149 56
2 70 229

150 trees using M = 4 attributes for building each node.
The value of α used is 4, the value of nmin is 300, and the
number of intervals into which each attribute is discretized
is 300, since the ranges are quite large. As before, the tree
window is the total number of training records divided by
the number of trees, about 3300 records per tree, and errors
are averages over 50 runs.

Table 1 presents the classification errors and confusion
matrices of both algorithms for the Forest CoverType date
set. Both algorithms have a classification error of approxi-
mately 25%, with a confidence interval of ±0.4% at a con-
fidence level of 99%. The two algorithms have equiva-
lent confusion matrices as well. This demonstrates that the
Streaming Random Forest algorithm is as powerful as the
standard Random Forest algorithm on real data.

4.2. Classification time per record

In the scenario we have been considering, the per-record
classification time is the rate-limiting step because each new
record must be evaluated by all of the trees (although in
other scenarios, the per-record training time will also be im-
portant).

We base our classification time measurements on the
synthetic dataset with a noise level of 15%. We use a Pen-
tium 4 system with 3.2 GHz processor and 512MB RAM,
and consider the effect of different forest sizes, that is dif-
ferent numbers of trees. The forest sizes use are 5, 50, 100,
150, 200, 250, 300, 350, 400, 450, and 500 trees.

The per-record classification times are shown in Fig-
ure 4. The times are averaged over 50 runs, and measured
in microseconds. The increase in per-record classification
time with number of trees in the forest is no worse than lin-
ear. The average flow rate of a stream that this implementa-
tion of the Streaming Random Forest algorithm can handle
is 1.7 × 104 records/sec for forests with up to 500 trees. A
more typical number of trees used in a random forest is per-
haps 50 to 200 trees (according to Breiman’s experiments
[5]) which would allow a stream rate of up to 2.8 × 104

records/sec.

Figure 4. Per-record classification time

5. Conclusion

This paper has defined the Streaming Random Forest al-
gorithm, an online and incremental stream classification al-
gorithm. It is an extension of the standard Random For-
est algorithm due to Breiman [9]. The algorithm gives
comparable classification accuracy to the standard Random
Forests algorithm despite seeing each data record only once.
Because stream algorithms can never see ‘all’ of the data,
our algorithm uses node windows and tree windows to de-
cide when to begin constructing new trees, transform fron-
tier nodes, or carry out a limited form of pruning. These
refinements mean that the algorithm requires many fewer
labelled records for training than other stream-based deci-
sion tree algorithms. The Streaming Random Forests algo-
rithm is fast enough to handle streams in many applications.
Its per-record classification time complexity is O(t), where
t is the number of trees in the forest.

References

[1] Random Forest FORTRAN Code. Available from
http://www.stat.berkeley.edu/breiman/RandomForests/cc so
ftware.htm/.

[2] Forest CoverType data set. Available from http://kdd.ics.-
uci.edu/.



[3] C. Aggarwal, J. Han, J. Wang, and P. Yu. Sa framework
for clustering evolving data streams. In Proceedings of 29th
International Conference on Very Large Data Bases(VLDB),
pages 81–92. Berlin, Germany, 2003.

[4] J. Blackard. Comparison of Neural Networks and Discrimi-
nant Analysis in Predicting Forest Cover Types. PhD thesis,
Department of Forest Sciences. Colorado State University,
Fort Collins, Colorado, 1998.

[5] L. Breiman. Random forests. Technical Report, 1999. Avail-
able at www.stat.berkeley.edu.

[6] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Clas-
sification and Regression Trees. Wadsworth International,
Belmont, Ca., 1984.

[7] A. Bulut and A. Singh. A unified framework for monitoring
data streams in real time. In Proceedings of the 21st In-
ternational Conference on Data Engineering (ICDE), pages
44–55. Tokyo, Japan, 2005.

[8] F. Chu, Y. Wang, and C. Zaniolo. An adaptive learning ap-
proach for noisy data streams. In Proceedings of the 4th
IEEE International Conference on Data Mining (ICDM),
pages 351–354. Brighton, UK, November 2004.

[9] P. Domingos and G. Hulten. Mining high-speed data
streams. In Proceedings of the 6th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD), pages 71–80. Boston, MA, August 2000.

[10] W. Fan. A systematic data selection to mine concept-drifting
data streams. In Proceedings of the 10th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD), pages 128–137. Seattle, Washington, Au-
gust 2004.

[11] M. Gaber, S. Krishnaswamy, and A. Zaslavsky. Cost-
efficient mining techniques for data streams. In Proceedings
of the 1st Australasian Workshop on Data Mining and Web
Intelligence (DMWI), pages 81–92. Dunedin, New Zealand,
2003.

[12] J. Gama, P. Medas, and R. Rocha. Forest trees for on-line
data. In Proceedings of the 2004 ACM Symposium on Ap-
plied Computing (SAC), pages 632–636. Nicosia, Cyprus,
March 2004.

[13] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data mining (KDD), pages 97–106. San Francisco,
CA, August 2001.

[14] R. Jin and G. Agrawal. Efficient decision tree construc-
tion on streaming data. In Proceedings of 9th Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (SIGKDD), pages 571–576. Washington, DC, August
2003.

[15] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change
in data streams. In Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB), pages 180–
191. Toronto, Canada, 2004.

[16] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-
based change detection: methods, evaluation, and applica-
tions. In Proceedings of the 3rd ACM SIGCOMM Inter-
net Measurement Conference (IMC), pages 234–247. Miami
Beach, FL, 2003.

[17] G. Melli. Scds-a synthetic classification data set genera-
tor. Simon Fraser University, School of Computer Science,
1997.

[18] H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting
data streams using ensemble classifiers. In Proceedings of
the 9th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pages 226–235.
Washington, DC, August 2003.

[19] X. Zhu, X. Wu, and Y. Yang. Dynamic classifier selection
for effective mining from noisy data streams. In Proceedings
of the 4th IEEE International Conference on Data Mining
(ICDM), pages 305–312. Brighton, UK, November 2004.

[20] Y. Zhu and D. Shasha. Statistical monitoring of thousands
of data streams in real time. In Proceedings of the 28th In-
ternational Conference on Very Large Data Bases (VLDB),
pages 358–369. Hong Kong, China, 2002.


