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Abstract 

Problem determination is the identification of problems and performance issues that 

occur in an observed system and the discovery of solutions to resolve them. Top-k 

analysis is common task in problem determination in database management systems. It 

involves the identification of the set of most frequently occurring objects according to 

some criteria, such as the top-k most frequently used tables or most frequent queries, or 

the top-k queries with respect to CPU usage or amount of I/O.  

Effective problem determination requires sufficient monitoring and rapid analysis of 

the collected monitoring statistics. System monitoring often incurs a great deal of 

overhead and can interfere with the performance of the observed system.  Processing 

vast amounts of data may require several passes through the analysis system and thus be 

very time consuming. 

In this thesis, we present our lightweight top-k analysis framework in which 

lightweight monitoring tools are used to continuously poll system statistics producing 

several continuous data streams which are then processed by stream mining techniques. 

The results produced by our tool are the “top-k” values for the observed statistics.  This 

information can be valuable to an administrator in determining the source of a problem. 

We implement the framework as a prototype system called Tempo.  Tempo uses 

IBM DB2’s snapshot API and a lightweight monitoring tool called DB2PD to generate 

the data streams. The system reports the top-k executed SQL statements and the top-k 

most frequently accessed tables in an on-line fashion. Several experiments are conducted 
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to verify the feasibility and effectiveness of our approach. The experimental results show 

that our approach achieves low system overhead.  
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Chapter 1 

Introduction 

1.1 Motivation 

The desire to offer on-demand 24/7 services means there is pressure to quickly 

identify and resolve problems in a database management system (DBMS). Outage costs 

associated with problems on business-critical systems can range from thousands to 

millions of dollars per hour depending on the industry and the type of problem [13]. 

Database Management Systems (DBMSs) are the backbone of enterprise systems, storing 

petabytes of business data and serving various types of application systems, such as 

E-business systems, core-business systems, and other information systems. Any types of 

harm or malfunction to the DBMS can seriously impact the quality of service of the 

business system. Therefore, it is crucial to maintain the health of the DBMS. 

Problem determination involves the detection, location, and resolution of problems 

and is a key task of database administrators (DBAs).  However, system complexity and 

problem difficulty present DBAs with a tough challenge; often even skilled specialists 

cannot quickly identify the problems and resolve them.  Therefore, there exists a strong 

demand for effective tools for problem determination.  

 Problem determination tools rely on the existence of sufficient monitoring data to 

support further analysis. Nowadays, commercial database systems expose their statistical 
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information using two primary monitoring mechanisms: snapshot monitoring and event 

monitoring. Snapshot monitoring presents system activities for a given point in time by 

polling system statistics. Snapshots capture a sense of the current state of the DBMS.  If 

a history of the system activities is required, multiple snapshots must be recorded in 

storage.  Offline analysis can then be used to process the data.   

Event monitoring captures all events of specified interest over a period of time. Event 

monitors can be thought of as a movie capturing what occurred over time [22]. Figure 1-1 

shows the traditional scenario for database problem determination. 

  

 

Figure 1-1 Traditional Database Problem Determination  

1.2 Problem 

Far from simply capturing current system statistics or recording counter values 

associated with system events, database problem determination often requires the 

historical extensions of the reported values and based on them, further analysis can be 

more meaningful. For event monitoring, tracing the history of database activities and 

obtaining a clear picture is straightforward. However, when there are many activities to 
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be monitored, it is onerous for a DBA to define many events and filter out useful 

information from large result sets. For snapshot monitoring, more frequent polling means 

more system statistics are collected, thereby resulting in better analysis on the historical 

statistics. However, frequent polling inevitably incurs extra overhead on system resources 

due to the recording and processing of large amounts of data and this can interfere with 

key DBMS components, such as the query and storage engines. Less frequent polling can 

lessen the system overhead problem to some extent, but this is prone to the loss of 

relevant data, thereby leading to incorrect analysis.  

Monitoring data can be thought of as a continuous stream of data with no fixed size 

limit as opposed to a static dataset which is typically stored in disk or other persistent 

medium. The traditional approach to analyze this type of data requires significant use of 

disk and offline processing. Thus, it can incur a large amount of overhead and interfere 

with the monitored system. In addition, data analysis often involves scanning each 

element multiple times and assumes that historical data can be retrieved in the future. 

When the data arrive at a high speed, it is inevitable to delay reporting analysis results. 

This type of analysis is hard to fulfill quickly identifying problems.  

1.3 Research Statement 

The objective of our research is to examine the viability of using stream analysis and 

mining techniques to provide effective support for problem determination. Based on the 

objective, we develop a prototype system using lightweight monitoring tools from IBM’s 
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DB2® [18] to simulate stream of monitoring data and then apply stream analysis 

techniques. 

Our work makes three main contributions. The first contribution is a lightweight Top-K 

analysis framework in which observed statistics are rendered as the elements of data 

streams and analyzed by stream summary processes. The second contribution is the 

revision of a stream mining algorithm, Space-Saving [1] to make it more sensitive to the 

fluctuation of the observed objects so as to improve the accuracy of our analysis. The 

third contribution is a prototype implementation of our framework using DB2 in which 

several lightweight DB2 monitoring tools and the revised Space-Saving algorithm are 

used to continuously generate the TOP-K most frequently executed SQL statements and 

the TOP-K most frequently accessed tables on the fly. The effectiveness of our 

stream-based approach is validated through a set of experiments with our prototype 

system. 

1.4 Thesis Organization 

The remainder of the thesis is organized as follows. Chapter 2 describes the 

background and related work. Chapter 3 presents our framework and implementation.  

In Chapter 4, we present a set of experiments to evaluate our approach and the 

experimental results.  Chapter 5 draws conclusions about this thesis and outlines 

potential future work. 
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Chapter 2  

Background and Related Work 

 Problem determination, which detects problems and proposes effective solutions to 

resolve them, is vital to the performance and health of a DBMS.  When problems occur, 

it is important to perform accurate and timely diagnosis before making any changes to the 

system. An accurate diagnosis of the actual problem in the initial stage significantly 

increases the probability of success in resolving the problem.  

2.1 Monitoring in a DBMS  

Database monitoring involves continuously observing the values of system counters 

that describe the system’s state [26]. These counters are initialized when their applicable 

object becomes active and incremented during the operation of the database. They also 

can be reset to zero when the database becomes inactive [15]. Database monitoring is 

used for problem determination, performance management, and trend analysis [22]. 

Performance management ensures that system resources are used optimally, which helps 

avoid some potential problems. Trend analysis keeps the historical data from collected 

system counters and uses them to determine growth and trends in usage. Trends can help 

identify changes in overall system activity and plan upgrades if they are needed. The 

three key uses of database monitoring interact with each other. In our thesis, we mainly 

discuss about problem determination. 
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Traditionally, a database administrator (DBA) executes specific SQL queries or 

invokes primitive monitoring tools, such as snapshot monitoring and event monitoring, to 

capture the symptoms, and based on his/her past experience, identifies and fixes the 

problem. Snapshot monitoring, which can capture activity information about the observed 

database and any connected applications at a specific time, is useful for determining the 

status of a database system. For easy management, the monitored database activities and 

status values are generally classified into several logic groups. When specific groups of 

information are required to be collected, the corresponding monitoring switches are 

opened. Snapshot monitoring outputs the statistics relative to the monitored database 

activities via command line outputs, the statistical tables or snapshot API interface. Taken 

at regular intervals, snapshot monitoring can be also used to observe trends and forecast 

potential problems. In this case, the database system continuously keeps track of the 

activities and records statistics in persistent storage.  

Event monitoring is another facility used to monitor a database system. It collects the 

information about the activities of the system and connected applications when specified 

events occur. Monitored events are specified in advance and are typically recorded into 

event log files as the database events occur. Event monitoring is suitable for notifying 

DBAs with immediate alerts. When using event monitoring to trace the history of some 

database activities, traversing the whole event logs to identify the specific events is 

necessary. If the events relative to the database activities are not defined or do not occur 

during the observation period, the related monitoring task cannot be completed. Event 

monitoring, like snapshot monitoring, has a tradeoff between accuracy of answers and the 

load on the observed database server. When a system is configured to collect many kinds 
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of events, the volume of event logs tends to grow very fast. Conversely, if only a few 

kinds of events are logged, then important information could be missed. 

Snapshot and event monitoring suffer from several drawbacks. First, manually 

monitoring often interferes with the observed database systems. Second, database 

systems typically have a plethora of measurements and statistics available about their 

activities and status that are obtained through different means. It is difficult for DBAs to 

obtain an overall picture of what is happening in the database. Third, the statistics 

captured by the DBAs are isolated from each other in time. Most of them generally 

reflect only the current condition of the monitored database system, so it is hard to infer 

historical trends or results. Fourth, database problems are unpredictable so the system 

must be monitored continuously and someone must be available to identify and correct 

problems. Fifth, because of the sheer volume of collected statistics and some complex 

data patterns or trends hidden in them, it is impossible for DBAs to identify problems 

manually.  

 Nowadays, commercial database systems are more sophisticated with thousands of 

components fulfilling a variety of functions.  The cost of ownership, especially the cost 

of administration is increasingly expensive [32].  Traditional methods of manual 

problem determination hardly satisfy the current management requirement of the 

database systems [27] [14]. Therefore, there exists a pressing demand for greater 

automation in this area.   

The IBM DB2 Health Center [15] and the Oracle Automatic Database Diagnostic 

Monitor (ADDM) [23] provide more sophisticated assistance for problem determination. 

These systems maintain performance statistics for problem detection and self-tuning 
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purposes by continuously recording the events of database activities in a temporary 

repository or database tables and process further analysis on these collected statistics. 

However, to obtain an overall or historical picture of the observed database system, a 

large number of database events must be defined and many statistics must be kept in 

persistent storage. This leads to an increase in system overhead and possibly long delays 

before a problem is diagnosed; especially if a replaying or off-line analysis process is 

required. This type of automatic problem determination system is only an extension of 

the manual process that a DBA uses for problem determination. The other limitation of 

the state-of-the art automatic problem determination techniques is that they are designed 

primarily to assist DBAs in problem determination by providing more data which 

requires more complex monitoring and analysis functions. With the increase of 

complexity and the number of these functions, extra overheads incur. 

Database monitoring is typically centralized although the centralized task can be 

distributed to several sub-tasks across network, the final or temporary decisions still 

require a combination of the sub-opinions and extra communication cost usually is 

expensive [4]. Monitoring a DBMS and problem determination not only require space and 

time efficiency, but also have stricter processing requirement on communication, 

compared with other data monitoring and analysis processes. SQLCM [26] is proposed to 

implement the centralized monitoring of database systems by using a revised event logging 

mechanism to maintain a lightweight aggregation table inside the database server to 

continuously monitor the observed database system. Some memory structures and 

implementation methods that SQLCM adopts are similar to what we use in our approach. 

However, inserting complex summarization and object-identification for the related 
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system statistics inside the database sever not only places an increased load on the database 

system, but also does not directly support the on-line monitoring function across the 

different database platforms. In addition to this, the event logging approach SQLCM uses 

to maintain system statistics is relatively expensive and is not as flexible as snapshot 

monitoring.  

 

2.2 Streaming Model & Stream Data Management System  

Beyond the infrastructure to monitor the status of the database server so as to drill 

down to obtain the details only when a problem is suspected, the three key challenges 

processing monitoring database are the speed limitation (the data collected by a monitor 

can arrive at a high speed), the space limitation (the data is potentially unbounded and 

arrives continuously) and the performance impact on the observed system from 

monitoring and analysis. Neither of the prevalent mechanisms provides adequate support. To 

handle this type of data, a data stream model and streaming mining techniques are 

proposed here instead of traditional monitoring and analysis data processes.   

In the data stream model [12] [3], an unbounded sequence of elements arrive in the 

form of continuous streams. Streaming data can be generated from various application 

systems, such as sensor data of sensor networks, stock tickers, transaction flows in retail 

chains, web records in web applications, performance and outlier tracing information in 

network monitoring, traffic recording in telecommunications and so on. A number of 

Data-Stream Management Systems (DSMSs), such as STREAMS [8], TelegraphCQ [28], 
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Aurora [20], Gigascope [6] and CACQ [29] have been proposed. These systems gather 

data from multiple sensors or applications via a network and operate on data streams 

instead of static relations as in the RDBMSs. DSMSs are designed to extend the 

functionality of traditional DBMSs to support continuous queries and further support the 

monitoring of streaming-style applications. 

Unlike conventional data which consists of a finite number of elements, the data in 

data streams are unbounded in size and there is often the need to access the entire history 

of some important values in data streams [9]. It is infeasible to store all the data from a 

data stream. Streaming data typically arrives at a rapid rate and in general, can be viewed 

only once and cannot be retrieved at a later date.  

A sliding windows model [33] [3] is commonly used to allow the processing to keep 

up with the fast data arrival. At any point in time, a sliding window over a stream is a set of 

elements of the stream seen so far. Sliding windows may be fixed or variable in size and 

they can be classified into either time-based, where elements are ordered by timestamp 

indicating their arrival time in a data stream, or sequence-based, where timestamps are 

substituted with a series of sequence numbers which are continuously increasing with the 

insertion of new elements in the streams.  

In addition to the sliding window model, load shedding [5] and sampling techniques 

are other approaches used to reduce the system load by discarding a portion of the data 

streams. Although these techniques are used, the amount of memory that can be used to 

maintain the information of the data streams is still limited. In stream processing, further 

summarizing of the data is often necessary. The amount of memory used to maintain a 

synopsis is relatively small compared to the actual scanned data.  
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2.3 Data Stream Mining 

Unlike conventional data mining techniques, which typically make multiple passes 

over static data, stream processing can only scan the data once in the same order as it 

arrives. During the last few years, many attempts have been made to adapt existing data 

mining algorithms to data streams. For example, methods for building synopses or 

summaries are proposed and data models are built based on the most recent observation 

and evolve with the change of underlying data streams. Generally, current efforts mainly 

focus on online mining where a model of the data is built continuously and incrementally 

from the records as they flow into the system [12]. Three main classes of algorithms have 

been studied: data stream summarization, data stream classification and data stream 

clustering.  

Data stream summarization maintains summaries of the observed data stream with a 

compact format. It includes three major forms: maintaining statistics of data streams, 

identifying frequent records in data streams, and detecting changes in data streams. In our 

thesis, we introduce the details about identifying frequent records or generating TOP-K 

elements in data streams and apply them to process the statistics collected from the 

database system.  

Data stream classification extends classification algorithms such as the Decision Tree 

algorithm (DT) and adapts them to data streams. The algorithms generally build a data 

model (DM) based on some attributes of data records. The building process often requires 

a large amount of historical records which is not possible when we process data streams. 
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In addition, unlike a static data set, a data stream continuously changes over time, so the 

criteria for building a DM also may change during observation. This phenomenon is 

called concept drift. To adapt to the relatively small training data set and the concept drift 

in data streams, continuously updating the DM over time based on most recent records is 

necessary. For example, Domingos and Hulten propose using Hoeffding bounds to 

evaluate whether the sample of the attribute values extracted from the current window of 

a data stream can provide enough information to make a good decision [25].   

Data stream clustering also extends traditional data clustering to data streams. Data 

clustering is the process of gathering input data into a number of groups or clusters [12]. 

In general, traditional clustering algorithms require all data sets before processing them 

and during processing repeatedly update the groups of data based on similarity of these 

data records. For example, a well-known clustering algorithm k-means repeatedly 

calculates the Euclidean distance between each record and the corresponding centroid in 

each data cluster to measure the similarity of them and update the clusters to minimize 

the within-cluster sum of squares. Some solutions are proposed to compute the Euclidean 

distances based on the data records in the current windows rather than the whole data 

stream and keep summaries of the properties of the data records, such as the cluster 

centroids and the related diameters, in memory.    

Detecting changes in data streams is useful in areas such as network monitoring, 

traffic management and intrusion detection. Change detection algorithms can be 

classified into two major types: detecting distribution changes and detecting stream 

bursts. The distribution changes in data steams can be detected by comparing the 

distributions of the current window of data and a reference window that captures the 

http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Euclidean_distance
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underlying distribution of the stream. The bursts in a stream can be detected by checking 

whether some attribute values in the maintained summaries have been over the 

corresponding thresholds.   

 

2.3.1 Frequent and TOP-K Elements  

The two most critical challenges in processing streaming data are dealing with the 

unlimited data size and the rapid arrival rate. When designing a highly efficient, 

randomized approach for maintaining the critical statistics over a stream, we should 

consider the following three essential factors: the amount of storage space used (physical 

space and/or RAM), the time to update the data structure following the arrival of each 

element in the stream and the time to produce the result.  

Many performance problems can be determined by a few key pieces of information 

such as “which queries are using the majority of the CPU” or “what are the top 5 tables 

that are being most heavily accessed?” This type of analysis task over data streams 

focuses only on atypical behavior in the monitored system, while habitual behaviors are 

ignored [4]. In other words, only a small number of “important” data subset requires 

detailed analysis and most of the data in the observed streams can be coarse-granularly 

scanned, even safely disregarded.  

As mentioned previously, we can derive a significant amount of information by 

determining the TOP-K statistics for some portion of the system, for instance, the TOP-5 

indices that are accessed most frequently.  Many monitoring and analysis applications 

over data streams are characterized by numeric values or the frequencies of the 

specifically interesting objects. Sometimes, the detailed observation is only necessary for 
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the elements whose corresponding numeric attributes’ values are among the k largest, 

namely, TOP-K elements. The frequent elements problem is different from the TOP-K 

elements problem in that it requires the output of the elements whose frequency exceed 

,N for a given threshold parameter Ф, where N is the total occurrences of an observed 

data stream. Since, TOP-K or most frequent elements are only the small part of the whole 

observed objects, the storage and processing burdens posed on the monitoring 

infrastructure can be dramatically cut down when we only inspect the limited scope of 

data streams accordingly.  

In addition, although there is enough data to produce complex models, only simple 

models can be produced since the system is unable to take full advantage of the data [24]. 

In most cases, only probabilistic estimates are possible using analysis over data streams 

due to the limited resources. To provide results for TOP-K element problems, computing 

approximate counts for elements of interest is necessary because an exact answer requires 

access to the entire set of observed data, which is infeasible for many practical stream 

rates and window sizes [10] [2]. Several structures based on continuously summarizing 

the data seen so far are utilized to maintain approximate counts over time. Since K is 

typically very small compared to the number of unique objects, maintaining small 

summary data structures usually can suffice to keep the statistics of the observed data 

stream.  

There are several algorithms proposed to approximate the most frequent elements. 

These algorithms can be divided into two types based on how the frequencies of elements 

are summarized: counter-based algorithms and sketch-based algorithms [1]. 

Counter-based algorithms such as StatStream (without approximate) [33], 
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StickySampling [14] and Space-Saving [1], are sampling-based algorithms where several 

samples of the observed data stream are selected over time using some probabilistic 

criterion. The set of sampled elements changes with time according to some algorithmic 

constraints. In the statistics gathering process, the key operation for Counter-based 

algorithms is counting. Typically, the process maintains m active counters and each 

counter has an associated category that it monitors. A counter can be incremented, 

decremented, or reset so as to monitor a different category. The amount of space 

counter-based algorithms require often depends on the distribution of the frequency of the 

items in the data stream.  

Sketch-based algorithms, such as LossyCounting [10], CountSketch [21] and 

GroupTest [11], generally examine each element of the monitored data stream rather than 

only a subset of sampled elements. Because of this, they are less affected by the order of 

the elements in the stream.  During processing, each element is usually mapped into one 

of a set of counters which are stored in histograms, bit-maps, or application-specific data 

structures by using one or multiple hash functions. The counters are updated when a 

certain element arrives. Eventually, the representative counters are queried for the 

element frequency with expected loss of accuracy due to hashing collisions. Typically, 

outputting the result for one element requires the calculation across several representative 

counters. Due to the fact the entire stream is scanned and the analysis involves more 

complex processing, the sketch-based algorithms are more expensive than counter-based 

techniques, although they usually provide relatively higher accuracy. The sketch-based 

algorithms, therefore, are not ideal for environments which require relatively faster and 

more lightweight analysis.   
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Chapter 3 

A Lightweight Top-K Analysis Framework 

In this chapter we describe a framework that we call Tempo, designed for real-time 

lightweight TOP-K analysis in DBMSs.  Our approach uses stream processing and a 

revised Space-Saving algorithm to determine the K most frequent values of a property 

(TOP-K results) from the stream of records.  This chapter outlines the approaches we 

adopt, in particular, the means to lightweight, continuous monitoring of the database, and 

the Space-Saving algorithm that is used in our approach. 

3.1 Framework Overview 

Problem determination involves detecting and diagnosing situations that affect the 

operational states or availability of the observed systems. The goal of problem 

determination is to maximize system availability by minimizing the time it takes to locate 

problems and recover the system to a normal state. This is accomplished by collecting 

sufficient monitoring information to quickly detect meaningful conditions, diagnosing the 

underlying problems, and applying available knowledge to restore normal system 

operations. At the same time, this process must not incur significant system overhead so as 

to not interfere with the original operation of the observed system. Three major criteria for 

a good problem determination solution include: 

 The processes should be fast. 
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 Analyzing collected statistics should be continuous, without delay. 

 The overhead of monitoring and analysis tools should be low.  

Traditional DBMS problem determination tools typically collect system statistics and 

store them on disk where the data is analyzed using offline analysis techniques.  This 

traditional approach does not satisfy the criteria described above, as processing of the 

statistics is delayed and many of the tools used for monitoring the DBMS incur significant 

overhead.  Our goal is to develop a lightweight, continuous method of data analysis that 

provides important information for problem determination in a timely and efficient 

manner.  

 

 

Figure 3-1 Tempo Framework 

 

The proposed Tempo framework is shown in Figure 3-1.  In this framework, the 

input system statistics are collected to simulate an infinite data stream and the analysis 

process uses stream mining techniques to determine the output. The framework consists of 
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two main modules; online monitoring and online analysis. Details of these processes are 

explained in the following sections. 

 

3.1.1 Online Monitoring 

Monitoring plays a key role in problem determination, in general, and TOP-K analysis, 

in particular. Tempo’s monitoring subsystem contains two modules, the Collector and the 

Stream Generator. The Collector repeatedly uses the DBMS monitoring tool, which is 

snapshot monitoring for DB2 in the case of our prototype, to gather system statistics from 

the database system.  The Stream Generator formulates a stream of information from the 

collected data and passes it to the analysis module. The interface between the two modules 

is DBMS independent so Tempo can be made to work for other DBMSs by modifying part 

of the online monitoring module. 

 

Collector  

In our prototype the DB2 snapshot tool (see Appendices B and C for details) is used to 

poll system statistics in order to provide Tempo with a continuous stream of monitoring 

data. Compared with other monitoring mechanisms, such as event monitoring or trigger 

monitoring, snapshot monitoring is more lightweight and flexible.  However, when using 

the snapshot mechanism, there is a trade-off between overhead and accuracy. By taking 

frequent snapshots, one can record exhaustive information regarding system activity with a 

high degree of accuracy.  However, the frequent calls to system routines or commands due 

to frequent polling incur higher overhead and interfere with the observed system.  
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Infrequent polling, on the other hand, can reduce the monitoring costs, but this comes at the 

expense of the loss of system statistics and, hence, loss of accuracy.   

Typical data returned by a snapshot monitor includes cumulative counters that indicate 

system statistics such as the number of sort overflows, or the number of logical or physical 

I/Os that have occurred since the counter was reset.  In DB2 v9.5, some aggregated system 

statistics are provided.  This information is continuously computed inside the database 

server, thereby reducing the costs of frequent system calls and communications.  For 

example, we can obtain the total CPU time for executing an SQL statement, or the total 

number of times a table has been accessed since the beginning of the monitoring of the 

table or the last reset of the monitoring via a single snapshot execution.  Using these 

summarized statistics, polling can be done less frequently without loss of data and the 

overhead is maintained at a relatively low level. 

Sources of possible information loss include database shutdown, or inactivity for a 

period of time, and overflow of the monitoring cache which occurs when more data is 

being collected than can be held in the cache.  In this case, data must be flushed out of the 

cache in order to accommodate the most recent information.  Other than potential 

information loss which shares similar problems to the infrequently polling, directly 

collecting accumulating database statistics also faces other issues such as the interruption 

or reset of the accumulating statistics, all of which will result in incorrect estimation on 

the activities and status of the observed objects. 

In order to compensate for data loss, we introduce a method whereby we predict the 

current values of observed objects based on their last and current arrival values and the 

current and last observed states of the DB2 database system.  The pseudo code in Figure 
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3-2 describes how we compute the current counts, C_current, of an observed object. The 

last and current arrival counts of an observed object are denoted by C_last and C_arrival 

respectively.  There exist three database states: active, inactive, and shutdown.  S denotes 

the state change of the observed database and can be the permutation of any two states.  

When a database system is inactive (there is no action for a long time) or the DBMS is shut 

down, the counts stored in the monitoring cache are reset to 0.  On the other hand, if the 

database is continuously in an active state, the counts in the monitoring cache are updated 

according to the activity in the database.  

 

For each observed unique object Oi 

DO 

Boolean Flag; 

 Long long int Ref_no; /* the definition of Ref_no and reference table refers to the later part of the 

Chapter or Chapter 4 */ 

 int C_last; 

 int C_arrival; 

 

 C_arrival = the times Oi has been observed in the interval; /* the value comes from snapshot polling */ 

 Ref_no = hash_func (Oi);   /* we use Paul Hsieh's hash function*/ 

 Flag = lookup_in_reference (reference_type, Ref_no, &C_last); /* reference_type : table or SQL*/ 

 

IF Flag is not true THEN /*the object has not been observed before*/ 

  C_last =0; 

  push_ref_table (reference_type, Ref_no) /* add a new object into the reference table */ 

ENDIF;  

 

CASE (S) 

WHEN S is continuously active or changed from inactive to active THEN 

IF C_arrival >= C_last THEN 

C_current = C_arrival  –  C_last; 

ELSE 
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/* we suppose there exists a “hidden” database status change from active to inactive 

happened in the interval between the current and last observation points. */ 

     C_current = C_arrival;  

ENDIF; 

  

WHEN S is continuously inactive or shutdown or changed between the two states THEN 

/* If C_arrival is not equal to 0 we suppose there exists a “hidden” database state 

change from inactive to active happened in the interval between inactive and current 

observation point. */ 

C_current = C_arrival; 

WHEN S is changed from inactive or shutdown to active THEN  

C_current = C_arrival; 

END CASE; 

C_last = C_arrival; /* the accumulating counts since the value of counter is reset to 0 at most 

recent time */ 

/* update the last value of an object in the reference table */ 

Update_last (reference_type, Ref_no, C_last) ; 

 

IF C>0 THEN 

InsertIntoStreams (current_sequence, Ref_no, C_current); 

ENDIF;  

DONE; 

Figure 3-2 Pseudo Code to Predict the Current Count of an Observed Object 

 

 

By predicting the current counts of observed objects, we attempt to compensate for 

missed observations.  In addition, we choose a polling interval of 6 seconds to avoid 

missing multiple system state changes in an interval. It is almost impossible to shutdown 

the database or to make it inactive twice within 6 seconds. Using prediction, we can 

continuously observe the history of the objects in which we are interested even when the 

system is inactive for a period of time or shut down. Similarly, if an object is not observed 

for several intervals due to overflow in the monitoring cache, we assume that there are no 
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new occurrences of the object. However, as soon as the occurrence of the object can be 

stored in the monitoring cache again, we predict its current accumulated occurrences in the 

same way.  

 

 

Figure 3-3 Example of the Prediction of Observed Objects’ Current Occurrences 

 

Figure 3-3 shows an example of predicting the current occurrences of the observed 

objects. We suppose that the observation starts at time T0 and the observed database is 

continuously active from T0 to T4. Between T4 and T5, the database system is shutdown 

or inactive and then becomes active again at T5 (In the two continuously active periods T1 

to T4 and T5 to present, there might be several missing observations of system status’s 

change that we cannot capture). We also suppose that the monitoring cache of the database 

system can hold two observed objects’ statistics.  In the sequence of occurrences of the 
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observed objects, their current arrival counts or the statistic values captured and 

accumulated inside the monitoring cache are recorded at each time point. 

 Figure 3-3(b) shows the predicted current occurrences for observed objects A, B and 

C at each observed point and the corresponding last arrival counts. We use object A to 

illustrate the predicting process. At T0, object A has its initial frequency, 0. During T0 to 

T1, the object A is observed 3 times. Thus, after T1, C_current(T1) of A is assigned to 3 

(C_arrival(T1) of A – C_last(T0) of A) and the C_last(T1) of A is set to 3 (C_current(T1) 

of A +  C_last(T0) of A). During T1 to T2 and T2 to T3, we repeat the same accumulating 

and predicting processes. During T3 to T4, there is no observation for object A. Thus, we 

do not need to process Object A and there is no change for the C_last(T3) of A. 

C_current(T4) of A is 0 (we do not compute the value). During T4 to T5, the database 

system is inactive and we do not observe the occurrences of any object. In fact, if there 

exists some value for an object, we suppose that there will be some missing database 

change from inactive to active and we will have to predict the C_last and C_current for the 

object to compensate for the loss. Thus, for A, C_last(T5) is equal to C_last(T4). During T5 

to T6, the database is active again and we observe object A twice and C_last(T6) and 

C_current(T6) of A is equal to the observation times of A during the period.   

 The cost to directly store, sort, or search for observed objects that are physically large 

in size (such as the text of SQL statements) is expensive. To reduce the cost, we use a hash 

function to map the object to an ID (referred to as ref_no) that is used as a reference number 

in our data structures. Each element in the reference table, which is used to maintain a 

ordered observed object list, mainly consists of three values, the object’s reference 
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number (ref_no), the object body (object_body), and the object’s_last_value 

(object_last_value) which is used to predict the current occurrences of an object. 

When an object is observed, its ref_no is generated from the object body and is used 

as a key to traverse the reference table. If this is the first occurrence of this object, a new 

element is added to the reference table in the appropriate position.  The table is 

maintained as a static linked list sorted in order of ref_nos.  If the ref_no has been in the 

reference table, we only return the ref_no for the further generation of a new element in 

the corresponding data stream. To facilitate the traversal in the reference table, we divide 

the reference table into several small sections and keep each head pointer of the sections 

in memory. The reference table is periodically scanned and unused data objects are 

removed.   

 

Figure 3-4 Data Structures used in Tempo 
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The sequence of the occurrences of the observed objects A, B and C are maintained 

in the various structures of Tempo shown in Figure 3-4. ID_A, ID_B and ID_C are mapped 

from their object bodies or object texts by a hash function and then the object bodies and 

IDs are stored in the reference table. Based on the IDs and their observations and time 

sequence, a data stream is generated into the circular window buffer structure and 

processed through several structures by the streaming analysis until the final TOP-K 

results. In the structures, the observed objects are searched and stored according to their ID, 

a numeric reference number. The purpose of separate structures with a key element is to 

reduce the storage cost and speed up searching and sorting in the structures. The details for 

the structures except for the reference table are introduced in the following sections. 

 

Stream Generator 

Statistics are passed to the stream generator on a FIFO (First in First out) basis and 

placed in a memory structure called the circular window buffer, which is used to pass the 

statistics to the subsequent analysis process.  The circular window buffer, in which 

elements can be reused, makes it feasible to store an approximate history of the most 

important observed objects in memory.  We now only have to consider how to eliminate 

less important information and how to maintain the most important information in the 

circular window buffer. Our strategy is straightforward. We always place more emphasis 

on recent elements. If there is not enough space when new elements arrive, the oldest 

elements, that is, the elements with the smallest sequence numbers are removed from the 

structure to accommodate the newer elements.    
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To simplify the interface between the collector process and the analysis process, we use 

a uniform data format to represent the elements in the circular window buffer. 

 

 

Figure 3-5 Unified Element Structure 

 

As shown in Figure 3-5, an element consists of a reference number, ref_no, a 

sequence number, which is automatically generated for each element in a data stream to 

identify its arrival time and order, and a quantified value referred as to the evaluated 

attribute value in the analysis process (currently, we define the value as the occurrence 

counts or frequencies of observed objects). Through the use of uniform elements, adding 

new types of observed objects or new streaming algorithms will be achieved by simply 

translating and formalizing the processed data into our uniform elements. This method also 

insulates the analysis component from changes in data format resulting from various types 

of DBMS monitoring or version changes in the same DBMS.  

A data stream has an associated current sequence number, indicating the time at 

which objects arrive in the circular window buffer.  The time sequence in Tempo does 

not increase as a new element arrives. Instead, the occurrences of all objects from a polling 

action are only associated to one sequence value.  
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3.1.2 Online Analysis 

The Online Analysis module, as shown in Figure 3-1, consists of two components, the 

Stream Analyzer and the Report Generator. The Stream Analyzer scans the data in the 

sliding windows and summarizes the data. The Report Generator generates the Top-K 

answers from the summaries. 

 

Stream Analyzer 

The data arriving from the Collector is a stream of uniform data elements (Figure 3-5).  

To cope with the rapid arrival of data, we use a fixed-size, sequence-based sliding window 

as we mentioned in Chapter 2. To implement a sliding window process, three basic 

operations are involved: insert, delete, and scan. A sliding window model is maintained on 

a data stream by alternately inserting a new element when it arrives and deleting an 

obsolete element from the window.  The summary process scans the contents of the 

current window, thus processing the elements contained in the window. 
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Figure 3-6 Structure for Stream Processing 

 

As shown in Figure 3-6, elements in the circular window buffer are arranged from the 

tail to the head, ordered by time. The current window presents the group of elements which 

are currently being fed into the summary process. The size of the current window is equal 

to the length of the summary structure, the counter list.  While the summary process is 

scanning the data from the tail of the window buffer to the head to perform synopsis 

generation, the current window is moving forward and returns the space occupied by the 

processed elements to the unused element area (the shaded part in Figure 3-6). When new 

elements arrive, if there is enough space in the unused area, we directly allocate space for 

them from the unused area adjacent to the current head and move the head to the new 

position. If the whole structure is saturated, we discard the oldest elements starting from 

the tail to the head and release space for new arrivals, even if the values have not yet been 

processed. To avoid the potential contention, the three operations on the data stream are 
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mutually exclusive. Thus, the actions of the summary process to view the contents of the 

current window and the actions of feeding new arrival elements must lie in different 

processing cycles. 

 

 

Figure 3-7 Space-Saving Algorithm 

 

 

The analysis of the streaming data is done using a counter-based stream mining 

algorithm called Space-Saving [1], as illustrated in Figure 3-7.  The Space-Saving 

algorithm builds an in-memory, stream-summary structure called a counter list where 

several counters are set to maintain the statistics of the observed objects. Each counter 

consists of 5 elements; an identifier of the observed object (ref_no), the approximate 

frequency associated with a ref_no (count), the maximum estimated error (error), and the 

sequence number of the last observation of the object. The counter list is maintained as a 

sorted list in descending order based on the current count of the objects.  As elements are 

scanned by the summary process, the counter list is checked to determine if the element’s 
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ID (ref_no) is in the list.  If so, the current count stored for the object is increased by the 

value indicated in the newly arrived element.  If the object is not currently found in the 

counter list, then it should be added.  If the number of counters in the counter list does not 

exceed a pre-set maximum, then a new counter is allocated to represent the new observed 

object.  The current count for this element is initialized to the value held by the newly 

arrived element and the counter is positioned in the counter list.  The estimation error of 

the new element is initialized to 0.   

The estimation error i  
of an element ie

 
is the maximum possible error for the 

element. Since there is always some doubt concerning the current count of an element, the 

value of the estimation error must be non-negative. When a counter is first used for an 

observed element there is no error for the element because the counter list is not saturated 

and the new object has not replaced another object.  At this point, their current counts are 

equal to their actual frequencies.  

If the maximum number of counters has been reached and a new object arrives, the 

element stored in the tail, which has the minimum count value of the counter list, is 

replaced with the new arrival.  The count of the tail counter increases by the new arrival 

value and its estimation error is set to the counter value of the object being replaced. Since 

the counter list is shown in descending order, the minimum count of the counter list must 

be the replaced one.  

If the new element has not been observed previously, then the estimation error of the 

element is, at most, the minimum count of the counter list at the current moment. This is 

because the new minimum guaranteed frequency of the new element is equal to the current 
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minimum count of the counter list, which is the count of the replaced element, plus the 

arrival occurrences of the new element minus the estimation error of the new element.  

If the new element has been observed before, and say that at the time Tj it was replaced 

by another element, then its estimated error is less or equal than the minimum count at that 

time, min(Tj). In addition, min(Tj) must be less than or equal to the current minimum count 

of the counter list since the minimum count of the counter list monotonically increases over 

time. Therefore, the estimated error of the new element must be less than or equal to the 

current minimum count of the counter list.  

After updating a count value for an object, its position in the counter list may need to be 

adjusted.  In doing so, the most important elements gradually move to positions close to 

the head of the counter list while the less important elements move to the tail area and are 

eventually replaced over time.  

 

Figure 3-8 Diagram of Processing Streaming Data by Space-Saving Algorithm 
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Figure 3-8(a) shows a sequence of elements in a data stream and Figure 3-8(b) 

illustrates the summarization process of these elements in the counter list with 3 counters.  

At T0, two counters in the counter list are occupied to record the summarized statistics for 

elements A and B. When new element C arrives at T1 it is stored in the third counter and its 

error is set to 0. When the element C is observed again at T2, its count is increased by 1, the 

newly obtained count value of the element from T1 to T2. The counters are then re-sorted 

and element C moves forward while element B moves to the tail. When a new element D 

arrives there are no free counters in the counter list so the element B stored in the tail 

counter is replaced by the element D. The error of element D is set to 1, the count of the 

evicted element B, and its count is increased by 1, the occurrences of the element D.      

 

Generation of TOP-K Answers 

In order to generate TOP-K results, we traverse the counter list, and output the first K 

elements sorted by their minimum guaranteed frequency, which is the elements’ count 

minus their maximum possible error.  In practice, we choose the number of counters in the 

counter list, m, to be greater than K, since the minimum guaranteed frequencies in the first 

K counters are not necessarily larger than those of the K to m elements due to their possible 

errors. In addition, a larger number of counters in the counter list can reduce unnecessary 

element exchanges so as to cut down the potential error, which improves the precision of 

the algorithm.  
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Figure 3-9 Reporting TOP-K Elements [1] 

 

Figure 3-9 shows the algorithm to report the TOP-K elements. In Theorem 2 of the 

Space-Saving algorithm paper [1], the author states “Whether or not Ei occupies the i-th 

position in the counter list, counti, the counter at position i, is no smaller than Fi, the 

frequency of the element with rank i, Ei”. In other words, countk+1, the counter value of the 

element at the k+1 position is the upper bound of Fk+1  and any element ei, is guaranteed to 

be among the TOP-K results if its minimum guaranteed frequency, counti - i ,  exceeds 
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countk+1, the count of the element at position k+1 where i  denotes the estimation error of 

the element
 ie .  

In the first loop of QueryTop-k, the minimum guaranteed frequencies of the first k 

elements in the counter list are compared with the count of the k+1
st
 element. If the 

minimum guaranteed frequency of every element exceeds the count of the k+1
st
 element, 

the algorithm can guarantee that the reported k elements are the TOP-K result and set the 

Boolean variable guaranteed to true. If the number of elements which can satisfy the 

condition are less than k, the second loop is repeated for the rest of the counter list until a 

element k’ is checked and k’ checked elements are guaranteed to be the TOP-K’, where k’ 

> k. In most cases, the algorithm only needs to finish the first loop and output only the first 

K elements.  

The guaranteed Boolean variable in QueryTop-k denotes whether all the reported k 

elements are guaranteed to be among the TOP-K elements or if all the frequencies (counti 

- i ) are not less than countk+1, where i ≤ k. The order Boolean variable denotes whether 

the reported k elements have guaranteed order; that is, if all i, counti - i  
≥ counti+1, where 

i ≤ k. The author provides further details on the algorithm [1].  

If we only execute the first loop to produce an approximate TOP-k result (the actual 

number of elements output may be less than k), the complexity of the algorithm is Θ(k). If 

a more precise TOP-k result is required then we execute the second loop and generate k’ 

elements, where k’ >k. In the second loop, we execute, at most, an extra m-k iterations, 

where m is the length of the counter list, therefore, the complexity of the algorithm is Θ(m). 
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3.2  Revised Space-Saving algorithm  

The workload in a real production environment is generally mixed and its patterns 

often fluctuate which renders the observed database system statistics unpredictable. If the 

distribution of observed objects is skewed and a small number of the more frequent 

elements always obtain the majority of the occurrences during the observation period, the 

original Space-Saving algorithm can provide an accurate answer for a TOP-K query, even 

when space is restricted. However, under some circumstances, the accuracy of the 

algorithm can be less than what we expect. Consider the following scenarios: 

Scenario1:  A large number of objects are observed, thus, the number of objects is far 

greater than the number of counters in the stream-summary structure. 

Scenario2: The most frequently observed objects in a data stream change often. 

Scenario3:  Objects are observed frequently at the beginning of the stream and then 

cease to occur.  

 

In these three scenarios, it is likely that observed objects that appear frequently earlier 

in the stream and have not occurred for a long period of time still occupy the higher 

position(s) in the stream-summary structure. Even if the counts of objects that arrive later 

reach similar values, they likely do not move into the positions occupied by the older 

objects due to the limited view of the current window compared with the whole size of the 

observed data stream and the strategies of the Space-Saving algorithm such as only 

replacing the tail counter and special error computing methods.  Unfortunately, we cannot 
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guarantee the order of the final TOP-K elements if the underlying workload is similar to 

these scenarios.   

For example, consider the sequence of elements in Figure 3-10(a). 

 

 

Figure 3-10 An Example to Illustrate the Problems with the Original Space-Saving 

Algorithm 

  

For a list of 3 counters Figure3-10(b) and Figure3-10(c) show the contents of the counters 

at time T0 and T1, respectively. At T0, although element B has been in the stream for the 

fourth time, the head position is still occupied by the element A.  At T1, based on 

Space-Saving Algorithm, the TOP-K result is ACB but the results are not the correct order, 

which is BCA. If we replace element A or D, instead of B when element C arrives after 

time T0, the problem is alleviated. However, this knowledge is dependent on past or future 

experience and is intractable in the real-time stream style of processing. To handle these 
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problems, we introduce revisions to the original Space-Saving algorithm. The revisions are 

based on the following three assumptions: 

1. The more recently observed elements are more likely occur in the future. 

2. Stale elements can be made fresh by losing parts of their counts. 

3. The maximum estimated error can be proportionally reduced after a portion of 

counts of an observed object have been faded away. 

3.2.1 Fading Techniques for Processing Streaming Data 

When we observe the history of objects on a data stream, we believe that more 

importance should be placed on recent element occurrences as opposed to those in the past. 

For example, Chen et al. [34] use a tilted-time window to allocate more units of the 

summarization of recent observations and fewer units for the past. Giannella et al. [7] 

propose a fading framework in which the faded percentage, FP, is computed based on a 

fading factor and is used to vary the window size and discount the support of the past 

transactions.  

One difference between our fading framework and that of Giannella is that our fading 

factor is applied to the summarized results and periodically discounts the counts of the 

elements in the summary-structure as opposed to each primitive object as soon as their new 

occurrences arrive at the current window. Also, unlike Giannella’s fading framework in 

which the discount percentage for the counts of the observed objects in a certain past period 

are fixed, our approach keeps the past counts of the objects without or with less discount or 

fading which are continuously observed from the past to the present. The purpose of the 

fading factor in Tempo is to avoid the stagnation of information in the counter list, and to 
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make the counter list more sensitive to changes in of the observed data stream by placing 

more emphasis on new observations. 

 

 

Algorithm: Revised-Space-Saving (m counters, stream S) 

begin 

for each element, e with its occurrences of the current window, o in S { 

If e is monitored { 

   Let counti be the count of the counter of e 

Increase the counti by o; 

Assign current sequence number to the sequence number of counteri  

} else { //The replacement step 

Let em be the element with least hits, min 

Replace em with e; 

Increase the countm by o; 

Assign εm the value min; 

Assign current sequence number to the sequence number of counterm  

} 

}// end for 

end; 

/* to avoid frequent fading and re-sort the counter list we periodically do fading and 

re-sorting */ 

When a schedule is triggered  

Boolean FlagDiff; 

Int Temp_count; 

Double remaining_per /* What percentage of the counts of an element will be 

faded away */ 

for each counter in the counter list{ 

Let counti be the count of the counter we just processed 
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If the sequence number of counteri is not equal to the current sequence { 

remaining_per = Compute_fading (current sequence number - the 

sequence number of counteri ); 

Temp_count = round(remaining_per * counti) 

If (Temp_count != counti) { 

 counti = Temp_count; 

 εi  = εi * remaining_per; 

 Assign the current sequence number to the sequence number of 

counteri 

 From the position of the counter to the tail of the counter list, 

searching another counter, m whose count is less or equal then counti; 

    If (There exists a counterm) 

     Place counteri before counterm; 

 else 

  Place counteri at the tail  

} 

} 

}// end for 

End;  

Figure 3-11 Revised Space-Saving Algorithm 

 

 

The revised algorithm is shown in Figure 3-11.  The bold sections indicate the additions 

made to the original Space-Saving Algorithm. First, when a counter is replaced in the 

stream-summary structure, or a new occurrence of an observed object is added, we set/reset the 

sequence number of a counter with the current sequence number in the observed data stream. In 

doing so, we attach a sequence number to each of the observed elements which helps to quantify 

the recency of the frequency of an element.  Second, based on the difference between the last 
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sequence number of each counter and the current sequence on a data stream we periodically 

estimate how much of their counts should be faded away. The formula to compute the remaining 

percentage (RP) is defined as follows: 

1..
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where a  denotes the fading factor which can be varied in terms of the observed stream 

and  is a percentage from 0 to 100; ie  denotes the thi element in the counter list; sei .  

denotes the sequence number stored in ie  and sC.  denotes the current sequence number 

of the observed data stream. The use of a logarithm exponential in the fading formula 

dampens excessive fading.  

The formula to compute the remaining frequency for an object is defined as follows: 
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Where remains(n) denotes the remaining frequency value of an observed object after n-1 

fading intervals and remains(n-1) is the remaining value after the last fading checkpoint. 

m

j

jf
1

 denotes the sum of the observations of the object during the thn  checking interval. 

The sei .   in RP is the sequence value of the object at thm  observation (the most recent 

observation) in the interval.  

With our fading strategy, frequently observed elements can maintain their accumulated 

frequency values so they are more likely to remain resident in the counter list.  On the 

other hand, the frequency values of stale elements drop dramatically due to the frequent 
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losses in the weight of their frequencies and these items are more likely to be eliminated.  

At each fading checkpoint, there are always some differences between the current 

sequence number on the processed data stream and the sequence numbers of these 

elements stored in the corresponding counters and the remaining percentage of the 

frequency values is computed based on the differences.  

One of the most important reasons for using the Space-Saving algorithm is to maintain 

historical information regarding the observed database.  That is, we need to maintain the 

most important information associated with an observed object from the beginning of the 

monitoring process.  Therefore, when we fade away some of an element’s counts, we 

attempt to prevent its remaining counts from excessively fading in the near future by 

resetting its sequence number to the current sequence of the observed stream.  As such, at 

any time, as soon as an observed object’s frequency increases, resulting from new 

occurrences in the current window, we reset its sequence value.  That is, we regard any 

object which is, at present, updated as an important element. A certain percentage of its 

count is obtained as a result of the most-recent summarization whereas other parts can be 

traced back to its past activities. All occurrences are of equal importance since the less 

important part of the past information has been faded away at previous fading checkpoints.  

 

 

Figure 3-12 Fading Example 
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To clarify the difference between our fading approach and Giannella’s, we show an 

example in Figure 3-11. There are twelve observation intervals from T0-T1 to T11-T12 

and three fading checking points are set at T4, T8 and T12.  We use periodic fading 

instead of fading every interval, because frequently computing faded values for every 

observed object and re-sorting them in the counter list is expensive.  In the twelve 

intervals, we observe the object’s frequencies F1, F3, F6, F10 and F12 times in intervals 

T0-T1, T2-T3, T5-T6, T9-T10 and T11-T12, respectively. Based on the Giannella’s fading 

method, the faded occurrence of the object from T0 to T12 is 

1212

12

1012

10

612

6

312

3

112

1' TTTTTTTTTT bFbFbFbFbFfaded

where 1,0b  and the remaining number of occurrences for the period up to T12 is  

remains(0) faded' - F F F FF 1210631  

where remains(0) is the remaining occurrences of the object before T0. 

In our method, we recursively compute the remaining value instead of the faded 

occurrence. The total remaining occurrences after fading at T12 is  

1log

61210

68
10

100
1)1()2()3(

TT

a
FremainsFFremainsremains  

where a  is a fading factor ranging from 0 to 100. There is no loss from T8 to T12 due to 

the fact that the object has been observed at checkpoint 3, T12, where  

1log

31

34
10

100
1)0()1(

TT

a
FFremainsremains . 

The formula to compute what percentage of occurrences of an observed object should be 

kept is described later. 
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3.2.2 Revised Summary-Structure and TOP-K Generation Process 

 

 

Figure 3-13 Stream-Summary Structure 

 

The stream-summary structure consists of a number of counters which are used to 

record the summary of the observed objects. The structure used in Tempo is a static 

linked list as illustrated in Figure 3-13.  In revising the Space-Saving algorithm we 

chose to re-implement the summary structure (originally a double dynamic linked list 

with a parent bucket which links the elements with same count value together [1]) as a 

singly linked list. The reasoning for this change is based on the following:  

1. To monitor database activities, the size of the counter list should be relatively 

small. The cost for locating a position in a singly linked, sorted list is not expensive and 

the singly linked list structure saves on the space of one pointer per element. 

2. Compared with the dynamic linked list, all elements of the static linked list can be 

allocated in advance, which eliminates the cost of frequent system calls. 

3. During a long monitoring period, many observed objects are unlikely to share the 

same counts. Therefore, it is unnecessary to allocate an extra bucket for each separate 

linked list in which elements share the same counter value.  
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3.2.3 An Example of the Revised Space-Saving Algorithm 

 

 

Figure 3-14 Diagram for Revised Space-Saving Algorithm 

 

 

Figure 3-14 demonstrates the fading process using an example. The observed data 

stream is shown in Figure 3-14(a).  The current window size is three, equal to the size of 

the counter list. The sequence number of the observed stream starts at 0 and is increased 

over time. The current window of the stream slides forward, summarizing the stream’s 

contents. In Figure 3-14(b), the summarization processes for the windows 1 and 2 are 
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shown.  During the processing of the data stream, the fading schedule is triggered every 

10 sequence numbers.  

In the example, we chose two fading checkpoints, checkpoint 1 and checkpoint 2, at 

sequence numbers 19 and 29, respectively.  When the current window 1 is processed, 

element A is already in the counter list so the count of element A is increased by the new 

arrival value 5 and its sequence number 5 is replaced with 15. Similarly, element B records 

its new occurrences.  Eventually, element C arrives, replacing element B and the count 

value of the counter which represents the element C is increased by 3. Its error is replaced 

with the evicted element B’s count 13 and its sequence number is set to the sequence 

number of element C in the stream. When the data stream reaches the first fading 

checkpoint, the fading process is triggered. We use the fading formula to compute the 

remaining percentages for the all elements in the counter list. For instance, the RP of E is 

11019log10

100

20
1 =0.8, where the fading factor is 20. Therefore, the remaining count of 

the element E to be faded is 100 * 0.8 =80. Since the count of the element E is changed, we 

need to proportionally fade away the error of the element E and get the remaining error 

value 1.6. When computing the minimum guaranteed frequency, we round the error value 

to an integer value.  Since the sequence number of the element C is equal to the current 

sequence number of the stream, there is no fading for the element.  The remaining count of 

the element C is 

11819log10

100

20
120round =19 and its remaining error is 4.7. 

Similarly, we execute the fading process again when the stream reaches the fading 

checkpoint 2. The difference between the processes at the two checkpoints is that after 
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fading at the second checkpoint, the count of element E is less than that of element A, 

therefore, re-sorting occurs and element A occupies the head position in the counter list and 

the element E recedes into the second position.  

3.3 Implementation  

 

Figure 3-15 Structure of Tempo Prototype 

 

 

Figure 3-15 presents the structure of the Tempo prototype. Our prototype 

implementation specifically monitors the TOP-K most frequently executed SQL 

statements and the TOP-K most frequently accessed tables.  Our approach can be 

generalized to produce TOP-K results for any metrics that can be monitored. 

Our prototype system, Tempo is implemented using the programming language C and 

UNIX shell on a machine running LINUX. It is linked to the IBM DB2 management 

system through IBM’s C routine libraries by using –ldb2 parameter when compiling 
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related C code. In addition, to support multi-threading in LINUX environment, we also 

link POSIX pthread libraries by using –lpthread parameter when compiling them. Tempo 

consists of three main modules: lightweight monitoring, stream analysis and TOP-K 

generation. Each module is executed concurrently by a specific group of processes. For 

speeding up the processing of stream analysis and TOP-K generation, parallel threads are 

used to process same functions concurrently.  

 

3.3.1 Lightweight Monitoring 

As shown in the left-most part of Figure 3-15, we use different tools to monitor the 

accessed tables and the executed SQL statements. To capture the statistics relative to the 

accessed tables, we employ DB2PD (see Appendix C for details) which monitors 

database activities by invoking the snapshot API (see snapshot API C samples in IBM 

DB2 information center [18] for using these API C routines) and provides users with a 

formatted output.  Results are accessed by opening files or pipes. DB2PD can be used to 

obtain information regarding the status of the observed database system, which is used to 

control streaming generation and predict the current occurrences of the observed objects.  

The system status information is translated into the format <status_flag, sequence_num, 

status_value>. This is similar to the structure of the observed objects in the data streams, 

<ref_no, sequence_num, quantified_value> and is also stored in the data streams.  

DB2PD does not provide information associated with executed SQL statements and 

their activities. To get this information, we employ snapshot APIs to poll their execution 

actions and then parse a self-describing data stream in the user-defined buffer (see 
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Appendix B for details). To be more specific, we first locate the SQLM_ELM_DYNSQL 

logical data group in the self-describing data stream and then extract the texts of the 

observed dynamic SQL statements and their execution times respectively from elements 

SQLM_ELM_STMT_TEXT and SQLM_ELM_NUM_EXECUTIONS under the logic 

data group.    

 

3.3.2  Stream Analysis  

To rapidly process multiple data streams simultaneously, we run multiple analysis 

threads with each thread serving one data stream. When an analysis thread scans the 

current window of a data stream, it copies the contents of the current window into its 

local buffer. During scanning, the thread acquires a lock in order to block access to the 

current window by other processes. We use the revised Space-Saving algorithm outlined 

above to summarize the contents stored in the local buffer and maintain the summarized 

information in the counter list. When the information in the counter list is updated by 

newly arrived elements, another lock is held by the thread. This is used to avoid 

contention among the analysis thread, the fading thread, and the TOP-K generator thread. 

To fade away partially stale counter values of the observed objects, we periodically run 

another thread, the fading thread, to scan and hold the lock for access to the elements in 

the counter list. During this period, the fading thread computes the fading percentage to 

determine how many counts for each element should be faded away in the terms of the 

difference between the sequence numbers in the counters and the current sequence 

number of the data stream. Updating the elements’ counts and errors is based on the 
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above computed fading percentage and the counter list is sorted based on the new counter 

values of the elements across the counter list.  To avoid unnecessary computing and 

traversing across the processed counter list (according to the fading formula, the updating 

for the counts of some elements rarely happens when the sequence difference is fairly 

small), we set the interval for triggering the fading schedule to a longer time.  

 

3.3.3 TOP-K Generation  

The QueryTop-k function in the original Space-Saving algorithm reports the TOP-K 

elements in Θ(m), where m is the size of the counter list. Of the first k elements of the 

counter list, not all of them can be guaranteed to be in the TOP-K result with their 

minimum guaranteed frequency counti - i ≥ countk+1, where i ≤ k. Therefore, the 

results reported by the original Space-Saving Algorithm are approximate. In our 

approach, we use a selection sorting algorithm to directly re-sort the counter list by the 

minimum guaranteed frequency, and output the first k elements. Since the fact the counti 

- i  
is extremely similar to counti when the m is enough large, and the original counter 

list is ordered by count values of the elements, we can, therefore, regard the counter list as 

almost sorted by the minimum guaranteed frequency and the complexity of reporting 

TOP-K elements still remains Θ(m).  

TOP-K generation is based on the requests from clients. Once the communication 

thread receives a request with parameters K and the object type (0: Dynamic SQL 

statements, 1: Table), it forwards the request to the generator thread. The generator thread 

allocates a temporary list and re-sorts the corresponding elements in the counter list. 
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After that, it looks up the ref_ids of the chosen candidates in the reference table and 

replaces the ref_ids with the corresponding object texts. Eventually, it stores the re-sorted 

TOP-K result into the temporary list and the communication thread, which made and 

forwarded the original request, returns the results to the client.  
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Chapter 4  

Experimental Evaluation 

 

4.1 Purpose of Evaluation 

In this section, we conduct a set of experiments to evaluate the system with the following 

criteria: 

1. The overhead introduced by Tempo. 

2. The impact on throughput. 

3. System accuracy in generating TOP-10 executed SQL statements and accessed 

tables. 

We examine a number of factors that affect system accuracy, including: 

1. The number of counters in the summary structure. 

2. The variation of data patterns, which is variation in the frequency of objects over 

time. 

3. The size of the fading factor. 

 

4.2 Experimental Environment 

4.2.1 System Platform 

The experiments are run on an Intel Core dual 2.66 MHz processor with 4 GB of 

memory running Linux 64-bit CentOS 5 and DB2 v9.5. Four RAID (level 0) physical 

volume groups provide space for the database system, such as data, indexes, catalog, 
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temporary tablespaces and database logs. Each volume group includes 3 striped SATA 

disks. The local disk on the machine is used to hold the OS and Tempo system and to 

store the statistics and trace log produced by our prototype system in our experiments. 

The 2.5G memory of database instance is allocated when DB2 starts up. The database 

contains a 10G data tablespace across three RAID groups and a 2G index tablespace 

allocated in another RAID group. All tablespaces are configured with Direct I/O and raw 

device to improve database performance.    

 

4.2.2 Workloads 

We use a mix of two workloads in our experiments. The main workload is an Online 

Transaction Processing (OLTP) workload generated by a TPC-C [31] like driver, called 

DTW [19] (see Appendix A for details). The DTW workload accesses 9 tables via 30 

unique SQL statements.  This number of objects was found to be insufficient for our 

experiments, since the trend of the accuracy of Tempo is required to be observed when 

the number of the unique objects in the monitored data stream far exceeds the number of 

the traced elements in the counter list.  We therefore add a custom workload (see 

Appendix E for details) in which 70 additional SQL statements are randomly executed. 

Each execution of an additional SQL statement brings an access to an additional table. In 

the overhead evaluation, the DTW workload is mainly observed by Tempo and the 

custom workload is only used to saturate the Stream-Summary structure during the 

initialization period. During the accuracy evaluation experiments, the percentage of the 

workload mix is varied according to the different experimental requirements.  
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4.3 Overhead Evaluation 

4.3.1 Monitoring Approaches (Experiments)  

We compare the overhead of Tempo with other monitoring solutions. As a baseline, 

we measure the overhead of running the DTW workload alone and then measure the 

overhead in a number of different monitoring configurations. We conducted experiments 

with the following configurations: 

Configuration 1: Baseline measurement 

This configuration is used to obtain a baseline measurement of system overhead and 

DTW throughput and is used to compare with the other configurations. 

Configuration 2: Tempo without fading  

In this configuration, we run the DTW workload and Tempo with 25 counters (we 

found in our experiments that 25 or more counters provide an acceptable level of 

accuracy. The number of counters in the counter list has an indirect effect on the initial 

size of the internal reference tables, thereby influencing the amount of IO and CPU 

overhead.  

Configuration 3: Tempo with fading 

In this configuration, we run the DTW workload and Tempo with fading. We add 

the fading feature to determine if our fading function introduces extra overhead.   

Configuration 4: DB2TOP (background mode) 

To make a fair comparison, we run DB2TOP (see Appendix A for details) only with 

the parameters “dynamic SQL” and “table”. When DB2TOP is running, TOP-10 
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information relative to executed SQL statements and accessed tables is generated and 

recorded into files. At the end of the testing, we sum the size of the files to compute the 

cost of extra storage usage for different approaches.  

Configuration 5: DB2TOP (collector mode) 

As in Configuration 4, only the parameters “dynamic SQL” and “table” functions 

are used when running DB2TOP in this experiment. In collector mode, DB2TOP does 

not directly generate TOP-10 executed dynamic SQL statements and accessed tables in 

real time, but instead it collects enough data that can be analyzed offline by local or 

remote network processes in the future. We use the local analysis in our comparison. The 

remote processing still requires extra network buffers, temporary storage and other 

network resources. Eventually, the same amount of collected data has to be temporarily 

stored and transmitted and the extra costs caused by the introduction of the analysis via 

network are similar to the local analysis.  

We compare our approach with DB2TOP, because it shares similar functionality 

with Tempo. It is relatively lightweight compared with other monitoring tools such as 

snapshot with catalog tables, snapshot CLP, and event monitoring. Like Tempo, it is 

memory-based, using memory-based database snapshot APIs and maintaining analyzed 

statistics in main memory. However, the temporary results, such as the current TOP-K 

information must be output and stored to disk. Therefore, we believe that the comparison 

of overhead and impact on the observed DB2 system between Tempo and DB2TOP is 

reasonable. We do not compare against the other monitoring methods mentioned above, 

because the extra overhead incurred by these approaches is much larger than the 

overhead with DB2TOP and Tempo.  
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The random execution of transactions in the DTW workload means that individual 

runs will always vary to some degree.  We take several steps to minimize the difference 

between experiments. First, each experiment consists of ten runs and the average 

overheads and related standard deviations are computed as the final experimental results.  

Second, prior to each run, the DTW database is restored to its initial state. Third, we use 

the same transaction ratio of the DTW workload in each run. Fourth, each run lasts for 30 

minutes which is long enough to smooth out the differences in actual transactions 

executed. To avoid system overload, which can incur incorrect estimates of the use of 

system resources, we execute the DTW workload with only 4 clients.  

 

4.3.2 Experimental Metrics and Collection Method 

Overhead Measurement 

The most widely used metrics for evaluating system overheads are CPU, IO and 

memory utilization rates. In our experiments, the Linux command “sar” provides us with 

the CPU, IO and memory measurements. Because the data are distributed across several 

disks, we first calculate the IO utilization rate for each disk device including raid disk 

array and local disk devices and then compute the average IO utilization rate across all 

disk devices. We determine how much physical memory is used by subtracting the 

amount of buffers and cache from the used memory (effective free memory) [16]. We 

collect the statistics about CPU, IO and memory utilization after a five minute 

initialization period. Since the memory used for the database system belongs to the 

cached memory usage and the total database memory is configured as a fixed amount in 
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advance, the effective used memory we calculate in our experiments excludes this part. 

To be more specific, we use used memory - buffered memory - cached memory to 

compute the effective used memory. In addition, to avoid the difference in the different 

experimental run, we execute the specific command as root privilege to clean out the 

memory used to buffer and cache the file systems in the initialization period.  

 

Throughput Measurement 

In order to evaluate the impact of Tempo on the observed system, we use the 

throughput of the DTW workload, or the number of transactions completed per second. 

The system requires a “warm up” period (five minutes) before its performance stabilizes. 

During this period the database bufferpools need to become occupied; memory structures 

are initialized and the DTW clients start up. We do not collect and compute various 

statistics during this period. We compute the average transaction rate over a 10 minute 

period when the system is saturated and all system recourses are fully utilized, but not 

overloaded.  

 

Extra Space Measurement 

Finally, we observe the amount of used disk space required to continuously 

determine the TOP-K information by invoking the Linux command, “ls” to obtain the 

size of the collected files (Appendix D shows the details about how to use DB2PD to 

collect necessary statistics in the files). 

The statistics to estimate CPU, memory and IO overheads and the throughput of the 

DTW workload are collected by repeatedly invoking the system monitor command, “sar” 
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and scanning the DTW report every 10 seconds. During the testing period, we use a 6 

second interval for the snapshot monitoring to poll database statistics in Tempo and 

DB2TOP. 

 

4.3.3 Overhead Results and Analysis 
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Figure 4-1 Overhead Comparison of Tempo vs. DB2TOP 
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Configurations CPU 

utilization 

(%) and 

increment 

(%) 

CPU 

standard 

deviation 

Memory 

utilization 

(%) and 

increment 

(%) 

Memory 

standard 

deviation 

IO 

utilization 

(%) and 

increment 

(%) 

IO 

standard 

deviation 

Baseline 

measurement 

86.32(0.00) 0.19 6.34(0.00) 0.02 20.43(0.00) 0.23 

Tempo 

without fading 

86.66(0.34) 0.22 6.86(0.52) 0.37 20.91(0.48) 0.33 

Tempo with 

fading 

86.76(0.44) 0.21 6.74(0.40) 0.04 20.97(0.54) 0.25 

DB2TOP 

(background) 

88.20(1.88) 0.35 6.58(0.24) 0.02 21.96(1.53) 0.36 

DB2TOP 

(Collector) 

88.14(1.82) 0.67 6.64(0.30) 0.18 22.12(1.69) 0.16 

Table 4-1 System Overheads and Related Standard Deviations 

 

Figure 4-1 shows the percentage increase of CPU, memory and IO utilizations in 

configurations 2, 3, 4 and 5 as compared with the utilizations in the base configuration. 

Table 4-1 shows the detailed utilization rates and percent differences and standard 

deviations. In terms of CPU utilization rate, we see that the increase in cost due to Tempo 

in configurations 2 and 3 is negligible. The CPU utilization of Tempo with and without 

fading rises 0.34% and 0.44% respectively. The extra CPU cost in Tempo with fading is a 

little higher, because in fading mode, periodically computing the fading value for each 

counter and further sorting and updating elements in the counter lists consumes some 

CPU resources. For the DB2TOP configurations, as shown in configurations 4 and 5, the 

CPU overhead increases are about 4 times greater than with Tempo. 
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Since the amount of memory allocated to the observed database is fixed and the 

memory uses of the compared monitoring tools are similar, we exclude the used memory 

for the database system from the comparison. Comparing the memory utilization, Tempo 

requires an extra 0.4% - 0.52% memory (about 16M) above the base configuration to 

build its summarization lists, streaming windows, reference tables and other internal 

structures. It also occupies more memory than DB2TOP. However, the size of the extra 

memory space is relatively small. In addition, we allocate and free memory occupied by 

reference tables in block units instead of in element units as in DB2TOP so our memory 

management strategy reduces the number of system calls and the consumption of CPU 

resource.  

DB2TOP has higher IO costs than Tempo. Tempo only incurs an extra 0.5% in IO 

demand, compared with a 1.53% increase for DB2TOP. For DB2TOP in collector mode 

(configuration 5), the IO overhead is more than 1.69% due to the fact that each system 

statistic it gathers is written to disk, which is more expensive than DB2TOP in 

background mode where temporary statistics relative to TOP-K information are 

periodically summarized in memory. The extra IO overhead of Tempo is due primarily to 

the PIPE communication between DB2PD and our collection process, which is in charge 

of collecting database statistics for accessed tables and generating the data stream of 

information. If we only use snapshot APIs to implement this function instead of DB2PD, 

as we do for executed SQL statements, we can further cut the IO costs in Tempo.  

The standard deviations for IO, CPU and memory in the different runs are small. 

This means that the average values reported are valid performance indicators. 
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Figure 4-2 Extra Disk Space Required for Running DB2TOP 

 

 

 

Configurations  Extra Storage Space (K) Standard Deviation 

Baseline measurement 0.00 0.00 

Tempo without fading 0.00 0.00 

Tempo with fading 0.00 0.00 

DB2TOP (background) 7934.18 64.21 

DB2TOP (Collector) 22116.73 145.50 

Table 4-2 Extra Storage Space under Different Testing Conditions and Related Standard 

Deviations 

 

Figure 4-2 shows the extra storage space required using the different monitoring 

approaches. Related details and standard deviations from 10 runs are shown in Table 4-2. 

Tempo does not require any additional storage space to store temporary data since it is 

kept in main memory. DB2TOP, on the other hand, requires a large amount of disk space 

to complete similar tasks. Comparing the two versions of DB2TOP, the collector mode 

requires more disk space than the background mode. The reason is that, unlike DB2TOP 
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background mode, which only writes current statistics in database current monitoring 

heaps into files, the DB2TOP collector mode stores the history of the information during 

the whole test period. In our experiments, running DB2TOP in collector mode for 30 

minutes requires an extra 22MB of disk space to keep the historical information.  

 

Impact on observed system

190

195

200

205

210

215

220

225

230

Th
ro
ug
hp
ut

tr
an
sa
ct
io
ns
/s

Baseline

Tempo wihout
fading
Tempo with
fading

DB2TOP
(background)
DB2TOP
(Collector)

 

Figure 4-3 Throughput Comparison between Tempo and DB2TOP 

 

 

 

Configurations Throughput 

(transactions/s) 

Throughput 

standard deviation 

Baseline measurement 226.11 2.19 

Tempo without fading 218.35 4.52 

Tempo with fading 219.93 0.53 

DB2TOP (background) 204.06 1.36 

DB2TOP (Collector) 204.33 0.76 

Table 4-3 Throughputs under Different Testing Conditions and Related Standard 

Deviations 
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Figure 4-3 and Table 4-3 show the throughputs when we use the different 

monitoring approaches. The average throughput resulting from executing the DTW 

workload alone is 226.11 tps (transactions per second). Tempo with fading and without 

fading decreases the DTW throughput 2.73% and 3.43% to 219.93 tps and 218.35 tps, 

respectively. This is due to opening the monitoring switches for dynamic SQL and tables.  

Running DB2TOP on the DTW workload decreases throughput by about 22 tps or 9.7%. 

DB2TOP has more impact on the observed system due to the fact that it opens more 

monitoring switches and, as observed in the previous experiments, has higher CPU and 

IO overhead. 

 In Tempo, we only open the necessary switches for polling the required system 

statistics. However, in DB2TOP, all 8 switches are always opened during execution. We 

also find that DB2TOP requires more critical system resources, such as IO and CPU than 

Tempo so it is more likely to incur resource contention. 

 

4.4 Accuracy Evaluation 

4.4.1 Purpose of Accuracy Evaluation 

Tempo is built on the Space-Saving algorithm and uses database snapshots to 

simulate a data stream. Both of these facts introduce inaccuracies which may lead to 

incorrect answers for the TOP-K information in Tempo.  The purpose of this set of 

experiments is to examine the amount of inaccuracy introduced in the results. The 

inaccuracy is determined by comparing two instances of Tempo, which we call the 

standard instance and the testing instance. In the standard instance, we configure related 
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parameters such as the fading factor and the number of counters to make the size of the 

counter lists big enough to hold every object and their frequencies so we are guaranteed 

to obtain correct results. In the testing instance, we vary the parameters controlling the 

analysis in order to obtain different TOP-K results that can be compared with results the 

standard instance. 

Accuracy Metrics 

We introduce a metric, called the approximate accuracy rate (AAR), to measure the 

accuracy of Tempo. AAR expresses the average amount of similarity between the results 

of the standard instance and the testing instance for all top-K requests over a run. The 

AAR is defined as follows: 

%100

)(
1

N

Kn

AAR

N

i

i

                                            (3) 

where N denotes the total times we request TOP-K results and in  denotes the number of 

elements which can be simultaneously observed in the TOP-K answers of the two 

instances for the i-th time. K, the number of results in the TOP-K, is set to 10. When we 

compute AAR, we ignore the ordering difference in the results from the two instances. 

In our evaluation, there are several factors which affect the accuracy of the results. 

Some of them are derived from the approaches we use to collect database statistics or 

process the data. Other factors are due to the experiments we design to evaluate these 

approaches. We introduce experiment-related factors in the next section. 

 

Approach-Related Factors Affecting the Accuracy of the Results 
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1. Limited Database Monitoring Cache   

Although current DBMSs such as DB2 can support simple aggregation of general 

monitoring statistics inside the database server and output summarized statistics, there 

still exists a relatively high possibility that, over time, some monitoring information is 

missing due to the limited resources inside a DBMS. For example, if there are too many 

unique SQL statements issued during a time interval, it may not be possible to keep the 

summary of all the SQL statement executions in the database monitoring cache. Thus, 

when we use snapshot monitoring or other mechanisms to capture statistics, it is highly 

likely that some TOP-K items are lost.  

2. Limited Space in our Sliding Windows 

Our sliding windows are built in main memory so we cannot guarantee that enough 

space is allocated to accommodate all the system statistics we gather with snapshot 

monitoring. Since some elements may be dropped we must ensure that important items 

are maintained. Our approach to maintaining the most important information in memory 

is described in Chapter 3. 

3. Insufficient Space in Summarization Structures 

The Space-Saving algorithm, as described in Chapter 3, uses a limited number of 

counters to maintain the frequency of the most important elements, so not all elements 

and their frequencies can be maintained. We therefore cannot guarantee that the 

occurrences of important elements will not be ignored due to incorrect decisions by the 

algorithm.  
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4.4.2 Experimental Setup 

Experiment-Related Factors Affecting the Accuracy of the Results 

1. Experimental Data 

The accuracy of Tempo is evaluated using a workload generated by DTW clients. 

Transactions are generated randomly by the clients so the runs in different experiments 

cannot be guaranteed to be exactly identical. Thus, we need to run the same experiments 

several times and then observe averages over sufficiently long periods of time and 

standard deviations.  

2. Difference of the Testing Instance and the Standard Instance of Tempo 

We compute the accuracy rate for a run based on a comparison between the standard 

instance and the testing instance of Tempo. The accuracy of the comparison is affected 

by the differences between the workloads input to the two instances caused by the 

workload generator.  

We adopt the following practices in carrying out our experiments in order to 

alleviate some of the inaccuracies: 

a. We always run the two instances of Tempo on the same database. Thus, the 

system statistics observed by the two instances are almost identical during the 

whole period. 

b. We let the pair of instances of Tempo run concurrently with the same interval for 

polling system statistics, which helps to eliminate the differences due to timing of 

the data collection between the two instances.  

c. In our experiments, there are a limited number of objects which can be observed 

(79 accessed tables and 100 executed SQL statements), which greatly reduces the 
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potential inaccuracies due to the space limitations as described above. In some 

extreme real-life conditions, hundreds of tables may be accessed and thousands of 

SQL statements may be issued, we therefore recommend that the size of the 

buffer for a sliding window is on the order of ten times that of the counter list), 

This still does not affect the space efficiency of Tempo. If there is overflow in a 

sliding window, we throw out the oldest elements which cannot be processed in 

time and allow the most recent data to enter the window buffer. We note, 

however, that overflow does not happen during any of our experiments. If 

required in the future, we can consider more complex and efficient shedding 

strategies to filter out the least important elements.  

The inaccuracy caused by insufficient space for the counter lists is one of the most 

important issues affecting accuracy. We conduct a set of experiments to find out the 

counter list size with respect to the tradeoff between accuracy and memory usage.  

Other than the number of counters, we examine two additional factors, namely the 

fading factor and the observed data patterns in our accuracy experiments. The 

experiments and experimental results and analysis are presented in the following sections.    

   

4.4.3 Experiment 1: Impact of the Number of Counters under Stable Workload 

Condition 

Experiment Description: 

In the experiment we set the fading factor of the two instances of Tempo to 0 and 

run the experiment ten times. In the beginning of each run, we run the workload for a 

warm up period to fill up the counter list so that we can observe the impact of the size of 
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the list on the accuracy. We vary the number of counters in the testing instance in 

different runs to compare the results with those of the standard instance (there are always 

free units in the standard instance and no element exchange). The test is repeated for 

counter numbers varying from 10 to 40. Each time, we increase the value by 5. 

 The main purpose of this experiment is to evaluate the accuracy of Tempo with 

different counter list sizes. In addition, we wish to identify appropriate values for the 

number of counters which satisfy the following two conditions: 

a. The level of accuracy is acceptable.  

b. We can clearly see the changes in AAR as we vary the test parameters. 

If possible, we hope that the shape of the curves of TOP-K SQL statements and TOP-K 

tables are similar and there exist values for the number of counters that are appropriate 

for both curves. If there are several such points, we choose the best one and fix the 

number of counters at that value in subsequent experiments.   

 

 

Figure 4-4 Selecting Thresholds for the Number of Counters 
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Figure 4-4 illustrates our method for choosing the number of counters to be used 

in the experiments in the following sections. We identify value ranges of the accuracy. 

When the value of the accuracy is in the low range, it is lower than an acceptable 

threshold, which we choose to be 70%. When it lies in the high range, which we choose 

to be above 96%, the range is too narrow to observe the accuracy trend with the change in 

other factors. In the example in Figure 4-4, there are only three counters a, b and c which 

can satisfy the above conditions. We would choose c as the best one because at this point 

the accuracies of the two curves reach their highest values in the appropriate range. 

 

Experimental Results and Analysis: 
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Figure 4-5 Accuracy of Executed SQL Statements and Accessed Tables when the Pattern of 

Underlying Workload is Smooth 
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Object type Number of 

counters 

Average AAR 

(%) 

Standard 

deviation 

TOP-10 SQLs 10 57.00 1.90 

TOP-10 SQLs 15 62.32 2.07 

TOP-10 SQLs 20 70.52 1.86 

TOP-10 SQLs 25 89.09 1.01 

TOP-10 SQLs 30 91.64 1.64 

TOP-10 SQLs 35 89.27 0.75 

TOP-10 SQLs 40 89.57 0.81 

TOP-10 tables 10 78.07 1.37 

TOP-10 tables 15 97.00 1.74 

TOP-10 tables 20 98.23 1.94 

TOP-10 tables 25 99.59 0.39 

TOP-10 tables 30 98.23 1.94 

TOP-10 tables 35 99.05 1.08 

TOP-10 tables 40 100.00 0.00 

Table 4-4 Average AARs and Related Standard Deviations when the Pattern of Underlying 

Workload is Smooth 

 

Figure 4-5 shows the trend of the accuracy of Tempo with a varied number of 

counters under stable workload conditions and Table 4-4 shows the detailed AARs and 

related standard deviations for each number of counters. We notice that with the growth 

of the number of counters, the accuracy of Tempo steadily increases. The accuracy for 

TOP-10 tables reaches more than 98% with a counter list size greater than 20. The 

accuracy for TOP-10 SQL statements reaches a stable point a little later than the TOP-10 

tables curve. Its accuracy reaches, and then is constant at about 90% with a counter list 

size greater than 25. Compared with the actual number of unique observed objects (79 
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accessed tables and 100 SQL statements), the counter size we use is relatively small, 

which shows that for our test cases, our approach can satisfy the necessary precision 

without compromising space efficiency.  

However, we also note that the accuracy of TOP-10 SQL statements is always lower 

than the accuracy of TOP-10 tables and the former become stable later than the latter. 

The main reason for this is the difference in the ratio of the number of unique objects to 

the given size of counter list between executed SQL statements and accessed tables. 

When there are not enough counters to hold all unique observed elements in the counter 

lists, it is likely that, for the same number of counters, elements are replaced more often 

when processing SQL statements than when processing tables. 

In addition to observing the accuracy trend of Tempo, we need to establish 

reasonable parameter values for our approach for the given workload. The values for the 

number of counters that satisfy our two conditions are 15 and 20 on the TOP-10 tables 

curve and 20, 25, 30 and 40 on the TOP-10 SQLs curve. The point at which the number 

of counters is 20 meets our additional condition that the values of the number of the 

counters on the two curves overlap. However, with 20 counters, the accuracy of TOP-10 

tables is too high to observe any change of accuracy when varying the fading factor in the 

subsequent experiments. The high range as shown in Figure 4-5 for TOP-10 tables is 

[98.23%, 100%], which is narrow and only 1.77%. Therefore, we choose a more 

frequently varying workload in Experiment 2 to reduce the accuracy to an appropriate 

level so as to enlarge the upper range of observations.   
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4.4.4 Experiment 2: Impact of Variability of Workload 

Experiment Description: 

 In a real environment, the workload patterns of production systems are not as 

uniform as those generated by DTW, but instead, frequently fluctuates with sporadic 

one-time transactions or bursts of frequent transactions interspersed with long-running 

queries. The amount of variability in the mix of the workload can have significant impact 

on the accuracy of the statistics gathered. In our approach, specifically, increased 

variability requires a large number of counters to maintain high accuracy levels.  

In this experiment, we introduce fluctuation into the observed streaming data by 

alternately executing the DTW workload and the custom workload. The fluctuation rate 

of the workload determines how often the workload changes during a run. To be more 

specific, we use fluctuation rates 0, 2 3, 6 and 10 in our experiments. Fluctuation rate 0 

means that there is only the DTW workload executed and a fluctuation rate of n, where n 

is 2, 3, 6 or 10, means the workload alternates between the 2 workloads n times. 

Based on our findings in the first experiment, the number of counters is set to 20 and 

the fading factor is set to 0. Each run of the experiment lasts for 30 minutes, excluding 

initialization period and each type of frequency experiment is repeated 10 times. The two 

instances of Tempo send and receive a TOP-K request every 20 seconds. Based on this 

experiment, we choose an appropriate fluctuation rate for the workload used in the 

subsequent experiments. 
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Experimental Results and Analysis: 
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Figure 4-6 Accuracy of Executed SQL Statements and Accessed Tables with the Varied 

Workload Fluctuation Rate 

 

 

Object type 

 

Fluctuation Rate of 

the workload 

Average AAR 

(%) 

Standard 

deviation 

TOP-10 SQLs 0 70.52 1.86 

TOP-10 SQLs 2 67.40 0.87 

TOP-10 SQLs 3 64.50 1.13 

TOP-10 SQLs 6 58.45 1.20 

TOP-10 SQLs 10 55.07 1.90 

TOP-10 tables 0 98.23 1.94 

TOP-10 tables 2 94.53 1.26 

TOP-10 tables 3 92.27 1.01 

TOP-10 tables 6 89.13 1.08 

TOP-10 tables 10 84.78 1.26 

Table 4-5 Accuracy Values and Related Standard Deviations of TOP-10 Executed SQL 

Statements and Accessed Tables on Varied Workload Fluctuation Rate 
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Figure 4-6 shows the accuracy of Tempo for workloads with different fluctuation 

rates and Table 4-5 shows the detailed AAR values and related standard deviations. We 

note that the accuracy of Tempo decreases with the increasing fluctuation rate of the 

workload, which means that the smoother the pattern of the observed workload, the 

higher accuracy we can obtain. A frequently fluctuating workload results in a frequent 

exchange of elements at the tail of the counter list and additional sorting activities in the 

counter list. Thus, some important elements fail to maintain their position, and instead, 

are moved from the head of the counter list to lower positions or even swapped out of the 

counter list due to a series of sorting and exchanging actions. It is very clear that frequent 

changes in the underlying workload have side-effects on the precision of Tempo for 

generating TOP-K information. As shown in Table 5-5, when the fluctuation rate of the 

observed workload is greater than 6, the accuracy of Tempo for TOP-10 SQLs hovers 

between 55% and 59%, which is far lower than when the workload is more stable.  

The accuracy for TOP-K tables, on the other hand, always maintains a high degree 

of precision, regardless of fluctuations in the workload. The sharp contrast between 

TOP-10 SQL statements and TOP-10 tables indicates that sufficient space, or more 

counters can alleviate the impact of fluctuations. As we observed in TOP-K tables, when 

the ratio of the number of counters to the number of observed unique elements is 

relatively high, even if the pattern of the observed workload frequently changes, we still 

can obtain good accuracy. However, in a real system, there are likely many unique 

elements in an observation. Allocating a large number of counters is expensive; not only 

with respect to memory, but also processing since it broadens the searching and sorting 
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range in the counter lists as well as the related reference table. In fact, space increases 

much faster in the reference tables than in the counter lists when we add extra counters. 

On the one hand, there are more unique elements in the reference tables, thereby creating 

a larger searching and sorting range. On the other hand, the reference tables store unique 

object ids and the objects themselves, which are relatively large in the case of statements. 

Therefore, although more counters can yield higher precision, we still need to seek other, 

more efficient methods, to lessen the problem. Our third experiment below evaluates the 

fading factor which is used to help keep the most important information in the counter 

lists by eliminating less important information over time, which is not at the expense of 

space and precision. We observe that the standard deviations in Table 4-5 remain small, 

even with increased variability in the workload, which means that the average values 

reported are still meaningful. 

In addition to investigating the impact of the variability in the workload on the 

accuracy of our method, experiment 2 is also intended to determine a frequency of the 

workload fluctuation that can be used in experiment 3. Based on the results, we choose to 

use a frequency value of 10, because in both curves of TOP-10 SQLs and the curve of 

TOP-10 tables with the frequency of the workload fluctuation, the accuracy can lie in the 

appropriate range as shown in Figure 5-4 below or above which there is enough range 

space, which is easier for us to observe the change of the accuracy as the value of the 

fading factor increases.         
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4.4.5 Experiment 3: Impact of Fading Factor 

 

Experiment Description: 

In this experiment, we fix the counter list size at 20 from the appropriate points in 

Experiment 1 and choose the workload fluctuation rate 10 in order to maximize the 

variation in the workload. We vary the fading factor from 0 to 14 in the different runs to 

observe the impact of the fading factor on the accuracy of Tempo. We repeat each run 10 

times and take the average as in previous experiments 

 

Experimental results and analysis: 
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Figure 4-7 Accuracy of Executed SQL Statements and Accessed Tables when the Pattern of 

the Underlying Workload is Fluctuant 
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Object type 

 

Fading factor 

 

Average AAR (%) 

 

Standard 

deviation 

TOP-10 SQLs 0 55.07 1.9 

TOP-10 SQLs 2 56.77 1.69 

TOP-10 SQLs 4 57.5 1.11 

TOP-10 SQLs 6 59.52 1.68 

TOP-10 SQLs 8 60.23 1.13 

TOP-10 SQLs 10 60.12 1.06 

TOP-10 SQLs 12 58.35 1.17 

TOP-10 SQLs 14 56.88 1.91 

TOP-10 tables 0 84.78 1.26 

TOP-10 tables 2 85.72 1.3 

TOP-10 tables 4 87.15 1.12 

TOP-10 tables 6 87.83 1.26 

TOP-10 tables 8 87.65 0.99 

TOP-10 tables 10 84.97 2.31 

TOP-10 tables 12 83.2 1.93 

TOP-10 tables 14 81.72 1.97 

Table 4-6 AAR Values and Related Standard Deviations of TOP-10 Executed SQL 

Statements and Accessed Tables when the Pattern of the Underlying Workload is Fluctuant 

 

Figure 4-7 shows the accuracy curves for TOP-10 tables and TOP-10 SQLs when 

we vary the fading factor and Table 4-6 shows the detailed accuracy rates and related 

standard deviations. We note that with increasing values of the fading factor, the 

accuracy of Tempo initially increases. When the fading factor value reaches 6 in the 

TOP-10 tables curve and 8 in the TOP-10 SQLs curve, the accuracy of Tempo reaches its 
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peak of 87.83% and 60.23% for the TOP-10 tables and TOP-10 SQLs, respectively. 

Following this point, the accuracy drops. Note that when the fading factor reaches 12 in 

TOP-K SQL statements, the accuracy rate is lower than the original value with no fading. 

This behaviour indicates two things. First, an appropriate fading factor can improve the 

precision of Tempo for generating TOP-10 accessed tables as well as TOP-10 executed 

SQL statements. Second, excessively fading the frequency of the elements which are 

currently held by the counter lists will result in a decrease in the accuracy, even worse 

than in the non-fading condition. In fact, the improvement of the accuracy derived from 

the appropriate value of the fading factor reflects how well the value matches the pattern 

of the underlying workload. The best value for the fading factor given the fixed number 

of counters can be gained just when the largest number of insignificant elements can be 

removed from the current counter lists due to a decrease in their importance, where 

“importance” is the elements’ occurrence frequencies. This allows more potential 

candidates to increase their importance if they have been in the lists or enter the lists if 

they just arrive. Another factor, the ratio of the number of counters versus the number of 

observed unique elements, also has an effect on the best choice of the value for the fading 

factor.  
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

Precise and effective problem determination is valuable to DBAs in order to 

maintain a DBMS’s health. However, traditional approaches for problem determination 

often suffer from extra system overhead which inevitably impacts the performance of the 

observed system. Additionally, the subsequent analysis on a large amount of static data is 

typically performed offline and is expensive with respect to both time and space, which 

can result in a long time delay before an answer is obtained. In this thesis we investigate 

the use of data stream processing to provide lightweight approach to problem 

determination in a DBMS such as DB2. Our approach combines two pivotal processes, 

namely online monitoring and online analysis, to eventually produce a list of TOP-K 

results.    

In developing the framework, an existing stream analysis algorithm, called the 

Space-Saving algorithm, is adapted to our problem. Collected system statistics are 

processed in a single pass of streaming data in memory and synopses are maintained in a 

summary structure.  We provide an improvement to the algorithm by adding a fading 

technique to discount stale occurrences of the observed objects, thus emphasizing the 

most recent observations. This makes the streaming analysis more sensitive to the 

frequent fluctuations of the observed database system and provides higher precision 

under such circumstances. Finally, after fading, the summarized synopses of the observed 
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objects can be ordered by their minimum guaranteed frequencies and the first k elements 

are produced as the results.   

The monitoring facilities of current DBMS systems do not naturally support this 

streaming style of analysis. Typically, the collected data are static and stored in persistent 

storage. Therefore, a stream generation process was embedded between the monitoring 

process and the streaming analysis. In our prototype system Tempo, we simulate multiple 

streams of collected DB2 statistics inside memory with a uniform format. Each stream 

serves a streaming analysis process for a specific type of observed object.  

To investigate the practicality and efficiency of our proposed solution, we use our 

prototype system to perform identification and ranking of the TOP-K executed SQL 

statements and the TOP-K accessed tables in real-time for an IBM DB2 database system. 

In Tempo, the revised Space-Saving algorithm is used to summarize the collected 

statistics passing through the data streams. Periodically, a fading module scans every 

observed object in the summary-structure and discounts their frequencies to fade away 

obsolete information. 

Experiments are presented to evaluate the overhead of our streaming approach, the 

impact of the approach on the observed system, and the accuracy of Tempo. The 

evaluation results show that the overhead incurred by Tempo is relatively small and that 

it does not severely impact the observed system.  Compared with an existing monitoring 

tool, DB2TOP, Tempo can entirely eliminate the need for a large amount of temporary 

storage for tracing a long history of observed objects, at the expense of slightly higher 

memory space. Configured with enough counters, Tempo can obtain a satisfactory level 

of accuracy. Even if when there are a limited numbers of counters and the workload 
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fluctuates among different sets of queries, with an appropriate fading factor, the accuracy 

of Tempo can be improved and still remain at an acceptable level.   

 

5.2 Future Work 

Currently, our work provides an effective solution to light-weight Top-K analysis. 

However, to use our work to support problem determination in autonomic DBMSs, there 

remain some key research issues.  

First, we have seen that an adequate number of counters and an appropriate fading 

factor are prerequisites for obtaining a satisfactory precision. In our experiments, under 

different workload patterns, we attempt to vary several values for the two parameters in a 

specific range and observe the trends of the accuracy of Tempo.  The best choices for 

the two parameters are determined by several factors, such as the distribution of the 

observed objects and their frequencies, the total number of unique observed objects, and 

the ratio between the number of unique observed objects and the number of traced 

elements in the counter list. Further research and experiments are needed to examine 

these issues. In addition, to apply Tempo to autonomic DBMSs, we have to make the 

choices dynamic. Thus, we need to investigate other solutions to dynamically predict the 

change of underlying observed objects and their frequencies and, based on the detected 

information, to adjust these parameters for the current or upcoming workload pattern.  

Second, in a real environment, there are hundreds of system metrics that can be 

monitored, such as database CPU utilization for SQL statements, lock statistics, or buffer 

pool usage. How to process so many different metrics in real-time is a challenge. 
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Processing mixed metrics in a single data stream requires a new shedding strategy rather 

than our current approach of simply eliminating older elements in the circular window 

structure.  Different types of metrics also have different statistical criteria. How to 

quantify them and unify them into the same data stream requires further investigation.   

Third, rapidly identifying the SQL statements is another problem we have to face. In 

Tempo, we use a hash function to generate IDs for formalized Dynamic SQL statements. 

However, when using this method to process static SQL statements or dynamic SQL 

statements with different schema names, either the IDs are not unique, or the SQL 

statements with same SQL template and different parameters are considered as different 

objects. Chaudhuri et al. propose SQL signatures [26] based on an explanation or 

execution plan tree to resolve the problem in an on-line fashion. However, generating and 

maintaining these types of trees over a data stream could be expensive, both in terms of 

space and time.  
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Appendix A DTW workload 

IBM Database Transaction Workload (DTW) is a TPCC-like OLTP workload, 

simulating a warehouse order entry system in which a number of warehouses associated 

with sales districts are maintained.  

 

 

Figure A- 1 DTW Database Entity-Relationship Diagram 

 

As shown in Figure A-1, each warehouse in the DTW supplies ten sales districts, 

and each district serves three thousand customers.  On the other hand, each warehouse 

tries to maintain stock for the 100,000 items in the Company's catalog and fill orders 

from that stock. Five different transactions can be issued. The transactions and their 

percentage of the transaction mix are: 

· New Order (~45%):  a new order entered into the database 

· Payment (~43%):   a payment recorded as received from a customer 
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· Order Status (~5%):  an inquiry as to whether an order has been processed 

· Stock Level (~5%):  an inquiry as to what stocked items have a low inventory 

· Delivery (~5%):  an item is removed from inventory and the status of the 

order is updated 

The DTW database is scaled according to the number of warehouses. In our experiments, 

the number of warehouses is set to 10. The performance metric of the DTW workload is 

the number of transactions completed per second (TPS). 

The components of DTW database are defined to consist of the following nine tables 

and associated indexes: 

 

1. WAREHOUSE 
Column  name          Type name      Length Nulls 

------------------------------   ------------------   -------- ------ 

W_ID     SMALLINT  2  No 

W_NAME    CHARACTER 10     No 

W_STREET_1   CHARACTER   20     No 

W_STREET_2   CHARACTER   20  No 

W_CITY     CHARACTER   20    No 

W_STATE            CHARACTER   2     No 

W_ZIP                  CHARACTER   9    No 

W_TAX            REAL          4     No 

W_YTD                DOUBLE       8     No 

Unique index ware_idx1 on (w_id) include (w_tax) 

 

2. DISTRICT 

Column  name          Type name      Length  Nulls 

----------------------------  ------------------   --------   ------ 

D_ID                 SMALLINT     2    No 

D_W_ID                SMALLINT     2    No 
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D_NAME               CHARACTER   10    No 

D_STREET_1           CHARACTER   20    No 

D_STREET_2          CHARACTER   20    No 

D_CITY                CHARACTER   20    No 

D_STATE              CHARACTER    2     No 

D_ZIP                  CHARACTER   9     No 

D_TAX                REAL         4     No 

D_YTD              DOUBLE       8     No 

D_NEXT_O_ID     INTEGER       4     No 

unique index dist_idx1 on (d_id, d_w_id) 

 

3. ITEM 

Column name            Type name      Length  Nulls 

------------------------------   ------------------   --------   ------ 

I_ID                 INTEGER       4       No 

I_IM_ID                INTEGER       4       No 

I_NAME             CHARACTER 24      No 

I_PRICE              INTEGER       4       No 

I_DATA             VARCHAR     50      No 

Unique index item_idx1 on (i_id) include(i_price,i_name,i_data) 

 

4. STOCK 

Column name          Type name     Length  Nulls 

------------------------------  ------------------   --------   ------ 

S_I_ID                 INTEGER       4      No 

S_W_ID               SMALLINT      2      No 

S_REMOTE_CNT       SMALLINT     2      No 

S_QUANTITY          SMALLINT     2      No 

S_ORDER_CNT         SMALLINT     2     No 

S_YTD               INTEGER       4      No 

S_DIST_01             CHARACTER 24     No 

S_DIST_02           CHARACTER 24     No 

S_DIST_03            CHARACTER   24     No 
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S_DIST_04            CHARACTER  24     No 

S_DIST_05           CHARACTER   24     No 

S_DIST_06              CHARACTER   24     No 

S_DIST_07           CHARACTER   24     No 

S_DIST_08             CHARACTER   24     No 

S_DIST_09             CHARACTER   24     No 

S_DIST_10            CHARACTER   24     No 

S_DATA             VARCHAR      50     No 

Unique index stock_idx1 on (s_i_id, s_w_id) include (s_quantity) 

 

5. CUSTOMER 

Column name          Type name     Length   Nulls 

------------------------------  ------------------   --------    ------ 

C_ID                INTEGER      4      No 

C_D_ID                SMALLINT    2       No 

C_W_ID               SMALLINT     2       No 

C_FIRST              VARCHAR      16      No 

C_MIDDLE          CHARACTER 2       No 

C_LAST               VARCHAR      16      No 

C_STREET_1           VARCHAR      20      No 

C_STREET_2         VARCHAR     20      No 

C_CITY              VARCHAR      20       No 

C_STATE            CHARACTER   2       No 

C_ZIP                  CHARACTER  9       No 

C_PHONE             CHARACTER 16       No 

C_SINCE               TIMESTAMP    10      No 

C_CREDIT            CHARACTER 2      No 

C_CREDIT_LIM        DOUBLE       8      No 

C_DISCOUNT         REAL          4      No 

C_DELIVERY_CNT      SMALLINT     2       No 

C_BALANCE           DOUBLE       8       No 

C_YTD_PAYMENT      DOUBLE       8       No 

C_PAYMENT_CNT      SMALLINT   2       No 
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C_DATA1             CHARACTER  250      No 

C_DATA2             CHARACTER 250      No 

Unique index cust_idx1 on (c_w_id, c_d_id, c_id) 

Index cust_idx2 on (c_w_id, c_d_id, c_last, c_first, c_id) 

 

6. HISTORY 

Column name          Type name     Length  Nulls 

------------------------------  ------------------   --------   ------ 

H_C_ID                INTEGER      4     No 

H_C_D_ID            SMALLINT     2     No 

H_C_W_ID             SMALLINT     2    No 

H_D_ID                SMALLINT     2    No 

H_W_ID               SMALLINT     2     No 

H_DATE               TIMESTAMP    10     No 

H_AMOUNT            INTEGER       4     No 

H_DATA               CHARACTER 24     No 

 

7. NEW_ORDER 

Column name          Type name     Length  Nulls 

------------------------------  ------------------   --------   ------ 

NO_O_ID              INTEGER       4    No 

NO_D_ID              SMALLINT      2    No 

NO_W_ID              SMALLINT      2    No 

Unique index nu_ord_idx1 on (no_w_id, no_d_id, no_o_id) 

 

8. ORDERS 

Column name          Type name     Length  Nulls 

------------------------------  ------------------   --------   ------ 

O_ID                   INTEGER       4    No 

O_C_ID                INTEGER       4     No 

O_D_ID                SMALLINT     2     No 

O_W_ID               SMALLINT     2     No 

O_ENTRY_D          TIMESTAMP    10     No 
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O_CARRIER_ID         SMALLINT      2     Yes 

O_OL_CNT             SMALLINT      2     No 

O_ALL_LOCAL         SMALLINT      2     No 

Unique index ordr_idx1 on (o_w_id, o_d_id, o_id) 

Unique index ordr_idx2 on (o_w_id, o_d_id, o_c_id, o_id desc) 

 

9. ORDER_LINE 

Column name           Type name     Length  Nulls 

------------------------------  ------------------   --------   ------ 

OL_O_ID                INTEGER       4     No 

OL_D_ID                SMALLINT     2     No 

OL_W_ID               SMALLINT      2    No 

OL_NUMBER            SMALLINT     2     No 

OL_I_ID                 INTEGER       4     No 

OL_SUPPLY_W_ID       SMALLINT      2      No 

OL_DELIVERY_D        TIMESTAMP    10     Yes 

OL_QUANTITY          SMALLINT      2      No 

OL_AMOUNT            INTEGER       4      No 

OL_DIST_INFO          CHARACTER 24     No 

Unique index oline_idx1 on (ol_w_id, ol_d_id, ol_o_id, ol_number) include (ol_i_id,ol_amount) 

 

The five transactions respectively consist of several Dynamic SQL statements. The 

SQL statements are described as the following: 

 New order transaction 
 

1. SELECT d_tax, d_next_o_id from district where d_id = ? AND d_w_id = ? 

 

2. SELECT w_tax, c_discount, c_last, c_credit FROM warehouse, customer WHERE w_id = ? 

AND   c_id = ? AND   c_w_id = ? AND c_d_id = ? 

 

3. UPDATE district SET d_next_o_id = ? WHERE d_w_id = ? AND d_id = ? 

 

4. INSERT INTO orders VALUES (?, ?, ?, ?, ?, ?, ?, ?) 
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5. INSERT INTO new_order VALUES (?, ?, ?) 

 

6. SELECT i_price, i_name, i_data FROM item WHERE i_id = ? 

 

7. SELECT s_quantity, s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dist_05, s_dist_06, 

s_dist_07, s_dist_08, s_dist_09, s_dist_10, s_ytd, s_order_cnt, s_remote_cnt, s_data FROM 

stock WHERE s_w_id = ? AND s_i_id = ? 

 

8. UPDATE stock SET s_quantity = ?, s_order_cnt = ?, s_ytd = ?, s_remote_cnt = ? WHERE 

s_w_id = ? AND s_i_id = ? 

 

9. INSERT INTO order_line VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?) 

 

 Delivery transaction 
 

10. SELECT MIN( no_o_id ) FROM new_order WHERE no_w_id = ? AND no_d_id = ? 

 

11. DELETE FROM new_order WHERE no_w_id = ? AND no_d_id = ? AND no_o_id = ? 

 

12. UPDATE orders SET o_carrier_id = ? WHERE o_id = ? AND o_w_id = ? AND o_d_id = ? 

 

13. SELECT SUM( ol_amount ) FROM order_line WHERE ol_w_id = ? AND ol_d_id = ? 

AND ol_o_id = ? 

 

14. UPDATE ORDER_LINE SET ol_delivery_d = ? WHERE ol_w_id = ? AND ol_d_id = ? 

AND ol_o_id = ? 

 

15. SELECT o_c_id, o_ol_cnt  FROM orders WHERE o_id = ? AND o_w_id = ? AND o_d_id 

= ? 

 

16. SELECT c_balance, c_delivery_cnt FROM customer WHERE c_w_id = ? AND c_d_id = ? 

AND c_id = ? 

 

17. UPDATE customer SET c_balance = ?, c_delivery_cnt = ? WHERE c_w_id = ? AND   

c_d_id = ? AND c_id= ? 

 

 Payment transaction 
 

18. SELECT c_id, c_first FROM customer WHERE c_last =? AND c_w_id = ? AND c_d_id = ? 

ORDER BY c_first 
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19. SELECT c_first, c_middle, c_last, c_street_1, c_street_2, c_city, c_state, c_zip, c_phone, 

c_since, c_credit, c_credit_lim, c_discount, c_balance, c_ytd_payment, c_payment_cnt, 

c_data1, c_data2 FROM customer WHERE c_id = ? AND c_w_id = ? AND c_d_id = ? 

 

20. UPDATE customer SET c_data1 = ?, c_data2 = ? WHERE c_id = ? AND c_w_id = ? AND 

c_d_id = ? 

 

21. UPDATE customer SET c_balance = ?, c_ytd_payment = ?, c_payment_cnt = ? WHERE 

c_id = ? AND c_w_id = ? AND c_d_id = ? 

 

22. SELECT w_street_1, w_street_2, w_city, w_state, w_zip, w_name, w_ytd FROM 

warehouse WHERE w_id = ? 

 

23. SELECT d_street_1, d_street_2, d_city, d_state, d_zip, d_name, d_ytd FROM district 

WHERE d_id = ? AND d_w_id = ? 

 

24. INSERT INTO history VALUES (?, ?, ?, ?, ?, ?, ?, ?) 

 

 Order status transaction 
 

25. SELECT c_id, c_first FROM customer WHERE c_last = ? AND c_w_id = ? AND c_d_id = 

? 

 

26. SELECT o_id, o_entry_d, o_carrier_id, o_ol_cnt FROM orders WHERE o_w_id = ? AND 

o_d_id = ? AND o_c_id = ? 

 

27. SELECT ol_i_id, ol_supply_w_id, ol_quantity, ol_amount, ol_delivery_d FROM order_line 

WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ? 

 

28. SELECT c_first, c_middle, c_last, c_balance FROM customer WHERE c_id = ? AND 

c_w_id = ? AND c_d_id = ? 

 

 Stock level transaction 
 

29. SELECT d_next_o_id FROM district WHERE d_w_id = ? AND d_id = ? 

 

30. SELECT count(distinct S_I_ID) FROM ORDER_LINE, STOCK WHERE OL_W_ID = ? 

AND OL_D_ID = ? AND OL_O_ID < ? AND OL_O_ID > ? AND S_I_ID = OL_I_ID 

AND S_W_ID = OL_W_ID AND S_QUANTITY < ? 
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Appendix B DB2 SNAPSHOT 

Snapshot monitoring provides information at a specific point in time; that is, it 

provides a picture of the current state of activity in the database manager for a particular 

object, or group of objects. Snapshot monitoring is useful in determining the current state 

of a database and its objects and applications. Snapshots can be obtained from the CLP 

(Command Line Processor), from SQL table functions, or by using the snapshot monitor 

APIs in a C or C++ application. In our research, we use the snapshot API.  

 

System monitor switches 

Collecting system monitor data introduces processing overhead for the database 

manager. For example, in order to calculate the execution time of SQL statements, the 

database manager must make calls to the operating system to obtain timestamps before 

and after the execution of every statement. These types of system calls are generally 

expensive. Another form of overhead incurred by the system monitor is increased 

memory consumption. For every monitor element tracked by the system monitor, the 

database manager uses its memory to store the collected data.  

In order to minimize the overhead involved in maintaining monitoring information, 

monitor switches control the collection of potentially expensive data by the database 

manager. Each switch has only two settings: ON or OFF. If a monitor switch is OFF, the 

monitor elements under that switch's control do not collect any information. The 

monitoring switches in DB2 are shown in Table B-1: 
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Table B- 1 Snapshot Monitoring Switches [15] 

 

 

Self-describing monitoring data stream 

The Database System Monitor stores information it collects in entities called 

monitor/data elements. Each monitor element stores information regarding one specific 

aspect of the state of the database system. In addition, monitor elements are identified by 

unique names and store a certain type of information. Monitor elements collect data for 

one or more logical data groups. A logical data group is a collection of monitor elements 

that gather database system monitoring information for a specific scope of database 

activity. Monitor elements are sorted in logical data groups based on the levels of 

information they provide. 

The snapshot API returns the snapshot output as a self-describing data stream in the 

user-supplied buffer. Figure B-1 shows the structure of the data stream. 
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Figure B- 1 Structure of the Self-Describing Data Stream in Snapshot Cache [15] 

 

 

1. Each logical data group begins with a header that indicates its size and name. 

This size does not include the volume of data taken up by the header itself.  

2. Size in the collected header returns the total size of the snapshot.  

3. The size element in other headers indicates the size of all the data in that logical 

data group, including any subordinate groupings.  

4. Monitor element information follows its logical data group header and is also 

self-describing.  
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Appendix C DB2PD 

DB2 UDB V9.5 comes with a utility for collecting statistics of DB2 instances and 

databases called DB2PD [17]. The tool can provide diagnostic information very quickly 

and in a very non intrusive manner. The tool attaches directly to the DB2 shared memory 

set to pull out monitor and system information without having to go through the DB2 

engine, thus making it very lightweight. DB2PD provides more than twenty options to 

display information about database transactions, tablespaces, table statistics, dynamic 

SQL, database configurations, and many other database details. A single DB2PD 

command can retrieve multiple areas of information and can route the output to files. The 

utility can also be invoked a specified number of times within a specified period of time, 

to help understand changes over time. There are two ways to invoke the DB2PD utility, 

namely an interactive mode or directly from an operating system command prompt. In 

our research, we invoke the utility at an operating system command prompt by entering 

the db2pd command with the command option –tcbstats (Returns information about 

tables and indexes) to extract the statistics information relative to accessed tables. Table 

C-1 shows the 22 options available for the DB2PD command and related valid scopes 
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db2pd option  Description  Scope  

agents Returns information about agents Instance 

applications Returns information about applications Database 

bufferpools Returns information about the buffer pools Database 

Catalogcache Returns information about the catalog cache Database 

dbcfg Returns the settings of the database configuration parameters Database 

dbmcfg Returns the settings of the database manager configuration parameters Instance 

dynamic Returns information the execution of dynamic SQL Database 

fcm Returns information about the fast communication manager Instance 

help Returns help information of the db2pd command NA 

logs Returns information about the logs Database 

locks Returns information about the locks Database 

mempools Returns information about the memory pools Both 

memsets Returns information about the memory sets Both 

osinfo Returns information about the operating system Instance 

recovery Returns information about recovery activity Database 

reopt Returns information about Cached SQL statements that were reoptimized using 

REOPT ONCE option applications 

Database 

reorg Returns information about table reorganization Database 

static Returns information about the execution of static SQL and packages Database 

sysplex Returns information about the list of servers associated with the database alias 

for all databases or for a particular database 

Instance 

tablespace Returns information about the table spaces Database 

tcbstats Returns information about tables and indexes Database 

transactions Returns active transaction information Database 

version Returns information about the current DB2 version and level Instance 

Table C- 1 DB2PD Options and Related Valid Scopes [17] 
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Appendix D DB2TOP 

The snapshot monitor is one of the most commonly used tools to collect information 

in order to narrow down a problem. However, most entries in snapshots are cumulative 

values and show the condition of the system at a point in time. Manual work is needed to 

get a delta value for each entry from one snapshot to the next. The DB2TOP tool comes 

with DB2, and can be used to calculate the delta values for those snapshot entries in real 

time. DB2TOP can be run in two modes, interactive mode or batch mode. In interactive 

mode, the user enters command directly at the terminal text user interface and waits for 

the system to respond. Figure D-1 shows the detailed information for each cached SQL 

statement when invoking DB2TOP in interactive mode. 

 

 

Figure D- 1 DB2TOP Dynamic SQL Screen 
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We can complete similar monitoring tasks in batch mode as we do in the evaluation 

experiments. When using the -b option, DB2TOP runs in background mode and displays 

information in CSV format. DB2TOP can be run in background mode in combination 

with reading snapshot data from a collection file using the -f <file> option. Valid 

sub-options for -b are: 

 d :  Database 

 l :  Sessions 

 t :  Tablespaces 

 b :  Bufferpools 

 T :  Tables 

 D :  Dynamic SQL 

 s :  Statements 

 U :  Locks 

 u :  Utilities 

 F :  Federation 

 m :  Memory pools 

 

When using the -C option, DB2TOP runs in snapshot collector mode. Raw snapshot data 

is saved in a file named with <db2snap-<dbname>-<Machine><bits>.bin> by default 

(unless -f is specified). Specifying multiple sub-options for collector mode (-C) is 

supported. To include lock information in the collection file, we use -x along with -C. 

Valid sub-options for -C are: 

 b :  Bufferpools 

 D :  Dynamic SQL 

 d :  Database 

 F :  Federation 

 l :  Sessions 

 s :  Statements 

 T :  Tables 

 t :  Tablespaces 

 U :  Locks 

 

The other two options of DB2TOP are used in our evaluation experiments are –o (specify 

the output file name) and –i (polling interval). 
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Appendix E Custom Workload  

The custom workload is designed to provide additional observed objects in our 

experiments. The additional observed objects consist of 70 tables (Gi, i=1...70) and 70 

SQL statements (select count(*) from Gi, i=1...70). Every table used in the custom 

workload shares the same table structure. The structure is shown as the following: 

  table Gi ( 

i1 smallint not null,  

name char(15) 

) 

 

Each SQL statement is executed randomly. Based on the different random ranges of the 

executions of the SQL statements, they are divided into two groups. The first group of 

SQL statements is executed more times than the second group. The first group includes 

20 SQL statements and the second group includes 50 SQL statements (the frequency of 

the first group of elements can match with the frequencies of the elements generated by 

DTW). Therefore, the data of custom workload are skewed and a majority of the 

observed objects, or frequent elements are more distinct.  Due to the fact that each SQL 

statement in our custom workload only has access to one table, one execution of a SQL 

statement generates one access to the table. Therefore, similar to the executed SQL 

statements, the pattern of accessed tables is also skewed.  

 

 


