
Autonomic Management of Elastic Services in the Cloud

Patrick Martin, Andrew Brown, Wendy Powley

School of Computing

Queen’s University

Kingston, ON Canada

martin@cs.queensu.ca

Jose Luis Vazquez-Poletti

Facultad de Informatica

Universidad Complutense de Madrid

28040 Madrid, Spain

jlvazquez@fdi.ucm.es

Abstract—Cloud computing, with its support for elastic

resources that are available on an on-demand, pay-as-you-go

basis, is an attractive platform for hosting Web-based services

that have variable demand, yet consistent performance

requirements. Effective service management is mandatory in

order for services running in the cloud, which we call elastic

services, to be cost-effective. In this paper we describe a

management framework to facilitate elasticity of resource

consumption by services in the cloud. We extend our

framework for services management with the necessary

concepts and properties to support elastic services. A prototype

implementation is described.

Keywords-Management, Cloud Computing, Elastic Services

I. INTRODUCTION

Economic and technological factors have motivated the
advent of on-demand computing infrastructures with
companies such as Amazon, IBM, Microsoft and Google
providing software, platforms and computing resources as
services. This approach, framed in the cloud computing
paradigm, is based on a pay-as-you-go model and its benefits
are in the notion of elasticity, that is, the ability to scale
capacity up or down to match consumer demands. Elastic
resources are efficient for service providers since they limit
up-front capital expenses and reduce the cost of ownership
over time [1]. In this paper we refer to services running on
the resources in the cloud as elastic services.

Systems management ensures the correct, efficient and
secure operation of managed systems and applications.
Traditional systems managements are not suited to the
dynamic and complex nature of service-oriented architecture
(SOA), which allows applications to be constructed of
existing services in a dynamic manner. We previously
proposed an autonomic, agent-based framework for services
management that consists of the following three components
[2]:
 A services management model to describe management

tasks and goals.
 A method to generate management system components

from specifications using the model.
 An infrastructure to allow the integration of management

tasks and user interaction with the management system.
Elastic services offer additional management challenges.

First, the components and resources involved in an elastic
service are dynamic and change as demand for the service

changes. This means that the management system must be
able to automatically adapt to the changes in the underlying
set of managed resources. It is also more difficult for a
services management system to ensure predictable
performance from the service and to support problem
determination since the underlying resource configuration
changes. Second, adding or removing resources, such as a
virtual machine, to a service can involve significant delays.
The services management system must be able to predict
when a change in the makeup of the service will be
necessary with enough lead time to minimize the impact of
the change.

In this paper we adapt our services management
framework to support elastic services. We extend the
services management model to accommodate elastic services
and discuss how our agent-based infrastructure can interface
with the resource management systems provided by public
and private clouds. We also discuss appropriate performance
metrics on which the services management system can base
its resource allocation decisions.

The remainder of the paper is structured as follows.
Section II provides an overview of our services management
framework, which consists of a services management model
and supporting infrastructure. Section III gives an example
scenario and we use it to describe how the framework is
extended to accommodate elastic services. It suggests
appropriate metrics for managing elasticity and discusses the
status of a prototype implementation of the
framework. Section IV examines related work. Section V
summarizes the paper and provides suggestions for future
work.

II. SERVICES MANAGEMENT FRAMEWORK

We view a management system for services as a
collection of agents that interact through the processing and
generation of event streams. Each agent performs a relatively
simple function and all agents follow the same general
behavior pattern. Agents accept new events on one or more
event streams and the arrival of an event triggers local
processing. The results of the processing can be the
generation of a new event on an outgoing event stream
and/or changes to the state of the managed system or the
management system itself. These simple agents are
combined into what we call management goal graphs in
order to carry out complex management tasks.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE 135

A. Services Management Model

Our services management model consists of a set of
constructs to specify management tasks. A complete
definition of the model is provided elsewhere [2]. Managed
resources are the services and components being managed.
A managed resource provides a set of metrics to describe its
state and performance and a set of configuration parameters
that can be adjusted to affect its state and performance.

An event is the occurrence of a situation, or incident,
within a service or the management system. Events may
signify a deviation from typical behaviour or may report
expected occurrences within the system such as the
completion of a task. Concrete events happen in the managed
system and are relayed into the management system via
sensors. Examples of concrete events include the arrival of a
client, the failure of a transaction, or the report of a
performance metric such as throughput. Inferred events, on
the other hand, occur in the management system and are
derived from the current state of the managed system and the
relevant history of event occurrences. Event types describe
the common properties of a set of similar event instances.

It is assumed that a history of event instances is kept by
the management system. The event context of an event
instance ei is a description of a condition on the relevant
history for ei. The combination of the arrival of ei and its
context is analogous to a pattern in complex event processing
and matching that pattern causes the agent to act.

There are three main types of agents: Sensors, Actors
and Effectors. Sensors monitor event streams and produce
new event streams based on what they observe. Actors carry
out a management function when triggered by the input of an
event or by a user. Effectors impose changes for the
management system on the managed resources. The
behaviour of an agent is defined by its active policy, which
specifies the input streams, the output stream, the event
context(s) and, in the case of actors and effectors, the
management action.

An event stream represents the flow of events from a
source (external or agent) to one or more destination agents.
All agents subscribed to a stream see all the event instances
published on the stream. Agents are linked together with
event streams to form a management goal graph that
achieves a specific management task or goal.

B. Services Management Infrastructure

Autonomic Web Services Environment (AWSE) is an
implementation of our services management
infrastructure[3]. AWSE is based on the OASIS standard for
Web Services Distributed Management (WSDM) [4].
WSDM provides standard communication protocols and
message passing for the agents used in our model. It also
employs Web Services Notification (WSN) [5] to support
publish/subscribe message exchange, which we use to
provide event streams.

We assume that each managed resource employs a
WSDM management endpoint through which the
management system can obtain performance metrics and
adjust configuration parameters. The metrics provided by
each managed resource are obtained through the WSDM

management endpoint via notifications that are published
periodically by the endpoint to appropriate topics. An agent
is defined for each metric produced by a managed resource
and this agent subscribes to the topic defined by the WSDM
endpoint for the metric of interest.

The management system is a collection of management
goal graphs, each composed of a hierarchy of agents (see
Figures 3 and 4). Each agent is constructed following the
architecture shown in Figure 1. Each agent is implemented
as a WSDM entity which enables the agents to communicate
using standard protocols and, in particular, provides
publish/subscribe messaging capabilities. The defining
feature of an agent is the policy that specifies its behaviour.
The policy contains the set of input streams, the output
stream, a set of patterns, and for an actor, a management
function that is triggered when the specified pattern is
matched.

Incoming event instances are gathered by the agent’s
Events Collector and saved in the original XML format in a
repository, which is implemented by a DB2 database that is
unique to each agent. The events repository stores the event
history. Insertion of a new event in the repository triggers the
Events Analyzer which evaluates the new event against the
set of patterns specified in the policy. A pattern consists of
an event type and a context. The context in our
implementation is specified using XQuery [6], a standard
language for querying XML data. The XQuery returns a set
of “matches” in the event history for the context. If the
pattern is matched, an event instance of the appropriate type
is generated by the Events Generator and published to the
appropriate topic, notifying subscribers of the event.

Actors contain a management function as part of their
policy. The management functions are implemented as
stored procedures and are called using the XQuery specified
in the pattern portion of the policy. A stored procedure is an
external subroutine (usually written in Java or C) that is
available to database applications, in our case, through the
XQuery. The stored procedure is used to consolidate,
compartmentalize, and externalize the logic for the actors.

Effectors impose change on the managed system. The
action of an effector involves communication with the

Figure 1: Agent Architecture

978-1-4577-0681-3/11/$26.00 ©2011 IEEE 136

management endpoint for the managed resource. The
effector usually makes a call to adjust one or more
configuration parameters or to take some management action
on the managed resource via the management capabilities
provided by the resource. One effector is created for each
manageability capability of the managed resource, that is,
each management function provided by a managed resource.

III. SUPPORTING ELASTICITY

Elastic services reside in the cloud and, either singularly
or in composition, are offered to customers as Software-as-a-
Service (SaaS). The elasticity involves dynamically changing
resource allocations to meet the current demands on the
service. It is provided through requests to change the
resource allocations by the management system to the
underlying Infrastructure-as-a-Service (IaaS) layer in the
cloud, for example the Amazon EC2 service [7].

Elasticity also implies the ability to dynamically change
both the composition of the service and the management
system in response to changes in the underlying resources.
For example, increasing the number of Virtual Machines
supporting the service requires another copy of the service
software to run on that Virtual Machine. This in turn requires
the creation of additional sensors in our Management Goal
Graph and potential changes to the policies governing higher
level agents in response to these changes.

A. Elastic Service Scenario

We use the following elastic service scenario throughout
the remainder of the paper to illustrate our management
approach. We consider a publicly available information
source, say similar to Wikipedia[8], which is provided as an
elastic service hosted on a cloud. The service can experience
a widely varying workload of requests for information.

Figure 2: Example Elastic Service Scenario

The service is structured as shown in Figure 2 in order to
deal with the varying workload. A single virtual machine, the
Delegator, is exposed to the world as the point of access to
the service. The service application itself is placed on a
Worker VM image that is duplicated to accommodate the
current load on the service. The Delegator acts a load
balancer redirecting incoming requests across the pool of
Workers. In this scenario, elasticity involves increasing and

decreasing the number of Worker instances in response to
changes in demand.

B. Extending the Framework

Our framework must be extended in several ways to
support elasticity in the services. First, the management goal
graph, and the network of agents that implements it, must be
able to change dynamically to match the changing resources
allocated to the service. Second, the model must provide
constructs that allow the user to describe how the service
should react to changes in demand. Third, the framework
infrastructure must provide a mechanism to implement the
previously mentioned elastic behaviour.

Figure 3 gives an overview of how we extend our
existing services management framework to handle elastic
services. The Management Goal Graph and Service sections
of the diagram within the box outlined by a dashed line
represent the existing framework. The Service, or managed
system, consists of one or more managed resources. The
Management Goal Graph consists of a set of agents (sensors
(S), actors (A) and effectors (E)). The solid directed lines
represent event streams. The dashed directed line represents
an action by an effector on a managed resource.

Figure 3: Framework for Management of Elastic Services

Accommodating elastic services requires the extensions
represented by the top and bottom sections of Figure 3.
Elastic services use the resources provided by the IaaS layer
of the cloud, which is shown by the thick solid line between
a managed resource (MR) of a service and a IaaS resource
(Virtual Machine (VM)). The Elasticity Goal Graph is
another set of agents that function in an analogous manner as
a Management Goal Graph and that manage the elasticity of
the service according to a user-defined policy. As shown in
Figure 3, effectors in the Elasticity Goal Graph carry out
changes to the Management Goal Graph, the Service, and the
underlying resources allocated to the service. We now
describe our extensions to the service management model
and the management infrastructure in more detail.

The Elasticity Goal Graph, as mentioned above, is
analogous to a Management Goal Graph. In the case of an

978-1-4577-0681-3/11/$26.00 ©2011 IEEE 137

Elasticity Goal Graph, a Management Goal Graph is the
managed resource and there are sensors to receive events
from the Management Goal Graph and effectors to take
actions on it. The service provider’s intentions for how
elasticity should be exploited by the service are captured in
the policies assigned to the agents in the Elasticity Goal
Graph.

Following the logic of the MAPE loop of autonomic
computing [9], the sensors monitor and analyze the
execution of the Management Goal Graph (and its
corresponding service) by receiving events from the graph
and creating inferred events for processing by other sensors
or actors. The actors plan the appropriate resource
allocations in response to the current performance and send
the information to the effectors via events. The effectors in
an Elasticity Goal Graph execute actions to perform one or
more of the following:

 Modify the Management Goal Graph to accommodate

changes in the underlying resource allocation. The

possible modifications to the graph include adding or

removing an agent, adding or removing an event stream

between agents and deploying a new policy at an existing

agent.

 Modify the service to accommodate changes in the

underlying resource allocations.

 Issue requests to the IaaS to modify the resource

allocations for the service.
The management infrastructure is service-oriented and so

can be naturally extended to support the above behaviour.
We encapsulate the management goal graph as a Web
service like the other managed resources. The service
supports a management interface that delivers events
(notifications) to the sensors in the Elasticity Goal Graph and
methods to perform the actions to modify the Management
Goal Graph and its implementations.

We assume that the IaaS and managed services also
provide a service interface for the effectors in the Elasticity
Goal Graph. A managed service must provide methods to
support the expansion and contraction of the service
components. An IaaS typically provides a service interface to
manage the allocation of resources [1].

An example of how our extended management
framework could be used to manage the size of the Worker
pool in our elastic service scenario is shown in Figure 4.
Assuming that we start with two instances of the Worker
component, the original Management Goal Graph consists of
three sensors for each Worker (Response Time, Request
Count and Worker Busy), a sensor to indicate if all the
Workers are busy (Busy Counter), an actor to decide on
actions to balance the requests among the existing workers
(Balance Actor) and an effector to maintain the balance
(Balance Effector).

The Elasticity Goal graph consists of the three agents at
the top of the diagram: a sensor to accept events describing
the request rate to the Delegator (Request Rate); an actor to
determine the appropriate scaling actions for a given load
(Scale Actor), namely add or remove a Worker component,
and an effector to implement the required changes in the

managed system and the management goal graph (Scale
Effector).

Figure 4: Management Structure for Elastic Service Scenario

On each Worker VM, the Worker produces events
reporting the response time and the number of requests
currently being processed. The sub-graph of sensors
contained on the Worker is responsible for determining a
Worker’s current activity level. The activity level indicates
whether or not a Worker is able to take on new requests.
These events are passed to a higher level sensor that
generates messages to both the scaling actor to decide if we
need to add/remove Workers and to the balancing actor to
decide whether or not we should adjust the workload that is
going to individual workers.

The Delegator produces an event stream of request rate
events. These are produced at regular intervals and report
the current request rate. Overall trends of an increasing or
decreasing request rate are good indicators that the Worker
pool size may need to be adjusted. A sensor monitors the
stream of request rate events and produces inferred events to
inform the scaling actor of any trends.

The management agents can be split across running VMs
with the sensors associated with a Worker placed on its VM
and the remaining agents placed on the Delegator’s VM. The
agents can be pre-installed and configured on the image and
added to the operating system’s list of programs to run on
boot. When a new Worker VM instance is started, its
sensors automatically start up and begin monitoring and
producing events. At start-up the Scale Effector can pass the
management endpoint of the Busy Counter to the new
Worker Busy sensor to establish the new event stream. The
Balance Actor policy can also be parameterized for the
number of Workers and a new value can be passed by the
Scale Effector to the Web service encapsulating the
management goal graph.

C. Metrics for Managing Elasticity

Managing elastic services in public cloud environments
bring a new degree of complexity to the resource
provisioning problem due to the price to be paid per usage.
Amazon EC2, for example, charges per hour and instance
type, each with different characteristics as shown in Table 1.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE 138

Table 1: VM Characteristics and Costs

Machine
Type

Small
(Default)

Large Extra
Large

High
CPU
Medium

High
CPU
XL

Cores/C.U. 1/1 2/2 4/2 2/2.5 8/2.5

Memory 1.7GB 7.5GB 15GB 1.7GB 7GB

Platform 32 bit 64 bit 64 bit 32 bit 64 bit

Price/Hr $0.085 $0.34 $0.68 $0.17 $0.68

For this reason, metrics capturing both cost and

performance are needed for making provisioning decisions
on public cloud infrastructures. Previous performance studies
have developed a method for deriving two combined metrics
and applied the method to scientific workflows [10], [11], as
well as models for certain execution profiles [12], [13].

The first metric, Cost per Performance (C/P),
characterizes the system on a task basis and is the result of
multiplying the execution time needed for a given group of
tasks using a specific infrastructure by the usage cost. The
second metric, Cost per Throughput (C/T), offers another
way to analyze the request timeline and is based on time
intervals. Additionally, both metrics offer a balanced
measure of the variables involved but it is possible to change
the weight of cost, performance and throughput using
multipliers.

The first step in deriving the C/P metrics for an elastic
service involves experimentally characterizing the
performance of the main tasks on the set of VM types
available. For example, if the main tasks in our scenario are
GET and PUT operations, then we can conduct a series of
experiments in which series of first GET, and then PUT
requests are executed on an instance of each VM type. Given
the performance results and the costs, we can compute the
C/P values for our sample elastic service on the range of VM
types.

In our elastic service scenario, the Delegator sends events
to the Request Rate sensor in the elasticity management
graph reporting current request rates to the service. When the
request rate rises above what can be handled by the current
set of Workers the Scale Actor can use the C/P and load
information to determine the most appropriate type of VM to
handle the additional load. A similar reverse process can be
followed to decrease the number of Workers when
appropriate.

D. Prototype Implementation

We are implementing a proof-of-concept prototype of our
framework for elastic services management on a private
cloud running Eucalyptus [14]. To implement the sample
scenario described here we create two different virtual
machine images: the Delegator and the Worker. The
operating systems on the images are configured to
automatically start all the software necessary as part of the
boot sequence.

The Delegator image contains the Delegator component
of the applications and the services encapsulating the

management goal graph and the elasticity goal graph. The
management goal graph service includes IBM DB2 9.5 [15]
and Apache Tomcat 6 [16] to host the Sensors. It performs
load-balancing using the Membrane Router [17], which is an
open-source SOA router. The modular design of the
Membrane Router allowed us to create a customized Balance
Actor that uses a weighted round-robin scheduling policy.

The Worker instance uses Apache Tomcat 6 to host the
managed elastic service as well as the services implementing
the agents that form the Worker’s sub-graph. The operating
system is configured to start Tomcat once it is booted. When
Tomcat starts the sensors are created and immediately begin
monitoring the worker component of the application. Finally
a message is sent to the Delegator to notify it that the Worker
is ready to begin receiving requests.

IV. RELATED WORK

Cloud infrastructures employ virtual infrastructure (VI)
management to dynamically orchestrate the deployment of
virtual machines, management of storage requirements, and
to configure resources to adapt to an organization’s changing
needs. Four of the most advanced platforms include
OpenNebula [18], Enolmaly Elastic Computing Platform
(ECP) [19], Eucalyptus [14] and oVirt [20].

Moreno-Vozmediano et al. [21] investigate the use of the
OpenNebula VI engine to separate service management from
resource provisioning. OpenNebula provides VM
management, that is, resource provisioning on a local
infrastructure as well as an Amazon EC2 cloud. Although
this paper demonstrates the benefits of providing VI
management and presents a possible architecture, it does not
address the need for predictability of resource provisioning
required by elastic services.

In our approach, elastic services are managed by the
cloud. Lim et al. [22] believe that the cloud controller
structure should leave application control up to the
consumer. They explore the use of external controllers for
adaptive resource provisioning. The approach assumes that
the cloud platform exports a set of sensors and actors to be
used by the external controllers and they focus on the
challenges of building such controllers given the existing
constraints of the cloud infrastructure APIs.

Boniface et al. [23] outline a Platform as a Service (PaaS)
architecture that provides tools for management of service
oriented applications in the cloud. We envision that our
management techniques could be employed within such an
environment. Chapman et al. [24] present a service
definition language that we plan to investigate to define our
management rules and policies.

V. SUMMARY

Cloud computing, with its support for elastic resources
that are available on an on-demand, pay-as-you-go basis, is
an attractive platform for hosting Web-based services that
have variable demand yet consistent performance
requirements. Effective service management is mandatory in
order for these elastic services to be cost-effective.

Elastic services offer new challenges that cannot be
adequately met by traditional management structures. In this

978-1-4577-0681-3/11/$26.00 ©2011 IEEE 139

paper we describe a novel services management model and
infrastructure for elastic services that builds on previous
work in services management. The framework, which is
based on autonomic computing principles and techniques, is
adaptable and designed to handle the elasticity offered by
cloud computing.

Our services management model represents a
management task as a management goal graph, which
describes the task in terms of event processing by a set of
agents playing the roles of sensors, actors and effectors.
Sensors accept events and produce new complex events;
actors perform decision-making and planning, and effectors
enforce changes on the managed system by carrying out the
plans defined by the actors.

We extend our previous work on services management
with the notion of an elasticity goal graph that is built from
our model constructs and that manages the elasticity by
coordinating and effecting changes to the cloud
infrastructure, the managed service and its management goal
graph. A proof-of-concept implementation of our framework
is underway and is briefly described.

In continuing our work on elastic services management
we plan to examine a number of research questions including
the following. First, we plan to define useful elasticity
metrics and methods for deriving and exploiting them. These
metrics will likely be derived from the C/P and C/T metrics
outlined in the paper. Second, we will look at algorithms and
predictive models for effectively managing different classes
of elastic services. Third, we will specifically examine
elasticity for cloud data services, which is further
complicated by the costs associated with managing large
amounts of data in the cloud.

ACKNOWLEDGEMENTS

The research is supported by the Natural Sciences and

Engineering Research Council (NSERC) of Canada,

MEDIANET (Comunidad de Madrid S2009/TIC-1468),

HPCcloud (MICINN TIN2009-07146) and 4CaaSt (EU

Grant Agreement 258862).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia. “A view of
cloud computing”. Communications of the ACM 53 (4), 2010, pp. 50-
58.

[2] P. Martin, W. Powley, I. Abdallah, J. Li, A. Brown, K. Wilson and C.
Craddock. “A model for dynamic and adaptable services
management”. Proceedings of ICSE International Workshop on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2009), Vancouver BC, May 2009, pp 1 – 9.

[3] Li, J.; Martin, P.; Powley, W.; Wilson, K.; Craddock, C., “A sensor-
based approach to symptom recognition for autonomic systems”,
Fifth International Conference on Autonomic and Autonomous
Systems, 2009. ICAS '09. 20-25 April 2009, pp. 45 - 50.

[4] WSDM v1.1. 2008, Organization for the Advancement of Structured
Information Standards; May 18 2008, http://www.oasis-
open.org/specs/index.php#wsdmv1.1.

[5] WS Notification. 2004, Organization for the Advancement of
Structured Information Standards; July 2 2008; http://www.oasis-
open.org/specs/index.php#wsnv1.3.

[6] XQuery 1.0: An XML Query Lanaguage, W3C Recommendation,
Dec 2010, http://www.w3.org/TR/xquery/.

[7] Amazon. Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[8] Wikipedia http://www.wikipedia.org/

[9] J. Kephart and D. Chess. “The vision of autonomic
computing”, IEEE Computer, 36(1), 2003, pp. 41 – 52.

[10] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B.P. Berman,
and P. Maechling, “Scientific workflow applications on Amazon
EC2”, Workshop on Cloud-based Services and Applications in
conjunction with 5th IEEE International Conference on e-Science (e-
Science 2009), Oxford UK, December 9-11, 2009.

[11] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The
cost of doing science on the cloud: The Montage example”,
Proceedings of the 2008 ACM/IEEE Conference on Supercomputer,
2008, pp. 1-12.

[12] J. L. Vazquez-Poletti, G. Barderas, I. M. Llorente, and P. Romero, "A
model for efficient onboard actualization of an instrumental
cyclogram for the mars MetNet mission on a public cloud
infrastructure," Lecture Notes in Computer Science, 2011.

[13] J.L. Vazquez-Poletti, J. Perhac, J. Ryan and A.C. Elster: "THOR: A
transparent heterogeneous open resource framework”, Proceedings of
2010 IEEE International Conference on Cluster Computing
Workshops and Posters, Sept 2010, pp. 1-6.

[14] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff and D. Zagorodnov. “The eucalyptus open-source cloud-
computing system”, Proceedings of the 9th IEEE/ACM Int.
Symposium. On Cluster Computing and the Grid (CCGRID’09),
Shanghai, June 2009, pp. 124 – 131.

[15] IBM DB2 V9.5 online documentation.
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp.

[16] Apache Tomcat http://tomcat.apache.org/.
[17] Membrane SOA router http://www.membrane-soa.org/soap-

router.htm.

[18] B. Sotomayor, R. Montero, I. Llorente and I. Foster. “Virtual
infrastructure management in private and hybrid clouds”, IEEE
Internet Computing, September/October 2009, pp 14 – 22.

[19] Enomaly. Online Document: http://www.enomaly.com
[20] Ovirt. Online Document: http://www.ovirt.org
[21] R. Moreno-Vozmediano, R. Montero and I. Llorente. “Elastic

management of cluster-based services in the cloud”, Proceedings of
First Workshop on Automated Control for Datacenters and Clouds
(ACDC09), Barcelona, June 2009, pp. 19 – 24.

[22] H. Lim, S. Babu, J. Chase, S. Parekh, “Automated control in cloud
computing: Challenges and opportunities”, First Workshop on
Automated Control for Datacenters and Clouds (ACDC09), June,
209, pp. 13-18.

[23] M. Boniface, B. Nasser, J. Papay, S.C. Phillips, A. Servin, X. Yang,
Z. Zlatev, S.V. Gogouvitis, G. Katsaros, K. Konstanteli, G.
Kousiouris, A. Menychtas, D. Kyriazis. “Platform-as-a-Service
architecture for real-time quality of service management in clouds”.
Internet and Web Applications and Services, ICIW 2010 Fiftih
International Conference, May 2010, Barcelona.

[24] C. Chapman, W. Emmerich, F. Galan Marquez, S. Clayman, and A.
Galis, “Elastic service management in computational clouds”,
CloudMan 2010, IEEE/IFIP, Osaka, Japan, 19-23 April 2010.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE 140

