

An Adaptable Context-Management

Framework for Pervasive Computing

by

Jared A. Zebedee

A thesis submitted to the
School of Computing

in conformity with the requirements for the
degree of Master of Science

Queen’s University
Kingston, Ontario, Canada

September, 2008

Copyright © Jared A. Zebedee, 2008

Abstract

 Pervasive Computing presents an exciting realm where intelligent devices interact

within the background of our environments to create a more intuitive experience for their

human users. We demonstrate enabling context-awareness through our creation of a

standardized context-management framework. Our framework moves towards device

intelligence by supporting context-awareness.

 Context-awareness is what gives devices the ability to understand and exchange

information about each other. Context information is used to determine device purpose,

capabilities, location, current state, and other properties.

 Several elements are required in order to achieve context-awareness, including a

suitable ontology, a context model, and a middleware platform upon which to implement

the context model. In this work, a complete context-management framework is presented

and evaluated. We propose our own ontology specification and context model, and

implement a middleware using the Web Services Distributed Management (WSDM)

interoperability standard.

ii

Acknowledgements

I wish to extend my sincerest thanks to my supervisor, Dr. Patrick Martin, for his

expertise, guidance, and support throughout this work. I would also like to thank Cyrus

Boadway and Wendy Powley for their outstanding support and advice. Additionally I

wish to acknowledge my friends, family and Queen’s University staff and student

colleagues who have provided unending encouragement and interest during this research.

Finally, I wish to submit a special thanks to Kirk Wilson, Ph.D., CA, Inc. for his expert

direction, assistance and enthusiasm which were invaluable to me throughout this

endeavour.

iii

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables viii

List of Figures ix

Glossary of Acronyms xii

Chapter 1 Introduction 1

1.1 Motivation 2

1.2 Problem 3

1.3 Research Statement 5

1.4 Thesis Organization 7

Chapter 2 Background and Related Work 8

2.1 Pervasive Computing and Context-Awareness 8

2.2 Context Management 9

2.2.1 CoBrA (Context Broker Architecture) 10

2.2.2 PersonisAD 12

2.2.3 Delivery Context Ontology 15

2.3 Ad-Hoc Networking and Device Communication 16

2.3.1 MANETs 16

2.3.2 Zeroconf 18

Chapter 3 Adaptable Context-Management Framework 20

3.1 Entity Specification 22

iv

3.2 Context Model 23

3.2.1 Domain Ontology Specification 24

3.2.2 Device Context Profile Specification 28

3.3 Context-Exchange Protocols 31

3.3.1 Device Roles 31

3.3.2 Device Interaction States 32

3.3.3 Local Context Service 33

3.3.4 Context Proxy Service 40

Chapter 4 Implementation 48

4.1 The WSDM Standard 48

4.1.1 Background 48

4.1.2 Manageable Resources 50

4.1.3 Manageability Capabilities 54

4.1.4 Resource Properties 54

4.1.5 Operations 56

4.1.6 Events 57

4.1.7 Implementation and Scalability 57

4.2 ACMF-WSDM Mappings 59

4.2.1 Context Model Mappings 59

4.2.2 Context-Exchange Protocol Mappings 62

4.3 ACME Simulation 62

4.3.1 MANET Simulator 63

4.3.2 Simulated Servers 64

v

4.3.3 Simulated Client 64

4.3.4 Use Cases 65

Chapter 5 Conclusions and Future Work 77

5.1 Thesis Contributions 77

5.2 Conclusions 78

5.3 Future Work 78

References 81

Appendix A 85

1. Master Domain Ontology Schema Document. 85

2. ComputerScienceBuilding Ontology XML Instance Document. 86

3. Metadata Schema Document. 87

4. ComputerScienceBuilding Prose Description Document 87

5. Laser Printer Device Schema Document. 88

6. Laser Printer Context Profile XML Instance Document. 89

Appendix B 90

1. WSDL Template. 90

2. RPSD Template. 99

3. RMD Template. 100

4. TopicSpace Template 101

5. Device-Type Schema Template 101

Appendix C 102

1. LaserPrinter WSDL Document. 102

2. LaserPrinter Schema Documents. 103

vi

3. LaserPrinter RMD Document. 104

4. LaserPrinter TopicSpace Document. 105

5. Context Proxy Service Operations WSDL Document Fragment. 106

6. Context Proxy Service Operations XML Schema Document. 108

vii

List of Tables

Table 2.1 Delivery Context Ontology, Property Fields 15

Table 2.2 Delivery Context Ontology Camera Class Properties 16

Table 3.1 Computer Science Building CME Entity List 23

Table 3.2 Device-type Property Parameters 26

Table 3.3 CSB Scenario PervasiveDevice Device-Type Properties 27

Table 3.4 CSB Scenario LaserPrinter Device-Type Properties 27

Table 3.5 Mapping of “Property” Element Attribute Values 30

Table 3.6 Local Context Service Functions 33

Table 3.7 Laser Printer Context Profile 35

Table 3.8 Context Proxy Service Functions 44

Table 4.1 ACMF Device schema property parameter mappings 61

Table 4.2 Laser Printer WSDM MR documents 61

Table 4.3 Mappings between local context service functions

and WSDM Operations 62

Table 4.4 Initial URI database contents 66

Table 4.5 URI database contents after Data Projector has left 69

viii

List of Figures

Figure 1.1 Pair of context-aware devices 5

Figure 2.1 CoBrA Agent Communication Model 11

Figure 2.2 SOUPA 12

Figure 2.3 PersonisAD interaction between application and model 13

Figure 2.4 PersonisAD interaction between application and model servers 14

Figure 2.5 PersonisAD simplified user models 15

Figure 2.6 Simple MANET example 17

Figure 3.1 Adaptable Context-Management Framework 21

Figure 3.2 ACMF components 22

Figure 3.3 Context model 24

Figure 3.4 Master domain ontology schema 25

Figure 3.5 Example mapping from ontology to device schema 30

Figure 3.6 Laser printer device schema 31

Figure 3.7 Device interaction state sequence diagram 32

Figure 3.8 Device subscription state diagram 33

Figure 3.9 Device discovery process 34

Figure 3.10 Device schema and context profile acquisition 35

Figure 3.11 Device interaction example 38

Figure 3.12 Subscription example 40

Figure 3.13 Proxy provider state sequence 41

Figure 3.14 Proxied device state sequence 41

Figure 3.15 LaserPrinter device schema with ProxyProvider 42

ix

Figure 3.16 Proxied context profile insertion and lease renewal 45

Figure 3.17 Proxied context profile removal 46

Figure 3.18 Proxied device URI and context profile acquisition 47

Figure 4.1 Laser printer represented as a Manageable Resource 49

Figure 4.2 WSDL document fragment 52

Figure 4.3 Resource Properties Schema Document fragment 52

Figure 4.4 Resource Metadata Descriptor document fragment 53

Figure 4.5 WSDM Manageable Resource breakdown 53

Figure 4.6 Low-end to high-end manageability 58

Figure 4.7 ACME simulation architecture 63

Figure 4.8 Initial state of simulated servers 65

Figure 4.9 Simulated client after device discovery 66

Figure 4.10 Simulated client with data projector context profile 67

Figure 4.11 Simulated client with data projector device-specific properties 68

Figure 4.12 Data projector device state 69

Figure 4.13 Simulated client with notification pop-up 70

Figure 4.14 Smart thermostat proxy provider selection dialog box 71

Figure 4.15 Laser printer status after receiving context profile 72

Figure 4.16 Smart thermostat status after sending context profile 72

Figure 4.17 Simulated client after successful proxied profile retrieval 73

Figure 4.18 Smart thermostat before lease renewal 74

Figure 4.19 Smart thermostat after lease renewal 74

Figure 4.20 Laser printer status after smart thermostat lease expiry 75

x

Figure 4.21 Simulated client status after smart thermostat lease expiry 75

Figure 4.22 Laser printer status before smart thermostat profile deletion 76

Figure 4.23 Laser printer status after smart thermostat profile deletion 76

Figure A.1 ComputerScienceBuilding floor plan 87

xi

Glossary of Acronyms

ACME Adaptable Context-Managed Environment

ACMF Adaptable Context-Management Framework

CoBrA Context Broker Architecture

CME Context Managed Environment

CSB Computer Science Building

GED Global Element Declaration

HTTP Hypertext Transfer Protocol

J2EE Java 2 Platform, Enterprise Edition

J2ME Java 2 Platform, Micro Edition

MANET Mobile Ad-Hoc Network

mDNS Multicast Domain Name System

OASIS Organization for the Advancement of Structured Information

 Standards

OSGi Open Services Gateway initiative (name now obsolete)

OWL Web Ontology Language

OSI Model Open Systems Interconnection Basic Reference Model

RMD Resource Metadata Descriptor

RPSD Resource Properties Schema Document

SOAP Simple Object Access Protocol

SOUPA Standard Ontology for Ubiquitous and Pervasive Applications

TCP/IP Transmission Control Protocol / Internet Protocol

URI Universal Resource Identifier

xii

Wi-Fi Wireless Fidelity

WSDL Web Services Description Language

WSDM Web Services Distributed Management

XML Extensible Markup Language

XSD XML Schema Document

Zeroconf Zero Configuration Networking

xiii

Chapter 1

Introduction

 Mark Weiser, a well-known pioneer in pervasive (or ubiquitous) computing [26],

described pervasive computing as the third wave (or era) of computing, with the first

wave being the mainframe era, and the second wave being the PC era [28]. He described

pervasive computing as a state where devices are so pervasive and critical to our

activities that they are taken for granted and effectively disappear into the background

[29].

 Weiser predicted that the crossover point between the PC era and pervasive

computing era would occur sometime between 2005-2020 [28]. We are currently in a

state of transition between these two eras. It is only recently that technological advances

have produced devices small and sophisticated enough to provide the necessary hardware

infrastructure for creating pervasive environments.

 Given that the hardware is now available, our attention turns to software and the

issue of what differentiates ordinary computing devices from pervasive devices. In

general terms, a pervasive device has the ability to process and share information about

itself and its surrounding environment, that is, to be context-aware. This context-

awareness acts as a cushion between the technology and the user which allows us to

interact with devices in a more intuitive way.

1

Context has a variety of definitions in the pervasive computing literature (Chen &

Kotz [7], daCosta, Yamin & Geyer [13], Strang & Linnhoff-Popien [27]). Dey [15]

describes context as information that can be used to characterize the situation of an entity,

where an entity can be a person, location or object relevant to the interaction between a

user and an application. Following from this definition, we can say that a system or

application is context-aware if it uses context to provide information or services relevant

to the user’s task.

 For instance, a smart thermostat’s context information should include details

about its location, functionality, and information on how to access its temperature

controls. Upon entering the vicinity of a context-aware thermostat, a context-aware PDA

would be able to detect its presence, determine that it is a smart thermostat, and obtain

information on how to access and manipulate the current room temperature.

1.1 Motivation

 In order to achieve context-awareness in pervasive computing environments, there

must be some means of managing the context information. While various context

management solutions such as CoBrA [8] and PersonisAD [5] have been proposed, a

standardized solution has not been successfully established. A standardized solution is

necessary in order to facilitate compatibility between different hardware manufacturers

and application providers. Standardized device hardware and communication

infrastructures are rapidly becoming commonplace; that is, devices can currently discover

and communicate with one another using established communications standards.

2

However, high-level information exchange is still mostly proprietary and application-

specific. A context-management framework is needed in order to solve this problem.

 For instance, a PDA and smart thermostat can establish a wireless connection

using Wi-Fi, and exchange data using the TCP/IP communications protocol. However, at

the application level, there is no standard interface and a proprietary interface is often

implemented instead. This interface may not even include a context-management

mechanism. For example, Proliphix Inc. offers thermostats featuring “an embedded Web

server with advanced IP networking technology and a browser-based Graphical User

Interface (GUI)” [25]. With implementations of this type, there is no context-awareness,

which forces users to access devices manually through proprietary interfaces.

 These types of interfaces lead to scenarios where different devices exchange

information in different ways. In contrast, a context-management framework adds

structure to application-level communication, and enables context-awareness across all

devices.

1.2 Problem

 Devices in pervasive environments must be able to interact with only minimal

human assistance. They must be able to autonomously connect and exchange information

with each other. As mentioned previously, devices can currently connect using existing

communications standards such as Wi-Fi and Bluetooth and are able to exchange data

using protocols such as TCP/IP. The problem is that devices are currently unable to

adaptively exchange information relevant to their context.

3

 An adaptable, standards-based context-management framework is needed in order

to help realize the pervasive computing paradigm. A proprietary design may produce an

excellent framework that does its job very well, but without standards its usefulness is

limited to the devices produced by a single manufacturer or use cases conceived by an

individual developer.

 Consider the following two scenarios, which are based on the smart thermostat

example. In the first scenario, the thermostat has no context-management framework. The

thermostat therefore has no explicit way of sharing context information with the outside

world. Thus, another device such as a PDA may be able to detect that there is a device

nearby but cannot ascertain its purpose or function. In this situation, the onus is on the

user to determine that the nearby device is in fact a smart thermostat and how to access it

through the PDA. This requires that the user have some prior knowledge about the

existence of the smart thermostat and how it is accessed (through a Web interface, for

example).

 In the second scenario, the thermostat incorporates a context-management

framework which enables it to store and share context information about itself. This

allows other devices, such as nearby PDAs, to ascertain the thermostat’s purpose, current

state, and available functions. As shown in Figure 1.1, both the thermostat and PDA have

context information associated with them. In this situation, the user does not require any

prior knowledge about the thermostat, or even awareness of its existence. The

information exchange between devices takes place autonomously, in the background, and

without the need for user assistance. Should the user wish to adjust the temperature, the

4

PDA can provide access to the thermostat’s functions in a standard way which is also

facilitated through the context-management framework.

 DeviceType: PDA
Owner: Jared Zebedee
Location: Conference Room
HasDisplayScreen: true

AvailableFunctions:
DataQuery
FileTransfer

DeviceType: Smart Thermostat
Owner: Queen’s University
Location: Conference Room
HasDisplayScreen: true

AvailableFunctions:
GetTemperature
SetTemperature

Figure 1.1 Pair of context-aware devices

1.3 Research Statement

 The goal of this research is to investigate an adaptable context-management

framework (ACMF) to support context-awareness in pervasive computing environments.

We propose a framework that intelligently integrates several existing technologies and

standards. The motivation is to create a model that is easy to understand and can be used

across disparate devices, software platforms and physical environments.

5

 We recognize that security and privacy are important considerations in pervasive

environments. However, we do not address these issues in our framework because our

objective is to demonstrate enabling context-awareness. We feel that incorporating

security falls outside the scope of this research and such an attempt would result in an

insufficient treatment of the subject. Instead, our framework focuses on adaptability and

can later be extended in order to address the issues of security and privacy.

 To demonstrate our framework we present a simulated pervasive environment

which incorporates a device discovery and communication mechanism, a simple context

model, a set of context-exchange protocols and a middleware platform.

 The device discovery and communication mechanism enables devices to see each

other and exchange raw data. We assume that pervasive devices support TCP/IP which

handles communication below the application layer of the OSI model [18]. We simulate a

self-configuring TCP/IP network, and therefore assume that some form of ad-hoc

networking is used, such as Zeroconf (Zero Configuration Networking) [10]. Zeroconf

provides DNS (Domain Name System) service discovery [11] which is one method of

enabling devices using TCP/IP to see each other on the network.

 The context model consists of an inheritance hierarchy which incorporates a

master ontology and guidelines for specifying device properties. Devices within the

pervasive environment must follow the context model and derive their context properties

from the master ontology. For this research, we have created a sample master ontology

containing definitions of devices and elements that are likely to be encountered in an

academic environment. The range of devices that the framework can support is limited

only by the scope of the master ontology (which can be expanded to suit any environment

6

or scenario). The context model also defines how context information is exchanged

between devices.

 The middleware platform consists of the software and logic necessary to

implement the context model, and handles all device communication at the OSI

application layer. For this we have selected WSDM (Web Services Distributed

Management) [19] technology, an interoperability standard that facilitates distributed

management of resources. This turns out to be an excellent fit for device context

management. Our context-management framework treats each pervasive device as a

WSDM “Resource” that can be remotely managed.

1.4 Thesis Organization

 The remainder of the dissertation is organized as follows. Chapter 2 provides an

overview of pervasive computing in general, and discusses related work in the areas of

context, context management, and ad-hoc networking. Chapter 3 describes our ACMF in

detail. Chapter 4 discusses the WSDM standard and how the Apache Muse middleware

platform was used to implement our ACMF. An overall summary is presented in Chapter

5 along with a discussion of future work.

7

Chapter 2

Background and Related Work

 This chapter is divided into three sections. The first section (2.1) provides

background in the area of pervasive computing, and discusses the role of context-

awareness in pervasive computing environments. Section 2.2 examines two existing

context-management frameworks and an ontology model. Finally, Section 2.3 presents

two existing technologies relating to ad-hoc networking and device discovery.

2.1 Pervasive Computing and Context-Awareness

 In contrast to traditional desktop computing, where a user deliberately interacts

with a single device for a specific purpose, someone engaged in pervasive computing

interacts with one or more computing devices in their surrounding environment without

needing prior instruction on how to operate them or, in some cases, without even

realizing that the interactions are occurring.

 Context-awareness is a key prerequisite to achieving pervasive computing.

Context-aware devices have the ability to store, process and disseminate information

about themselves and their environment. This ability allows devices to infer their own

capabilities, purpose, operating state and environmental circumstances, which in turn

reduces the need for human attention and involvement in operating them. In a context-

aware environment, computing devices are able to sense and respond to their users’ needs

automatically.

8

2.2 Context Management

 In order to achieve context-awareness, there must be some mechanism to manage

the context information. At the device level, we call this a context manager. In the

broader scope of managing context across a pervasive computing environment, the term

“context-management framework” is used.

 A context-management framework is typically made up of a context model and a

context manager middleware. A context model provides the overall framework structure,

and a context manager middleware is software which implements the model (using

communications protocols that specify how interactions take place between devices).

Each environment which implements a context-management framework must also define

an ontology which provides a shared vocabulary for all devices using the framework.

 Anagnostopoulos, Tsounis and Hadjiefthymiades [2] focus on the use of

ontologies for describing the communication schemes between entities in pervasive

computing environments. They are similar to our approach in that entities exchange data

and semantics to allow the interactions. Their model is, however, not implemented.

Christopoulou, Goumopoulos and Kameas [12] describe an ontology-based

system for context modeling, management and reasoning. It is intended to be used in

building context-aware applications. Their work focuses on the rule engine used in the

system. Our work differs in that we concentrate on providing a standardized framwork to

discover, store and exchange contexts.

Da Rocha and Endler (2005) [14] are concerned with the efficient evolution of the

context model and dealing with the heterogeneity of pervasive computing environments.

Their approach, like our own, identifies roles (context provider, context consumer and

9

context service) in their model. It also uses event-based communication which is similar

to the WSDM notifications employed in our implementation. A key difference is that our

work is based on accepted standards while da Rocha and Endler implement their context

management on a non-standard research prototype.

 The remainder of this section examines some existing work in the area of context

management. The CoBrA [8] and PersonisAD [5] context-management frameworks and

the Delivery Context Ontology [31] are discussed.

2.2.1 CoBrA (Context Broker Architecture)

 CoBrA is a context-management framework that was developed in 2004 by Dr.

Harry Chen as part of his PhD research at the University of Maryland, Baltimore County

[8]. CoBrA uses a centralized approach to managing context and incorporates a collection

of intelligent software agents as its context manager middleware. A principal component

of CoBrA is the “context broker” agent which acts as a hub, providing a shared context

model and disseminating context information among all devices and agents in its

environment. While the broker approach provides a consistent context model, it also

creates a server-centric architecture, where devices in the environment must rely on a

centralized server in order to achieve pervasive functionality.

 CoBrA agents follow the FIPA (Foundation for Intelligent Physical Agents)

Agent Management Specification [17] as a standardized means of communication. As

Figure 2.1 illustrates, communication between devices is facilitated by their respective

agents, as well as the central context broker agent. Communication between agents takes

place using the FIPA ACL (Agent Communication Language).

10

Figure 2.1 CoBrA Agent Communication Model [8]

 CoBrA uses OWL (Web Ontology Language) to define its ontologies for

representing context and modeling. The main ontology associated with CoBrA is SOUPA

(Standard Ontology for Ubiquitous and Pervasive Applications). SOUPA [9] is a

comprehensive ontology expressed using the Web Ontology Language (OWL), which is

based on XML. It is made up of “modular component vocabularies that represent

intelligent agents with associated beliefs, desires, and intentions, time, space, actions and

events, user profiles, actions, and policies for security and privacy.”

 As shown in Figure 2.2, SOUPA includes a collection of ontology documents and

their interrelationships. The ontology documents are divided into two sets, SOUPA Core

and SOUPA Extension. Each document declares the vocabulary for a specific entity such

as an agent, device or person.

11

Figure 2.2 SOUPA [9]

 CoBrA uses a server-centric architecture requiring context broker servers,

whereas our framework does not require any sort of dedicated servers. SOUPA defines a

large and complex vocabulary spanning a wide range of entities including people, space

and time, geography, policies, locations and several others. Our ontology model uses a

simpler, lightweight approach which allows ontologies to be built to suit their

environments while avoiding the large vocabulary and complex interrelationships found

in SOUPA.

2.2.2 PersonisAD

The PersonisAD [5] (Distributed, Active, Scrutable Model Framework for

Context-Aware Services) framework is built on a consistent mechanism for scrutable

modeling of people, sensors, devices and places.

12

 The framework includes a context model and a set of operations which facilitate

application-model interaction (illustrated in Figure 2.3).

Figure 2.3 PersonisAD interaction between application and model [5]

The context model is organized as a tree containing context attributes

(components) of the entities being represented. The general mechanism of PersonisAD is

to collect evidence, which is the data used to calculate or resolve component values.

Evidence for a location component might include data from GPS and RFID sensors, for

example. A GPS sensor would supply latitude/longitude coordinates while an RFID

sensor would provide building/room names. A resolver function consults evidence and

returns component values which can very depending on the type of request.

PersonisAD applications interact with the context model trees using a set of

simple operations including “tell”, “ask” and “notify”. The “tell” operation is used to

supply a model with evidence for a component. Applications use the “ask” operation to

retrieve component values which are generated by a resolver function using available

component evidence. The “notify” operation serves to notify applications when new

component evidence is added.

13

Context information is stored on “model servers” which PersonisAD applications

locate using Bonjour [4] service discovery. Communication between applications and

model servers uses JSON (JavaScript Object Notation) over HTTP. The interactions

between applications and model servers are illustrated in Figure 2.4.

Figure 2.4 PersonisAD interaction between application and model servers [5]

 PersonisAD applications use information from models combined with rules to

provide context-aware services. One such example is the MusicMix application built on

PersonisAD which selects and plays music according to the preferences of people

detected within a specified listening area. A pair of simplified user models is illustrated in

Figure 2.5. In this example, the MusicMix application would determine that Bob and

Alice are located in the ‘loungeRoom’ listening area and have a common music

preference of ‘track02.mp3’. The application could then adjust the playlist in the lounge

room to accommodate both Bob’s and Alice’s music preferences.

14

Figure 2.5 PersonisAD simplified user models [5]

 PersonisAD has the same general goal as our framework, namely context

management. Its focus, however, is different. PersonisAD focuses on the timeliness of

context information and uses a rule-based approach. It also models a wider range of

entities including people and locations. Our framework, on the other hand, focuses on

providing a flexible and adaptable context management scheme based on appropriate

standards. PersonisAD’s dependence on model servers is also server-centric (similar to

CoBrA’s context broker approach) whereas our framework is not.

2.2.3 Delivery Context Ontology

 The Delivery Context Ontology is a W3C Working Draft providing a “formal

model of the characteristics of the environment in which devices interact with the Web or

other services. [31]” The ontology is a class hierarchy formally specified in OWL (Web

Ontology Language) containing a large number of disjoint classes. Each class in the

ontology is associated with properties defined by a set of fields listed in Table 2.1.

Field Name Description
Name Formal name of the property
Type Type of the property (either Datatype or Object).
Description Description of the property
Restriction(s) Property restrictions, including cardinality and valid values.
Subproperty(ies) Subproperties of the property
Table 2.1 Delivery Context Ontology, Property Fields

15

 Each class in the ontology represents a specific entity-type such as device,

location or unit of measure. For example, the “Camera” class represents a camera device.

Its properties are listed in Table 2.2. Unfortunately, we had already completed our ACMF

(which incorporates its own ontology specification) when the Delivery Context Ontology

working draft was first published.

Property Name Description
aspectRatio Camera’s default aspect ratio
cameraEnabled Indicates whether camera is enabled
cameraResolution Rolution in pixels
imageFormatSupport Image formats supported
pixelAspectRatio Aspect ratio associated with a single pixel
videoFormatSupport Video formats supported
Table 2.2 Delivery Context Ontology Camera Class Properties

 The Delivery Context Ontology bears many similarities to our Domain Ontology

Specification (Section 2.2.3). The concept of a class hierarchy representing entities which

contain properties is apparent in both models. The fields used to represent properties

themselves are also very similar.

2.3 Ad-Hoc Networking and Device Communication

 An important aspect of pervasive computing is that devices have the ability to

discover and communicate with each other, without the need for an underlying network

infrastructure. This section discusses MANETs, followed by an overview of Zeroconf.

2.3.1 MANETs

 The term MANET refers to any network made up of mobile nodes that use a

wireless interface to exchange data without the need for an underlying network

infrastructure [6]. MANETs are critical to pervasive computing because devices must be

16

able to communicate with each other in varying environments, many of which will not be

equipped with the hardware necessary to supply a network infrastructure. For example,

two users walking down the street may wish to exchange contact information using their

PDAs. These users should not have to rely on the presence of a network infrastructure to

perform a simple data exchange between their devices.

 An important aspect of MANET is its ability to adaptively form networks based

on available hardware capabilities and user requirements. For example, consider a user

who has a PDA with Bluetooth and a notebook computer with Bluetooth and Wi-Fi. She

wishes to download a file to her PDA from a colleague’s PDA that is only equipped with

Wi-Fi. Using MANET technology, a network is spontaneously formed between the three

devices. As depicted in Figure 2.6, the PDAs can communicate with each other using the

notebook computer as a waypoint (note the absence of a router).

Waypoint

Bluetooth

Figure 2.6 Simple MANET example

 Another important aspect of MANET is that these network configuration details

are invisible at the application layer. In this example, the file transfer application would

see all devices on the network the same way, regardless of their interface type.

17

2.3.2 Zeroconf

 Zeroconf is a set of techniques used to create usable IP networks without

 the end-user by taking care of all the

n unused address is found. Since Zeroconf is designed for small ad-hoc networks

configuration or special servers” [10]. This is really a specific type of ad-hoc network

that utilizes the TCP/IP protocol. Using Zeroconf with Wi-Fi or other wireless standards

such as Bluetooth, it is possible to create MANETs.

 Zeroconf greatly simplifies networking for

background details, which is a goal consistent with the pervasive computing paradigm. It

is made up of a combination of three technologies, namely link-local addressing,

Multicast DNS, and DNS Service Discovery [11].

 Link-local addressing allows devices to select their own IP address without the

need for a DHCP server. An IP address is chosen at random in the range between

169.254.1.0 to 169.254.254.255 (providing a total of 65,024 possible addresses). The

address is then tested on the network to ensure that it is not in already in use. If the

address is already taken, then another random IP address is chosen. The process repeats

until a

where fewer than 2% of the available IP addresses have been assigned, the link-local

addressing method usually succeeds in obtaining an IP address within the first one or two

tries.

 Multicast DNS (mDNS) allows devices to specify their own unique name without

the need for a DNS server. While link-local addressing is a good first step, human users

prefer to use names rather than numeric addresses when referring to computers and

devices. Multicast DNS lets device owners specify a unique name that maps to their

device’s IP address. Even if the IP address changes, the mDNS name remains the same.

18

Multicast DNS functions similarly to standard DNS, with some important differences.

Instead of relying on centralized DNS name servers, mDNS shares the responsibility

across all devices on the network. Upon entering the network, an mDNS enabled device

ce with one IP address and unique name may offer one or more

rvice

ial things: Allocate IP addresses without a DHCP

server, translate between names and addresses without a DNS server, and locate or

advertise services without using a directory server. Bonjour is currently available on both

Macintosh and Windows platforms.

probes the system to ensure its name is unique, then announces itself by multicasting its

mDNS information. Multicast DNS names typically use the top-level domain name

“.local” in order to distinguish themselves from standard DNS names.

 DNS Service Discovery rounds out the Zeroconf technology suite by providing a

distributed service discovery mechanism. This is the mechanism that allows users (or

devices) to discover what services are available on the network without having any prior

knowledge of them (in terms of names, IP addresses, or other such information). An

important distinction is that DNS Service Discovery identifies services, rather than

devices. A single devi

se s. This service-based approach offers greater flexibility than would simply being

able to discover devices, since users are more interested in what a device can do for them

than technical details.

 Apple Inc. has developed a Zeroconf implementation known as Bonjour [4],

which enables automatic discovery of devices on IP networks. Bonjour ensures that

devices are able to do three essent

19

Chapter 3

Adaptable Context-Management

Framework

 In this chapter we discuss our Adaptable Context-Management Framework

(ACMF) and how it serves as a foundation for creating context-managed environments

(CMEs). An adaptable context management system is able to automatically adjust to

changes in its environment, for instance users disconnecting and reconnecting to the

pervasive environment or a user moving around within the environment. An adaptable

context management system supports context-awareness through the automatic discovery

of changes in the environment and enhances usability by insulating users from the

changes by automatically adjusting to them. An adaptable context management system is

able to distribute processing and communication tasks based on device capability levels,

for instance allowing more powerful devices to act as proxies for limited devices.

We envision a CME as a physical space (domain) containing one or more discrete

smaller spaces (regions) where various context-aware electronic devices may move about

freely and interact with one-another in useful ways while requiring minimal conscious

human effort. Devices within a CME must have some means of storing and sharing

context information.

 Our framework consists of an entity specification which provides a logical

representation of physical spaces and devices, a context model which provides a

20

specification for storing context information, and context-exchange protocols which

specify how context information is exchanged between devices. The framework’s

components are illustrated in Figure 3.1.

Entity
Specification

Context Model

Adaptable
Context-Management

Framework

Domain Region Device-
type

Device
Context Profile

Domain
Ontology

Context-exchange
Protocols

Local Context
Service

Context Proxy
Service

Figure 3.1 Adaptable Context-Management Framework

Figure 3.2 illustrates how the framework’s components fit together, showing two

physical devices that have context profiles corresponding to a common domain ontology.

A middleware platform serves as the mechanism for implementing context-exchange

protocols.

21

Context-Exchange
Protocols

Device Context Profile

Physical
Device 1

Domain-
Specific

Properties

Device-
Specific

Properties

Middleware
Platform

Domain
Ontology

Device Context Profile

Physical
Device 2

Domain-
Specific

Properties

Device-
Specific

Properties

Middleware
Platform

Corresponds to Corresponds to

Figure 3.2 ACMF components

3.1 Entity Specification

 The entity specification defines three types of entities (domain, region and device-

type) that are used to logically represent physical spaces and devices. A CME must

consist of exactly one domain, a set of one or more regions and a set of one or more

device-types. A domain is a logical representation of a physical space (such as a building)

containing regions and device-types. Each region represents a discrete physical space that

exists within a domain (such as a room in a building) and each device-type represents a

specific type of device (such as a laser printer) that at any point in time resides in a region

within the domain.

 We portray our framework using an example called the Computer Science

Building (CSB) scenario. In this scenario we use the entity specification to represent a

university computer science building. The domain represents the building itself, with

regions representing its rooms and device-types representing the types of devices that can

be found within the building. The CSB scenario’s entities are listed in Table 3.1. Entities

22

are used when creating a domain ontology and device context profiles as discussed in the

following section.

Entity Type Name(s)
Domain Computer Science Building
Region Conference Room

Lecture Hall
Main Office
Lab

Device-type Data Projector
Laser Printer
PDA
Smart Thermostat

 Table 3.1 Computer Science Building CME Entity List

3.2 Context Model

The context model consists of a domain ontology specification and a device

context profile specification which together provide a way to specify the context of the

entities in a CME.

A domain ontology specifies a single CME (domain) in terms of its regions and

device-types. A device context profile is a collection of properties that describe a

particular device’s contextual state. Devices within a domain use context profiles to share

their context information with one another. Each device must have a context profile

schema (device schema) from which it generates its context profile. Each device schema

must in turn be based on a domain ontology.

The context model is illustrated in Figure 3.3 which shows how a domain

ontology represents a physical space while a device context profile represents a physical

device. It also illustrates the relationships between a domain ontology schema, domain

23

ontology, device schema, and device context profile. The remainder of this section

describes how domain ontologies and device context profiles are specified.

Domain Ontology

Physical
Space

Regions Device-
types

Domain Ontology
Schema

Device Context Profile

Physical
Device

Domain-
Wide

Properties

Device-
Specific

Properties

Device
Schema

Derived
from

Instance of Instance of

Figure 3.3 Context model

3.2.1 Domain Ontology Specification

Domain ontologies provide a common vocabulary and semantic structure to be

used by all devices within a CME (domain). They are defined as XML instance

documents. The framework includes a master domain ontology schema (included in

Appendix A) which can be used to create domain ontologies. A domain ontology

explicitly defines a domain, which contains a set of one or more regions and a set of one

or more device-types. Domains and regions are specified as simpleType XML Elements

of type “string”. Device-types are more complex, each having a unique name and a set of

properties. The framework’s master domain ontology schema is illustrated in Figure 3.4

using Altova XMLSpy Content Model View [1].

24

Figure 3.4 Master domain ontology schema

The “Domain” Element specifies the domain being described, and should be

given a name that appropriately reflects it (e.g. “ComputerScienceBuilding”). The

“Region” Element specifies the region(s) that exist within the domain being described.

The ”DeviceType” Element represents the possible device-type(s) that may exist within

the domain being described. It contains an XML “name” attribute representing the

device-type’s name and a set of additional “Property” elements representing its

properties. Each Property Element in turn contains a set of attributes which contain

property-specific parameters. Each Property must include a “name”, “dataType”, and

“mutable” parameter. The remaining parameters are optional (as shown by the dotted

outline). These parameters are used to qualify each property and are listed in Table 3.2.

They are explicitly declared in the domain ontology schema found in Appendix A.

Whenever an optional parameter is omitted, its default value is assumed.

25

Parameter
Name

Type Description Allowed
Values

Req’
d

Default
Value

name string Name of the property {any} Yes n/a
dataType property

Type
The property’s data
type

“boolean”,
“integer”,
“string”

Yes n/a

mutable boolean Indicates whether the
property’s value may
change over time

“true”, “false” Yes n/a

ValidInteger-
Values

integer-
List

Provides a set of
allowable integer
values to constrain
the property

{any} No {}

ValidString-
Values

string-
List

Provides a set of
allowable string
values to constrain
the property

{any} No {}

subscribable boolean Indicates whether the
property supports
notifications1

“true”,”false”

No “false”

minOccurrence nonNeg
ativeInte
ger

Minimum number
Of instances (values)

{integer >= 0} No 1

maxOccurrence allNNI Maximum number
Of instances (values)

{integer >= 1},
“unbounded”

No 1

Table 3.2 Device-type Property Parameters

All domain ontologies must include the “PervasiveDevice” device-type which

contains domain-wide properties (properties common to all devices within a domain).

Furthermore, this device-type must include the “DeviceType” and “Location” properties

which are respectively constrained to the domain’s available device-types and regions

using the “ValidStringValues” parameter. All other device-types should contain device-

specific properties (properties unique to a specific device-type). Each device-type (other

than “PervasiveDevice”) is a collection of the properties necessary to represent one

specific type of physical device (such as a laser printer).

1 Notifications are discussed in Section 3.3.3.

26

Our CSB scenario includes the “ComputerScienceBuilding” ontology which

defines the “ComputerScienceBuilding” domain along with its regions, the required

“PervasiveDevice” device-type as well as the scenario’s four available device-types.

Tables 3.3 and 3.4 list the “PervasiveDevice” and “LaserPrinter” device-types’ properties

and their parameters. The complete “ComputerScienceBuilding” ontology XML instance

document is included in Appendix A.

Property Name Parameters
UniqueName dataType=”string”, mutable=”false”
DeviceType dataType=”string”, mutable=”false”,

ValidStringValues=”Data_Projector Laser_Printer PDA
Smart_Thermostat”

Owner dataType=”string”, mutable=”true”
Location dataType=”string”, subscribable=”true”, mutable=”true”

ValidStringValues=”Conference_Room Lecture_Hall Main_Office
Lab”

HasDisplayScreen dataType=”boolean”,mutable=”false”
Table 3.3 CSB Scenario PervasiveDevice Device-Type Properties

Property Name Parameters
CanPrintInColour dataType=”boolean”, mutable=”false”
IsOnline dataType=”boolean”, mutable=”true”
PaperRemaining dataType=”integer”, mutable=”true”
Table 3.4 CSB Scenario LaserPrinter Device-Type Properties

 Each ontology document should be accompanied by a prose description document

in order to help clarify domain semantics. For example, the “ComputerScienceBuilding”

ontology does not describe the semantics behind the “ValidStringValues” specified for

the “Location” property (nor would it be appropriate). In this case we have included a

prose description document in Appendix A which contains a floor plan of the building

depicting the room locations and their corresponding “Location” property values.

27

3.2.2 Device Context Profile Specification

A device context profile is a collection of property values that describes a

device’s contextual state. In order to generate a context profile, a device must have a

corresponding context profile schema (device schema). Domain ontologies contain the

property names and parameter information that is used to create device schemas.

Device Schema Specification

A device schema must correspond to a domain ontology and can only be used

within the domain defined by that ontology. Devices may have schemas for multiple

domains and upon moving between domains must switch schemas accordingly. If a

device has no schema for a particular domain, it simply disables its context-management

features. Domain determination occurs through some implementation-specific means

(using RFID room tags, for example). In the simplest cases such as with the CSB

scenario, devices are designed to be used in a single domain and therefore have only one

device schema and no means of domain-detection.

A device schema defines a collection of domain-wide and device-specific

properties which is a subset of those contained in the corresponding domain ontology.

Each device schema forms a class hierarchy. The top level (root node) is a type defining

the entity being described and must be named “Device”. The “Device” node contains a

set of types which represent the device-types found in the corresponding ontology.

Device-types are declared as GEDs (global element declarations) in XML Schema, and

device properties as XML child elements within the type definitions of the GEDs. Each

device property element includes values for the property parameters introduced in

Section 3.2.1.

28

Device Schema Derivation

 Device schemas are derived from domain ontologies according to the following

mapping. Each “DeviceType” Element in an ontology maps to an element declaration

representing a device-type in the corresponding device schema, according to the

following rules:

 1. The element must be a Global Element Declaration (GED).

 2. The value of the element’s “name” attribute must correspond to the “name”

attribute of the DeviceType Element.

 3. The element must be declared as a complex type consisting of an XML Schema

sequence. It is sufficient that the complex type be defined as a local, anonymous type on

the element.

 The “PervasiveDevice” device-type is required and must be mapped to all device

schemas. All other device-types are optional and should be mapped based on which

properties will be supported by the device for which a schema is being created.

 Each ontology “Property” Element maps to an element declaration representing a

device property in the device schema, according to the following rules:

 1. The element must be declared as a child of the element which represents its

device-type (this is why elements representing device-types must be declared as complex

types as stated in rule #3 above).

 2. The value of the element’s “name” attribute must correspond to the "name”

attribute of the Property Element.

 For example, each “Property” Element which is part of the “PervasiveDevice”

DeviceType in the ontology must appear as a child of the “PervasiveDevice” element in

29

the device schema. Each “Property” Element contains a set of Attributes which map to

attributes in the corresponding schema element declaration. The mapping of “Property”

Element Attribute values is listed in Table 3.5 and an example mapping of a

“DeviceType” and “Property” from an ontology to a device schema follows in Figure 3.5.

Ontology “Property” Element Attribute Corresponding Schema
element attribute

name name
dataType type
mutable meta:mutable
subscribable meta:subscribable
ValidStringValues meta:ValidStringValues
ValidIntegerValues meta:ValidIntegerValues
Table 3.5 Mapping of “Property” Element Attribute Values

Figure 3.5 Example mapping from ontology to device schema

Ontology “DeviceType” and “Property” Elements

<DeviceType name=”PervasiveDevice”>
 <Property name="Location" dataType="string" meta:subscribable="true"
meta:mutable="true" meta:ValidStringValues="Conference_Room Lecture_Hall Main_Office
Lab"/>
</DeviceType>

Corresponding Device Schema Declarations

<xs:element name=”PervasiveDevice”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”Location” type=”xs:string” meta:mutable=”true”
 meta:subscribable=”true” meta:ValidStringValues=”Conference_Room Lecture_Hall
Main_Office Lab”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Figure 3.6 illustrates an example device schema for the CSB scenario’s Laser

Printer device, shown using Altova XMLSpy Content Model View [1]. The complete

device schema document and a sample corresponding instance document are included in

Appendix A.

30

Figure 3.6 Laser printer device schema

3.3 Context-Exchange Protocols

 This section presents a set of protocols which govern how context information is

exchanged between devices in CMEs. CMEs must mandate some form of MANET as

discussed in Section 2.3.2. Each environment must also provide a master ontology as

described in Section 3.2.1.

3.3.1 Device Roles

Devices must support either a server or client role, or a combination of both. The

server role defines the elements necessary for a device to share its context information,

while the client role defines the elements necessary for a device to access the context

information of other devices.

31

Devices supporting the server role must provide a device schema conforming to

the context model specification described in Section 3.2.2. The device schema must be

derived from an ontology which corresponds to the environment in which that device will

be used. The device must also advertise its universal resource identifier (URI) using

whatever MANET implementation the environment supports. The URI is a unique

identifier used to locate a specific device or service on the network. For example, in an

environment supporting Zeroconf the URI would be advertised using DNS service

discovery. Each device supporting the client role must support the MANET protocol

mandated by its intended operating environment. All device interactions are client-

initiated, with the exception of notifications which are server-initiated.

3.3.2 Device Interaction States

From the client role perspective, devices move through a four-state “Interaction”

sequence. These states are “Initialized”, “Device Aware”, “Context Aware” and

“Interacting” which are illustrated using a UML State Diagram in Figure 3.7.

Interact with
Selected Device

Select Device for
Interaction

Acquire Device
Schemas and

Context
Profiles

Discover Nearby
Devices

Enter
Region

Initialized Device
Aware

Context
Aware Interacting Leave

Region

Figure 3.7 Device interaction state sequence diagram

32

In addition to the “Interaction” state sequence, devices concurrently maintain a

“Subscription” state sequence corresponding to whether they are actively listening for

property change notification messages (defined later in this section). The two

subscription states are “Subscribed” and “Not Subscribed”. These states are illustrated

using a UML state diagram in Figure 3.8.

Stop Listening for
Notification Messages

Subscribe to a Property
and Start Listening

Not
Subscribed

Subscribed
(Listening)

Receive Notification
Message

Figure 3.8 Device subscription state diagram

3.3.3 Local Context Service

The transitions in the device interaction state sequence depend on a set of

functions which are listed in Table 3.6. Together these state transitions and functions

form the local context service which enables a device to share its context information.

Any device supporting the server role correspondingly supports the local context service.

In this section we discuss how the local context service functions are used in each of the

transitions between device interaction states.

Function Parameters Description
Discover None Retrieve device URI
Request device schema None Retrieve device schema
Request properties Property name(s) Retrieve property value(s)
Subscribe to property Property name Receive notifications when property

value(s) change
Table 3.6 Local Context Service Functions

33

1. Device Discovery

The first step in the device interaction process is device discovery, where a client

retrieves the URIs of all devices within its wireless range. Devices located in the same

region as well as devices in other regions may be detected during this step. Devices not

supporting the server role may also be detected but will not provide a URI and are thus

ignored. Figure 3.9 is a standard UML sequence diagram illustrating a scenario where a

PDA (client) discovers a nearby Laser Printer (server).

PDA
(client)

Laser_Printer
(server)

Discover

Laser_Printer URI

Figure 3.9 Device discovery process

2. Device Schema and Context Profile Acquisition

Following device discovery, a client typically retrieves device schema and context

profile information from newly discovered devices. Device schemas are used to interpret

device context profile information. This approach allows devices to interact even in cases

where the client does not have access to the domain ontology. Using the device schema

information, the client issues a request to retrieve the values of all properties that

comprise the context profile. It is not necessary to retrieve all of the properties; this

flexibility allows clients to retrieve as little or as much information from other devices as

desired.

34

Figure 3.10 is a UML sequence diagram illustrating how the PDA in our scenario

retrieves device schema and context profile information from the laser printer.

PDA
(client)

Laser_Printer
(server)

Request Device Schema

Device Schema Document

Request Properties ({Property List})

Context Profile
({Requested Property Values})

Figure 3.10 Device schema and context profile acquisition

The context profile data retrieved by the client in this scenario is listed in Table 3.7.

Property Name Value
UniqueName Conference_Room_Printer
DeviceType Laser_Printer
Owner IT_Department
Location Conference_Room
HasDisplayScreen True
CanPrintInColour False
IsOnline True
PaperRemaining 506
Table 3.7 Laser Printer Context Profile

3. Device Selection

 Upon obtaining the context profiles of nearby devices, the client typically

analyses the context information in order to select a desired device with which to interact.

Of particular importance is the “Location” property which indicates a device’s current

35

region. A client will typically only be interested in devices located within the same region

and can thus ignore detected devices in other regions.

 While our protocols specify the exchange of device schema and context profile

information, the mechanism for device selection is left as an implementation decision at

the device level. This allows the greatest amount of flexibility as device selection criteria

will vary depending on the device. For example, the needs of a stationary Desktop PC

will differ significantly from those of a PDA. In some cases device selection will be user-

delegated.

For example, in our CSB scenario the PDA (client) has been programmed to

interact only with devices located in the same room (region), and to alert the user when

new devices become available (such as when entering a new room). Continuing the

scenario, a student picks up the PDA and walks into the conference room. Upon detecting

that it has entered that room (through some implementation-specific means), the PDA’s

user interface alerts the student that a new device is available, and hides any devices that

may have been present at the student’s previous location. Next, the student indicates that

she would like to interact with the Laser Printer, which completes the device selection

stage.

4. Device Interaction

At this stage a device has been selected and its device schema and context profile

have been retrieved. The client device may now proceed to interact directly with the

selected server device. Possible device interactions include additional property retrieval,

property subscription, and application-level interactions. We present a property retrieval

example followed by a property subscription example. Application-level interactions

36

(such as printing a document) are not strictly context-related but are included in the

following examples to help illustrate context-related interactions.

Property Retrieval

In this example the student has chosen to use her PDA to interact with a nearby

Laser Printer (as illustrated during the device selection stage). The student wishes to print

a large 500 page document. She issues a command to send her document to the Laser

Printer (an application-level interaction). The PDA retrieves the “PaperRemaining”

device-specific property value from the Laser Printer, and compares it with the size of the

student’s document. It turns out that someone has printed a document sometime after the

PDA first retrieved the Laser Printer’s context profile, and its “PaperRemaining” value

has decreased from 507 to 482. The PDA notifies the student with a dialogue box stating

that she must add more paper before her document can be printed. The student then

restocks the printer and instructs the PDA to proceed. The PDA checks the Laser

Printer’s “PaperRemaining” property a final time before sending the document to be

printed. These steps are illustrated in Figure 3.11 using a UML sequence diagram.

37

Laser Printer
(server)

Display
Dialog Box

Request Properties
(“PaperRemaining”)

(“1000”)

Request Properties
(“PaperRemaining”)

PDA
(client)

(“482”)

Print 500 Page
Document

Confirm Restocking
Of Printer Paper

Print Document
(Application-Level)

Figure 3.11 Device interaction example

Property Subscription

Property subscription allows a device to receive notification messages whenever a

specific property value changes. This is particularly useful when used with the

“Location” property because it enables a device to become aware of other devices’

movements between regions. Properties that support notification events are identified by

the “subscribed” parameter.

When subscribing to a property, the client must provide a URI specifying where

the notification messages should be sent. There must be a listener at that location which

will accept and process the notification messages. Subscription lifetime is left as an

implementation decision but for simplicity we recommend that a subscription should be

38

destroyed after one or more failed attempts to deliver a notification message to a client.

This simple policy is based on the assumption that failed delivery would indicate that

either the client device has left the environment or is no longer listening for notification

messages pertaining to the subscribed property. It is permissible to implement a more

robust subscription lifetime policy as needed.

In this example, the student wishes to receive notification messages whenever the

Laser Printer goes offline. She uses her PDA’s client interface to request a subscription.

The PDA must first retrieve the Laser Printer’s schema document to determine which of

its properties support notifications. Upon confirmation that the “IsOnline” parameter does

in fact support them, the PDA begins listening for the notifications, and sends a

subscription request to the Laser Printer, specifying the URI of the open port as the

subscription destination. Once the subscription is created, the Laser Printer sends

notification messages back to the PDA whenever the value of the “IsOnline” property

changes, as long as the PDA continues to accept them. If the PDA stops accepting the

messages, the Laser Printer destroys the subscription and stops sending the notification

messages. These steps are illustrated in Figure 3.12 (UML sequence diagram).

39

Laser Printer

(server)

Request Subscription
to “IsOnline” Property

Display Success
Message

Request Device Schema

PDA
(client)

Device Schema Document

Subscribe to property
“IsOnline

Accept

Create
Subscription

Display Notification
Message Notification Message

Reject
Destroy

Subscription

Confirm “IsOnline”
is Subscribable

Notification Message

Figure 3.12 Subscription example

3.3.4 Context Proxy Service

 The context proxy service enables a device to host and share the context

information of other devices. It is used in situations where devices are limited in terms of

resources such as storage, processing, bandwidth or battery power. A limited device can

submit a copy of its context profile to a more robust device which will in turn relay it to

other devices. The context proxy service works as an extension to the local context

service and any device supporting the former must also support the latter.

We introduce two additional device roles, the proxy provider role and the proxied

device role, in order to help specify the context proxy service. A device is a proxy

provider if it supports the context proxy service. All proxy providers are also servers

40

because they must support both the context proxy and local context services. A device is

a proxied device if it uses a proxy provider to host its context information. A proxied

device must still support the local context service but is able to conserve resources by

ignoring other devices’ discovery requests. State sequences representing the proxy

provider and proxied device roles respectively are shown in Figures 3.13 and 3.14.

Go OfflineGo Offline

Context Profile
Received Lease

Renewal
Request
Received Lease Expired / Delete Profile

Request Received

Initialize Not
Proxying

Proxying

Figure 3.13 Proxy provider state sequence

Renew
Lease

(Succeeds)

Renew Lease
(Fails)

Leave Region
(Delete Profile from

Proxy Provider)

Send Context
Profile to
Provider

Discover/Select
Proxy Provider

Enter
Region

Not
Proxied

Provider
Selected

Proxied

Figure 3.14 Proxied device state sequence

These state sequences depend on an extension to the device schema specification,

a set of context proxy service functions and a set of device interactions.

1. Device Schema Extension

The context proxy service uses an extended version of the device schema

specification which allows a proxy provider to piggyback/host the context profiles of

41

other devices alongside its own. The extension is specified as a device-type called

“ProxyProvider”. This device-type represents a logical/virtual entity (as opposed to a

physical device) which acts as a container for other devices’ context profiles. Any device

which acts as a proxy provider must include the “ProxyProvider” device-type in its

schema. Since device schemas must correspond to a domain ontology, all domains

allowing the use of proxy providers must include the “ProxyProvider” device-type in

their ontologies. The device schema for the Laser Printer introduced in the

“ComputerScienceBuilding” scenario is illustrated in Figure 3.15, extended to include the

“ProxyProvider” device-type.

Figure 3.15 LaserPrinter device schema with ProxyProvider

As with all other device-types, “ProxyProvider” is declared as an XML sequence.

It contains two XML Element declarations (“LeaseMinutes” and “AvailableSlots”) which

represent device properties, and an XML Sequence declaration (“ProxiedProfile”) which

represents the container that is used to manage the context profiles of proxied devices.

42

The “LeaseMinutes” property represents the minimum amount of time in minutes

that the proxy provider will guarantee to retain a proxied profile. If a proxied device does

not renew its lease within this time, the proxy provider may delete (discontinue hosting)

its copy of that device’s profile. “LeaseMinutes” should be set high enough to minimize

unnecessary lease renewals, yet low enough to ensure that lease expiry occurs within a

reasonable amount of time. A typical “LeaseMinutes” value would be 60 minutes.

The “AvailableSlots” property represents the number of profiles that the proxy

provider is currently willing to accept for hosting. A value of zero indicates that the proxy

provider is not accepting profiles.

Each instance of the “ProxiedProfile” sequence contains a single proxied context

profile. The sequence has a lower cardinality of zero and an unbounded upper cardinality

which means in schema terms that “ProxyProvider” may contain zero or more instances

of “ProxiedProfile” at any given time. “ProxiedProfile” in turn contains one property

declaration, “DeviceURI”, and one XML sequence declaration, “DeviceProperties”.

“DeviceProperties” represents the proxied profile itself, and “DeviceURI” represents the

URI of the device to which the profile belongs.

“DeviceProperties” contains a set of domain-wide properties which must match

those found in the proxy provider’s “PervasiveDevice” device-type declaration. These

properties are ultimately derived from the domain ontology as with all devices. Device-

specific properties are not included because they typically change more frequently and

are intended to be accessed directly rather than via proxy. Domain-wide properties

provide client devices with sufficient information to facilitate device selection. Since

domain-wide properties are not proxied, there is no need to proxy device schemas.

43

2. Context Proxy Service Functions

 The context proxy service includes three new device interaction functions which

are listed in Table 3.8. These functions facilitate the establishment, maintenance and

removal of context profiles stored on a proxy provider.

Function Parameters Description
Send Profile DeviceURI,

{ContextProfile}
Transfer URI and profile to
proxy provider

Renew Lease DeviceURI Request renewal of proxied
profile lease

Delete Profile DeviceURI Remove profile from proxy
provider

Table 3.8 Context Proxy Service Functions

3. Device Interactions

 The context proxy service involves two sets of interactions and a context profile

retention (lease) policy. The first set specifies the interactions between a proxied device

and proxy provider, including how a proxied device selects a proxy provider and uses it

to host its context profile. The second set specifies the interactions between a client

device and a proxy provider, including how a client device discovers proxied devices and

retrieves their context profiles. The context profile retention policy specifies proxy

provider requirements for retaining proxied device profiles.

Interactions between Proxied Device and Proxy Provider

 A proxied device must implement some means of discovering and selecting a

suitable proxy provider in order to satisfy cases where there is more than one proxy

provider available on the network. This is left as an implementation decision at the device

level. Typically the proxied device will use a selection algorithm to choose a proxy

provider after discovering all available devices and retrieving their schemas in order to

44

identify which ones support the “ProxyProvider” device-type. An example of a simple

algorithm is to select the first available proxy provider.

 Once a proxy provider has been selected, the proxied device must retrieve the

LeaseMinutes property to determine how often it will need to renew its lease, and the

“AvailableSlots” property to ensure that there is at least one slot available. The proxied

device must then transfer its context profile and periodically renew its lease with the

provider. Upon receiving a context profile, the proxy provider adds it to the

ProxiedProfile sequence as specified in the device schema extension. Before leaving a

region or going offline, a proxied device should remove its profile from the provider.

These steps are illustrated in Figure 3.16 and Figure 3.17 using a laser printer as the

proxy provider and a smart thermostat as the proxied device.

Smart_Thermostat
(proxied device)

Laser_Printer
(proxy provider)

Send Profile
({S.T. EPR}, {S.T. ContextProfile})

Select Laser_Printer
as proxy provider

Request Properties
(LeaseMinutes, AvailableSlots)

({LeaseMinutes}, {AvailableSlots})

Renew Lease
({S.T. EPR})

Wait t minutes where
t < LeaseMinutes

Confirmation of Profile Acceptance

Confirmation of Lease Renewal

Figure 3.16 Proxied context profile insertion and lease renewal

45

 Smart_Thermostat
(proxied device)

Laser_Printer
(proxy provider)

Delete Profile
({S.T. URI})

Confirmation of
Delete Request

Prepare to
go offline

Figure 3.17 Proxied context profile removal

Interactions between Client and Proxy Provider

 The process of discovering and acquiring the context profiles of proxied devices

is somewhat different than that of non-proxied devices. In order to ensure that proxied

devices are discovered, client devices interacting within a domain supporting the context

proxy service must include the following additional steps when performing device

schema and context profile acquisition as specified in Section 3.3.3.

 For each discovered device which includes the “ProxyProvider” device-type in its

schema, the client retrieves the ProxiedProfile sequence using the Request Properties

function. This proxy provider responds by returning any proxied context profiles it is

hosting as well as their associated device URIs. Figure 3.18 illustrates how a client

obtains proxied device URI and context profile information from a proxy provider.

46

PDA
(client)

Laser_Printer
(proxy provider)

Request Device Schema

Device Schema Document

Request Properties (ProxiedProfile)

({Proxied Device URIs
and Context Profiles})

Confirm that Laser_Printer
is a proxy provider

Figure 3.18 Proxied device URI and context profile acquisition

Context Profile Retention Policy

Under normal circumstances, a proxied device will request its proxied context

profile to be deleted before leaving a region or becoming unavailable. However, in the

event of a communication error or device failure, the proxy provider may never receive a

deletion request. The profile retention policy resolves this situation using a timed lease

technique.

A proxy provider must retain a proxied profile as long as it continues to receive

renewal requests from the appropriate proxied device, as long as the requests are received

within the amount of time specified by the “LeaseMinutes” property. If a proxy provider

does not receive an update request within the specified time, it may assume that the

proxied device has either become unavailable or no longer requires its services. In the

event that a proxy provider becomes unavailable, any associated proxied devices will

detect the failure during their next scheduled update interval. The affected proxied

devices must then select a new proxy provider.

47

Chapter 4

Implementation

We have created of a set of mappings between our ACMF and corresponding

components of the WSDM (Web Services Distributed Management) Standard which

allows our framework to be implemented using an existing WSDM-based middleware

platform such as Apache Muse [3]. This chapter begins with an introduction to WSDM,

followed by a discussion of the mappings. Finally, we discuss our ACME (Adaptable

Context-Managed Environment) simulation that we created as a proof-of-concept using

Apache Muse. Muse is a Java-based implementation of WSDM which we found to be

highly suitable for this application.

4.1 The WSDM Standard

4.1.1 Background

WSDM (Web Services Distributed Management) [19] is a standard specified by

the Organization for the Advancement of Structured Information Standards (OASIS)

which provides remote manageability for networked resources. WSDM is based on the

Web Services Architecture [30], an existing open standard providing remote application

communication through the Web. The purpose of WSDM is to provide a universal

management interface for any type of resource.

WSDM is built around the concept of a “Manageable Resource” (MR) which is

formally defined in the WSDM MUWS (Management Using Web Services) specification

48

[20]. A Manageable Resource is a logical entity which represents some real-world

resource (which can be anything from a software application to a physical device) in a

standardized form that can be exposed to external entities. Manageable Resources are

discussed in detail in Section 4.1.2. The WS-Resource specification [22] composes a

resource and a basic Web service. WSDM in turn adds a manageability interface,

resulting in a Manageable Resource which is accessed through a WSDM endpoint. Figure

4.1 illustrates how a typical real-world resource such as a laser printer can be represented

as a Manageable Resource which is in turn accessed by a WSDM client (also referred to

as a “ManageabilityConsumer”).

WS-Resource (represented as)

Real-world resource:
Laser printer

Proprietary
Interface

Standardized Resource
Management Interface

WSDM Endpoint

(interfaces with)

Manageable Resource:
LaserPrinter

WSDM Client
(Manageability Consumer)

Figure 4.1 Laser Printer Represented as a Manageable Resource

WSDM enables remote clients (Manageability Consumers) to access and manage

heterogeneous resources in a standard way, regardless of implementation or platform.

Our ACMF implementation uses WSDM to access and manage the context-related

49

properties of pervasive devices, thus moving towards context-awareness in pervasive

environments.

4.1.2 Manageable Resources

WSDM Manageable Resources support a high-level facility called Manageability

Capabilities which are composed of Resource Properties [23], Operations, and

Management Events. Resource Properties are abstracted representations of attributes

typically belonging to the real-world resource that is being managed. Operations are

commands that invoke specific functions on the resource. Management Events are

asynchronous notifications that resources can generate on their own, as opposed to

relying on Manageability Consumers to request the information. They are defined using

Topics, which associate resource state changes to the generation of notification messages.

All of the above elements are defined for a Manageable Resource using four

XML-based document types, namely the WSDL (Web Services Description Language)

document, the Resource Properties Schema document, the Resource Metadata Descriptor

document and the TopicSpace document. The WSDL document is an XML instance

document that describes the services offered by a WSDM Manageable Resource. It is the

top-level document and includes references to the Resource Properties Schema document

and Resource Metadata Descriptor document. A Manageable Resource’s Operations are

also declared in the WSDL document. The Resource Properties Schema document is an

XML Schema document (XSD) that provides the Resource Property declarations for a

Manageable Resource. The Resource Metadata Descriptor document is an XML instance

document that is used to declare static metadata information that Manageability

Consumers can use to determine the semantics of a Manageable Resource’s capabilities.

50

The TopicSpace document is an XML instance document that is used to declare a

Manageable Resource's available Topics.

Manageability Capabilities are sets of Resource Properties, Operations and

Management Events (specified as Topics, and hereafter referred to as “Events”). They are

used to define grouped representations of related functions. WSDM includes predefined

Manageability Capabilities, such as the “Identity” capability, which is required for all

Manageable Resources. Developers can also create their own custom Manageability

Capabilities. Resource Properties primarily reflect the state of the real-world resource

being managed. Operations are used to invoke functions on the real-world resource being

managed. Operations are defined as MEPs including an input message (request), output

message (response) and fault message (in case the Operation does not complete as

expected). Events, which provide notification of specific occurrences taking place on a

Manageable Resource, are defined in terms of Topics, Operations and MEPs. Events

provide a “push” style information exchange that is not available directly via Resource

Properties or Operations.

 As with traditional Web services, the WSDL document is an XML document that

describes the services offered by a WSDM Manageable Resource. It is the top-level

document and includes references to the Resource Properties Schema document and

Resource Metadata Descriptor document. A Manageable Resource’s Operations, MEPs

and Topics are also declared in the WSDL (it is also permissible to declare Topics in a

separate XML document if an appropriate reference is placed in the WSDL). WSDM

includes a set of predefined Operations, MEPs and Topics that may be used, but

developers are free to add their own as well. A sample WSDL document depicting a

51

declaration of the predefined “GetResourcePropertyDocument” Operation is shown in

Figure 4.2.

Figure 4.2 WSDL document fragment

...
<wsdl:operation name="GetResourcePropertyDocument">
<wsdl:input
wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/GetResourcePropertyDocument/GetResourcePropertyDocumentRequest"
name="GetResourcePropertyDocumentRequest"
message="tns:GetResourcePropertyDocumentRequest" />
<wsdl:output
wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/GetResourcePropertyDocument/GetResourcePropertyDocumentResponse"
name="GetResourcePropertyDocumentResponse"
message="tns:GetResourcePropertyDocumentResponse" />
<wsdl:fault name="ResourceUnknownFault"
message="tns:ResourceUnknownFault" />
<wsdl:fault name="ResourceUnavailableFault"
message="tns:ResourceUnavailableFault" />
</wsdl:operation> ...

 The Resource Properties Schema document is an XML Schema document (XSD)

that provides the Resource Property declarations for a Manageable Resource. As with

Operations and MEPs, WSDM includes a set of predefined Resource Properties that may

be used or extended. Figure 4.3 shows part of a sample Resource Properties Schema

document depicting the declaration of custom Resource Properties.

Figure 4.3 Resource Properties Schema Document fragment

...
<xsd:element name="UniqueName" type="xsd:string"/>
<xsd:element name="DeviceType" type="xsd:string"/>
<xsd:element name="Owner" type="xsd:string"/>
...

 The Resource Metadata Descriptor document declares static metadata information

which Manageability Consumers can use to determine the semantics of a Manageable

Resource’s capabilities. It contains metadata elements describing Resource Properties

52

that have been declared in the Resource Properties Schema document. These metadata

elements may declare associations between Manageability Capabilities and Resource

Properties, as well as various Resource Property semantics such as modifiability and

permitted values. Figure 4.4 shows part of a sample Resource Metadata Descriptor

document depicting the declaration of a Resource Property metadata element for a

Resource Property that is read-only and is part of a custom Manageability Capability

called “DeviceContext”.

Figure 4.4 Resource Metadata Descriptor document fragment

...
<rmd:Property path="LaserPrinter:UniqueName"
 modifiability="read-only">
 <muws-p2-xs:Capability>
 http://largo.cs.queensu.ca/LaserPrinter/DeviceContext
 </muws-p2-xs:Capability>
</rmd:Property>
...

 Figure 4.5 gives an overall picture of a WSDM Manageable Resource. The arrows

indicate which Manageable Resource components are declared in each document type.

 WSDM Manageable Resource

Manageability
Capabilities

Resource
Properties

Operations

Resource
Properties
Document

Resource
Metadata
Document

WSDL
Document

Management
Events

Topics

TopicSpace
Document

Figure 4.5 WSDM Manageable Resource breakdown

53

4.1.3 Manageability Capabilities

 As mentioned in Section 4.1.2, Manageability Capabilities are sets of Resource

Properties, Operations and Management Events (specified as Topics, and hereafter

referred to as “Events”). They are used to define grouped representations of related

functions. Although they provide these groupings, the functions themselves are still

accessed independently.

Developers are free to create their own custom Manageability Capabilities, but

WSDM also includes several predefined ones which are designed to be applicable to

various types of resources. The “Identity” capability, for instance, is a special

Manageability Capability that must be exposed by every Manageable Resource. Its

purpose is to establish uniqueness between entities and it contains only one element, the

predefined “ResourceId” Resource Property. It does not contain any Operations or

Events.

 A custom Manageability capability typically contains one or more custom

Resource Properties, Operations or Events. For example, a custom Manageability

Capability called “PrinterManager” might include Resource Properties for managing the

amount of ink and paper remaining, Operations for printing test pages and running

diagnostics, and Events for notifying users once their print jobs have been completed.

4.1.4 Resource Properties

 Resource Properties are one of the fundamental components of WSDM

Manageable Resources. They are pieces of information that reflect attributes regarding

the state of the real-world resource being managed. They may also be used to represent

metadata, manageability information or other data. In fact, there is no constraint on the

54

context of data represented by Resource Properties. For example, a laser printer might

have a “TonerLevel” Resource Property reflecting the amount of toner remaining.

 Resource Property declarations must include a data type parameter and cardinality

constraints. These parameters are specified along with each Resource Property in the

Resource Properties Schema document. The data type is specified using the “type”

parameter and can be a custom type or a primitive XML schema datatype such as

“integer” or “string” [32]. Cardinality is specified using the “minOccurs” and

“maxOccurs” parameters and governs the number of instances of a property that are

allowed. The minimum cardinality is usually “0” or “1” while the maximum is usually set

to “1” or “Unbounded” (when there is no upper limit).

 Finally, Resource Properties have the following additional parameters which are

specified in the Resource Metadata Descriptor document:

 mutability: Expresses how the value can change over time. This parameter can

be set to “constant” (the value must not ever change), “mutable” (values may be

added, removed or changed at any time), or “appendable” (new values may be

added at any time, but once added may not be changed or removed).

 modifiability: Indicates whether a Manageability Consumer can modify the

value. This parameter can be set to “read-only” or “read-write”.

 subscribability: Expresses whether the associated Resource Property can be the

target of a subscription (which triggers notifications when the value changes).

This parameter can be set to “true” or “false”.

 ValidValues: Allows an enumeration or range of permissible values to be

specified.

55

 staticvalues: Allows specification of a minimum set of values that the associated

Resource Property must contain.

 initialValues:Allows specification of the set of values that the associated

Resource Property must contain when the Manageable Resource first becomes

available.

 Resource Properties are usually associated with Manageability Capabilities. For

example, the predefined “Caption” and “Version” Resource Properties are both part of

the predefined “Description” capability. This is not a requirement, however.

4.1.5 Operations

 Operations are used to invoke functions on the real-world resource being

managed. Operations are defined as MEPs including an input message (request), output

message (response) and fault message (in case the Operation does not complete as

expected). The input message includes function parameters, and the output message

contains results data generated by the resource, such as confirmation of successful

completion. If an Operation does not complete successfully, a fault message is returned

instead of the response message. As with Resource Properties, Operations may be

associated with Manageability Capabilities although this is not a requirement. For

example, the predefined “GetResourceProperty” Operation is part of the WSDM stack

and does not have any associated capabilities.

56

4.1.6 Events

 Events provide a means of being notified of specific occurrences taking place on a

Manageable Resource, such as a Resource Property value change. They are defined in

terms of Topics, Operations and MEPs. Manageability Consumers can use the

“Subscribe” Operation to select Topics which represent occurrences such as a change to a

specified Resource Property. Whenever an occurrence takes place, a Manageable

Resource will generate Events and send Notification messages to all Manageability

Consumers that have subscribed to the Topic representing the occurrence. Events

therefore provide a “push” style information exchange that is not available directly via

Resource Properties or Operations.

4.1.7 Implementation and Scalability

 WSDM implementations are the middleware applications that form Manageable

Resources. Apache Muse is a Java-based implementation of the WSDM standard. In

March 2007, Apache Muse version 2.2.0 became available for J2EE and OSGi-based

platforms. J2ME Foundation Profile support for mobile/limited devices was also added in

this version [3]. The ACMF implementation created for this research was built using

Apache Muse and is discussed in Section 4.2.

 In addition to the Apache Muse implementation, IBM offers a WSDM tooling

supplement for its Eclipse TPTP (Test & Performance Tools Platform) product [16]. The

WSDM tooling component of TPTP assists developers with building WSDM

Manageable Resources.

 WSDM Manageable Resource implementations are highly scalable. According to

the WSDM MUWS specification, “The WSDM architecture provides appropriate

57

coverage from low-end manageability of small devices like mobile phones, to high-end

manageability of very capable components like application servers and business

processes” [20]. The minimum requirement of a Manageable Resource is to expose the

“Identity” capability. This makes the implementation flexible enough to support very

limited devices while allowing more complex devices to expose as many capabilities as

needed. Figure 4.6 illustrates how a mobile phone, laser printer, and high-end server can

implement varying levels of WSDM functionality depending on their requirements and

capabilities. Note that in the diagram, all devices support the “Identity” capability.

Figure 4.6 Low-end to high-end manageability [20]

58

4.2 ACMF-WSDM Mappings

 In order to map ACMF to WSDM we define two sets of mappings. One set maps

our context model to the WSDM Manageable Resource (MR). The other set maps our

context-exchange protocols to WSDM Operations. This section includes a discussion of

the context model mappings followed by the context-exchange protocol mappings.

4.2.1 Context Model Mappings

 A WSDM MR is specified using a WSDL document, a Resource Properties

Schema (RPSD), a Resource Metadata Descriptor (RMD) document and a TopicSpace

document. WSDM Resource Properties are declared in the RPSD, and Topics are

declared in the TopicSpace document. Manageability Capabilities are associated with

Resource Properties in the RMD document. The WSDL document specifies the Web

service interface used to access the MR and includes several standard definitions as well

as references which tie in the other three WSDM MR documents. These documents can

be derived from an ACMF device schema using templates we provide in Appendix B.

Domain Ontology Mapping

Domain ontologies are not directly mapped because there is no suitable

corresponding WSDM component. The framework does not generally require domain

ontologies to be accessible as they are only needed when creating new devices and can be

made available to designers through application-specific means.

Device Schema Mapping

 The ACMF device schema is used to specify a WSDM MR by mapping to the

four MR documents. Specifically,

59

1. Each ACMF device-type is mapped to a WSDM Manageability Capability. MC’s are

defined through a series of steps described in Section 2.8 of the WSDM MUWS Primer

[21]. The principal steps in this process are:

a. The MC is given a URI so that it can be identified. The URI is then added as an

instance value of the MR’s ManageabilityCapability Resource Property.

b. All Resource Properties to be associated with the MC are declared as GEDs in a

schema document (our schema documents containing related properties are used

here).

c. A topic must be created in the Topics Topic for events related to the MC.

d. Entries are added to the RMD document to associate each Resource Property with

the MC.

2. Each ACMF device property maps to a WSDM Resource Property. If a device

property is subscribable, it maps to a WSDM Topic as well.

 ACMF device properties are grouped by device-type when mapped to WSDM

Resource Properties. Before being referenced in the RPSD, each group of properties is

first mapped to its own separate XML Schema document having a namespace which

reflects the corresponding device-type name (step 1.b above). For example, the CSB

“LaserPrinter” contains two device-types (“PervasiveDevice” and “LaserPrinter”) and

thus has two groups of properties which map to two separate Schema documents. We

preserve our Resource Property groupings by defining a Manageability Capability for

each group.

 The RPSD contains a single Resource Property declaration which references all

the device properties declared in the other schema documents, thereby consolidating them

60

into a single document. The namespace of the RPSD matches the namespace of the MR

itself.

Table 4.1 lists the parameters of ACMF device properties and to which MR

document each one maps.

ACMF device
schema property
parameter

Maps to
(MR document)

Name RPSD
Type RPSD
minOccurs RPSD
maxOccurs RPSD
Mutable RMD
Subscribable TopicSpace
ValidStringValues RMD
ValidIntegerValues RMD
Table 4.1 ACMF Device schema property parameter mappings

Table 4.2 lists the set of WSDL, RPSD, RMD and TopicSpace documents that are

produced by mapping the “LaserPrinter” device from our “ComputerScienceBuilding”

scenario. The complete documents are included in Appendix C.

LaserPrinterDevice.wsdl Specification of the Web service,
references to schema & metadata documents

PervasiveDevice.xsd Domain-wide property declarations
LaserPrinter.xsd Device-specific property declarations
LaserPrinterDevice_RPSD.xsd Resource Properties Document declaration
LaserPrinterDevice_TopicSpace.xsd Topic declarations
LaserPrinterDevice.rmd Metadata values
Table 4.2 Laser Printer WSDM MR documents

Context Profile Mapping

 Device context profiles (device schema instances) are represented in WSDM

using the Resource Properties document that is produced by instantiating the RPSD. A

sample “LaserPrinter” Resource Properties document is included in Appendix C.

61

4.2.2 Context-Exchange Protocol Mappings

 We have defined a set of mappings between WSDM Operations and the ACMF

context-exchange protocol functions specified in Sections 3.3.3 and 3.3.4. The mapping

of local context service functions to WSDM Operations is summarized in Table 4.3. The

“Discover Device” operation is implemented using an underlying network facility (such

as Bonjour [4]) and so is not mapped to a WSDM Operation. The “Request Device

Schema” operation is implemented by simply accessing schemas directly via their URIs.

The other two local context service functions map directly to WSDM Operations.

Local Context Service Function WSDM Operation
Discover n/a
Request device schema n/a
Request properties GetMultipleResourceProperties
Subscribe to property Subscribe
Table 4.3 Mappings between local context service functions and WSDM Operations

There are no suitable built-in WSDM Operations for the functions required by the

context proxy service (‘send profile’, ‘renew lease’, ‘delete profile’) and they must

therefore be implemented as custom Operations. Appendix C includes WSDL and XML

Schema document examples containing the necessary declarations for these custom

Operations. These declarations are only needed when specifying devices that support the

proxy provider role as described in Section 3.3.4.

4.3 ACME Simulation

Our ACME simulation uses the mappings described in Section 4.2 to create a

simulated pervasive environment as proof-of-concept. The simulation is made up of three

main components including a MANET network environment simulator and pervasive

62

device simulators for both the server and client roles. The simulation’s architecture is

illustrated in Figure 4.7.

Simulated
Client (PDA)

Apache
Tomcat

Apache MUSE

Simulated Server
(DataProjector)

Simulated Server
(LaserPrinter)

Simulated Server
(SmartThermostat)

URI
Database

MANET
Simulator

Figure 4.7 ACME simulation architecture

4.3.1 MANET Simulator

Our ACMF is designed to work with any MANET implementation (such as

Bonjour [4]) that provides a self-configuring TCP/IP network. It is also possible to use

the framework with a simulated MANET environment. This can be accomplished by

using a TCP/IP network and a DHCP server combined with some means of managing the

URIs of devices available on the network. For example, a Web service with a

predetermined URI could be used by all devices on the network to maintain a list of URIs

for all connected devices.

 Our ACME simulation includes a MANET simulator that uses a database to store

the URIs of the simulated servers. The simulated servers update the URI database when

63

they go online or offline, and the simulated client uses it to obtain the servers’ URI

information. The URI database is implemented using PostgreSQL [24] and the MANET

simulator is implemented as a Java class which uses JDBC connectivity to access the

database.

4.3.2 Simulated Servers

 Each simulated server is a WSDM MR implemented using Apache Muse Version

2.2.0. These MRs respond to requests from clients, behaving as if they were implemented

on actual physical devices. Each MR has a GUI interface which provides real-time

information about its current state. The ACME simulation includes three simulated

servers: DataProjector, LaserPrinter and SmartThermostat. The LaserPrinter simulated

server supports the ProxyProvider role and is thus able to manage other devices’ context

profiles as described in Section 3.3.4.

4.3.3 Simulated Client

The simulated client is a Java program that interacts with the simulated servers. It

is meant to represent a PDA featuring an interactive GUI interface which demonstrates

device discovery and context information retrieval. The simulated client also has the

ability to make changes to the property values on other devices. For example, the client

can operate the data projector’s lamp by modifying its ‘LampActive’ Resource Property

value. This is an application-level feature which was included as an added advantage of

using WSDM technology; it is not strictly part of the context management framework.

Such functionality is desirable in a pervasive environment where devices should be able

invoke operations provided by other devices.

64

4.3.4 Use Cases

 This section discusses the set of use cases that we ran against the ACME

simulation. The cases are divided into two sections, “Local Context Service Use Cases”

and “Context Proxy Service Use Cases”, which demonstrate the operation of each service

respectively and as described in Sections 3.3.3 and 3.3.4. These use cases serve to

validate our framework implementation.

Local Context Service Use Cases

 These use cases demonstrate the functions that make up the local context service.

Each use case covers a specific function, including device discovery, device schema and

context profile acquisition, device selection, and device interaction. We also include

cases which demonstrate devices entering/leaving an environment, as well as property

subscription and notification.

Use Case 1: Initialization (devices enter environment)

 This use case demonstrates the initialization of our ACME simulation. Upon

initialization, the three simulated servers enter the environment and begin “broadcasting”

their availability by adding their address into the URI database via the MANET

simulator. Figure 4.8 illustrates the initial state of the three simulated servers and Table

4.4 lists the contents of the URI database after their initialization.

Figure 4.8 Initial state of simulated servers

65

URI
http://localhost:8000/DataProjectorDevice/services/DataProjectorDevice
http://localhost:8000/LaserPrinterDevice/services/LaserPrinterDevice
http://localhost:8000/SmartThermDevice/services/SmartThermDevice
Table 4.4 Initial URI database contents

The presence of the three simulated servers’ address information in the URI

database indicates that the devices have entered the environment and initialized

successfully.

Use Case 2: Device Discovery

 This use case demonstrates discovery of the simulated servers by the simulated

client. The client retrieves the contents of the URI database in order to determine what

devices (if any) are present in the environment. The retrieved URIs are then displayed in

the simulated client’s GUI interface. Figure 4.9 illustrates the simulated client’s state

after discovery of the three simulated servers. The simulated servers’ URIs appear in the

“Device URI” list box, indicating successful discovery.

Figure 4.9 Simulated client after device discovery

66

http://localhost:8000/DataProjectorDevice/services/DataProjectorDevice
http://localhost:8000/LaserPrinterDevice/services/LaserPrinterDevice
http://localhost:8000/SmartThermDevice/services/SmartThermDevice

Use Case 3: Device Schema & Context Profile Acquisition

 This use case demonstrates device schema and context profile acquisition which

is shown by retrieving and displaying a discovered device’s context profile.

 During device discovery, the simulated client retrieves the device schema and

context profile for all discovered devices. When one of the discovered devices is selected,

the simulated client responds by displaying its device schema and context profile,

effectively demonstrating that device schema and context profile acquisition was

successful. Figure 4.10 illustrates the client’s state after selecting the Data Projector

device. The Data Projector’s context profile is displayed, which includes a list of domain-

wide properties and their values, as well as a list of supported device-types.

Figure 4.10 Simulated client with data projector context profile

Use Case 4: Device Selection & Interaction

 This use case demonstrates device selection and interaction. In our ACME

simulation, device selection is user-delegated which means that the individual using the

simulated client manually selects a device with which to interact. In this use case, the

67

Data Projector device has been selected. Device interaction between the PDA (client) and

the Data Projector (server) is demonstrated by retrieving device-specific property values.

 Figure 4.11 illustrates the state of the simulated client after the Data Projector

device has been selected and its device-specific property values have been retrieved. The

“Device-Specific Properties” list box displays the values of the “LampActive”,

“SlidesLoaded” and “SlideNumber” properties.

Figure 4.11 Simulated client with data projector device-specific properties

 Figure 4.12 illustrates the state of the simulated Data Projector, which matches the

values of properties that were retrieved by the client. The lamp is active (LampActive =

true), there are no slides loaded (SlidesLoaded = false) and the current slide number is 0

(SlideNumber = 0).

68

Figure 4.12 Data projector device state

Use Case 5: Device leaves environment

 This use case demonstrates what occurs when a device leaves the environment. In

this case, the simulated Data Projector removes itself from the URI database and then

shuts down. This is illustrated in Table 4.5 which shows the contents of the URI database

after the Data Projector has left. The Data Projector’s URI is no longer present in the

database. In a true MANET-type environment, a device’s URI would no longer be

broadcast after it had left an environment. The URI database simulates this behaviour.

URI
http://localhost:8000/LaserPrinterDevice/services/LaserPrinterDevice
http://localhost:8000/SmartThermDevice/services/SmartThermDevice
Table 4.5 URI database contents after Data Projector has left

Use Case 6: Subscription & Notification

 This use case demonstrates property subscription and notification. The simulated

client indicates subscribable properties by appending the suffix “[T]” to the property

name. In this case, the client has subscribed to the Laser Printer’s “IsOnline” property

and receives a notification message when the Laser Printer goes offline. The client

displays the notification as a pop-up window which is illustrated in Figure 4.13.

69

http://localhost:8000/LaserPrinterDevice/services/LaserPrinterDevice
http://localhost:8000/SmartThermDevice/services/SmartThermDevice

Figure 4.13 Simulated client with notification pop-up

Context Proxy Service

 The following use cases demonstrate the operation of the context proxy service

and how it functions as an extension to the local context service. Each use case covers a

specific proxy-related activity, including proxied profile storage, retrieval, renewal,

expiry and deletion. Proxied profile storage, renewal and deletion employ the context

proxy service’s “Send Profile”, “Renew Lease” and “Delete Profile” functions, while

proxied profile retrieval relies on the local context service’s “Get Profile” function.

Proxied profile expiry is accomplished without invoking functions from either service.

 These use cases are demonstrated using an enhanced version of the ACME

simulation where the Laser Printer acts as a proxy provider and the Smart Thermostat

acts as a proxied device.

70

Use Case 7: Proxied Profile Storage

 In this use case, the Smart Thermostat (proxied device) stores its context profile

on the Laser Printer (proxy provider). When the thermostat’s “Send Profile” button is

clicked, it discovers all available proxy providers and displays a dialog box which allows

one to be selected manually (more sophisticated devices would automatically select a

provider). Once a proxy provider has been selected, the thermostat sends its context

profile to it using the “Send Profile” function. Figure 4.14 illustrates the thermostat’s

dialog box confirming proxy provider selection, and Figures 4.15 and 4.16 show the state

of both simulated devices after the context profile transfer has taken place. The Laser

Printer GUI displays its current status as a Proxy Provider, which includes a list of

devices for which it is hosting profiles. This listing contains the device name, the time the

lease was obtained, and the time (in minutes) remaining before the lease expires. The

Smart Thermostat GUI correspondingly displays its status as a Proxied Device. In this

case, the printer indicates that it has granted a lease to the “Confrm Thermostat” device at

2:12 PM, with 60 minutes remaining on the lease. Similarly, the thermostat indicates that

it has obtained a lease from the “ConfRm Printer” at 2:12 PM, with 60 minutes remaining

on the lease. The lease data matches on both devices, indicating successful completion of

this use case.

Figure 4.14 Smart thermostat proxy provider selection dialog box

71

Figure 4.15 Laser printer status after receiving context profile

Figure 4.16 Smart Thermostat status after sending context profile

Use Case 8: Proxied Profile Retrieval

 This use case demonstrates discovery and retrieval of context profile information

from a proxied device. Figure 4.17 illustrates the status of the simulated client after

discovering and retrieving the Smart Thermostat’s context profile. The GUI indicates that

a device was discovered through another device as a proxied device by appending

“[Proxied]” to the device’s URI. Similarly, “[Provider]” is appended to the URI of any

device which is identified as a proxy provider. In this case the Laser Printer is identified

as a proxy provider, and the Smart Thermostat is discovered and identified as a proxied

72

device. Additionally, the GUI displays the thermostat’s context profile, which was

obtained via the printer. The discovery and retrieval of the thermostat’s context profile

via the laser printer indicates successful completion of this use case.

Figure 4.17 Simulated client After successful proxied profile retrieval

Use Case 9: Proxy Lease Renewal

 This use case demonstrates renewal of a proxy lease which is about to expire. As

the Smart Thermostat’s lease with the Laser Printer nears expiry, it sends a renewal

request using the “Renew Lease” function. Figure 4.18 illustrates the thermostat’s state

before the request. The thermostat’s GUI displays that there are 20 minutes remaining

before the lease expires. Figure 4.19 illustrates the state after the request has been sent.

The thermostat’s GUI now displays that there are 60 minutes remaining on the lease. The

lease has been renewed which indicates successful completion of this use case.

73

Figure 4.18 Smart thermostat before lease renewal

Figure 4.19 Smart thermostat after lease renewal

Use Case 10: Proxy Lease Expiry

 This use case demonstrates how a Proxy Provider will stop hosting a proxied

device’s profile if the lease expires. Figure 4.20 illustrates the Laser Printer’s status as a

Proxy Provider after the Smart Thermostat’s lease has expired. The thermostat’s profile

no longer appears in the printer’s Proxied Device list. Figure 4.21 illustrates how the

Simulated Client is no longer able to discover the thermostat once the printer has stopped

hosting its profile. The removal of the thermostat’s profile from the printer demonstrates

successful completion of this use case.

74

Figure 4.20 Laser printer status after smart thermostat lease expiry

Figure 4.21 Simulated client status after smart thermostat lease expiry

Use Case 11: Proxied Profile Deletion

 This use case demonstrates how a Proxied Device can manually delete its profile

from a Proxy Provider without waiting for its lease to expire. Figure 4.22 illustrates the

Laser Printer’s status while it is hosting the Smart Thermostat’s context profile. The

thermostat appears in the printer’s Proxied Device list. Figure 4.23 illustrates the printer’s

status after the thermostat has issued a “Delete Profile” request. The thermostat is no

longer listed as a Proxied Device. Consequently, the Simulated Client is no longer able to

75

discover the Smart Thermostat (refer to Figure 4.21). The removal of the thermostat’s

Proxied Profile from the printer demonstrates successful completion of this use case.

Figure 4.22 Laser printer status before smart thermostat profile deletion

Figure 4.23 Laser printer status after smart thermostat profile deletion

76

Chapter 5

Conclusions and Future Work

 Pervasive computing environments that are made up of hundreds of devices and

within which intelligent devices interact in the background on behalf of their users will

soon become commonplace. Context-awareness is a key property that differentiates

pervasive computing applications from the more traditional applications. A device is

context-aware if it is able to adapt its behaviour to the current context. We submit that a

context management system that is able to support the automatic discovery, retrieval and

exchange of context information by devices while accommodating the heterogeneity

present in a pervasive computing environment is needed to provide context-awareness.

5.1 Thesis Contributions

 This thesis examines key issues surrounding pervasive computing, context-

awareness and context management. We discern that interoperability supported by

standardized context management is a central challenge in this area. As a solution we

present an adaptable context management framework, called the ACMF (Adaptable

Context Management Framework).

 Our ACMF includes an entity specification, a context model and a set of context-

exchange protocols, which together provide a means of context-enabled device

interoperability.

77

 Our ACMF adopts the autonomic computing paradigm, which ensures that

systems built using our ACMF are aware of their surroundings and can automatically

react to changes in order to effective execution. It enhances usability by insulating users

from the frequent changes in context experienced by pervasive devices.

 We describe how our ACMF can be mapped to the WSDM standard in order to

produce a Web service based implementation of a context management system. This

prototype is adaptable in that it can be used across disparate devices, software platforms

and physical environments. It is also, to the best of our knowledge, the first

implementation of a context management system based on standards.

5.2 Conclusions

Based on this research, we conclude that:

 Our context model is a viable construct against which diverse environments and

devices can be modeled and represented.

 Our ACMF provides a viable solution to help provide context-management and

device interoperability in pervasive computing environments.

 The WSDM standard and its Apache Muse implementation provide a suitable

platform upon which to implement our ACMF, as demonstrated by our ACME

simulation.

5.3 Future Work

 Some possible directions for future research on our ACMF include the following.

First, we plan to look at extending our context model to incorporate entities beyond

78

devices. The context model in PersonisAD, for example, explores the modeling of people

and places in addition to devices. Second, while our ACMF provides a solid foundation

for context management, practical applications require inclusion of security standards.

Future work will investigate the use of policies or other mechanisms for security

integration. Third, our current prototype implementation of our ACMF is in a simulated

environment using a proven standard (WSDM) and middleware platform (Muse). The

next logical step is to move this implementation outside the laboratory and into the real

world. Future work will involve creating an ontology to represent a real-world

environment and programming devices with WSDM-capable middleware to support our

current prototype.

 As the trend toward ubiquitous computing continues context models and

management frameworks will continue to advance and improve. Eventually we expect to

see the convergence of these designs to a small number of universally accepted standards,

much like what has happened with other technologies such as the Internet and World

Wide Web. Only then will it be possible to fully enable context management on a larger

scale across disparate systems and environments.

 The notion of context has, until recently, been limited in scope and has focused on

simple properties like location. As more sophisticated facilities for context management

are developed we expect to see context encompass a wider range of concepts and data.

Context will become more structured and context models will have to be expanded to

accommodate the added complexity. Context will be viewed on the same level as

application data and data queries will encompass both types of data.

79

 Devices need to fade into the background in a pervasive computing environment.

We therefore expect the autonomic computing paradigm to play an increasingly

important role in these environments. Autonomic devices will have the ability to act on

their own given high level guidance from their users. They will also be able to detect and

adapt to changes in their environment.

 The progression of embedding computing into our daily lives will necessitate the

need for systems to actively handle and share ever-increasing amounts of sensitive

information about our environments and the people that occupy them. As issues of

security and privacy have already begun to surface in environments where computing

systems are empowered with our personal data, ubiquitous systems will further the

notion. Standards will need to be established that define strict parameters governing how

personal data is processed and exactly what information is considered “public” or “free”.

The importance of such standards will increase as data-sharing scopes widen among the

technologies rapidly becoming embedded into our environments.

80

References

[1] Altova GmbH (2007). “Altova XMLSpy 2008 Enterprise Edition Content Model

View”. Retrieved September 1, 2007 from

http://www.altova.com/manual2008/XMLSpy/SpyEnterprise/index.html?contentmod

elview.htm.

[2] Anagnostopoulos, C., Tsounis, A. & Hadjiefthymiades, S. (2005). Context

Management in Pervasive Computing Environments. Proceedings of International

Conference on Pervasive Services, pp.421-424, Santorini, Greece (2005).

[3] Apache Software Foundation (2007). “Apache Muse - A Java-based implementation

of WSRF 1.2, WSN 1.3, and WSDM 1.1”. Retrieved May 1, 2007 from

http://ws.apache.org/muse/.

[4] Apple, Inc. (2008) "Networking - Bonjour". Retrieved March 15, 2008 from

http://developer.apple.com/networking/bonjour/index.html.

[5] Assad, M., Carmichael, D.J., Kay, J. & Kummerfeld, B. (2007). PersonisAD:

Distributed, Active, Scrutable Model Framework for Context-Aware Services. A.

LaMarca et al. (Eds.): Proc. Pervasive 2007, LNCS 4480, pp. 55-72, Springer (2007).

[6] Basagni, S., Conti, M., Giordano, S., & Stojmenović, I. (2004) Mobile Ad Hoc

Networking. Hoboken: John Wiley & Sons.

[7] Chen, G. and Kotz, D. (2000). A Survey of Context-Aware Mobile Computing

Research. Technical Report. UMI Order Number: TR2000-381., Dartmouth College.

81

[8] Chen, Dr. Harry Lik (2004). “An Intelligent Broker Architecture for Pervasive

Context-Aware Systems”. Retrieved May 1, 2007 from

http://ebiquity.umbc.edu/get/a/publication/152.pdf.

[9] Chen, H., Perich, F., Finin, T., & Joshi, A. (2004). "SOUPA: Standard Ontology for

Ubiquitous and Pervasive Applications". Retrieved May 1, 2007 from

http://ebiquity.umbc.edu/paper/html/id/168/.

[10] Chesire, S. and SteinBerg, D. H. (2005) Zero Configuration Networking: The

Definitive Guide. Sebastopol: O’Reilly.

[11] Chesire, Stuart (2008). "DNS Service Discovery (DNS-SD)". Retrieved March

15, 2008 from http://www.dns-sd.org.

[12] Christopoulou, E., Goumopoulos, C. & Kameas, A. (2005). An ontology-based

context management and reasoning process for UbiComp applications. Proceedings

of the 2005 Joint Conference on Smart Objects and Ambient Intelligence, pp.265-270,

Grenoble, France (2005).

[13] da Costa, C., Yamin, A. & Geyer, C. (2008). Toward a General Software

Infrastucture for Ubiquitous Computing. IEEE Pervasive Computing, 7(1), 64 – 73.

[14] da Rocha, R. and Endler, M. (2005). Evolutionary and efficient context

management in heterogeneous environments. Proceedings of the 3rd International

Workshop on Middleware for Pervasive and Ad-hoc Computing, pp.1-7, Grenoble,

France (2005).

[15] Dey, A. (2001). Understanding and Using Context. Personal and Ubiquitous

Computing 7, 4 - 7.

82

[16] Eclipse Foundation (2008). “Eclipse Test & Performance Tools Platform Project”.

Retrieved August 30, 2008 from http://www.eclipse.org/tptp

[17] FIPA (2003). "FIPA Agent Management Specification". Retrieved March 15,

2008 from http://www.fipa.org/specs/fipa00023/SC00023K.html.

[18] ISO/IEC 7498-1 (1994). “Information technology – Open Systems

Interconnection – Basic Reference Model: The Basic Model”. International

Organization for Standardization, Geneva, Switzerland.

[19] OASIS (2006). "OASIS Web Services Distributed Management (WSDM) TC".

Retrieved June 1, 2007 from http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsdm#overview.

[20] OASIS (2006). “Web Services Distributed Management: Management Using

Web Services (MUWS 1.1) Part 1”. Retrieved June 1, 2007 from http://docs.oasis-

open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf.

[21] OASIS (2006). "Web Services Distributed Management: MUWS Primer".

Retrieved June 1, 2007 from http://www.oasis-

open.org/committees/download.php/17000/wsdm-1.0-muws-primer-cd-01.doc.

[22] OASIS (2006). “Web Services Resource 1.2”. Retrieved June 1, 2007 from

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf.

[23] OASIS (2006). “Web Services Resource Properties 1.2”. Retrieved July 1, 2007

from http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf.

[24] PostgreSQL Global Development Group (2007). "PostgreSQL: The world's most

advanced open source database". Retrieved August 15, 2007 from

http://www.postgresql.org.

83

[25] Proliphix, Inc. (2005). “Proliphix, Inc.’s Internet-Powered NT120e Thermostat

Awarded Editor’s Pick for April by CE Pro Magazine”. Retrieved May 1, 2007 from

http://www.proliphix.com/news_detail.aspx?news_id=4.

[26] Stanford University (2008). “Remembering Mark Weiser”. Retrieved August 31,

2008 from http://library.stanford.edu/weiser.

[27] Strang, T. and Linnhoff-Popien, C. (2004). A Context Modeling Survey In J.

Indulska & D. De Roure (Eds.) Proc of First International Workshop on Context

Modeling, Reasoning and Management (UbiComp 2004). Nottingham England.

[28] Weiser, M. and Brown, J. S. (1996). “The Coming Age of Calm Technology”. Pp.

75-85 in Beyond calculation: the next fifty years. New York, NY: Copernicus.

[29] Weiser, Mark. (1991). The Computer for the 21’st Century. Scientific American,

Sept. 1991, pp. 94-104.

[30] W3C (2004). “Web Services Architecture”. Retrieved Jan 20, 2008 from

http://www.w3.org/TR/ws-arch/.

[31] W3C (2008). “Delivery Context Ontology”. Retrieved May 31, 2008 from

http://www.w3.org/TR/2008/WD-dcontology-20080415/.

[32] W3C (2004). “XML Schema Part 2: Datatypes Second Edition”. Retrieved

June 1, 2007 from http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

84

Appendix A

Context Model XML Schema and Instance Documents
1. Master Domain Ontology Schema Document.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.cs.queensu.ca/OntologySchema"
 targetNamespace="http://www.cs.queensu.ca/OntologySchema"
 xmlns:meta="http://www.cs.queensu.ca/MetadataSchema"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:annotation>
 <xs:documentation xml:lang="en">
 Schema for Creating Context-Managed Environment Ontologies
 Created by Jared A. Zebedee (2007)
 </xs:documentation>
 </xs:annotation>

 <xs:import namespace="http://www.w3.org/2001/XMLSchema"
 schemaLocation="http://www.w3.org/2001/XMLSchema.xsd"/>

 <xs:import namespace="http://www.cs.queensu.ca/MetadataSchema"
 schemaLocation="http://www.cs.queensu.ca/MetadataSchema.xsd"/>

 <xs:simpleType name="propertyType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="boolean"/>
 <xs:enumeration value="integer"/>
 <xs:enumeration value="string"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:element name="Ontology">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Domain" type="xs:string"/>
 <xs:element name="Region" type="xs:string" maxOccurs="unbounded"/>
 <xs:element name="DeviceType" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Property" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="dataType" type="propertyType" use="required"/>
 <xs:attribute ref="meta:mutable" use="required"/>
 <xs:attribute ref="meta:subscribable" use="optional" default="false"/>
 <xs:attribute ref="meta:ValidStringValues" use="optional"/>
 <xs:attribute ref="meta:ValidIntegerValues" use="optional"/>
 <xs:attribute name="minOccurrence" type="xs:nonNegativeInteger"
use="optional" default="1"/>
 <xs:attribute name="maxOccurrence" type="xs:allNNI" use="optional"
default="1"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

85

2. ComputerScienceBuilding Ontology XML Instance Document.

<Ontology xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.queensu.ca/OntologySchema
http://www.cs.queensu.ca/OntologySchema.xsd"
xmlns="http://www.cs.queensu.ca/OntologySchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

 <!-- Domain Definition -->
 <Domain>ComputerScienceBuilding</Domain>

 <!-- Region Definitions -->
 <Region>Conference Room</Region>
 <Region>Lecture Hall</Region>
 <Region>Main Office</Region>
 <Region>Lab</Region>

 <!-- PervasiveDevice DeviceType Definition -->
 <DeviceType name="PervasiveDevice">
 <Property name="UniqueName" dataType="string" mutable="false"/>
 <Property name="DeviceType" dataType="string" mutable="false"
ValidStringValues="Data_Projector Laser_Printer PDA Smart_Thermostat"/>
 <Property name="Owner" dataType="string" mutable="true"/>
 <Property name="Location" dataType="string" subscribable="true" mutable="true"
ValidStringValues="Conference_Room Lecture_Hall Main_Office Lab"/>
 <Property name="HasDisplayScreen" dataType="boolean" mutable="false"/>
 </DeviceType>

 <!-- DataProjector DeviceType Definition -->
 <DeviceType name="DataProjector">
 <Property name="LampActive" dataType="boolean" mutable="true"/>
 <Property name="SlidesLoaded" dataType="boolean" mutable="false"/>
 <Property name="SlideNumber" dataType="integer" mutable="false"/>
 </DeviceType>

 <!-- LaserPrinter DeviceType Definition -->
 <DeviceType name="LaserPrinter">
 <Property name="CanPrintInColour" dataType="boolean" mutable="false"/>
 <Property name="IsOnline" dataType="boolean" mutable="true"/>
 <Property name="PaperRemaining" dataType="integer" mutable="true"/>
 </DeviceType>

 <!-- PDA DeviceType Definition -->
 <DeviceType name="PDA">
 <Property name="BacklightActive" dataType="boolean" mutable="true"/>
 <Property name="BatteryLevel" dataType="integer" mutable="true"/>
 <Property name="LowBattery" dataType="boolean" mutable="true"/>
 </DeviceType>

 <!-- SmartThermostat DeviceType Definition -->
 <DeviceType name="SmartThermostat">
 <Property name="CurrentTemperature" dataType="integer" mutable="true"/>
 <Property name="TemperatureSetting" dataType="integer" mutable="true"/>
 <Property name="IsCelcius" dataType="boolean" mutable="true"/>
 </DeviceType>
</Ontology>

86

3. Metadata Schema Document.
(Used by Ontology and Device Schemas)

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.cs.queensu.ca/MetadataSchema"
 targetNamespace="http://www.cs.queensu.ca/MetadataSchema"
 elementFormDefault="qualified" attributeFormDefault="unqualified">>

 <xsd:simpleType name="stringList">
 <xsd:list itemType="xsd:string"/>
 </xsd:simpleType>

 <xsd:simpleType name="integerList">
 <xsd:list itemType="xsd:integer"/>
 </xsd:simpleType>

 <xsd:attribute name="mutable" type="xsd:boolean"/>
 <xsd:attribute name="subscribable" type="xsd:boolean"/>
 <xsd:attribute name="ValidStringValues" type="stringList"/>
 <xsd:attribute name="ValidIntegerValues" type="integerList"/>
</xsd:schema>

4. ComputerScienceBuilding Prose Description Document

The ComputerScienceBuilding domain represents a hypothetical university computer

science building comprised of one floor containing four device-types and four regions

(rooms). The device types are Data Projector, Laser Printer, PDA and Smart Thermostat.

The regions are Conference Room, Lecture Hall, Main Office and Lab. The building

floor plan is illustrated in Figure A.1.

Conference
Room

Lecture Hall

Lab

Main Office

Figure A.1 ComputerScienceBuilding floor plan

87

5. Laser Printer Device Schema Document.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:meta="http://www.cs.queensu.ca/MetadataSchema"
xmlns="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDevice"
targetNamespace="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDevice"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 Laser Printer Device Schema
 Created by Jared A. Zebedee (2007)
 </xs:documentation>
 </xs:annotation>

 <xs:import namespace="http://www.cs.queensu.ca/MetadataSchema"
schemaLocation="http://www.cs.queensu.ca/MetadataSchema.xsd"/>

 <!-- Top-level Pervasive Device Definition -->
 <xs:element name="Device">
 <xs:complexType>
 <xs:sequence>

 <!-- PervasiveDevice device-type (required) -->
 <xs:element name="PervasiveDevice">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="UniqueName" type="xs:string" meta:mutable="false"/>
 <xs:element name="DeviceType" type="xs:string" meta:mutable="false"
meta:ValidStringValues="Laser_Printer"/>
 <xs:element name="Owner" type="xs:string" meta:mutable="true"/>
 <xs:element name="Location" type="xs:string" meta:mutable="true"
meta:subscribable="true" meta:ValidStringValues="Conference_Room Lecture_Hall Main_Office
Lab"/>
 <xs:element name="HasDisplayScreen" type="xs:boolean" meta:mutable="false"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- /PervasiveDevice -->

 <!-- LaserPrinter Device Definition -->
 <xs:element name="LaserPrinter">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CanPrintInColour" type="xs:boolean" meta:mutable="false"/>
 <xs:element name="IsOnline" type="xs:boolean" meta:mutable="true"/>
 <xs:element name="PaperRemaining" type="xs:integer" meta:mutable="true"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- /LaserPrinter -->
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- /Device -->
</xs:schema>

88

6. Laser Printer Context Profile XML Instance Document.

<Device xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDevice
http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDevice.xsd"
xmlns="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDevice"
elementFormDefault="qualified" attributeFormDefault="unqualified">

 <PervasiveDevice>
 <UniqueName>Conference_Room_Printer</UniqueName>
 <DeviceType>Laser_Printer</DeviceType>
 <Owner>Conference_Room_Manager</Owner>
 <Location>Conference_Room</Location>
 <HasDisplayScreen>true</HasDisplayScreen>
 </PervasiveDevice>

 <LaserPrinter>
 <CanPrintInColour>true</CanPrintInColour>
 <IsOnline>true</IsOnline>
 <PaperRemaining>500</PaperRemaining>
 </LaserPrinter>

</Device>

89

Appendix B

WSDM MR Creation Templates

1. WSDL Template.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="{domain namespace}/{device name}"
 xmlns:tns="{domain namespace}/{device name}"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl-soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsx="http://schemas.xmlsoap.org/ws/2004/09/mex"
 xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"
 xmlns:wsrmd="http://docs.oasis-open.org/wsrf/rmd-1"
 xmlns:muws1="http://docs.oasis-open.org/wsdm/muws1-2.xsd"
 xmlns:muws2="http://docs.oasis-open.org/wsdm/muws2-2.xsd"

 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
 xmlns:wsntw="http://docs.oasis-open.org/wsn/bw-2"
 xmlns:wst="http://docs.oasis-open.org/wsn/t-1"

 name="{device name}">

 <wsdl:types>

 <!-- Include WSDM Base Schemas -->

 <xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.w3.org/2005/08/addressing">
 <xsd:include schemaLocation="WS-Addressing-2005_08.xsd" />
 </xsd:schema>
 <xsd:schema elementFormDefault="qualified"
 targetNamespace="http://schemas.xmlsoap.org/ws/2004/09/mex">
 <xsd:include
 schemaLocation="WS-MetadataExchange-2004_09.xsd" />
 </xsd:schema>
 <xsd:schema elementFormDefault="qualified"
 targetNamespace="http://docs.oasis-open.org/wsrf/rp-2">
 <xsd:include schemaLocation="WS-ResourceProperties-1_2.xsd" />
 </xsd:schema>
 <xsd:schema elementFormDefault="qualified"
 targetNamespace="http://docs.oasis-open.org/wsrf/rmd-1">
 <xsd:include
 schemaLocation="WS-ResourceMetadataDescriptor-CD-01.xsd" />
 </xsd:schema>
 <xsd:schema elementFormDefault="qualified"
 targetNamespace="http://docs.oasis-open.org/wsdm/muws1-2.xsd">
 <xsd:include schemaLocation="WSDM-MUWS-Part1-1_1.xsd" />
 </xsd:schema>
 <xsd:schema elementFormDefault="qualified"
 targetNamespace="http://docs.oasis-open.org/wsdm/muws2-2.xsd">
 <xsd:include schemaLocation="WSDM-MUWS-Part2-1_1.xsd" />
 </xsd:schema>

 <!-- Include WSN Schemas -->

 <xsd:schema elementFormDefault="qualified"
 targetNamespace="http://docs.oasis-open.org/wsn/b-2">
 <xsd:include schemaLocation="WS-BaseNotification-1_3.xsd" />
 </xsd:schema>
 <xsd:schema elementFormDefault="qualified"

90

 targetNamespace="http://docs.oasis-open.org/wsn/t-1">
 <xsd:include schemaLocation="WS-Topics-1_3.xsd" />
 </xsd:schema>

 <!-- Import Resource-Specific Schemas -->

 <xsd:schema elementFormDefault="qualified"
targetNamespace="{domain name}/{device-type name}">
 <xsd:include schemaLocation="{schema location}" />
 </xsd:schema>

 </wsdl:types>

 <!-- WSDM Base Message definitions -->

 <wsdl:message name="GetMetadataMsg">
 <wsdl:part name="GetMetadataMsg" element="wsx:GetMetadata" />
 </wsdl:message>
 <wsdl:message name="GetMetadataResponseMsg">
 <wsdl:part name="GetMetadataResponseMsg" element="wsx:Metadata" />
 </wsdl:message>
 <wsdl:message name="GetResourcePropertyDocumentRequest">
 <wsdl:part name="GetResourcePropertyDocumentRequest"
 element="wsrf-rp:GetResourcePropertyDocument" />
 </wsdl:message>
 <wsdl:message name="GetResourcePropertyDocumentResponse">
 <wsdl:part name="GetResourcePropertyDocumentResponse"
 element="wsrf-rp:GetResourcePropertyDocumentResponse" />
 </wsdl:message>
 <wsdl:message name="GetResourcePropertyRequest">
 <wsdl:part name="GetResourcePropertyRequest"
 element="wsrf-rp:GetResourceProperty" />
 </wsdl:message>
 <wsdl:message name="GetResourcePropertyResponse">
 <wsdl:part name="GetResourcePropertyResponse"
 element="wsrf-rp:GetResourcePropertyResponse" />
 </wsdl:message>
 <wsdl:message name="InvalidResourcePropertyQNameFault">
 <wsdl:part name="InvalidResourcePropertyQNameFault"
 element="wsrf-rp:InvalidResourcePropertyQNameFault" />
 </wsdl:message>
 <wsdl:message name="GetMultipleResourcePropertiesRequest">
 <wsdl:part name="GetMultipleResourcePropertiesRequest"
 element="wsrf-rp:GetMultipleResourceProperties" />
 </wsdl:message>
 <wsdl:message name="GetMultipleResourcePropertiesResponse">
 <wsdl:part name="GetMultipleResourcePropertiesResponse"
 element="wsrf-rp:GetMultipleResourcePropertiesResponse" />
 </wsdl:message>
 <wsdl:message name="QueryResourcePropertiesRequest">
 <wsdl:part name="QueryResourcePropertiesRequest"
 element="wsrf-rp:QueryResourceProperties" />
 </wsdl:message>
 <wsdl:message name="QueryResourcePropertiesResponse">
 <wsdl:part name="QueryResourcePropertiesResponse"
 element="wsrf-rp:QueryResourcePropertiesResponse" />
 </wsdl:message>
 <wsdl:message name="UnknownQueryExpressionDialectFault">
 <wsdl:part name="UnknownQueryExpressionDialectFault"
 element="wsrf-rp:UnknownQueryExpressionDialectFault" />
 </wsdl:message>
 <wsdl:message name="InvalidQueryExpressionFault">
 <wsdl:part name="InvalidQueryExpressionFault"
 element="wsrf-rp:InvalidQueryExpressionFault" />
 </wsdl:message>
 <wsdl:message name="QueryEvaluationErrorFault">
 <wsdl:part name="QueryEvaluationErrorFault"
 element="wsrf-rp:QueryEvaluationErrorFault" />
 </wsdl:message>
 <wsdl:message name="SetResourcePropertiesRequest">
 <wsdl:part name="SetResourcePropertiesRequest"

91

 element="wsrf-rp:SetResourceProperties" />
 </wsdl:message>
 <wsdl:message name="SetResourcePropertiesResponse">
 <wsdl:part name="SetResourcePropertiesResponse"
 element="wsrf-rp:SetResourcePropertiesResponse" />
 </wsdl:message>
 <wsdl:message name="InvalidModificationFault">
 <wsdl:part name="InvalidModificationFault"
 element="wsrf-rp:InvalidModificationFault" />
 </wsdl:message>
 <wsdl:message name="UnableToModifyResourcePropertyFault">
 <wsdl:part name="UnableToModifyResourcePropertyFault"
 element="wsrf-rp:UnableToModifyResourcePropertyFault" />
 </wsdl:message>
 <wsdl:message name="SetResourcePropertyRequestFailedFault">
 <wsdl:part name="SetResourcePropertyRequestFailedFault"
 element="wsrf-rp:SetResourcePropertyRequestFailedFault" />
 </wsdl:message>

 <!-- WSN Message Definitions -->
 <wsdl:message name="SubscribeRequest" >
 <wsdl:part name="SubscribeRequest"
 element="wsnt:Subscribe"/>
 </wsdl:message>

 <wsdl:message name="SubscribeResponse">
 <wsdl:part name="SubscribeResponse"
 element="wsnt:SubscribeResponse"/>
 </wsdl:message>

 <wsdl:message name="SubscribeCreationFailedFault">
 <wsdl:part name="SubscribeCreationFailedFault"
 element="wsnt:SubscribeCreationFailedFault" />
 </wsdl:message>

 <wsdl:message name="TopicExpressionDialectUnknownFault">
 <wsdl:part name="TopicExpressionDialectUnknownFault"
 element="wsnt:TopicExpressionDialectUnknownFault" />
 </wsdl:message>

 <wsdl:message name="InvalidFilterFault">
 <wsdl:part name="InvalidFilterFault"
 element="wsnt:InvalidFilterFault" />
 </wsdl:message>

 <wsdl:message name="InvalidProducerPropertiesExpressionFault">
 <wsdl:part name="InvalidProducerPropertiesExpressionFault"
 element="wsnt:InvalidProducerPropertiesExpressionFault" />
 </wsdl:message>

 <wsdl:message name="InvalidMessageContentExpressionFault">
 <wsdl:part name="InvalidMessageContentExpressionFault"
 element="wsnt:InvalidMessageContentExpressionFault" />
 </wsdl:message>

 <wsdl:message name="UnrecognizedPolicyRequestFault">
 <wsdl:part name="UnrecognizedPolicyRequestFault"
 element="wsnt:UnrecognizedPolicyRequestFault" />
 </wsdl:message>

 <wsdl:message name="UnsupportedPolicyRequestFault">
 <wsdl:part name="UnsupportedPolicyRequestFault"
 element="wsnt:UnsupportedPolicyRequestFault" />
 </wsdl:message>

 <wsdl:message name="NotifyMessageNotSupportedFault">
 <wsdl:part name="NotifyMessageNotSupportedFault"
 element="wsnt:NotifyMessageNotSupportedFault" />
 </wsdl:message>

 <wsdl:message name="UnacceptableInitialTerminationTimeFault">

92

 <wsdl:part name="UnacceptableInitialTerminationTimeFault"
 element="wsnt:UnacceptableInitialTerminationTimeFault"/>
 </wsdl:message>

 <wsdl:message name="GetCurrentMessageRequest">
 <wsdl:part name="GetCurrentMessageRequest"
 element="wsnt:GetCurrentMessage"/>
 </wsdl:message>

 <wsdl:message name="GetCurrentMessageResponse">
 <wsdl:part name="GetCurrentMessageResponse"
 element="wsnt:GetCurrentMessageResponse"/>
 </wsdl:message>

 <wsdl:message name="InvalidTopicExpressionFault">
 <wsdl:part name="InvalidTopicExpressionFault"
 element="wsnt:InvalidTopicExpressionFault" />
 </wsdl:message>

 <wsdl:message name="TopicNotSupportedFault">
 <wsdl:part name="TopicNotSupportedFault"
 element="wsnt:TopicNotSupportedFault" />
 </wsdl:message>

 <wsdl:message name="MultipleTopicsSpecifiedFault">
 <wsdl:part name="MultipleTopicsSpecifiedFault"
 element="wsnt:MultipleTopicsSpecifiedFault" />
 </wsdl:message>

 <wsdl:message name="NoCurrentMessageOnTopicFault">
 <wsdl:part name="NoCurrentMessageOnTopicFault"
 element="wsnt:NoCurrentMessageOnTopicFault" />
 </wsdl:message>

 <!-- WSDM Base Operations -->
 <wsdl:portType name="{device name}ResourcePortType"
 wsrf-rp:ResourceProperties="tns:{Device name}ResourceProperties"
 wsrmd:Descriptor="{device name}MetadataDescriptor"
 wsrmd:DescriptorLocation="{device name}.rmd">
 <wsdl:operation name="GetMetadata">
 <wsdl:input
 wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadata"
 name="GetMetadataMsg" message="tns:GetMetadataMsg" />
 <wsdl:output
 wsa:Action="http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadataResponse"
 name="GetMetadataResponseMsg" message="tns:GetMetadataResponseMsg" />
 </wsdl:operation>
 <wsdl:operation name="GetResourcePropertyDocument">
 <wsdl:input
 wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/GetResourcePropertyDocument/GetResourcePropertyDocumentRequest"
 name="GetResourcePropertyDocumentRequest"
 message="tns:GetResourcePropertyDocumentRequest" />
 <wsdl:output
 wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/GetResourcePropertyDocument/GetResourcePropertyDocumentResponse"
 name="GetResourcePropertyDocumentResponse"
 message="tns:GetResourcePropertyDocumentResponse" />
 <wsdl:fault name="ResourceUnknownFault"
 message="tns:ResourceUnknownFault" />
 <wsdl:fault name="ResourceUnavailableFault"
 message="tns:ResourceUnavailableFault" />
 </wsdl:operation>
 <wsdl:operation name="GetResourceProperty">
 <wsdl:input
 wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/GetResourceProperty/GetResourcePropertyRequest"
 name="GetResourcePropertyRequest"
 message="tns:GetResourcePropertyRequest" />
 <wsdl:output

93

 wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/GetResourceProperty/GetResourcePropertyResponse"
 name="GetResourcePropertyResponse"
 message="tns:GetResourcePropertyResponse" />
 <wsdl:fault name="ResourceUnknownFault"
 message="tns:ResourceUnknownFault" />
 <wsdl:fault name="ResourceUnavailableFault"
 message="tns:ResourceUnavailableFault" />
 <wsdl:fault name="InvalidResourcePropertyQNameFault"
 message="tns:InvalidResourcePropertyQNameFault" />
 </wsdl:operation>
 <wsdl:operation name="GetMultipleResourceProperties">
 <wsdl:input
 wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/GetMultipleResourceProperties/GetMultipleResourcePropertiesRequest"
 name="GetMultipleResourcePropertiesRequest"
 message="tns:GetMultipleResourcePropertiesRequest" />
 <wsdl:output
 wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/GetMultipleResourceProperties/GetMultipleResourcePropertiesResponse"
 name="GetMultipleResourcePropertiesResponse"
 message="tns:GetMultipleResourcePropertiesResponse" />
 <wsdl:fault name="ResourceUnknownFault"
 message="tns:ResourceUnknownFault" />
 <wsdl:fault name="ResourceUnavailableFault"
 message="tns:ResourceUnavailableFault" />
 <wsdl:fault name="InvalidResourcePropertyQNameFault"
 message="tns:InvalidResourcePropertyQNameFault" />
 </wsdl:operation>
 <wsdl:operation name="QueryResourceProperties">
 <wsdl:input
 wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/QueryResourceProperties/QueryResourcePropertiesRequest"
 name="QueryResourcePropertiesRequest"
 message="tns:QueryResourcePropertiesRequest" />
 <wsdl:output
 wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/QueryResourceProperties/QueryResourcePropertiesResponse"
 name="QueryResourcePropertiesResponse"
 message="tns:QueryResourcePropertiesResponse" />
 <wsdl:fault name="ResourceUnknownFault"
 message="tns:ResourceUnknownFault" />
 <wsdl:fault name="ResourceUnavailableFault"
 message="tns:ResourceUnavailableFault" />
 <wsdl:fault name="UnknownQueryExpressionDialectFault"
 message="tns:UnknownQueryExpressionDialectFault" />
 <wsdl:fault name="InvalidQueryExpressionFault"
 message="tns:InvalidQueryExpressionFault" />
 <wsdl:fault name="QueryEvaluationErrorFault"
 message="tns:QueryEvaluationErrorFault" />
 </wsdl:operation>
 <wsdl:operation name="SetResourceProperties">
 <wsdl:input
 wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/SetResourceProperties/SetResourcePropertiesRequest"
 name="SetResourcePropertiesRequest"
 message="tns:SetResourcePropertiesRequest" />
 <wsdl:output
 wsa:Action="http://docs.oasis-open.org/wsrf/rpw-
2/SetResourceProperties/SetResourcePropertiesResponse"
 name="SetResourcePropertiesResponse"
 message="tns:SetResourcePropertiesResponse" />
 <wsdl:fault name="ResourceUnknownFault"
 message="tns:ResourceUnknownFault" />
 <wsdl:fault name="ResourceUnavailableFault"
 message="tns:ResourceUnavailableFault" />
 <wsdl:fault name="InvalidModificationFault"
 message="tns:InvalidModificationFault" />
 <wsdl:fault name="UnableToModifyResourcePropertyFault"
 message="tns:UnableToModifyResourcePropertyFault" />
 <wsdl:fault name="InvalidResourcePropertyQNameFault"

94

 message="tns:InvalidResourcePropertyQNameFault" />
 <wsdl:fault name="SetResourcePropertyRequestFailedFault"
 message="tns:SetResourcePropertyRequestFailedFault" />
 </wsdl:operation>

 <!-- wsntw:NotificationProducer operations -->
 <wsdl:operation name="Subscribe">
 <wsdl:input wsa:Action="http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeRequest"
 name="SubscribeRequest"
 message="tns:SubscribeRequest" />
 <wsdl:output wsa:Action="http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeResponse"
 name="SubscribeResponse"
 message="tns:SubscribeResponse" />
 <wsdl:fault name="ResourceUnknownFault"
 message="tns:ResourceUnknownFault" />
 <wsdl:fault name="InvalidFilterFault"
 message="tns:InvalidFilterFault"/>
 <wsdl:fault name="TopicExpressionDialectUnknownFault"
 message="tns:TopicExpressionDialectUnknownFault"/>
 <wsdl:fault name="InvalidTopicExpressionFault"
 message="tns:InvalidTopicExpressionFault" />
 <wsdl:fault name="TopicNotSupportedFault"
 message="tns:TopicNotSupportedFault" />
 <wsdl:fault name="InvalidProducerPropertiesExpressionFault"
 message="tns:InvalidProducerPropertiesExpressionFault"/>
 <wsdl:fault name="InvalidMessageContentExpressionFault"
 message="tns:InvalidMessageContentExpressionFault"/>
 <wsdl:fault name="UnacceptableInitialTerminationTimeFault"
 message="tns:UnacceptableInitialTerminationTimeFault"/>
 <wsdl:fault name="UnrecognizedPolicyRequestFault"
 message="tns:UnrecognizedPolicyRequestFault"/>
 <wsdl:fault name="UnsupportedPolicyRequestFault"
 message="tns:UnsupportedPolicyRequestFault"/>
 <wsdl:fault name="NotifyMessageNotSupportedFault"
 message="tns:NotifyMessageNotSupportedFault"/>
 <wsdl:fault name="SubscribeCreationFailedFault"
 message="tns:SubscribeCreationFailedFault"/>
 </wsdl:operation>
 <wsdl:operation name="GetCurrentMessage">
 <wsdl:input wsa:Action="http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/GetCurrentMessageRequest"
 name="GetCurrentMessageRequest"
 message="tns:GetCurrentMessageRequest"/>
 <wsdl:output wsa:Action="http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/GetCurrentMessageResponse"
 name="GetCurrentMessageResponse"
 message="tns:GetCurrentMessageResponse"/>
 <wsdl:fault name="ResourceUnknownFault"
 message="tns:ResourceUnknownFault" />
 <wsdl:fault name="TopicExpressionDialectUnknownFault"
 message="tns:TopicExpressionDialectUnknownFault"/>
 <wsdl:fault name="InvalidTopicExpressionFault"
 message="tns:InvalidTopicExpressionFault" />
 <wsdl:fault name="TopicNotSupportedFault"
 message="tns:TopicNotSupportedFault" />
 <wsdl:fault name="NoCurrentMessageOnTopicFault"
 message="tns:NoCurrentMessageOnTopicFault" />
 <wsdl:fault name="MultipleTopicsSpecifiedFault"
 message="tns:MultipleTopicsSpecifiedFault" />
 </wsdl:operation>

 </wsdl:portType>

 <!-- WSDM Base Operation bindings -->

 <wsdl:binding name="{device name}ResourceBinding"
 type="tns:{device name}ResourcePortType">
 <wsdl-soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />

95

 <wsdl:operation name="GetMetadata">
 <wsdl-soap:operation soapAction="GetMetadata" />
 <wsdl:input>
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output>
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetResourcePropertyDocument">
 <wsdl-soap:operation
 soapAction="GetResourcePropertyDocument" />
 <wsdl:input name="GetResourcePropertyDocumentRequest">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="GetResourcePropertyDocumentResponse">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 <wsdl:fault name="ResourceUnknownFault">
 <wsdl-soap:fault use="encoded"
 name="ResourceUnknownFault" />
 </wsdl:fault>
 <wsdl:fault name="ResourceUnavailableFault">
 <wsdl-soap:fault use="encoded"
 name="ResourceUnavailableFault" />
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="GetResourceProperty">
 <wsdl-soap:operation soapAction="GetResourceProperty" />
 <wsdl:input name="GetResourcePropertyRequest">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="GetResourcePropertyResponse">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 <wsdl:fault name="ResourceUnknownFault">
 <wsdl-soap:fault use="encoded"
 name="ResourceUnknownFault" />
 </wsdl:fault>
 <wsdl:fault name="ResourceUnavailableFault">
 <wsdl-soap:fault use="encoded"
 name="ResourceUnavailableFault" />
 </wsdl:fault>
 <wsdl:fault name="InvalidResourcePropertyQNameFault">
 <wsdl-soap:fault use="encoded"
 name="InvalidResourcePropertyQNameFault" />
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="GetMultipleResourceProperties">
 <wsdl-soap:operation
 soapAction="GetMultipleResourceProperties" />
 <wsdl:input name="GetMultipleResourcePropertiesRequest">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="GetMultipleResourcePropertiesResponse">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 <wsdl:fault name="ResourceUnknownFault">
 <wsdl-soap:fault use="encoded"
 name="ResourceUnknownFault" />
 </wsdl:fault>
 <wsdl:fault name="ResourceUnavailableFault">
 <wsdl-soap:fault use="encoded"

96

 name="ResourceUnavailableFault" />
 </wsdl:fault>
 <wsdl:fault name="InvalidResourcePropertyQNameFault">
 <wsdl-soap:fault use="encoded"
 name="InvalidResourcePropertyQNameFault" />
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="QueryResourceProperties">
 <wsdl-soap:operation soapAction="QueryResourceProperties" />
 <wsdl:input name="QueryResourcePropertiesRequest">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="QueryResourcePropertiesResponse">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 <wsdl:fault name="ResourceUnknownFault">
 <wsdl-soap:fault use="encoded"
 name="ResourceUnknownFault" />
 </wsdl:fault>
 <wsdl:fault name="ResourceUnavailableFault">
 <wsdl-soap:fault use="encoded"
 name="ResourceUnavailableFault" />
 </wsdl:fault>
 <wsdl:fault name="UnknownQueryExpressionDialectFault">
 <wsdl-soap:fault use="encoded"
 name="UnknownQueryExpressionDialectFault" />
 </wsdl:fault>
 <wsdl:fault name="InvalidQueryExpressionFault">
 <wsdl-soap:fault use="encoded"
 name="InvalidQueryExpressionFault" />
 </wsdl:fault>
 <wsdl:fault name="QueryEvaluationErrorFault">
 <wsdl-soap:fault use="encoded"
 name="QueryEvaluationErrorFault" />
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="SetResourceProperties">
 <wsdl-soap:operation
 soapAction="SetResourceProperties" />
 <wsdl:input name="SetResourcePropertiesRequest">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="SetResourcePropertiesResponse">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 <wsdl:fault name="ResourceUnknownFault">
 <wsdl-soap:fault use="encoded"
 name="ResourceUnknownFault" />
 </wsdl:fault>
 <wsdl:fault name="ResourceUnavailableFault">
 <wsdl-soap:fault use="encoded"
 name="ResourceUnavailableFault" />
 </wsdl:fault>
 <wsdl:fault name="InvalidModificationFault">
 <wsdl-soap:fault use="encoded"
 name="InvalidModificationFault" />
 </wsdl:fault>
 <wsdl:fault name="UnableToModifyResourcePropertyFault">
 <wsdl-soap:fault use="encoded"
 name="UnableToModifyResourcePropertyFault" />
 </wsdl:fault>
 <wsdl:fault name="InvalidResourcePropertyQNameFault">
 <wsdl-soap:fault use="encoded"
 name="InvalidResourcePropertyQNameFault" />
 </wsdl:fault>
 <wsdl:fault name="SetResourcePropertyRequestFailedFault">
 <wsdl-soap:fault use="encoded"

97

 name="SetResourcePropertyRequestFailedFault" />
 </wsdl:fault>
 </wsdl:operation>

 <!-- wsntw:NotificationProducer Operation bindings -->
 <wsdl:operation name="Subscribe">
 <wsdl-soap:operation
 soapAction="Subscribe" />
 <wsdl:input name="SubscribeRequest">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="SubscribeResponse">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 <wsdl:fault name="ResourceUnknownFault">
 <wsdl-soap:fault
 use="encoded" name="ResourceUnknownFault" />
 </wsdl:fault>
 <wsdl:fault name="InvalidFilterFault">
 <wsdl-soap:fault
 use="encoded" name="InvalidFilterFault" />
 </wsdl:fault>
 <wsdl:fault name="TopicExpressionDialectUnknownFault">
 <wsdl-soap:fault
 use="encoded" name="TopicExpressionDialectUnknownFault" />
 </wsdl:fault>
 <wsdl:fault name="InvalidTopicExpressionFault">
 <wsdl-soap:fault
 use="encoded" name="InvalidTopicExpressionFault" />
 </wsdl:fault>
 <wsdl:fault name="TopicNotSupportedFault">
 <wsdl-soap:fault
 use="encoded" name="TopicNotSupportedFault" />
 </wsdl:fault>
 <wsdl:fault
 name="InvalidProducerPropertiesExpressionFault">
 <wsdl-soap:fault
 use="encoded"
 name="InvalidProducerPropertiesExpressionFault" />
 </wsdl:fault>
 <wsdl:fault name="InvalidMessageContentExpressionFault">
 <wsdl-soap:fault
 use="encoded" name="InvalidMessageContentExpressionFault" />
 </wsdl:fault>
 <wsdl:fault
 name="UnacceptableInitialTerminationTimeFault">
 <wsdl-soap:fault
 use="encoded" name="UnacceptableInitialTerminationTimeFault" />
 </wsdl:fault>
 <wsdl:fault name="UnrecognizedPolicyRequestFault">
 <wsdl-soap:fault
 use="encoded" name="UnrecognizedPolicyRequestFault" />
 </wsdl:fault>
 <wsdl:fault name="UnsupportedPolicyRequestFault">
 <wsdl-soap:fault
 use="encoded" name="UnsupportedPolicyRequestFault" />
 </wsdl:fault>
 <wsdl:fault name="NotifyMessageNotSupportedFault">
 <wsdl-soap:fault
 use="encoded" name="NotifyMessageNotSupportedFault" />
 </wsdl:fault>
 <wsdl:fault name="SubscribeCreationFailedFault">
 <wsdl-soap:fault
 use="encoded" name="SubscribeCreationFailedFault" />
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="GetCurrentMessage">
 <wsdl-soap:operation
 soapAction="GetCurrentMessage"/>

98

 <wsdl:input name="GetCurrentMessageRequest">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="GetCurrentMessageResponse">
 <wsdl-soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 <wsdl:fault name="ResourceUnknownFault">
 <wsdl-soap:fault
 use="encoded" name="ResourceUnknownFault" />
 </wsdl:fault>
 <wsdl:fault name="TopicExpressionDialectUnknownFault">
 <wsdl-soap:fault
 use="encoded" name="TopicExpressionDialectUnknownFault" />
 </wsdl:fault>
 <wsdl:fault name="InvalidTopicExpressionFault">
 <wsdl-soap:fault
 use="encoded" name="InvalidTopicExpressionFault" />
 </wsdl:fault>
 <wsdl:fault name="TopicNotSupportedFault">
 <wsdl-soap:fault
 use="encoded" name="TopicNotSupportedFault" />
 </wsdl:fault>
 <wsdl:fault name="NoCurrentMessageOnTopicFault">
 <wsdl-soap:fault
 use="encoded" name="NoCurrentMessageOnTopicFault" />
 </wsdl:fault>
 <wsdl:fault name="MultipleTopicsSpecifiedFault">
 <wsdl-soap:fault
 use="encoded" name="MultipleTopicsSpecifiedFault" />
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="{device name}ResourceService">
 <wsdl:port name="{device name}ResourcePort"
 binding="tns:{device name}ResourceBinding">
 <wsdl-soap:address
 location="{device URI}" />
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

2. RPSD Template.

<xsd:schema targetNamespace="{domain namespace}/{device name}"
 xmlns:tns="{domain namespace}/{device name}"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 <!-- WSDM Base Schema References -->
 xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"
 xmlns:muws1="http://docs.oasis-open.org/wsdm/muws1-2.xsd"
 xmlns:muws2="http://docs.oasis-open.org/wsdm/muws2-2.xsd"

 <!-- WSN Schema References -->
 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
 xmlns:wsntw="http://docs.oasis-open.org/wsn/bw-2"
 xmlns:wst="http://docs.oasis-open.org/wsn/t-1">

 <!-- Resource-Specific (Device-type) Schema References -->
 xmlns:{device-type prefix}="{domain namespace}/{device-type name}"
 {...}
 >

 <!-- Resource Properties Document Element References -->
 <xsd:element name="{device name}ResourceProperties">

99

 <xsd:complexType>
 <xsd:sequence>

 <!-- WSDM Base Resource Property References -->
 <xsd:element ref="wsrf-rp:QueryExpressionDialect" minOccurs="0"
maxOccurs="unbounded" />
 <xsd:element ref="muws1:ResourceId"/>
 <xsd:element ref="muws1:ManageabilityCapability" minOccurs="0"
maxOccurs="unbounded" />
 <xsd:element ref="muws2:OperationalStatus"/>

 <!-- WSN Resource Property References -->
 <xsd:element ref="wsnt:FixedTopicSet"/>
 <xsd:element ref="wst:TopicSet" minOccurs="0"/>
 <xsd:element ref="wsnt:TopicExpression" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="wsnt:TopicExpressionDialect" minOccurs="0"
maxOccurs="unbounded"/>

 <!-- Resource-Specific Resource Property References -->
 <xsd:element ref="{device-type prefix}:{property name}"/>
 {... additional element references ...}
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

3. RMD Template.

<?xml version="1.0"?>
<Definitions xmlns="http://docs.oasis-open.org/wsrf/rmd-1" >

 <!-- WSDM Base Schema References -->
 <MetadataDescriptor xmlns:wsrl="http://docs.oasis-open.org/wsrf/rl-2"
 xmlns:muws1="http://docs.oasis-open.org/wsdm/muws1-2.xsd"
 xmlns:muws2="http://docs.oasis-open.org/wsdm/muws2-2.xsd"
 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
 xmlns:wst="http://docs.oasis-open.org/wsn/t-1"
 xmlns:myns="{domain namespace}/{device name}"

 <!-- Device-type schema references -->
 xmlns:{device-type prefix}="{domain namespace}/{device-type name}"
 {...}
 name="{device name}MetadataDescriptor"
 interface="myns:{device name}PortType"
 wsdlLocation="{domain namespace}/{device name} {WSDL location}" >

 <!-- Device-type Resource Property Metadata Declarations -->
 <Property name="{device-type prefix}:{property name}" mutability="{value}"
modifiability="read-only">
 <ValidValues>
 <{device-type prefix}:{property name}>{Property Value}</{device-type
prefix}:{property name}>
 </ValidValues>
 <muws2:Capability>{domain namespace}/{device-type name}Capability</muws2:Capability>
 </Property>

 {... additional property metadata declarations ...}

 <!-- Topic Metadata Declarations -->
 <Property name="wsnt:TopicExpression" mutability="constant" modifiability="read-only">
 <StaticValues>
 <wsnt:TopicExpression>{topic prefix}:{topic name}</wsnt:TopicExpression>
 </StaticValues>
 </Property>

 {... additional topic metadata declarations ... }

</MetadataDescriptor>
</Definitions>

100

4. TopicSpace Template

<wst:definitions targetNamespace="{domain namespace}/{device name}TopicSpace"
 xmlns:tns="{domain namespace}/{device name}TopicSpace"
 xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"
 xmlns:wst="http://docs.oasis-open.org/wsn/t-1">

 <wst:TopicSpace name="{device name}Topics"
 targetNamespace="{domain namespace}/{device name}TopicSpace">
 <wst:Topic name="{topic name}"
 messageTypes="wsrf-rp:ResourcePropertyValueChangeNotification" />
 {... additional topics ...}
 </wst:TopicSpace>
</wst:definitions>

5. Device-Type Schema Template

Note: A separate device-type schema document is required for each device-type that is
referenced by the RPSD.

<xs:schema targetNamespace="{domain namespace}/{device name}"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="{property name}" type="xs:{property data-type}"/>
 {...}

</xs:schema>

101

Appendix C

CSB Device WSDM MR Documents

1. LaserPrinter WSDL Document.

Note: In order to conserve space, we have included only the resource-specific schema

references here. The entire document can be reconstructed using the template in

Appendix B.

LaserPrinterDevice.wsdl:

<wsdl:definitions targetNamespace="{domain namespace}/{device name}"
xmlns:tns="{domain namespace}/{device name}"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdl-soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsx="http://schemas.xmlsoap.org/ws/2004/09/mex"
xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"
xmlns:wsrmd="http://docs.oasis-open.org/wsrf/rmd-1"
xmlns:muws1="http://docs.oasis-open.org/wsdm/muws1-2.xsd"
xmlns:muws2="http://docs.oasis-open.org/wsdm/muws2-2.xsd"
xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
xmlns:wsntw="http://docs.oasis-open.org/wsn/bw-2"
xmlns:wst="http://docs.oasis-open.org/wsn/t-1"
name="{device name}">

 <wsdl:types>
 {...} (refer to WSDL template)

<!-- Include Resource-Specific Schemas -->

 <xsd:schema elementFormDefault="qualified"
targetNamespace="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDeviceTopic
Space">
 <xsd:include schemaLocation="LaserPrinterDevice_TopicSpace.xsd" />
 </xsd:schema>
 <xsd:schema elementFormDefault="qualified"
targetNamespace="http://www.cs.queensu.ca/ComputerScienceBuilding/PervasiveDevice">
 <xsd:include schemaLocation="PervasiveDevice.xsd" />
 </xsd:schema>
 <xsd:schema elementFormDefault="qualified"
targetNamespace="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinter">
 <xsd:include schemaLocation="LaserPrinter.xsd" />
 </xsd:schema>
 <xsd:schema elementFormDefault="qualified"
targetNamespace="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDevice">
 <xsd:include schemaLocation="LaserPrinterDevice_RPSD.xsd" />
 </xsd:schema>
 </wsdl:types>

{...}
</wsdl:definitions>

102

2. LaserPrinter Schema Documents.

Note : The LaserPrinter device has a total of three schema documents as shown.

PervasiveDevice.xsd :

<schema
targetNamespace="http://www.cs.queensu.ca/ComputerScienceBuilding/PervasiveDevice"
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="UniqueName" type="string"/>
 <element name="DeviceType" type="string"/>
 <element name="Owner" type="string"/>
 <element name="Location" type="string"/>
 <element name="HasDisplayScreen" type="boolean"/>
</schema>

LaserPrinter.xsd:

<schema targetNamespace="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinter"
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="CanPrintInColour" type="xs:boolean"/>
 <element name="IsOnline" type="xs:boolean"/>
 <element name="PaperRemaining" type="xs:int"/>
</schema>

LaserPrinterDevice_RPSD.xsd :

<xsd:schema
targetNamespace="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDevice"
 xmlns:tns="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDevice"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"
 xmlns:muws1="http://docs.oasis-open.org/wsdm/muws1-2.xsd"
 xmlns:muws2="http://docs.oasis-open.org/wsdm/muws2-2.xsd"
 xmlns:context="http://www.cs.queensu.ca/ComputerScienceBuilding/PervasiveDevice"
 xmlns:laserprinter="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinter"

 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
 xmlns:wsntw="http://docs.oasis-open.org/wsn/bw-2"
 xmlns:wst="http://docs.oasis-open.org/wsn/t-1">

 <!-- Import schemas for PervasiveDevice and LaserPrinter device-types -->

 <!-- Resource Properties Document Element Declarations -->
 <xsd:element name="LaserPrinterDeviceResourceProperties">
 <xsd:complexType>
 <xsd:sequence>
 <!-- Must be specified for all MRs -->
 <xsd:element ref="wsrf-rp:QueryExpressionDialect" minOccurs="0"
maxOccurs="unbounded" />
 <xsd:element ref="muws1:ResourceId"/>
 <xsd:element ref="muws1:ManageabilityCapability" minOccurs="0"
maxOccurs="unbounded" />
 <xsd:element ref="muws2:OperationalStatus"/>

 <!-- Must be specified if topics are supported -->
 <xsd:element ref="wsnt:FixedTopicSet"/>
 <xsd:element ref="wst:TopicSet" minOccurs="0"/>
 <xsd:element ref="wsnt:TopicExpression" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="wsnt:TopicExpressionDialect" minOccurs="0"
maxOccurs="unbounded"/>

 <!-- PervasiveDevice Capability Properties -->
 <xsd:element ref="context:UniqueName"/>
 <xsd:element ref="context:DeviceType"/>

103

 <xsd:element ref="context:Owner"/>
 <xsd:element ref="context:Location"/>
 <xsd:element ref="context:HasDisplayScreen"/>

 <!-- LaserPrinter Capability Properties -->
 <xsd:element ref="laserprinter:CanPrintInColour"/>
 <xsd:element ref="laserprinter:IsOnline"/>
 <xsd:element ref="laserprinter:PaperRemaining"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

3. LaserPrinter RMD Document.

<Definitions xmlns="http://docs.oasis-open.org/wsrf/rmd-1">
 <MetadataDescriptor xmlns:wsrl="http://docs.oasis-open.org/wsrf/rl-2"
 xmlns:muws1="http://docs.oasis-open.org/wsdm/muws1-2.xsd"
 xmlns:muws2="http://docs.oasis-open.org/wsdm/muws2-2.xsd"
 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
 xmlns:wst="http://docs.oasis-open.org/wsn/t-1"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:myns="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrin
terDevice"

 xmlns:pervasive="http://www.cs.queensu.ca/ComputerScienceBuilding/Perv
asiveDevice"

 xmlns:laserprinter="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinter"

 name="LaserPrinterMetadataDescriptor"
interface="myns:LaserPrinterPortType"

 wsdlLocation="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDevice
http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDevice/LaserPrinterDevice.ws
dl" >

 <!-- PervasiveDevice Capability Resource Property Metadata Declarations -->
 <Property name="pervasive:UniqueName" mutability="mutable" modifiability="read-only">
 <muws2:Capability>
 http://www.cs.queensu.ca/ComputerScienceBuilding/
 PervasiveDeviceCapability
 </muws2:Capability>
 </Property>

 <Property name="pervasive:DeviceType" mutability="constant"
 modifiability="read-only">
 <ValidValues>
 <pervasive:DeviceType>Data_Projector</pervasive:DeviceType>
 <pervasive:DeviceType>Laser_Printer</pervasive:DeviceType>
 <pervasive:DeviceType>Smart_Thermostat</pervasive:DeviceType>
 <pervasive:DeviceType>PDA</pervasive:DeviceType>
 </ValidValues>

 <muws2:Capability>
 http://www.cs.queensu.ca/ComputerScienceBuilding/
 PervasiveDeviceCapability
 </muws2:Capability>
 </Property>

 <Property name="pervasive:Owner" mutability="mutable"
 modifiability="read-only">
 <muws2:Capability>
 http://www.cs.queensu.ca/ComputerScienceBuilding/
 PervasiveDeviceCapability
 </muws2:Capability>
 </Property>

 <Property name="pervasive:Location" mutability="mutable"

104

 modifiability="read-only">
 <ValidValues>
 <pervasive:Location>Boardroom</pervasive:Location>
 <pervasive:Location>Conference_Room</pervasive:Location>
 </ValidValues>
 <muws2:Capability>
 http://www.cs.queensu.ca/ComputerScienceBuilding/
 PervasiveDeviceCapability
 </muws2:Capability>
 </Property>

 <Property name="pervasive:HasDisplayScreen" mutability="constant"
modifiability="read-only">
 <muws2:Capability>
 http://www.cs.queensu.ca/ComputerScienceBuilding/
 PervasiveDeviceCapability
 </muws2:Capability>
 </Property>

 <!-- LaserPrinter Capability Resource Property Metadata Declarations -->

 <Property name="laserprinter:CanPrintInColour" mutability="mutable"
 modifiability="read-write">
 <muws2:Capability>
 http://www.cs.queensu.ca/ComputerScienceBuilding/
 LaserPrinterCapability
 </muws2:Capability>
 </Property>

 <Property name="laserprinter:IsOnline" mutability="mutable"
 modifiability="read-only">
 <muws2:Capability>
 http://www.cs.queensu.ca/ComputerScienceBuilding/
 LaserPrinterCapability
 </muws2:Capability>
 </Property>

 <Property name="laserprinter:PaperRemaining" mutability="mutable"
 modifiability="read-write">
 <muws2:Capability>
 http://www.cs.queensu.ca/ComputerScienceBuilding/
 LaserPrinterCapability
 </muws2:Capability>
 </Property>

 <Property name="wsnt:TopicExpression" modifiability="read-only"
 mutability="constant">
 <StaticValues>
 <wsnt:TopicExpression>pervasive:Location</wsnt:TopicExpression>
 </StaticValues>
 </Property>
 </MetadataDescriptor>
</Definitions>

4. LaserPrinter TopicSpace Document.

<wst:definitions
targetNamespace="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDeviceTopic
Space"
 xmlns:tns="http://www.cs.queensu.ca/ComputerScienceBuilding/LaserPrinterDeviceTopicSpace
"
 xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"
 xmlns:wst="http://docs.oasis-open.org/wsn/t-1">
 <wst:TopicSpace name="PervasiveDeviceTopics"
targetNamespace="http://www.cs.queensu.ca/ComputerScienceBuilding/PervasiveDeviceTopicSpa
ce">
 <wst:Topic name="Location" messageTypes="wsrf-
rp:ResourcePropertyValueChangeNotification" />
 </wst:TopicSpace>
</wst:definitions>

105

5. Context Proxy Service Operations WSDL Document Fragment.

<wsdl:definitions
targetNamespace="http://www.cs.queensu.ca/SchoolOfComputing/{DeviceName}"
 xmlns:tns="http://www.cs.queensu.ca/SchoolOfComputing/{DeviceName}"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl-soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:proxy="http://www.cs.queensu.ca/SchoolOfComputing/ProxyProvider"
 {...}
 name="{DeviceName}">

 {...}

 <wsdl:types>
 {...}
 <!-- Import Proxy Provider Schema -->
 <xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.cs.queensu.ca/SchoolOfComputing/ProxyProvider">
 <xsd:include schemaLocation="ProxyProvider.xsd" />
 </xsd:schema>
 </wsdl:types>

 <!-- Proxy Provider Message definitions -->

 <wsdl:message name="SendProfileRequest">
 <wsdl:part name="SendProfileRequest" element="proxy:SendProfileRequest" />
 </wsdl:message>
 <wsdl:message name="SendProfileResponse">
 <wsdl:part name="SendProfileResponse" element="proxy:SendProfileResponse" />
 </wsdl:message>
 <wsdl:message name="SendProfileFault">
 <wsdl:part name="SendProfileFault" element="proxy:SendProfileFault" />
 </wsdl:message>

 <wsdl:message name="RenewLeaseRequest">
 <wsdl:part name="RenewLeaseRequest" element="proxy:RenewLeaseRequest" />
 </wsdl:message>
 <wsdl:message name="RenewLeaseResponse">
 <wsdl:part name="RenewLeaseResponse" element="proxy:RenewLeaseResponse" />
 </wsdl:message>
 <wsdl:message name="RenewLeaseFault">
 <wsdl:part name="RenewLeaseFault" element="proxy:RenewLeaseFault" />
 </wsdl:message>

 <wsdl:message name="DeleteProfileRequest">
 <wsdl:part name="DeleteProfileRequest" element="proxy:DeleteProfileRequest" />
 </wsdl:message>
 <wsdl:message name="DeleteProfileResponse">
 <wsdl:part name="DeleteProfileResponse" element="proxy:DeleteProfileResponse" />
 </wsdl:message>
 <wsdl:message name="DeleteProfileFault">
 <wsdl:part name="DeleteProfileFault" element="proxy:DeleteProfileFault" />
 </wsdl:message>

 <!-- Proxy Provider Operation definitions -->

 <wsdl:portType
 name="{DeviceName}ResourcePortType"
 {...}>

 <!-- ProxyProvider Operations -->

 <wsdl:operation name="SendProfile">
 <wsdl:input
wsa:Action="http://www.cs.queensu.ca/SchoolOfComputing/SendProfileRequest"
 name="SendProfileRequest"
 message="tns:SendProfileRequest"/>
 <wsdl:output
wsa:Action="http://www.cs.queensu.ca/SchoolOfComputing/SendProfileResponse"
 name="SendProfileResponse"

106

 message="tns:SendProfileResponse"/>
 <wsdl:fault name="SendProfileFault"
 message="tns:SendProfileFault"/>
 </wsdl:operation>

 <wsdl:operation name="RenewLease">
 <wsdl:input
wsa:Action="http://www.cs.queensu.ca/SchoolOfComputing/RenewLeaseRequest"
 name="RenewLeaseRequest"
 message="tns:RenewLeaseRequest"/>
 <wsdl:output
wsa:Action="http://www.cs.queensu.ca/SchoolOfComputing/RenewLeaseResponse"
 name="RenewLeaseResponse"
 message="tns:RenewLeaseResponse"/>
 <wsdl:fault name="RenewLeaseFault"
 message="tns:RenewLeaseFault"/>
 </wsdl:operation>

 <wsdl:operation name="DeleteProfile">
 <wsdl:input
wsa:Action="http://www.cs.queensu.ca/SchoolOfComputing/DeleteProfileRequest"
 name="DeleteProfileRequest"
 message="tns:DeleteProfileRequest"/>
 <wsdl:output
wsa:Action="http://www.cs.queensu.ca/SchoolOfComputing/DeleteProfileResponse"
 name="DeleteProfileResponse"
 message="tns:DeleteProfileResponse"/>
 <wsdl:fault name="DeleteProfileFault"
 message="tns:DeleteProfileFault"/>
 </wsdl:operation>

 {...}
 </wsdl:portType>

 <!-- Proxy Provider Bindings -->

 <wsdl:binding name="{DeviceName}ResourceBinding"
 type="tns:{DeviceName}ResourcePortType">
 <wsdl-soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="SendProfile">
 <wsdl-soap:operation soapAction="SendProfile" />
 <wsdl:input name="SendProfileRequest">
 <wsdl-soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="SendProfileResponse">
 <wsdl-soap:body use="encoded"
encodingStle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>

 <wsdl:operation name="RenewLease">
 <wsdl-soap:operation soapAction="RenewLease" />
 <wsdl:input name="RenewLeaseRequest">
 <wsdl-soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="RenewLeaseResponse">
 <wsdl-soap:body use="encoded"
encodingStle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>

 <wsdl:operation name="DeleteProfile">
 <wsdl-soap:operation soapAction="DeleteProfile" />
 <wsdl:input name="DeleteProfileRequest">
 <wsdl-soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>

107

 <wsdl:output name="DeleteProfileResponse">
 <wsdl-soap:body use="encoded"
encodingStle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>

 {...}
 </wsdl:binding>
 {...}
</wsdl:definitions>

6. Context Proxy Service Operations XML Schema Document.

<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:proxy="http://www.cs.queensu.ca/SchoolOfComputing/ProxyProvider"
 xmlns:wsrf-bf="http://docs.oasis-open.org/wsrf/bf-2"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 targetNamespace="http://www.cs.queensu.ca/SchoolOfComputing/ProxyProvider">

 <xsd:element name="SendProfileRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="SendProfileResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="SendProfileFaultType">
 <xsd:complexContent>
 <xsd:extension base="wsrf-bf:BaseFaultType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="SendProfileFault" type="proxy:SendProfileFaultType"/>

 <xsd:element name="RenewLeaseRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="RenewLeaseResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="RenewLeaseFaultType">
 <xsd:complexContent>
 <xsd:extension base="wsrf-bf:BaseFaultType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="RenewLeaseFault" type="proxy:RenewLeaseFaultType"/>

108

 <xsd:element name="DeleteProfileRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="DeleteProfileResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="DeleteProfileFaultType">
 <xsd:complexContent>
 <xsd:extension base="wsrf-bf:BaseFaultType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="DeleteProfileFault" type="proxy:DeleteProfileFaultType"/>

</xsd:schema>

109

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Glossary of Acronyms
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Research Statement
	1.4 Thesis Organization

	Chapter 2 Background and Related Work
	2.1 Pervasive Computing and Context-Awareness
	2.2 Context Management
	2.2.1 CoBrA (Context Broker Architecture)
	2.2.2 PersonisAD
	2.2.3 Delivery Context Ontology

	2.3 Ad-Hoc Networking and Device Communication
	2.3.1 MANETs
	2.3.2 Zeroconf

	Chapter 3 Adaptable Context-Management Framework
	3.1 Entity Specification
	3.2 Context Model
	3.2.1 Domain Ontology Specification
	3.2.2 Device Context Profile Specification

	3.3 Context-Exchange Protocols
	3.3.1 Device Roles
	3.3.2 Device Interaction States
	3.3.3 Local Context Service
	3.3.4 Context Proxy Service

	Chapter 4 Implementation
	4.1 The WSDM Standard
	4.1.1 Background
	4.1.2 Manageable Resources
	4.1.3 Manageability Capabilities
	4.1.4 Resource Properties
	4.1.5 Operations
	4.1.6 Events
	4.1.7 Implementation and Scalability

	4.2 ACMF-WSDM Mappings
	4.2.1 Context Model Mappings
	4.2.2 Context-Exchange Protocol Mappings

	4.3 ACME Simulation
	4.3.1 MANET Simulator
	4.3.2 Simulated Servers
	4.3.3 Simulated Client
	4.3.4 Use Cases

	Chapter 5 Conclusions and Future Work
	5.1 Thesis Contributions
	5.2 Conclusions
	5.3 Future Work
	1. Master Domain Ontology Schema Document.
	2. ComputerScienceBuilding Ontology XML Instance Document.
	3. Metadata Schema Document.
	4. ComputerScienceBuilding Prose Description Document
	 5. Laser Printer Device Schema Document.
	6. Laser Printer Context Profile XML Instance Document.
	1. WSDL Template.
	2. RPSD Template.
	3. RMD Template.
	4. TopicSpace Template
	5. Device-Type Schema Template
	1. LaserPrinter WSDL Document.
	2. LaserPrinter Schema Documents.
	3. LaserPrinter RMD Document.
	4. LaserPrinter TopicSpace Document.
	5. Context Proxy Service Operations WSDL Document Fragment.
	6. Context Proxy Service Operations XML Schema Document.

