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Abstract

Data processing needs are changing with the
ever increasing amounts of both structured and
unstructured data. While the processing of
structured data typically relies on the well-
developed field of relational database manage-
ment systems (RDBMSs), MapReduce is a pro-
gramming model developed to cope with pro-
cessing immense amounts of unstructured data.
MapReduce, however, offers features and ad-
vantages that can be exploited to process struc-
tured data. Several database vendors and re-
searchers have already turned to MapReduce
to aid in processing relational data, thus re-
quiring integration of MapReduce and RDBMS
technologies. In this paper, we provide a tax-
onomy to characterize several existing integra-
tion methods. Further, we take a detailed look
at DBInputFormat which is an interface be-
tween Hadoop’s MapReduce and a relational
database. The challenges posed by such an in-
terface are identified and we provide sugges-
tions for improvement.

1 Introduction

Businesses are collecting more information
than ever, and the amount of data being
kept is increasing dramatically. With these
changes, new processing models are being
sought. MapReduce [9] is one such framework
designed to process large amounts of data in
parallel. A MapReduce system consists of a
cluster of nodes with which processing is done
in parallel. What makes such a system so
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highly parallelizable is the fashion in which
data analysis tasks are defined; namely in terms
of map and reduce functions. A map function
creates key/record pairs out of the input and
the reduce function aggregates all the records
for a specific key. If the input data is spread
over many machines, this allows each node to
perform its part of the processing independent
of the other nodes. A key characteristic of
MapReduce systems is their scalability, which
stems in part from the processing model itself,
but also from the fine-grained fault tolerance
integrated in these systems. If a node fails
while processing a MapReduce job another can
take over its part of the job without having to
restart the job entirely. Hadoop [2] is an open-
source implementation of such a MapReduce
system.

Traditionally, MapReduce systems have been
used to analyze semi- or unstructured data.
For structured data, relational database man-
agement systems (RDBMS) are readily avail-
able and well developed. However, processing
needs for structured data are also changing,
both scale-wise and application-wise. Mod-
ern databases are already efficient at process-
ing data but MapReduce has properties that
can be exploited to enhance or aid processing.
Several researchers and database vendors have
taken the approach of integrating MapReduce
and RDBMS technology. We examine these ap-
proaches and determine a set of different in-
tegration types, each designed for a different
purpose.

MapReduce systems are sometimes viewed
as primitive replacements for RDBMSs since
they also process data, but in a very brute-force
manner. We argue, however, that the two sys-
tems are complimentary and not competitors.



The main contribution of our work is a
classification and characterization of current
MapReduce and RDBMS integration technolo-
gies. Furthermore, we investigate an imple-
mentation of one particular type of integration,
Hadoop’s DBInputFormat [1], and point out
the challenges this interface poses and provide
suggestions for improvement. The remainder
of this paper is structured as follows. Section
2 explains the MapReduce processing model
in more detail. In Section 3 we present sev-
eral applications in which MapReduce is use-
ful when processing relational data. Section 4
discusses the MapReduce-RDBMS controversy
and points out the advantages and disadvan-
tages of both systems. Our taxonomy of dif-
ferent integration types is presented in Section
5. Sections 6 and 7 present our evaluation of
Hadoop’s DBInputFormat. In Section 8 we dis-
cuss the challenges of integrating MapReduce
and RDBMSs and provide suggestions for fu-
ture research.

2 The MapReduce Process-
ing Model
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Figure 1: Data flow of the MapReduce process-
ing model.

MapReduce was introduced by Dean and
Ghemawat [9]. A MapReduce job consists of
two phases: a map phase and a reduce phase.
These phases and the overall data flow of a
MapReduce job are illustrated in Figure 1. In
the map phase, several map tasks each process
part of the input. Processing consists of cre-
ating a set of key/value pairs out of the input.
A sample map task performing a word count
is shown in Figure 2. In this case, the keys of
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the key/value pairs are words and the value is
the number of times the word appeared in the
input for this map task. The reduce phase con-
sists of combining sets of tuples with the same
key. Each reduce task receives all the key/value
pairs for a certain key and combines these in
some way. For instance, in Figure 2, the values
of all the tuples with the key dog are added to-
gether to produce the final count of how many
times the word appeared in the input.

Map Task Reduce Task
(dog, 1)
"dog cat bird"—s(cat, 1) Eggg’ 1;—>(d09‘ 2)
(bird, 1) 9

Figure 2: Sample map and reduce tasks exe-
cuting a word count.

3 MapReduce and Rela-

tional Data

There are several scenarios where it is advan-
tageous to use MapReduce to process rela-
tional data and thus interoperation between a
RDBMS and MapReduce system is necessary.

MapReduce is used to process large amounts
of unstructured or ad-hoc data. Occasionally
the processing of this data requires, or could be
aided by, structured data stored in a RDBMS.
It is often the case that the ad-hoc data is
only used a small number of times before be-
ing discarded and hence it is not worth the ef-
fort of loading the data into a database. In
this situation it is more efficient to extract
small amounts of relevant information out of
the database and use it in the MapReduce job
processing the ad-hoc data. For instance, con-
sider an internet company that maintains a
database containing customer profiles with in-
formation such as customer name, address, and
gender. The company would like to analyze
or predict user behaviour by examining large
amounts of ad-hoc data such as click-stream
information. This analysis might benefit from
the incorporation of some of the profile infor-
mation, such as address or gender, to determine
more accurate predictions.

Another application of relational data in a



MapReduce environment is advanced process-
ing. Advanced processing refers to data pro-
cessing that is outside a RDBMS’s scope. This
includes tasks such as machine learning and
graph analysis, for which the data would be
taken out of the database anyways. It is impor-
tant to emphasize that advanced processing is
not meant to compete with the database’s pro-
cessing abilities, but is outside of the database
capabilities. In this category we also include
complex user defined functions that it may be
possible to execute within the database but in
a very limited and inefficient fashion. MapRe-
duce can be used to perform tasks such as
machine learning and graph analysis. Chu et
al. [7] present a general framework for using
MapReduce for machine learning algorithms.
Their approach describes how algorithms such
as support vector machines, k-means and neu-
ral networks can be processed using MapRe-
duce. Rather than being based on using multi-
ple machines, their approach is based on the
idea of using multiple cores as the process-
ing nodes, but the underlying concept is the
same. Another advanced processing task is
graph analysis. Cohen [8] explores the idea
of using MapReduce to perform graph algo-
rithmic tasks such as determining vertex de-
grees and identifying trusses. Trusses are sub-
graphs of high connectivity which can be very
useful when analyzing social networking data.
If MapReduce and RDBMS technology is in-
tegrated, RDBMSs will benefit from this addi-
tional processing power.

Further, as suggested by Stonebreaker et
al. [16], a MapReduce system can act as
an extract-transform-load (ETL) system, com-
plementing traditional database technology.
Thus, MapReduce can be used to extract data
from relational databases, process/transform it
and load it into a data warehouse. Again, these
are tasks that traditional databases are not de-
signed to do.

4 MapReduce vs. RDBMS

As a processing model, MapReduce has caused
much debate among academics and industry
professionals [10, 14, 16]. MapReduce has
many avid followers but also many critics,
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mainly from the database community. The
main argument against MapReduce is that it
seems to be a step backwards from modern
database systems. MapReduce is a very brute
force approach without the optimizing and in-
dexing capabilities of modern database sys-
tems.

There have been several publications com-
paring MapReduce and parallel DBMSs. Pavlo
et al. published a study comparing Hadoop’s
MapReduce with two parallel DBMSs [14].
Their experiments showed that both databases
were significantly slower at loading data than
Hadoop. The data loading time turned out to
be one of the databases’ main disadvantages as
they were much faster at data processing tasks
such as grep tasks, aggregation tasks and join
tasks. The only task for which the databases
did not significantly outperform Hadoop was a
user-defined function (UDF) task.

Dean et al. [10] point out some advantages
that a MapReduce system has over a paral-
lel database system. Firstly, MapReduce has
a very fine-grained fault tolerance meaning if
a node fails only a small part of the whole job
needs to be restarted. Furthermore, MapRe-
duce is storage system independent and compli-
cated transformations can be easier to express
in MapReduce than SQL.

In contrast to the before mentioned work,
we examine the integration between the two
systems, not the rivalry. There are cases in
which MapReduce is more suitable, and cases
in which a parallel database excels, each system
has its strengths and its weaknesses. Therefore
an integration of the two systems is needed. We
examine several possible integration methods.

5 Integration Taxonomy

The key to understanding the use of relational
data in a MapReduce environment is to view
the two systems as symbiotic rather than as
competitors. Relational database and MapRe-
duce systems each have their own strengths
that can be combined to produce powerful sys-
tems. Several database vendors, researchers
and a MapReduce provider have already taken
steps towards combining the strengths of the
two systems. While combining the two sys-



tems has advantages, the way in which they
are integrated directly influences which advan-
tages dominate. Different types of integration
are geared towards different purposes. Identi-
fying and classifying the different types of in-
tegration helps to clarify why this integration
is necessary and what kind of integration best
suits a certain situation. Also, it helps to iden-
tify areas in which current systems are lacking,
further research is required and which types
of systems are most promising. In examining
the current technologies we identify three types
of integration; MapReduce Dominant, RDBMS
Dominant, and Loosely-Coupled. An overview
of the key characteristics of each type is shown
in Figure 3.

5.1 MapReduce Dominant

Systems that are classified as MapReduce
Dominant (MRD) are MapReduce systems
with relational database technology added.
Since MapReduce is the primary technology,
most of MapReduce’s properties such as auto-
matic parallelization and fine-grained fault tol-
erance are retained. As such, MRD systems
are aimed at processing very large amounts of
both structured and unstructured data. It is
not uncommon for modern businesses to have
data warehouses as large as petabytes. The
processing of data at this scale needs to be done
in parallel to be efficient. However, there are
problems with scaling traditional parallel rela-
tional databases to this level. Failures become
very common and a cluster of homogeneous
machines is usually required. A MapReduce
system is capable of dealing with both of these
issues. Nevertheless, MapReduce by itself lacks
many of the features a database system pro-
vides, such as query optimization. Integrating
relational database technology into a MapRe-
duce system allows it to leverage such features.

To the best of our knowledge, HadoopDB [5]
is the only current implementation of an MRD
system. HadoopDB is a hybrid of Hadoop’s
MapReduce and the PostgreSQL database sys-
tem. Hadoop acts as the coordination and com-
munication layer, and individual database sys-
tems are part of the storage layer. Each node
in the Hadoop cluster runs an instance of a
database system in addition to the Hadoop dis-
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tributed file system. When HadoopDB receives
an SQL query, it is translated into a MapRe-
duce job which is then broken into queries
for the individual databases. At the database
level, the optimizer and indexing capabilities
can then be exploited to process the individ-
ual queries. However, only the queries that
get pushed to the database layer are optimized
by database query optimizers. Optimization
of the MapReduce job as a whole relies on
more primitive methods. Also, because of the
integration of databases, MRD systems suffer
from longer data loading times than regular
MapReduce systems. Because of MapReduce’s
large required scale, these systems are not suit-
able for everyday relational database tasks at
smaller scales and are not meant to replace re-
lational databases, but rather analyze massive
quantities of structured data.

HadoopDB is easily scalable since the set of
machines in the Hadoop cluster does not need
to be homogeneous and node failures are dealt
with in a fine-grained fashion. Further, this
type of system is suitable for semi-structured
data and unstructured data as well as struc-
tured since it retains all of Hadoop’s capabili-
ties.

5.2 RDBMS Dominant

While MRD provides scale and fault tolerance
to the processing of massive amounts of data,
RDBMS Dominant (DBD) focuses on extend-
ing a database system’s capabilities in terms
of its processing abilities. Extended processing
abilities can be helpful when doing tasks such
as click-stream sessionization [11]. A parallel
database is already like a Hadoop cluster in
that there are many nodes which can be used
in parallel to process data. DBD systems are
not necessarily MapReduce systems in the con-
ventional sense, but have properties that en-
able MapReduce-like computations. The DBD
category consists of relational database man-
agement systems that have MapReduce func-
tionality. RDBMSs are very efficient at reg-
ular database tasks, however, when it comes
to user defined functions (UDFs), their abil-
ities are lacking. Many applications are dif-
ficult to express in SQL, and thus UDFs are
needed. However, traditional UDF frame-



MapReduce Dominant

RDBMS Dominant

Loosely-Coupled

Purpose Process large amounts of
structured and unstructured
data

Strengths « fault tolerant
« scalable

Drawbacks * limited relational

processing
« relational only at
individual nodes

Add additional processing
abilities to database systems

» enhanced UDF
capabilities

* no additional fault
tolerance

Enable MapReduce to
process relational data in a
simple manner

* no new technology
required

« flexible in terms of input/
output databases

« difficult data transfer
between systems

* limited optimizing
capabilities

Figure 3: Overview of the different types of MapReduce-RDBMS integrations.

works are very restrictive in that they are not
relation-in relation-out operators and do not
parallelize well. In general DBD approaches
attempt to enhance, redefine or expand the
UDF framework in parallel databases to sup-
port MapReduce like computations. This is a
common approach among data warehouse ven-
dors.

Aster Data has developed an approach to
user-defined functions called SQL/MapReduce
(SQL/MR) [11]. SQL/MR is designed to over-
come the limitations of UDFs by enabling
parallel computation of procedural functions
across hundreds of servers. Functions defined
with this framework are polymorphic, inher-
ently parallelizable and composable, meaning
their input and output behaviour is equivalent
to an SQL subquery. Hence, they can easily
be integrated into the processing pipeline. The
functions themselves are defined in a fashion
similar to MapReduce’s map and reduce func-
tions.

Greenplum has also developed a RDBMS
that incorporates MapReduce processing [12].
At its core, the system consists of a single
parallel data-flow engine that processes both
SQL and MapReduce jobs. Unifying MapRe-
duce and RDBMS functionality in this way al-
lows for the integration of MapReduce and SQL
code. SQL queries can use the output from
MapReduce jobs as virtual tables and MapRe-
duce jobs can use SQL queries as input.

Chen et al. [6] take a more general approach
to enhancing processing abilities. Since regu-
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lar UDFs are not relation-in relation-out op-
erators they cannot be composed with other
relational operators. Another significant draw-
back is that in many systems, for UDFs to
be efficient they must be coded with complex
interactions with the internal data structures
of the DBMS. This leads to either very ineffi-
cient UDFs or requires developers with deep
knowledge of the DBMS. Chen et al. solve
this problem through a conceptual extension
to the SQL language; relation valued functions
(RVF). RVFs wrap complex applications which
can then be integrated into query processing.
They also propose RVF-shells to be responsi-
ble for the interactions with the database so
that RVF developers are shielded from DBMS
internal details. Although this method can be
used to do MapReduce like computations it is
more powerful in that it is not restricted to
these computations.

5.3 Loosely-Coupled

Loosely-coupled integration is a category of ap-
proaches in which a MapReduce system and
RDBMS interact with each other but remain
separate. This approach is motivated by its
simplicity, flexibility and ability to provide the
system’s capabilities to each other while keep-
ing them isolated. Vertica [4] uses this kind of
interfacing in its communication with Hadoop.
Hadoop also provides an interface for interact-
ing with any database that supports a JDBC [3]
connection. There are several advantages to
this kind of approach. It can be used to trans-



fer data between databases since the input and
output databases of a MapReduce job can dif-
fer, this makes the MapReduce system useful
as an ETL system. Also, no new technology
or hardware is required, as long as a database
and a MapReduce cluster are already present.
Because the systems are independent of each
other they can be configured individually and
the size of the MapReduce cluster is flexible.
This makes running the MapReduce cluster
in a cloud environment with flexible resources
possible. As for scale, fault-tolerance and pro-
cessing abilities of the individual systems, these
attributes are not changed through interfacing
the two systems. The interface simply provides
an opportunity for using a MapReduce system
to process data that is present in a database
or writing the result of a MapReduce job to a
database.

On the negative side, there is no true inte-
gration of SQL and MapReduce so a program-
mer using a Loosely-coupled system needs to
be able to write and understand SQL queries
and MapReduce programs. Domain-specific
languages such as Pig [13], Hive [17] and
Sawzall [15] that are built on top of MapReduce
do exist. Although several of these languages
are based on SQL, they do not incorporate the
traditional relational data model used in rela-
tional databases. Rather, each language comes
with its own, usually more simplistic, definition
of a data model.

Another drawback of a Loosely-coupled ap-
proach is that the systems have no knowledge
of each other which makes optimizing certain
MapReduce jobs and queries difficult. The way
in which data is accessed and transferred be-
tween the two systems has a significant effect
on the efficiency of a Loosely-coupled approach.
Being the most readily available approach, an
evaluation and discussion of a specific interface
is provided in Section 7.

6 Hadoop’s
DBInputFormat

With version 0.19, Hadoop added a DBInput-
Format [1] component to its distribution. This
feature allows users to easily use relational
data as input for their MapReduce jobs.
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The following sections outline where this
DBInputFormat fits with respect to speci-
fying a MapReduce job and how it can be used.

6.1 A Hadoop MapReduce Job

To define a MapReduce job, the user is re-
quired to specify several components. First,
the semantics of the job are defined through
a map function and a reduce function, which
the user usually programs. Furthermore it is
necessary to specify an input format and an
output format for the job. The input format
defines where the data for the job comes from,
how it is broken into records (key-value pairs
as input to the map jobs) and how the data
is split among the different map tasks which
also defines how many map tasks are required.
DBInputFormat is an example of such an input
format. DBInputFormat is a class provided by
Hadoop to do all the above mentioned tasks in
order to properly read data from a relational
database. The details of DBInputFormat are
presented in Section 6.2.

6.2 DBInputFormat Specifics

Hadoop’s DBInputFormat works with any
database that supports JDBC. This means the
database can be located anywhere and can have
any configuration as long as Hadoop is able to
access it using JDBC.

There are two ways to specify exactly which
data is required from the database:

Selection based specification. This
method requires the user to specify a single
table, the attributes to select, filter conditions
and an attribute by which the results are
ordered. This type of specification does
not require the user to write any SQL since
Hadoop generates the SQL queries from the
user’s specifications. Hence it is more difficult
for the user to make errors using this kind of
input, but the types of queries that can be
produced are constrained.

Query based specification. This method
provides the user with more flexibility than the
selection based specification since the user may
specify an arbitrary SQL query as long as it



contains an order-by clause.! In addition to
the actual query, the user is required to specify
a second query which returns the number of
results of the first query.

7 Experimenting with
DBInputFormat

The goals of our experiments with Hadoop’s
DBInputFormat were the following:

e To determine how Hadoop reads data from
the database; what queries it sends to the
database and how it splits the data among
different map tasks.

To compare the efficiency of reading data
from a database to reading data from files
contained in the Hadoop Distributed File
System (HDFS).

To determine the effect of using a complex
query to retrieve data from the database.

7.1 Setup

The setup for our experiments consisted
of a single machine running Hadoop 0.20.1
and MySQL 5.1.45. Although this simple
setup cannot express Hadoop’s true process-
ing power, we believe it suitable for our pur-
poses since we are examining the behaviour of
Hadoop and its interaction with the database,
and not evaluating computing power or perfor-
mance. The experiments were performed on a
system with a 2.26 GHz Intel Core Duo pro-
cessor and 4GB RAM. Hadoop 0.20.1 was in-
stalled in pseudo-distributed mode. Since the
setup comnsisted of a single machine, each of the
Hadoop components, such as the coordinating
node and the worker node, ran as a process.

7.2 Data Setup

The MySQL database was set up to contain
two sets of tables; Employees with 500,000
records, and EmployeesLarge with 5,000,000

IThere is nothing that will prevent a query without
an order-by clause from being executed but the results
are not guaranteed to be accurate.
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records. Each of the records contained the
attributes name, salary and hobby, with the
hobby attribute being uniformly distributed
among eight different values.

To compare Hadoop’s performance using in-
put from a database to its performance using
input from text files, files that were equiva-
lent to the contents of the database tables were
needed. We created text files for each database
table in two fashions: single file and multiple
files. In the single file method all the records
are in a single file. In the multiple file method
the records are evenly distributed among 10
files. Within the text files a record is repre-
sented by a line on which the attribute values
are separated by commas. These files are then
loaded into Hadoop’s file system.

7.3 Produced Queries

To determine the kind of queries that Hadoop
sends to the database when using DBIn-
putFormat, we ran a MapReduce job using
just the hobby attribute from the Employees
table as input and logged the queries sent
to the database system. The specification
of the input was done using the selection
based method (see Section 6.2). The following
queries were logged:

SELECT COUNT(*) FROM Employees

SELECT hobby FROM Employees
ORDER BY hobby LIMIT 250000 OFFSET 0

SELECT hobby FROM Employees
ORDER BY hobby LIMIT 250000 OFFSET
250000

Hadoop sent three very similar queries to
the database. The first query returns the total
number of results. Hadoop requires this num-
ber to know how many input records there will
be so that they can be split across appropri-
ately many map-tasks. In this case, two map
tasks were assigned, which are responsible for
the two latter queries. Each map task executes
the query and selects only the subset of results
it was assigned. Other MapReduce jobs fol-
lowed this same pattern of queries: an initial
query to retrieve the number of results followed
by one query per map task. The problem with



using LIMIT and OFFSET to split the results is
that the whole result set is calculated for every
map task.

The significance of the order by clause can
be seen in these queries since this clause ensures
that the results are ordered the same way every
time the query is executed. Such a consistent
order is required so that the map tasks receive
disjoint and covering subsets of the query re-
sult.

There are several significant disadvantages
to this method of retrieving records from the
database:

e Same query is executed many times. Exe-
cuting the same query multiple times has
a negative effect in that every map task
has to wait for the whole query to com-
plete. Also these queries are sent to the
database system in parallel, meaning it has
more work to do and will likely take longer
to process the queries. For a small num-
ber of map tasks this effect may not always
be significant but if there are hundreds of
map tasks—the scale at which MapReduce
systems are meant to be used—the effect
could be dramatic.

Database cannot change during job execu-
tion. The same query is executed multi-
ple times during the same MapReduce job.
Since the partitioning of the results among
different map tasks depends on the order
of the results, if the set of results changes
during the execution of the MapReduce
job, its output will be inaccurate. There-
fore, the results of the query need to be
kept consistent in some way. All changes
to the database that could affect the query
result could be blocked during the execu-
tion of the MapReduce job or a times-
tamp based filtering could be applied to
the query results.

7.4 Reading Data

To compare the efficiency of reading data using
the DBInputFormat to reading data from files
contained in the HDFS we executed equivalent
MapReduce jobs several times, varying the in-
put source (see Section 7.2 for specifics on the
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Figure 4: Execution times of a MapReduce job
using different input sources.

input data). We then compared the total exe-
cution time of the jobs.

Figure 4 shows the results of these experi-
ments. We ran the Hadoop job on two different
sizes of input—500,000 records and 5,000,000
records. For the smaller input, the job that
read data from a single file and the job that
read data from the database took an almost
equal amount of time. However, the job that
read data from 10 files was significantly slower.
This is likely due to the fact that Hadoop ini-
tiates at least one map task for each input file.
In this case, this resulted in 10 map tasks and
the overhead of running the map tasks greatly
outweighed the small amount of data processed
by each task. The numbers on top of the bars
in Figure 4 indicate the number of map tasks
assigned to that job.

For the larger input size—>5,000,000
records—the overhead of running 10 map
tasks is no longer as significant since each
task has more data to process. Hence, the
execution time of the job reading from 10 files
comes very close to that of the job reading
from a single file. Noteworthy is that the 10
file job completes faster than the database
job.  We ran an additional experiment for
the larger input size—Database™ in Figure 4.
Since Hadoop only assigned 2 map tasks to the
job reading data from the database, and the
file reading jobs had at least 4, we thought it
might increase the database job’s performance
if the number of map tasks was increased.
However, as seen in Figure 4 increasing the
number of map tasks had a drastically negative



effect. The decrease in performance can be
explained by the fact that for each additional
map task the query to the database is executed
an additional time, thus increasing the number
of map tasks and the number of queries that
need to be run, which puts a strain on the
system.

7.5 Complex Queries

To test the effect of using the result of a com-
plex query as input for a Hadoop job, ad-
ditional tables were added to the database.
In addition to the tables described in Section
7.2, two more tables—Pets and PetsLarge—
containing 200,000 and 2,000,000 records re-
spectively were created. Each record in the ta-
bles represented a pet owned by an employee
and consisted of the attributes id, owner—
which referred to a record in either Employ-
ees or EmployeesLarge—, and a type. There
were five different types which were uniformly
distributed.

One argument for using input from a DBMS
in MapReduce jobs is that this allows the
database to do some preprocessing. However,
for preprocessing to be effective, the queries
sent to the database must be more complex
than a simple projection query as experimented
with in Section 7.4. To measure the effect of us-
ing a complex query as input we performed fur-
ther experiments. The query for these exper-
iments involved a dependent subquery which
makes it more complex to process. Figure 5
shows the execution time for Hadoop jobs us-
ing the results from this query as input un-
der variation of input size and number of map
tasks. For both input sizes, the job using 4
map tasks took longer to complete than the job
using 2 map tasks. The difference was much
more prominent for the larger input size. This
effect can again be explained by the fact that
the query is executed once for each map task.
The more significant difference between 2 and
4 map tasks for the larger input is due to the
longer processing time of the query. Running
just the query in MySQL without Hadoop took
around 4 seconds for 500,000 records and 44
seconds for 5,000,000. Hence the advantage of
the database’s preprocessing becomes less valu-
able as the number of map tasks increases.
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Figure 5: The execution times of a MapReduce
job using results from a complex SQL query as
input.

8 Challenges

8.1 DBlInputFormat

Hadoop’s implementation of DBInputFormat
highlights some of the challenges of using a
loosely-coupled approach to link RDBMSs and
MapReduce. Firstly the input data, which is
defined through a query, needs to be parti-
tioned so that multiple map tasks can work
on the data concurrently. DBInputFormat per-
forms this split in a very primitive way: by ex-
ecuting the query once for each map task and
then selecting a specific subset of the results.
This is a waste of resources since theoretically
the result of the query needs to only be calcu-
lated once. One option would be to split the
query in such a way that each map task only
executes a subset of the query and only gets
the results it is to process instead of executing
the whole query and selecting a subset of the
result. However, splitting arbitrary queries in
such a way is a very complex problem. Vertica
solves this problem in its interface with Hadoop
by allowing the user to specify a list of different
selection conditions. Each map task then runs
a query with one of these conditions. The list
of conditions can also be the result of a query.
This implementation pushes the splitting of the
input to the user. While potentially resulting
in a more efficient execution, this method is
highly susceptible to data skew and to be ef-
ficient the user must have knowledge of what
the data looks like. For instance, a user could
choose a set of query conditions for which al-



most all the results fall into the same category
and are thus in the same data split and pro-
cessed by the same map task. To avoid this,
and take advantage of the database’s advanced
optimizing capabilities and system tables, the
database itself would have to split the query.
Furthermore there is the challenge of data in
the database being modified while the MapRe-
duce job is executing so that when the query
is executed at different times there is a differ-
ent result set. This problem could be solved
by simply executing the query once externally,
saving the results into a text file and manu-
ally loading this file into the Hadoop file sys-
tem. This file can then be used as input for
the MapReduce job instead of directly retriev-
ing the data from a database. While likely
being more efficient, this method of dealing
with the problem is more difficult and hands on
and defeats the intention of integrating the two
systems. Another option would be to create
a view—temporary database table—containing
the query result from which subsequent queries
can select parts. This will still result in the
database being queried multiple times, how-
ever, the query result is only calculated once.
The view can be removed once the MapRe-
duce job is finished. Perhaps an even more
efficient option would be to have an operator
in the query processing pipeline that already
performs the partitioning of the query result
and stores it in multiple views. The subse-
quent queries can then each read one of the
views. This approach, however, would involve
modifying the database implementation.

8.2 General

As each type of integration has its own pur-
pose, it also has its own set of challenges. For
MapReduce Dominant (MRD) systems, which
are mainly used to process extremely large
amounts of structured and unstructured data,
one challenge is optimizing MapReduce jobs to
take full advantage of the databases at each
node. HadoopDB implements some of this op-
timization but there is much room for improve-
ment. Also, very important is the partitioning
and distribution of data to the different nodes.
In parallel database systems, relations are of-
ten moved from one node to another while pro-
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cessing a query, for MRD systems this is not
possible. Thus, much care must go into how
the data is partitioned.

RDBMS Dominant (DBD) systems en-
hance the processing capabilities of parallel
databases. These systems also pose several
challenges. In particular, advanced optimiza-
tion techniques for the MapReduce jobs are
needed: optimization of the job as part of a
query plan, and of the job itself. Further, the
main disadvantage of DBD systems compared
to MRD systems is that they do not scale as
well. If a finer-grained fault tolerance can be
introduced to these systems so that when a
node fails the whole query does not have to be
restarted, then this disadvantage can be over-
come.

Loosely-Coupled systems are useful as ETL
systems and in cases when MapReduce and
RDBMSs already exist and need to be inter-
faced with each other. As discussed in Section
8.1, the way in which data is transferred from
one system to another is critical to performance
and requires future research. Improvements in
this interface are necessary for it to be appli-
cable at a large scale. Further, languages to
integrate relational data and SQL into MapRe-
duce jobs are lacking. For instance a language,
or extension to an existing language, which can
be compiled into Hadoop jobs using DBInput-
Format as input.

For all types of systems, data loading and
placement are key to efficiency, as they are in
traditional database systems. Data loading is
one of the main drawbacks to using relational
database systems since it takes a significant
amount of time. Work on parallelizing this
loading can make it more efficient. How the
data is partitioned and what indexes are cre-
ated is also very important and relevant to all
types of systems.

9 Summary

Although MapReduce was originally created to
cope with large amounts of unstructured data,
there are advantages in exploiting it to pro-
cess relational data, such as scale and addi-
tional processing capabilities. Thus, RDBMS
and MapReduce should not be regarded as



rival systems, but rather as complimentary.
Exactly which advantages an integration of
the two systems has to offer depends strongly
on the type of integration. We have exam-
ined existing integrations and classified them
into three categories: MapReduce Dominant,
RDBMS Dominant, and Loosely-Coupled. We
have found that one specific implementation
of the Loosely-Coupled approach, Hadoop’s
DBInputFormat, has much room for improve-
ment. Currently, the manner in which data
is extracted from a relational database is un-
necessarily repetitive and hence wasteful of re-
sources. Combining MapReduce and RDBMS
technologies has the potential to create very
powerful systems. However, each type of
MapReduce-RDBMS integration also has its
own set of challenges that need to be addressed
by future research.
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