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Abstract

Database Management Systems (DBMSs) are an integral part of many applications.

Web-based applications, such as e-commerce sites, are faced with highly variable

workloads. The number of customers browsing and purchasing items varies through-

out the day and business managers can further complicate the workload by requesting

complex reports on sales data. This means the load on a database system can fluc-

tuate dramatically with a sudden influx of requests or a request involving a complex

query. If there are too many requests operating in the DBMS concurrently, then

resources are strained and performance drops. To keep the DBMS’s performance

consistent across varying loads, a load control system can be used.

This thesis investigates the concept of a load control system based on regulating

individual resource usage in a predictive manner. For the purpose of this proof-of-

concept study, we focus on a specific resource; namely, the sort heap. A method

of estimating sort heap usage based on the query execution plan is presented and

several scheduling methods based on these estimations are proposed. A prototype load

control system is used to evaluate and compare the scheduling methods. Experiments

show that it is possible to both estimate sort heap requirements and to control sort

heap usage using our load control system.
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Chapter 1

Introduction

Database Management Systems (DBMSs) are the primary tools used for storing and

accessing data and they are the backbone of many applications. A single DBMS

can receive many concurrent requests which it must handle. The type of requests a

database receives, also called the workload, can vary. Consider an e-commerce site,

as customers are buying products, updates are made to the inventory data to keep

numbers current. At the same time, business managers want to query inventory data

to determine facts such as which products are best-sellers. These two situations ex-

emplify the two fundamental database workload types: online transaction processing

(OLTP) and online analytical processing (OLAP)—also referred to as Business In-

telligence (BI). An OLTP workload is characterized by many short transactions and

numerous updates. For instance, an update of an inventory number is quick and

needs to only touch a very small amount of data. OLAP workloads on the other

hand, usually consist of longer, more resource intensive queries. They tend to re-

quire reading large amounts of data and more complex processing (sorting, finding

the maximum, calculating totals). Certainly, these workloads are not always distinct

and it is possible to have both OLTP and OLAP type requests acting on a single

database. The number and mix of requests that a DBMS has to handle varies over

1



CHAPTER 1. INTRODUCTION 2

time. There can be regular fluctuations in the workload such as an increase in sales

during lunch time on weekdays, or seasonal changes such as a large increase in sales

before Christmas.

Since a database has limited physical resources such as CPU and memory, there

is a limit to the number of requests it can process concurrently. Too many concur-

rent requests lead to resource contention, which can cause the performance of the

database to drop drastically. The number of requests that a database is able to

handle depends on a variety of factors such as the system hardware, the system con-

figuration and the workload. In addition to system overload, which leads to resource

contention, system underutilization can also be a problem. If the concurrency level of

a database is limited too much, resources are left idle, which causes the database to

perform below its potential. This relationship can be seen by examining a throughput

curve. A throughput curve shows the relationship between concurrency level and the

database’s throughput under a certain workload, on a specific system. The number

of concurrently running requests in a database is also referred to as the multipro-

gramming level (MPL). Typically a throughput curve has a fairly parabolic shape;

a sample curve is shown in Figure 1.1. Up to a certain threshold, an increase in

MPL causes the throughput to rise (the underloaded phase), then there is an optimal

range in which the curve is relatively flat, but once the MPL increases more than the

optimal range, the system becomes overloaded and throughput drops sharply. The

goal of a load control system should be to maintain throughput in the optimal range.

Controlling load on a DBMS is not an easy task since not all requests are equal

in the amount of resources they require. Setting a static limit for the total number of

requests that are allowed to execute may work well if requests are relatively equal in
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Figure 1.1: Throughput curves showing the relationship between MPL and throughput for
different workload sizes. The throughput curve for the medium workload is divided into three
system states: underload, optimal, and overload. [1]

their resource requirements, but will lead to suboptimal performance if the requests

are extremely varied, for instance, a mix of OLTP and OLAP queries. Beyond the

amount of resource demand, queries can also differ in the type of resources they re-

quire. For instance, I/O intensive queries primarily read data, CPU intensive queries

require a lot of calculations, memory intensive queries may store many partial re-

sults. If the mix of queries being executed is not balanced, then one resource may be

overloaded while others are idle. A load control system should be able to effectively

handle all of these factors and adapt to current conditions.

Current trends such as server consolidation [2, 3] and an increased reliance on

business analytics [4, 5] are increasing the complexity of the workloads which DBMSs

are required to handle. Server consolidation is an approach to save costs by combining

workloads traditionally run on different servers onto a single server. This means that

analytics workloads are no longer separated from day-to-day operational workloads.

Hence, the mix of requests that a single DBMS is expected to process at any point

in time is highly variable; from long resource-intensive queries to quick updates.
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Businesses are also increasingly relying on business intelligence to make decisions.

Managers want up-to-date data instantly, and are not willing to wait hours before

being able to run a BI query. Therefore, the DBMS has to be able to manage these

complex queries at any time and be able to perform optimally no matter what type,

or how many queries are presented.

1.1 Research Statement

The objective of our research is to investigate the feasibility of a database load control

system based on regulating individual resource consumption in a predictive manner.

This means treating system resources, such as CPU, memory (bufferpool, sort heap,

etc.), and I/O, separately. The amount of each of these resources that a query re-

quires is predicted when the query is submitted to the DBMS. These predictions are

then used to determine whether the query is a good fit to execute based on current

conditions. If the query requires resources that are available, then it is allowed to run.

However, if the query requires resources which are already at capacity, it may have to

wait for resources to become available before being allowed to execute. To reduce the

complexity of this problem, the scope of this work is limited to one specific resource;

namely, the sort heap. The sort heap is a section of memory that is reserved for

performing specific operations such as sorting data. This resource is primarily used

by queries that require complex data processing; namely, OLAP workloads.

Our work makes two main contributions. Firstly, we present a method of es-

timating the sort heap demand of a query based on the query execution plan. The

second contribution is a prototype load control system based on these estimations. We

compare the effectiveness of three different scheduling methods using the prototype

system.
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1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 covers background

and related work. Chapter 3 presents our method for estimating resource demand

and an evaluation of this method. Chapter 4 describes our prototype load control

system and three proposed query scheduling methods. It also includes an evaluation

of this system. Finally, Chapter 5 contains concluding remarks and describes future

work.



Chapter 2

Background

There are two general areas of research that relate to our work; query metric esti-

mation and load control methods. Work on estimating query metrics is discussed in

Section 2.1. Different load control methods are presented in Section 2.2.

2.1 Query Metric Estimation

Estimating query metrics such as the amount of memory a query will require or

the time it will take to execute is a challenging problem. Much of the work in this

area has focused on estimating query runtime and progress [6, 7, 8, 9]. The body of

work addressing physical resource requirement estimation is rather limited. Database

Query Optimizers use a cost metric to represent the resource requirements of a specific

query plan. Sacco and Schkolnick [10] use an analytical approach to characterize

a query’s buffer pool requirements. Ganapathi et al. [11] use a machine learning

approach to predict a variety of query metrics. These approaches are discussed in

more detail in the following subsections.

6
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Query Optimizers

Query Optimizers calculate the cost of different query plans in order to compare the

plans and choose the most efficient one. The factors considered when calculating this

cost differs among DBMSs. DB2 [12] measures cost in timerons. Timerons represent

an estimate of the CPU cost (number of instructions) and the I/O cost (number of

seeks and page transfers) of a plan. This is a rough estimate of the required resources

and a timeron does not equate to any actual elapsed time. PostgreSQL [13] measures

cost by estimating how long it will take to run a statement in terms of units of disk

page fetches. Query optimizer cost estimations are useful for their purpose; namely,

selecting a good execution plan. However, they are not suitable for scheduling to

control resource consumption since they are usually an aggregate of various resources

and do not necessarily correlate to the actual resources used.

Buffer Requirements

Sacco and Schkolnick [10] characterize the buffer requirements of queries in an analyt-

ical fashion. The number of page faults that occur when processing a query depends

on the size of the buffer pool. They refer to this relationship between buffer size

and page faults as a query’s fault curve. The fault curve consists of a number of

stable intervals (for which the number of page faults is constant), separated by dis-

continuities. The exact shape of a fault curve depends on the page reuse pattern.

The authors present several different patterns: simple reuse, loop reuse, unclustered

reuse, and index reuse. A hot point is defined as the value of the fault function at the

start of a stable interval. A query’s optimal buffer requirement is defined to be the

largest hot point on its fault curve that does not exceed system buffer space. Like
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our approach, Sacco and Schkolnick determine the amount of a physical resource that

a query will require. However, the physical resource addressed in their work differs

from the physical resource addressed in our work. Furthermore, the optimal buffer

requirement of a query needs to be determined analytically while our approach can

automatically calculate required sort heap space using the query execution plan.

Predicting Performance Metrics

Ganapathi et al. [11] present a query metric prediction tool based on machine learning.

The tool is able to estimate a variety of metrics such as the number of records used,

disk I/O, and execution time. Like our estimation approach, Ganapathi et al. extract

information from the query execution plan to make their predictions. Specifically,

they extract feature vectors which contain an instance count and cardinality sum for

each operator in the plan. Kernel canonical correlation analysis (KCCA) is then used

to create predictive models and make predictions. The authors’ experiments showed

that if a large set of training data is available, their prediction method works very

well. However, if only a small set of training data is available, or the training and

test queries are executed against different databases, the accuracy of the predictions

greatly suffers. Although a variety of metrics are estimated, physical memory usage

is not included. The purpose of the metrics predicted by Ganapathi et al. is more

to assist in identifying long-running or abnormal queries, rather than for scheduling

or load control purposes. The authors state that the prediction for a single query

can be done in under a second, making this machine learning approach practical for

queries that take minutes or hours to run, but not for shorter queries. If one were to

calculate predictions for every incoming query, as would be required when using the
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metrics to make scheduling decisions, the approach would incur large overhead.

2.2 Database Load Control

Load control in a database system can be achieved through admission control and

scheduling. Admission control limits the number of queries that can enter the system

to avoid resource contention. Scheduling, with respect to load control, means selecting

which queries to execute so that resource contention is minimal. Several load control

approaches that focus on controlling resource contention are presented in the following

subsections. Other approaches, such as the work by Niu et al. [14] and Brown et al. [15]

focus on attaining service level objectives (SLOs) for different groups of queries by

controlling access to physical resources.

Load Control using MPLs

A common load control approach is to set a Multiprogramming Level, which is an

admission control technique. A simple method of determining a good MPL for a

workload is to perform a series of experiments in which system throughput is measured

at different MPLs. The MPL leading to the best throughput can then be chosen.

However, if the workload is highly variable, the optimal MPL will not be static and

these experiments will need to be repeated often to maintain a good throughput.

Heiss and Wagner [16] look at two algorithms for dynamically adjusting the MPL

to workload changes using a feedback control mechanism. They view the problem of

controlling the concurrency level as a dynamic optimum search problem. As such, they

are not concerned with the internal details of the system, only with the functional

relationship between MPL and performance—the throughput curve. They employ
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two optimum search algorithms to automatically tune the MPL; incremental steps

and parabola approximation. Through the use of a simulation model, Heiss and

Wagner show that both algorithms are efficient at finding the optimal MPL when the

workload is static and are also efficient at adjusting the MPL to gradual workload

changes. Parabola approximation is superior at adjusting the MPL when the workload

changes quickly and drastically since it is able to modify the MPL in larger increments.

In 2010, Abouzour et al. [17] revisited the algorithms presented by Wager and

Heiss with slight optimizations. They also propose a hybrid of the two algorithms; hill

climbing for several intervals and then parabola approximation for one interval. This

combination allows the system to make quick adjustments without large oscillations.

While generally coming to the same conclusions as Heiss and Wagner, Abouzour et al.

also note that this form of automatic MPL tuning is not well suited for all workload

types. For instance, workloads that have a pattern of bursty requests are not handled

well. The approach is best for workloads with a continuous stream of requests.

Schroeder et al. [18] look at the challenge of setting the MPL from a scheduling

angle. Usually when scheduling queries externally, all queries that are not immedi-

ately executed are put into a queue. The larger this queue, the more choice when

selecting the next query to execute and the more likely that a suitable query will be in

the queue. Hence, Schroeder et. al’s work focuses on how low the MPL can be set so

that throughput will not suffer while having a large amount of control over schedul-

ing. Queueing theoretic models and a feedback control loop are used to predict the

relationship between throughput, MPL and response time and to optimize the MPL.

While Schroeder et al. evaluate this approach by examining its effect on workloads

with query priorities in which high priority queries should be chosen to run first, it is
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also relevant in terms of scheduling for resource control. If the queue is larger, then a

query with resource requirements suitable to the currently available resources is more

likely to be found.

Alternative Load Control Approaches

Although the number of concurrently running queries has a major impact on per-

formance, setting an MPL may not always be the correct solution to keep a DBMS

running efficiently. When limiting the number of queries in a database system through

a multiprogramming level, all queries are treated as equal. If the MPL is five, then five

queries are allowed to run concurrently no matter how computationally or I/O expen-

sive they are. If queries in the workload vary greatly in their resource requirements,

then treating them equally can lead to suboptimal system performance. In these

cases, properties of individual queries should be taken into account when considering

how many, and which requests to run concurrently.

Mehta et al. [1] focus on scheduling batch workloads. For batch workloads, the

important measure is overall response time, not the response time of the individual

queries or throughput, since all the queries need to be processed before the work

can be considered completed. The general approach of their workload management

system can be summarized in four steps:

1. Determine a variable whose value is suitable for BI workload management de-

cisions

2. Admit queries based on some value of the manipulated variable

3. Schedule queries so that system behaves optimally
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4. Make system stable over wide range of the manipulated variable (make the

system tolerant to prediction errors)

Traditionally MPL has been used as the manipulated variable, but as mentioned, MPL

is very vulnerable to workload changes. Mehta et al. suggest the use of a different

variable: memory. They note that any resource that causes a bottleneck may be a

good choice as manipulated variable. These four steps are similar to those in our

approach, but instead of general memory being the manipulated variable, we focus

on the sort heap. Mehta et al.’s workload management divides the batch of queries

to be processed into sub-batches, so that the memory requirement of the queries in

each sub-batch adds up to available memory. Our approach is not limited to batch

workloads. Mehta et al. do not discuss how memory requirements of individual

queries or workloads are determined in their approach. They refer to the work by

Sacco and Schkolnick [10], however they do not mention if this is the technique they

implement.

Ahmad et al. [19] propose an interaction-based scheduler. Concurrent queries can

negatively affect each other but they can also positively affect each other, meaning

their concurrent run-time is faster than the time it takes to run both queries individu-

ally. To optimize performance, one needs to consider query mixes. There are numer-

ous possible causes of query interactions including resource-related, data-related and

configuration-related dependencies. Furthermore system settings and hardware have

an effect. Ahmad et al. propose an experiment-driven approach to solve this problem.

Their approach is tailored towards BI workloads with a set number of query types.

The approach involves running a small set of carefully chosen query mixes and also

running each query type in isolation. The results of these experiments are then used
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to calculate how the completion time of a specific query is affected by the mix. This

experiment-driven approach has two main advantages. Firstly, it is independent of

the root cause of the interaction because the interaction is captured in data collected

from the experiments. Secondly, it supports incremental updates as query workloads

evolve or new query types are added. The authors developed a query scheduler called

QShuffler. It is assumed that the system has a static multiprogramming level which

limits the number of queries that are executed concurrently. A linear program is used

to consider different query mixes and find the schedule with the minimum completion

time.



Chapter 3

Estimating Resource Demand

For a load control system based on regulating individual resource usage to be success-

ful, it has to be able to estimate the amount of resources a query requires. There are

many resources such as CPU, buffer pools, sort heap, and disk I/O, which should be

taken into account to achieve a complete picture of a query’s resource requirements.

We focus here on a single resource, sort heap, as a proof-of-concept. The sort heap

is a section of memory that is reserved for specific operations such as sorting and

certain types of joins.

When a query is submitted to a database system, the system creates a query

execution plan which consists of a detailed breakdown of how the query will be pro-

cessed. A query execution plan consists of operators linked together in a tree-like

structure. Operators are operations such as joins, sorts, and filters. Figure 3.1 shows

an example of an SQL query and a high-level representation of its execution plan.

The plan outlines the following processing steps: the Order table is filtered to remove

tuples whose price value is greater than 50, the remaining tuples are joined with the

tuples in the Customer table and the result of the join is sorted so that the output

tuples are ordered by price. Some of the operations in this query plan, the sort and

the hash join, require the use of sort heap memory to perform their processing tasks.

14
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Appendix A contains further information on DB2 query execution plans.

The sort heap was chosen as the focus resource for several reasons. Firstly, it is

a measurable and accessible quantity; it is possible to measure the current amount

of sort heap being used by the system. Since prediction and scheduling are happen-

ing externally, it is important that the chosen resource is accessible from outside the

database system. Sort heap is a quantifiable resource; available sort heap can be

expressed in terms of free bytes and the sort heap requirement of a query can also

be expressed in bytes. Such a quantifiable amount is comparable and additive. Fur-

thermore, sort heap space is bounded; at any point in time there is a limited amount

of sort heap space available. Choosing a bounded resource simplifies the scheduling

aspect of this workload management approach since it provides a fixed resource limit

when considering which queries to run. Sort heap usage also affects DBMS perfor-

mance. If queries require more sort heap space than is available, this will lead to an

increase in I/O and processing times. The performance aspects of the sort heap are

discussed in more detail in Chapter 4.

Estimating sort heap usage is not without challenges, which are discussed in Sec-

tion 3.1. Section 3.2 outlines the chosen estimation method, and Sections 3.3 and

3.4 present the estimation steps in detail. The effectiveness of the sort heap demand

estimations is shown through an evaluation in Section 3.6.

3.1 Challenges of Estimating Sort Heap Demand

A query execution plan describes the general sequence of steps that are taken to

produce the query result, with each step being an operator. However, more than one

operator can be active at the same time. For instance, consider the plan in Figure
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SELECT * from Customer c, Order o  
WHERE c.c_id = o.c_id 
AND o.price < 50  
ORDER BY o.price 

Table	  Scan:	  
Customer	  

Table	  Scan:	  
Order	  

Sort	  

Hash	  
Join	  

Filter	  

 Return	  

Figure 3.1: An SQL query and its execution plan.
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Elapsed  Time

Figure 3.2: A sample usage curve.
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3.1, in which a table scan operator is followed by a filter operator. The DBMS does

not complete the table scan, and then go on to the filter, it performs both operations

at the same time. A tuple that is read from the table goes directly to the filtering

step. This is referred to as pipelining. Pipelining is not always possible due to the

existence of blocking operators. These are operators which need to receive at least

one complete input before being able to produce any output. For instance, a sort

operator is a blocking operator. Since the sort operator outputs its tuples in sorted

order, it has to wait until it has received all its input tuples before it can decide which

one is smallest—or largest. Binary blocking operators, ie. those that take two inputs,

need to receive the complete input from the right child before the they can produce

any output.

Each operation involved in calculating the result of a query (select, project, join,

sort, etc.) varies in the amount of time and sort heap it requires. In addition, a sort

operation on a small table will require less sort heap than a sort operation on a larger

table—assuming a constant tuple size. Because different sets of operators are active

at different times, a query’s sort heap requirement varies throughout its execution.

The relationship between elapsed time and sort heap usage during the execution of a

query will be referred to as the query’s usage curve. Figure 3.2 shows a usage curve

depicting the sort heap usage of the query plan in Figure 3.1. The sort heap usage

is at a constant level while just the hash join operator is active, it then jumps to a

higher level as both the sort and hash join operators become active and then returns

to a lower level when the hash join is finished and just the sort operator is active.

The fluctuations of a query’s usage curve pose a challenge when estimating the

query’s sort heap requirement. It is difficult to accurately estimate the shape of the
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entire curve. To be able to make this estimation, one needs to know the exact length

of time each operation in the query plan requires. Furthermore, an estimation of the

entire curve is of little value for scheduling purposes, since the system then needs

to know where each query is on its usage-curve at any moment in order to make

decisions. Also comparing two queries with different curves to determine which is a

better fit to the current situation is a difficult and complex calculation. Therefore, our

approach summarizes a query’s sort heap usage using discrete values. The question

of how such a value should be chosen arises. One option is to choose the maximum

of the usage curve to represent the sort heap requirement. However, it is often the

case that the maximum sort heap amount is only used for a very short period of the

query’s execution. Hence, the maximum may not be a very accurate representation

of a query’s usage curve. Another option is to take an average of the usage curve.

Besides the inherent difficulties of calculating such a value, an average can also be

misleading since it could be a value that is never actually assumed. A final option

is to choose a dominant value; ie., represent a query by the amount of sort heap

it uses for the longest period during its execution. Each of these three metrics has

its advantages and disadvantages. We develop an estimation approach for each and

compare them using a set of experiments.

3.2 Approach

In choosing an approach for estimating a query’s sort heap usage, the following goals

are considered:

1. To be able to estimate a query’s sort heap usage with a reasonable degree of

accuracy.



CHAPTER 3. ESTIMATING RESOURCE DEMAND 19

2. To make estimations without prior knowledge of queries or query types.

3. To make estimations independent of system configuration and hardware.

4. To make estimations in such a way that they could easily be integrated into

existing query optimizers.

An automated analytical approach is able to achieve these goals. Since the rela-

tionship between the query execution plan and sort heap usage is known, it can be

analytically defined. The chosen approach limits itself solely to the information that

is available in the query execution plan and does not require any training. Hence,

no prior knowledge of the queries is required and estimations can be made for never

before encountered queries. Since query optimizers already calculate cost estimates

based on the query execution plan, an additional sort heap cost estimate does not

incur much overhead and can be easily integrated into existing query optimizers.

The chosen approach considers the operators, cardinalities and relationship between

operators in the query execution plan to calculate a query’s sort heap usage.

The estimation approach consists of two steps; estimating the sort heap require-

ment of single operators (see Section 3.3), and then using these estimates to calculate

an estimate for the complete query plan (see Section 3.4).

3.3 Sort Heap Demand Estimation for a Single

Operator

Only two DB2 operators require sort heap space; sort and hash join. The query

execution plan, attained through db2expln (see Appendix A), provides information
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on the amount of sort heap space each of these operators requires. The next two

sections detail the available information and how it is used to estimate sort heap

usage for a single operation.

3.3.1 Sort Operator

The following is an excerpt from a query plan, showing the information that is relevant

to sort heap usage for a sort operation:

Sortheap Allocation Parameters:

#Rows = 121929

Row Width = 44

#Rows refers to the number of rows to be sorted and Row Width is the approximate

width of each row in bytes. A rough estimate of the required sort heap space is given

by multiplying these two numbers together. However, an overhead of at least 32 bytes

per row is added to this required space.1 Experimentally, it was determined that 75

bytes per row is a good approximation of the additional overhead. Another factor to

consider when estimating required sort heap space is a configuration parameter called

sortheap cfg (see Section 3.6.1). This parameter limits the maximum amount of sort

heap space that can be assigned to a single sort or hash join. Hence, the final sort

heap estimate for a sort is calculated using the following formula:

Min{#Rows*(Row Width + 75), sortheap cfg}
1The exact value of the overhead is not observable from outside the system. The amount of

overhead varies with the specific type of sort that is used and other factors. This information was
acquired through a personal communication with a DB2 developer.
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3.3.2 Hash Join Operator

The following is an excerpt from a query plan, showing the information that is relevant

to sort heap usage for a hash join operation:

Hash Join

Estimated Build Size : 24000

Estimated Probe Size : 98500000

Bit Filter Size: 16500

Estimated Build Size refers to the size, in bytes, of the relation that is to be

stored in a hash table and Estimated Probe Size refers to the size, in bytes, of

the relation that is used to probe the hash table. Of these two sizes, only the build

size is relevant to the estimation of sort heap demand since only the hash table is

stored in sort heap memory. Bit Filter Size is only indicated if a bit filter is

going to be used. A bit filter is an array of bits which can be used to improve hash

join performance. It is used to efficiently determine whether a tuple from the probe

relation will match with one from the build relation. The bit filter is also stored in

sort heap memory and hence adds to the required sort heap. As with sorts, hash

joins are restricted by the sortheap cfg parameter. The following formula is used to

calculate the sort heap requirement of a single hash join.

Min{Estimated Build Size + Bit Filter Size, sortheap cfg}
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3.3.3 Single Node Sort Heap Estimation Equation

The estimated sort heap requirement of a node n in the query execution plan can be

summarized by the following equation:

sortheap(n) =


Min{EstimatedBuildSize, sortheap cfg} if n is Hash Join,

Min{#Rows ∗ (RowWidth + 75), sortheap cfg} if n is Sort,

0 otherwise.

(3.1)

3.4 Sort Heap Demand Estimation for a Query

Section 3.3 explained how the sort heap requirement of a single node is estimated.

While the calculations for single nodes are fairly straightforward, the true challenge

in estimating sort heap usage becomes apparent when estimating the sort heap re-

quirement for a whole tree of operators—a query plan. Simply summing the sort heap

requirements of the individual nodes is not sufficient since not all nodes are active

at the same time. Which nodes can be active at the same time is determined by

the types of nodes—blocking, not blocking—and the relationships between them—

ancestor, descendant. The sort heap estimation process for a complete query plan

can be separated into two steps: calculating sort heap sets (see Section 3.4.1) and

using the sort heap sets to calculate sort heap requirements (see Section 3.4.2)

3.4.1 Calculating Sort Heap Sets

Both sorts and hash joins are blocking operations. Hence, any node that requires sort

heap is a blocking node. This means that when a node n, which requires sort heap,

becomes active, the sort heap demand is constant for a period of time, until n starts
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to produce output. Specifically, the amount of sort heap required while n is blocking

is the amount that n requires plus that which its active descendants require. This

total amount of sort heap is referred to as the sort heap set of n. Conceptually, a sort

heap set for node n is calculated by starting at n and traversing towards the leaves of

the query execution tree, summing the sort heap requirements of the traversed nodes,

until blocking nodes are encountered. Formally, a node’s sort heap set is defined as

follows:

SortHeapSet(n) =

8>><>>:
sortheap(n) + SHS′(n.leftChild) + SHS′(n.rightChild) if n is binary,

sortheap(n) + SHS′(n.child) if n is unary.

(3.2)

SHS′(n) =

8>>>>>>>>><>>>>>>>>>:

sortheap(n) + SHS′(n.leftChild) + SHS′(n.rightChild) if n binary and non-blocking,

sortheap(n) + SHS′(n.leftChild) if n binary and blocking,

sortheap(n) + SHS′(n.child) if n is unary and non-blocking,

sortheap(n) otherwise.

Let SHNodes(q) be the set of all nodes in the query plan for query q that require

sort heap space.

SHNodes(q) = {n|n ∈ Plan(q) ∧ sortheap(n) > 0} (3.3)

3.4.2 Using Sort Heap Sets to Calculate Sort Heap Metrics

Once all of the sort heap sets have been calculated, the three metrics—maximum,

average and dominant sort heap usage—are calculated. Maximum sort heap usage of
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query q is the most straightforward of the three; it is the maximum sort heap set:

max(q) = MAX{SortHeapSet(n)|n ∈ SHNodes(q)} (3.4)

Average and dominant sort heap usage calculations are a bit more involved since

they require an estimation of how long each set is active. The amount of time

SortHeapSet(n) is active is determined by the number of tuples that n has to process

before being able to output its first tuple. This is referred to as the blocking time.

Outputting a tuple causes ancestors of n to become active which means a new sort

heap set is active. Blocking time is estimated in number of tuples. Hence, it is not a

measure of absolute time, rather of relative time. The minimum number of tuples a

node has to process before being able to output its first tuple is given by the following

equation:

blockT ime(n) =


output cardinality of child node if n is sort

output cardinality of right child node if n is hash join

(3.5)

To calculate the estimated average sort heap usage of query q, the average of all sort

heap sets, weighted by their blocking time, is calculated.

avg(q) =

∑
n∈SHNodes(q) SortHeapSet(n) ∗ blockT ime(n)∑

n∈SHNodes(q) blockT ime(n)
(3.6)

The estimated dominant sort heap usage is defined by the sort heap set with the

longest blocking time.

dom(q) = SortHeapSet(n)|n ∈MAX{blockT ime(n)|n ∈ SHNodes(q)} (3.7)
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3.5 Limitations of Sort Heap Demand Estimation

Method

There are several limitations to the chosen demand estimation method. Consider a

case in which a node in a query execution plan has a left subtree and a right subtree

that each contain sort heap operators with no blocking ancestors. The relationship

between these two sort heap usages remains unknown. They may or may not occur

simultaneously. In our approach, we do not consider the possibility that they occur

simultaneously, which can lead to an underestimation of the query’s real sort heap

usage. Generally, such “bushy” plans are avoided by query optimizers since they

inhibit pipelining and are therefore more costly.

Since the sort heap estimations are based on the query plan and the query plan

is based on statistics, the accuracy of these statistics affects the accuracy of the sort

heap estimation. For instance, the number of tuples that each node has to process

is estimated using heuristics and information about the number of tuples in certain

tables and, in some cases, their distribution. Cardinalities are also very critical in

determining the amount of sort heap a single node requires. The system statistics are

not always up to date, hence inaccurate statistics can cause inaccurate predictions.

However, even when statistics are accurate, the estimation of cardinalities is based

on heuristics which can also be inaccurate.

Finally, the query plan does not contain all the necessary information about sort

heap usage. For instance, the plan does not state what kind of sort will be used and

what kind of overhead this will induce (see Section 3.3.1).
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3.6 Validation

To validate the estimation approach, actual sort heap usage was compared to the

estimated sort heap usage. This was done by running a variety of queries, recording

their sort heap usage and comparing this value to the estimated usage. Section 3.6.1

outlines the queries used for the evaluation and the environment in which they were

run. Section 3.6.2 describes how each query was run and how actual sort heap usage

was measured. Section 3.6.3 reports the results of the evaluation.

3.6.1 Experimental Environment

Queries that perform sorts and hash joins were required in order to evaluate the

effectiveness of the sort heap usage estimation approach. The TPC-H [20] benchmark

was found to contain suitable queries. TPC-H is a benchmark for OLAP, or business

intelligence, workloads. Queries in this workload perform data analysis tasks resulting

in complex query plans with many operations. TPC-H consists of 22 queries. Of these

22 queries, 18 were chosen as suitable for the evaluation of our estimation approach.2

More information on the TPC-H Benchmark can be found in Appendix B.

The sort heap estimation method was tested against two database sizes to ensure

its flexibility. One database was created with TPC-H scale factor 1—small database,

approx. 1GB—and another database with TPC-H scale factor 3—large database,

approx. 3 GB. Benchmark Factory [21] was used to build these databases. Benchmark

2Queries 9, 15, 17 and 20 were excluded from the evaluations for reasons such as requiring the
creation a view, which our estimation approach does not consider, and extremely long run time
without any sort heap usage.
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Factory for databases is a performance testing tool that helps conduct industry-

standard benchmark testing. However, for our purposes we only borrow the tool’s

database building capabilities. The database system that was used was DB2 V9.7 [12],

installed on Windows Server Professional 2008 on a machine with a quad-core CPU

and 8GB RAM. The data was striped across two disks. The bufferpools of both

databases were configured to be able to hold all the tables in order eliminate I/O

contention in our machine due to the availability of limited disk.

DB2 Sort Heap Parameters

DB2 9.7 has two parameters that affect the available sort heap for a database;

sortheap cfg and sheapthres shr. As mentioned in Section 3.3, sortheap cfg restricts

the amount of sort heap that a single operation can allocate. The other parameter,

shsortheap thres, limits the total amount of sort heap that can be allocated by all

queries running in the database at one time. In recent versions of the DB2 database

system, sortheap cfg and shsortheap thres adjust dynamically, which means their val-

ues change as needed. In order to make external prediction of sort heap usage feasible,

this feature was disabled, and static values were set. However, the same concepts and

conclusions apply to systems with dynamically adjusting values, the current values

of sortheap cfg and shsortheap thres would be used to estimate sort heap usage.

For the evaluation of the estimation approach, three different sort heap configu-

rations were used which are summarized in Table 3.1. Each of these sort heap con-

figurations was used on both the small and large database, for a total of 6 different

configurations.
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sortheap cfg sheapthres shr

CF1 500 2500
CF2 2000 10000
CF3 10000 40000

Table 3.1: The different sort heap configurations. Expressed in 4KB pages.

3.6.2 Experiments

For each of the 6 configuration settings presented in Section 3.6.1, the 18 TPC-H

queries were each executed 4 times, each time with a different set of randomly chosen

query parameter values. Although changing the parameter values does not change the

structure of the query, it can change the structure of the query execution plan since

statistics are used to create the plan. This results in 72 queries per configuration.

To measure the actual maximum, average and dominant sort heap usage the

following process was executed. Each query was run alone on the system to avoid in-

terference. During the execution of each query, the actual sort heap size was recorded

at regular intervals, every 200 milliseconds. These recorded values were then used

to calculate the actual maximum, average and dominant sort heap usage. This was

repeated 3 times for each query and the average of the calculated maximum, average

and dominant values was taken to ensure that the values represent a normal query

run. The query execution plan was also recorded for each query so that estimated

sort heap usage could be calculated.

There are some limitations to this method of measuring actual sort heap usage.

Since sort heap size was measured at intervals, it is possible that very quick jumps

in sort heap usage are not recorded. For instance, if the maximum amount of sort

heap is only used for an extremely short amount of time, this maximum could happen
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between intervals and not be recorded, resulting in an inaccurate maximum sort heap

usage measurement. However, since the sort heap is being measured several times

a second and sorts and hash joins are operations that typically take longer than

this, it is unlikely that any significant changes in sort heap usage occur between the

measurment intervals.

3.6.3 Results

Once all the queries for all the configurations were run, the results were filtered.

Queries whose execution time was too short (less than 5 data points) to produce

accurate real statistics were eliminated. Furthermore, queries that used no or in-

significant amounts of sort heap (less than 30 4KB pages) were filtered out to avoid

superior results due to trivial cases of predicting that a query requires no sort heap.

After filtering, 301 query runs remained, approximately 50 runs per configuration. To

measure the accuracy of the estimations, percent error was calculated for each metric

(maximum, average and dominant) for each query.

percentError =
measuredV alue− estimatedV alue

measuredV alue

The average percent error, standard deviation and median percent error for each

configuration are shown in Table 3.2. The box plots in Figure 3.3 visually display

the distribution of percent error values for all 301 queries. The bold line in each of

the graphs indicates the median percent error, the lower line of the box indicates the

1st quartile, the upper line of the box indicates the 3rd quartile. The surrounding

lines show the lowest value within 1.5 times the inter quartile range (IQR) of the 1st

quartile, and the highest value within 1.5 IQR of the 3rd quartile.
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Figure 3.3: Box plots showing the distribution of percent error values for the estimation of
the different sort heap metrics.

The most accurately predicted metric is the maximum sort heap usage with an

overall mean error of 18.1%. This can be explained by the fact that the maximum

is not affected by cardinality calculations which are very susceptible to inaccuracies.

Generally, estimations for queries running on the larger database were more accurate

than predictions for the smaller database—especially for the maximum and dominant

metrics. This is likely due to two factors. Firstly, the queries on the larger database

take longer to run, and hence there are more data points to calculate the actual sort

heap usage, possibly increasing the accuracy of the real values. However, the second

and more dominant factor is that the larger database leads to larger sorts and hash

joins which means the maximum value for an individual join or sort—sortheap cfg—

is reached more often. Sorts and joins that reach this maximum value are more

accurately predicted since they use sorheap cfg amount of sort heap space.

In general, the errors seem quite large. This can be attributed to the limitations

discussed in Section 3.5 such as inaccurate cardinality estimates and lack of informa-

tion in the query plans. It is also important to note that the median errors are fairly

low, especially for the Maximum and Dominant metrics (11.82% and 6.48%, respec-

tively). This means the majority of the errors are low and there are several outliers
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with very high error values. This is also evident in the box plots. Furthermore, since

the estimated values are summaries of a query’s sort heap usage curve, a high degree

of accuracy is not crucial. Because of the nature of a sort heap usage curve, the actual

sort heap usage will vary from any predicted value for much of its execution anyways.

The estimations are required to give a rough idea of how much sort heap the query

requires. This can be achieved even with an error of 20%. Chapter 4 verifies this by

successfully scheduling queries using the proposed sort heap estimation method.
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Table 3.2: Percent error statistics for each sort heap metric (MAX, AVERAGE and DOMI-
NANT) broken down by configuration and database size.



Chapter 4

Load Control System

The goal of a load control system is to keep a database system running efficiently, even

under heavy and variable loads. This can be achieved through a variety of methods

(see Chapter 2). We approach the problem of load control by considering the demand

on individual resources. A DBMS has limited physical resources and excess demand

on these resources can lead to poor performance. Therefore, resource demand should

be regulated. We study the feasibility of this kind of load control approach by focusing

on the sort heap as a resource. We have implemented a prototype load control system

which schedules queries according to their sort heap requirements. Three different

scheduling methods are proposed. Each of these scheduling methods acts as a gate-

keeping mechanism, only executing those queries whose sort heap requirement fit into

the currently available sort heap space.

When more than the available amount of sort heap is demanded, sort heap con-

tention arises. This means that the amount of sort heap space that some of the

queries are allowed to use is less than the amount required by the query. This leads

to slower execution time. Without enough sort heap memory, partial results of a sort

or hash-join may have to be written to disk, which is a costly operation. Hence, the

goal of our load control system is to limit the number of concurrently running queries

33
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so that their combined sort heap requirement does not exceed sort heap space.

Several experiments are performed using the prototype load control system with

the goal of answering the following questions:

• Is the sort heap estimation method proposed in Chapter 3 accurate enough to

effectively control sort heap demand?

• Which estimation metric is most useful for scheduling to control sort heap de-

mand?

• What type of scheduling approach controls sort heap demand most effectively?

The rest of this Chapter is structured as follows. Section 4.1 introduces a sort

heap model which is necessary to track sort heap usage for scheduling purposes.

The different scheduling methods are outlined in Section 4.2. Section 4.3 describes

the experimental environment. The results of the experiments are presented from a

system point of view in Section 4.4 and from a user’s point of view in Section 4.5.

Finally, an altered version of one of the scheduling methods is outlined in Section 4.6.

4.1 Sort Heap Model

To avoid overloading the sort heap, the sort heap requirements of concurrently running

queries should not exceed the available sort heap space. Therefore, it is necessary to

know how much sort heap space is currently available to determine whether a query

should be allowed to run. The current size of the sort heap can be observed through

database system snapshots, however, this value is not sufficient for making scheduling

decisions. Consider the case in which a query requiring a very large amount of sort
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heap has just been released into the system, but it has not allocated its sort heap

yet. Just examining the current size of the sort heap would determine that sort heap

space is readily available and that other queries requiring large amounts of sort heap

should be released. This would be a mistake since the allocated sort heap space is

about to increase.

Hence, in addition to monitoring the current size of the sort heap, a model that

keeps track of the sort heap requirements of queries currently running in the system

is required. Let the set of running queries, runningQueriest, be defined as follows,

runningQueriest = {q|query q is executing at time t} (4.1)

Naively, the sort heap model can be defined as the sum of the sort heap require-

ments of all currently executing queries:

modelSortHeap′t =
∑

q∈runningQueriest

sortReq(q) (4.2)

sortReq(q) =


avg(q) if average is chosen to represent sort heap requirement

max(q) if maximum is chosen to represent sort heap requirement

dom(q) if dominant is chosen to represent sort heap requirement

Using this naive sort heap model, one of two inaccuracies can occur: overestima-

tion and underestimation. Underestimation occurs when the model assumes a lower

value than the actual sort heap size. This problem can be easily corrected by checking

the actual sort heap size, if it is higher than the model size, then the actual sort heap

should be used. This changes the sort heap model definition slightly.
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modelSortHeapt = max{modelSortHeap′t, realSortHeapt} (4.3)

Overestimation is a more difficult problem to solve since it is impossible to differ-

entiate between the case of overestimation and the case in which the currently running

queries have simply not reached their estimated sort heap usage yet. Overestimation

may result in less than optimal performance since resources are not utilized to their

full potential, however, it is not critical since it does not lead to thrashing.

The currently available sort heap space at time t is defined as follows,

availableSortHeapt = max{0, sheapthres shr −modelSortHeapt} (4.4)

4.2 Basic Schedulers

Three scheduling methods are proposed:

Blocking Queue Scheduler (BQS)

The Blocking Queue Scheduler’s functionality consists solely of gatekeeping. All the

queries that enter the system are put in a queue in the order they arrived. The query

at the front of the queue is only executed if there is enough sort heap space for it. It

follows a first-in-first-out (FIFO) policy. If there is not enough space, the scheduler

waits until enough space is available. The advantages of this scheduler are that it is

very simple to implement, there is very little overhead, and the issue of starvation—

when a query is never executed—is avoided. The main disadvantage is that it is not

flexible in terms of being able to pick which query runs next. There may be a query
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in the queue for which there is enough sort heap space available, but it cannot be run

until it is at the front of the queue.

“Smallest” Job First Scheduler (SJFS)

An alternative to the FIFO policy is a shortest-job-first policy. We modify this policy

to a smallest-job-first policy. This means ordering the incoming queries by their sort

heap requirements—from smallest to largest—and then performing gate keeping just

like the Blocking Queue Scheduler. The advantage of this approach is that if a query

fits into the currently available sort heap, it will be allowed to run.1 However, this

type of scheduling induces more overhead than BQS since the waiting queries need

to be sorted. Also, there is the risk of starvation since queries are re-ordered when

new ones arrive.

First Fit Scheduler (FFS)

The First Fit Scheduler keeps a list of all the queries that have been submitted to the

system in the order they were submitted. It traverses through this list until a query

whose sort heap requirement is less than or equal to the currently available sort heap

space is found. Once found, the query is executed and removed from the list. Then,

the search for the next query to execute is repeated from the beginning of the list. A

first-fit approach was chosen rather than a best-fit since the available sort heap space

is constantly changing; by the time the best-fit query is found, it may no longer be

the best fit. Therefore, the extra overhead involved in finding the best fit brings little

1Only the first query is considered for execution, but since this query is the one requiring the
least sort heap, either there will be space for it and it will be allowed to execute or there will not
be enough space for it, which means there is not enough space for any of the other waiting queries
either, since they all require more sort heap.



CHAPTER 4. LOAD CONTROL SYSTEM 38

benefit.

The advantage of this scheduler is that, like SJFS, if there is a query for which

there is enough sort heap space, it will be executed. However, FFS is more likely

to run a balanced mix of queries than SJFS, since queries of all sizes are considered

for execution, not just the one requiring the least sort heap. Nevertheless, of all the

proposed schedulers, FFS is the one that requires the largest overhead since the list

of waiting queries is constantly traversed. This is not a problem as long as long as the

list of waiting queries is small. However, under very heavy loads the waiting query

list could get very long. In these cases, overhead could be reduced by only considering

the first n queries in the list. This way, the overhead of searching for the next query

to execute is constant, no matter how heavy the workload. FFS is also susceptible to

starvation.

4.3 Experimental Environment

In order to assess the effectiveness of each of the proposed scheduling methods, a

prototype external load control system was implemented. An overview of this system

is shown in Figure 4.1. Clients send their requests directly to the load control system

which then retrieves the query execution plan for the request from DBMS. This plan is

then analyzed using the methods described in Chapter 3 to determine the sort heap

requirement of the request. The scheduling system uses this information, the sort

heap model described in Section 4.1 and the chosen scheduling method to determine

when to forward each request to the database system.

Because the load control system is external, it adds overhead to the execution of

the workload. We attempt to minimize the overhead as much as possible, however,
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Figure 4.1: Architecture of the Load Control System.

some operations are still very costly. The largest portion of the overhead is incurred

by retrieving the query plans. This involves querying the DBMS to get the plan, which

is written to a file, this file is then parsed by the load control system to extract the

query plan. Furthermore, maintaining the sort heap model also causes overhead since

the database is regularly queried to obtain the current actual size of the sort heap.

Another source of overhead is the query queue, which is implemented by a linked

list. The overhead of this queue varies with the scheduling approach. For instance,

since SJFS requires the queries to be in sorted order, a priority queue is used, where

the priority of a query is defined through its sort heap requirement. However, this

overhead of maintaining the query queue is minimal when compared to the overhead

of retrieving the query plans.

The database system, DB2 V9.5, was on a dedicated database server machine.

This server machine contained 8GB of RAM, a quad core CPU and ran Windows

Server 2008. The clients and load control system were run on a separate machine
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running Windows 7, with 2GB RAM and a dual core CPU.

The workload consisted of 12 clients, each running the 18 TPC-H queries intro-

duced in Section 3.6.1. Each client submitted the 18 queries in a different order which

was chosen randomly before the first run and then kept constant throughout all the

workload runs. The database which the queries were run against was the larger of

the two databases introduced in Section 3.6.1. Again, the bufferpool was configured

to be large enough to contain all of the relevant tables. Three different sort heap

configurations were used. These are listed in Table 4.1.

sortheap cfg sheapthres shr

CF1 500 2500
CF2 2000 10000
CF3 10000 40000

Table 4.1: The different sort heap configurations. Expressed in 4KB pages.

Note that sort heap configurations CF1 and CF2 cap the sort heap that a sin-

gle operation is allowed to use at a relatively low level, 500 and 2000 4KB pages

respectively. This means that many queries will use this maximum, or a multiple of

it, which leads to the variety of sort heap requirements among queries being rather

restricted. CF3 caps the amount of sort heap a single operation is allowed to use

at a higher level, namely 10,000 4KB pages. Few operations in our workload reach

this maximum and thus there is a wider spread of sort heap requirements. In other

words, when considering a set of queries under CF1 or CF2, these queries are likely

to have more homogeneous sort heap requirements than if they were under CF3.

From a scheduling point of view, having a wider spread in sort heap requirements is

favourable since it is more likely that a query whose sort heap requirements matches

the current availability exists.
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For each combination of sort heap configuration, scheduling approach and sort

heap model, the workload was run eight times. Before each run, the database system

was restarted to clear all the monitor elements and a sample load was run to fill

the bufferpool with data and bring the database into a steady state. In addition to

the proposed scheduling approaches, the workload was also run with no control, and

with different multiprogramming levels. Running the workload without any control

provides a base from which to compare the scheduling methods. However, it is not

sufficient to compare the proposed scheduling techniques to running the workload

without any control. Without any control, the workload overloads not only the sort

heap but also many other system resources. Since the proposed schedulers limit con-

currency, the load on all resources is reduced. Therefore, comparing the schedulers

to no control does not reflect whether gains in performance are due to being able

to effectively control sort heap usage. Comparing the schedulers to the use of static

MPLs is a much fairer comparison. This comparison determines if strategically se-

lecting when to run which queries is more effective than simply reducing the number

of concurrent queries. It was discovered experimentally that performance, in terms

of total execution time, of the chosen workload peaks around MPL 4. Therefore,

the workload was run with MPLs 3, 4 and 5. Appendix C lists all the different con-

figurations, consisting of a combination of scheduling technique or MPL, sort heap

configuration and sort heap model, for which experiments were performed.

The evaluation of the scheduling methods is presented in two parts. Firstly, the

effectiveness of the scheduling methods is presented in terms of their ability to control

sort heap usage and compared to the use of an MPL (see Section 4.4). Secondly, the

scheduling methods are compared to each other from a user’s point of view (see
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Section 4.5).

4.4 Evaluation of Sort Heap Contention Control

4.4.1 Evaluation Metrics

While the goal of our load control system is to control contention on the sort heap, it

is also important to consider the effect this control has on the overall performance of

the system. Overall performance can be measured in terms of total execution time,

which is the elapsed time from when the workload is started to when it completes

(when the last query is finishes). Simply reducing contention on the sort heap is a

trivial task; it can be achieved by reducing the concurrency level. Running one query

at a time will produce the least contention on the sort heap. However, doing this leads

to a longer total execution time. The challenge lies in reducing sort heap contention

while maintaining a level of concurrency necessary to achieve a near optimal total

execution time. Therefore, when comparing scheduling methods to each other and

to the use of static MPLs, we not only consider sort heap contention, but also total

execution time.

We measure sort heap contention by looking at sort heap monitor elements. These

are values which the database tracks and can be accessed externally through database

snapshots. The specific elements are listed in Table 4.2. Post-threshold operations are

an indicator of sort heap contention because they occur when sort heap memory is at

its capacity or close to capacity. Therefore, an increase in post-threshold operations

means that contention on the sort heap has increased. Post-threshold operations

should be avoided since they lead to poor performance. A post-threshold sort or
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hash join will take longer to complete than the same sort or hash join without the

post-threshold status because it must complete using a less than optimal amount of

memory, which can result in having to write partial results to disk. Because of this,

total sort time and the number of post-threshold sorts are closely related.

Name Definition

total sort time Total elapsed time, in milliseconds, for all sorts that
have been executed.

post-threshold sorts Total number of sorts that were throttled. A throttled
sort is a sort that was granted less memory than it re-
quested.

post-threshold hash joins Total number of hash joins that were throttled. A throt-
tled hash join is a hash join that was granted less mem-
ory than it requested.

Table 4.2: DB2 sort heap monitor elements. [22]

4.4.2 Results

The results for sort heap configuration CF1 are discussed here in detail. Results for

CF2 and CF3 can be found in Appendix D and exhibit the same general patterns

as the results for CF1. Differences that do occur between the configurations are

discussed throughout this section.

Figure 4.2 shows the average improvement in terms of total execution time of

the different scheduling methods and MPLs over running the workload without any

control. Three sets of results are shown for the scheduling methods; each set uses a

different sort heap prediction model—average sort heap usage (AVG), dominant sort

heap usage (DOM) or maximum sort heap usage (MAX). The errors bars indicate one

standard deviation in either direction of the average improvement. Figures 4.3 and

4.4 show the improvement over running the workload without any control in terms of
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Figure 4.2: Percent improvement in total execution time over running the workload with no
control.
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Figure 4.3: Percent improvement in total sort time over running the workload with no control.
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Figure 4.4: Percent improvement in the number of post-threshold operations over running the
workload with no control.
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number of post-threshold operations and total sort time, respectively. The absolute

results can be found in Appendix D.

First, let us compare the sort heap models to each other. Using the AVG or DOM

sort heap model leads to greater improvement in total execution time than using

the MAX model (5.2% to 7.9% greater improvement). This can be explained by the

fact that using the maximum sort heap estimation is a very conservative approach

that may unnecessarily limit the concurrency level. Generally there is little difference

(less than 1.4%) between using the AVG and DOM sort heap models with respect

to improvement in total execution time. However, the MAX sort heap model leads

to greater improvement in both the number of post-threshold operations (2.3% to

5.3%) and total sort time (3.0% to 5.0%). This can again be attributed to the fact

that the MAX model is the most restrictive since the worst case is always assumed;

that a query will always use its maximum amount of sort heap memory. Therefore,

contention on the sort heap is low which means less post-threshold operations.

The difference between using a MAX model over a DOM or AVG model in terms

of total execution time, which is very observable under CF1, becomes less dominant

under CF2 and even more so under CF3. This is likely due to the fact that queries

have more varied sort heap requirements under CF2 and CF3, which means that a

query that fits into the available sort heap can be found more often and more queries

can be executed concurrently. Although the difference in execution time changes with

the sort heap configuration, the MAX model consistently leads to the least number

of post threshold operations and least amount of sort time.

In terms of comparing the different scheduling approaches, BQS and FFS show

greater improvement in terms of total execution time than SJFS (0.8% to 3.0%).



CHAPTER 4. LOAD CONTROL SYSTEM 46

This is likely due to the fact that SJFS overloads the system on resources other than

the sort heap since it does not execute a balanced mix of queries. In fact, SJFS is

the scheduling method which causes the least sort heap contention (SJFS exhibits

the greatest improvement in post-threshold operations and total sort time) which is

evident in Figures 4.3 and 4.4.

The scheduling approaches are not always superior to a well-chosen MPL in terms

of improvement in total execution time. However, the schedulers are generally more

effective in reducing the number of post-threshold operations and sort time while

keeping total execution time low. Furthermore, Figure 4.5 shows that under CF3,

all of the schedulers lead to greater improvement in total execution time than the

optimal MPL, which is likely because the sort heap requirements of the queries are

more varied under CF3. This shows that for workloads containing queries with very

diverse requirements, a scheduling system that considers individual resource usage

can be superior.
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Figure 4.5: Improvement in Total Execution Time over running the workload without any
control for sort heap configuration CF3.

Furthermore, although not represented in our current experiments, we expect that
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under a changing workload, our load control system is superior to the use of an MPL.

Since the best MPL is determined experimentally for the given workload, it may not

be the best MPL for a different workload. Under a different workload, the MPL

will either have to be adjusted or the system will perform poorly. However, our load

control system works in a predictive manner, and therefore will be able to adjust

automatically to the changing workload. If the queries arriving in the system require

a different set of resources, then the system will schedule them so that the required

resources still match the available resources. We plan to investigate this in future

experiments (see Section 5.2).

4.5 Evaluation of the Scheduling Techniques

4.5.1 Evaluation Criteria

While the scheduling approaches are all fairly similar in their ability to control sort

heap contention, there is a difference in the way they schedule queries. BQS executes

queries in the order in which they were submitted, while SJFS and FFS change this

order. Changing the order in which queries are submitted can lead to long wait times

for some queries. From a system efficiency point of view, it does not matter which

queries are being executed as long as resources are being used well and throughput

is high. However, the users submitting the queries see this differently. A user who

submits a query to the system expects a response within a reasonable amount of time.

In this Section, we compare the scheduling approaches and sort heap models in terms

of their effect on wait time. Wait time for a query is the elapsed time from when the

query was submitted to when it starts executing. By examining different wait time
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metrics, we can compare the different scheduling approaches from a user’s point of

view.

One way to evaluate wait time is to look at the stretch metric [23]. Stretch

expresses the relationship between a query’s wait time and execution time. The main

idea is that a user who submits a long query is willing to wait longer than a user who

submits a very short query. The stretch of a query q is defined as,

stretchq =
wq + eq

eq

(4.5)

where wq is the wait time of q and eq is the execution time of q. In addition to stretch

we also use maximum wait time (the maximum amount of time a query had to wait)

and total wait time (the sum of the individual wait times for each query) to compare

the scheduling techniques.

4.5.2 Results

Since the wait time metrics for all the sort heap configurations exhibit very similar

patterns, only the results for CF1 are discussed here. The results for the remaining

configurations can be found in Appendix E. Figure 4.6 shows the average stretch for

each of the different schedulers using the different sort heap models. SJFS has the

lowest stretch factor, BQS the highest, and FFS is in between, but closer to SJFS.

This can be explained by the fact that the execution time of a query is correlated to

the amount of sort heap it requires.2 SJFS always submits the query requiring the

least amount of sort heap first, this is also often a query with a short execution time.

2This relationship is particularly strong in our experimental environment. In our setup, I/O is
not a time consuming operation since all the data fits into memory. Therefore, sorting and hash
joins are among the most time consuming operations.
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Hence, the query’s wait time is proportional to its execution time. When SJFS is

used, queries that require a very large amount of sort heap get stuck at the end of

the queue and may have to wait a long time before being executed, however, these

queries also take longer to execute and hence the relationship between wait time and

execution time remains proportional.

Total wait time is shown in Figure 4.8 and maximum wait time for a single query

is shown in Figure 4.7. While SJFS is also superior to the other schedulers in terms

of total wait time, it produces much longer maximum wait times. This is due to the

fact that queries requiring large amounts of sort heap can become ‘stuck’ at the end

of the queue.

The best choice of scheduling method very much depends on the workload. If the

workload is a batch workload (a set of queries to be completed as a whole), then SJFS

is a good choice, since it minimizes total wait time and the fact that some queries

may have to wait a very long time does not matter. However, if the type of workload

is continuous, SJFS should be avoided. If new queries are continually entering the

system, then enough resources for the large queries at the end of the queue may never

become available. In this case BQS may be the best choice, because it cannot lead to

starvation. However, FFS is generally better at balancing sort heap usage and total

execution time. Section 4.6 presents a modified version of FFS which eliminates the

risk of starvation.

4.6 Avoiding Starvation

A significant drawback to re-ordering queries when scheduling is the possibility of

starvation and very long wait times. In order to address this issue, we present an
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Figure 4.6: Average stretch under CF1.
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Figure 4.7: Maximum wait time for a single query under CF1.
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Figure 4.8: Sum of all wait times under CF1.
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altered version of the First Fit Scheduler. To guarantee that a query will be executed

eventually, that query’s sort heap requirement must eventually fit into the available

sort heap space. To achieve this, the sort heap requirement of a query was redefined

to include a function ScaleFactor(q, t), which scales the sort heap requirement of the

query under certain conditions.

sortReqScale(q, t) = sortReq(q) ∗ ScaleFactor(q, t) (4.6)

Two possible scale functions were investigated; one which only affects a single

query at a time, and one which affects multiple queries at a time. The first will

be referred to as Single Scale Factor (SFs) and the second as Multiple Scale Factor

(SFm).

ScaleFactor(q, t) =


SFs(q, t)

SFm(q, t)

(4.7)

Both scale factors are dependent on the queries that have been allowed to run up

until time point t. Every time a query q′ that was submitted after q is allowed to

execute, ScaleFactor(q, t) may be affected. Let QRqt be the set of all queries that

have been allowed to run at time point t but which were submitted after query q.

Conceptually, QRqt is the set of all queries that have “jumped” the line in front of

q. Let pq′
q be q’s position in the waiting query list at the point in time when query

q′ ∈ QRqt is allowed to run (when pq′
q is 0 q is at the front of the list, when pq′

q is 1

q is second in the list, etc.). SFs(q, t), reduces the sort heap requirement of the first

query in the waiting query list by 10%3 every time a query that is not first in line is

3The 10% factor was chosen arbitrarily as a sample value to show the effects of the proposed
scaling method. The approach may be optimized by a different choice of scaling factor.
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executed.

SFs(q, t) =
∏

q′∈QRqt


0.9 if pq′

q is 0

1 otherwise

(4.8)

SFm scales up to the first five queries in the waiting query list in a decreasing

manner, whenever a query is executed.

SFm(q, t) =
∏

q′∈QRqt

min{0.9 + pq′

q ∗ 0.02, 1} (4.9)
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Figure 4.9: Reduction in wait time over FFS without scaling.

We chose this method of scaling sort heap requirements instead of a more tradi-

tional time-based aging approach because our goal is to penalize certain scheduling

decisions. We also want to avoid unnecessarily scaling a query’s sort heap require-

ment since this leads to poor performance. Our approach only scales those queries

that have to wait longer than they would have to if queries were not being rearranged.

A time-based approach ages queries independent of scheduling decisions.

The goal of scaling the sort heap requirements of certain queries was to avoid

starvation and extremely long wait times. To see if this was achieved, we examine
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the reduction in maximum wait time exhibited by FFS with the two different scaling

methods over FFS without scaling. Figure 4.9 shows this improvement for each of the

sort heap configurations. The use of SFm leads to greater improvement in maximum

wait times than SFs. However, both gains come at a cost. Essentially all other factors

that were measured, were negatively affected. Scaling the sort heap requirements of

certain queries increases total execution time (up to 8.2%), total sort time (up to

10.5%), the number of post threshold operations (up to 51%), average stretch (up to

28.6%) and total wait time (up to 11.7%). Complete results can be found in Appendix

F. All these metrics were affected less by SFs than by SFm. It is interesting that

scaling, which is done to reduce wait time, negatively affects total wait time. This

is likely because queries that overload the sort heap can be chosen to execute, which

slows down the system and other queries have to wait longer than they would have

to if the system was running efficiently.
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Conclusions and Future Work

As DBMS workloads are becoming more complex, effective load management sys-

tems are needed. Resource-aware load management systems are one way to handle

the varying resource requirements of queries. The objective of this thesis is to inves-

tigate the feasibility of a database load control system based on regulating resource

consumption in a predictive manner. This is accomplished through a proof-of-concept

study focusing on a single resource; namely, the sort heap. Two main contributions

are presented: a method of estimating a query’s sort heap usage and a prototype load

control system implementing three different scheduling methods.

The estimation of a query’s sort heap usage is based on its execution plan. Since

sort heap usage is not constant throughout a query’s execution, it is summarized using

one of three metrics; maximum, average and dominant sort heap usage. It is possible

to calculate these metrics by examining the operators in the query execution plan

and their relationships. First, the amount of sort heap that each operator requires

individually is calculated and then sets of operators that can be active at the same

time are determined.

The prototype load control system consists of three parts: a sort heap model to

track sort heap usage, an estimation module to estimate the sort heap requirements

54
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of incoming queries and a scheduling module to determine when to execute which

queries. The three proposed scheduling methods, in order of increasing overhead, are

as follows: Blocking Queue Scheduler (BQS), Smallest Job First Scheduler (SJFS)

and First Fit Scheduler (FFS). BQS retains the order in which the queries are sub-

mitted and acts solely as a gatekeeping mechanism, only letting the next query run

if there is sufficient sort heap space. SJFS sorts incoming queries by their sort heap

requirements. FFS continually traverses the list of waiting queries and executes those

that fit into the currently available sort heap space. A modified version of FFS which

reduces maximum wait time by scaling sort heap requirements is also presented.

5.1 Conclusions

A comparison of estimated sort heap usage to actual sort heap usage produced the

following mean percent error values: 18.1% for the maximum metric, 30.64% for the

average metric, and 20.77% for the dominant metric. While these mean errors seem

large, many of the individual error values are quite low and several outliers cause the

mean error value to rise. Furthermore, a high degree of accuracy is not crucial since

the numbers are summaries of sort heap usage curves and are only required to give

an approximation of how much sort heap a query will require.

Even though the estimations for the maximum metric are most accurate, experi-

ments using these estimations to schedule queries show that using maximum estima-

tions is a very conservative approach which can excessively limit concurrency. Using

the maximum sort heap model consistently leads to the best improvement in number

of post threshold sorts, up to 5.3% more than the other sort heap models. However,

it also leads to up to 7.9% less improvement in total execution time.
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Our experiments with the prototype load control system show that sort heap

usage can be controlled by any of the three proposed scheduling methods. All of the

scheduling approaches are most effective given a workload with very varied sort heap

requirements. The most promising approach is the First Fit Scheduler; it generally

leads to the best overall execution time. Under a workload with diverse sort heap

requirements, FFS leads to an improvement of up to 55.3% in total execution time

over running the workload with no control, compared to an improvement of 51.1%

using the optimal MPL. While this is not a particularly large difference, it is important

to consider that the optimal MPL was chosen experimentally while FFS adjusts the

concurrency level automatically.

SJFS leads to both the lowest stretch and total wait time values. These are im-

portant from a user’s point of view since a user does not want to wait an unreasonable

amount of time for the result of a particular query. However, SJFS causes dramat-

ically higher maximum wait times than the other scheduling approaches. This is

because queries with large sort heap requirements can get stuck at the end of the

queue. Experiments with a modified version of FFS, which incorporates sort heap

requirement scaling, show that maximum wait time can be reduced at the expense of

total execution time.

Overall, we conclude that predictive resource-aware load control is promising,

especially given a workload with diverse resource requirements. We have shown that

it is possible to predict resource requirements with a level of accuracy suitable for

making scheduling decisions. While the abilities of a load control system based on

a single resource are limited, we believe that once more resources are incorporated,

resource-aware scheduling will be highly effective.



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 57

5.2 Future Work

The results of our proof-of concept study open up many opportunities for future work.

Continuing within the scope of this project we see the following as future work. We

would like to continue our experiments with the proposed scheduling methods under

different workloads and specifically, changing workloads. We believe resource-aware

scheduling can be a powerful tool for adapting to workload changes. Furthermore,

since the estimation of sort heap usage can be very inaccurate for some queries, we

would like to explore the possibility of using historical data to identify query types

whose sort heap prediction has been inaccurate in the past. A confidence in the

estimated sort heap requirement can be reported along with the requirement and the

scheduler can judge how seriously to take the estimation based on its confidence.

On a broader scale, we would like to expand our approach beyond the sort heap.

We would like to be able to estimate other resource requirements such as CPU and

incorporate these resource estimations into our load control system. CPU estimates

could be attained through the query execution plan by identifying CPU intensive

operations and their cardinalities. Another approach is to base CPU estimates on

the number of workers assigned to the processing of a query; the more workers, the

more CPU intensive the query is expected to be.

Finally, we would like to consider factors such as service level objectives (SLOs)

and query priorities and investigate how these can be integrated with resource-aware

scheduling. One possibility is to “age” the resource requirement estimates of high

priority queries to make them more likely to be chosen to execute. Another option

is to have several queues of queries, each with different priority levels, and to give
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preference to the queries in high-priority queues when deciding which query to execute

next.
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Appendix A

DB2 Query Execution Plans

Primarily, query execution plans are used internally by the database to execute the

query, however, they are accessible externally. The amount of detail available exter-

nally is dependent on the specific DBMS.

DB2 provides two ways to access query execution plans: visual explain and

db2expln [24]. The visual explain module provides information about the query

execution plan at compile time. The db2expln function provides more detailed infor-

mation than the visual explain and shows the runtime query execution plan. Both

visual explain and db2expln provide information such as the operations that will be

performed as well as their cardinalities. However, only db2expln provides additional

information such as lock types, temporary tables and sort heap allocations.

A query plan consists of a tree of operators. Some common operators and their

functionality are listed in Table A.1. There are two types of operators; blocking and

non-blocking. Operators that are classified as blocking need to receive at least one

complete input before being able to produce any output. For instance, a sort operator

is a blocking operator. Since the sort operator outputs its tuples in sorted order, it

has to wait until it has received all its input tuples before it can decide which one

is smallest—or largest. Of all the DB2 operators, only the following operators are

considered blocking operators: hash join, group by, sort and unique. For blocking

operators that are binary, ie. those that take two inputs, it is always assumed that

the input from the right child needs to be received completely before the node can
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produce any output and that the left input can be pipelined.
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Table A.1: Common DB2 Query Plan Operators [12]
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TPC-H Benchmark

The TPC-H Benchmark [20] is a decision support benchmark, developed by the Trans-

action Processing Performance Council. Its main purpose is to be used to evaluate

the performance of decision support systems by executing queries under controlled

conditions. The benchmark consists a set of 22 business oriented ad-hoc queries. The

TPC-H database contains 8 tables. The table names and schemas are shown in Figure

B.1. The size of each of these tables depends on the scale factor (SF). For instance,

with a SF of 1, the PART table contains 800,000 records, with a SF of 5, it contains

4,000,000 records.

Each of the 22 queries is designed to answer a specific business question. For

instance Query 14 answers the following business question:

The Promotion Effect Query determines what percentage of the revenue

in a given year and month was derived from promotional parts. The

query considers only parts actually shipped in that month and gives the

percentage. Revenue is defined as (l extendedprice ∗ (1− l discount)).

The TPC-H specification provides parameterized query templates for all of the

queries Q1 to Q22. The specification defines the allowed value range for each param-

eter. The arguments must then be chosen randomly within this range. Figure B.2

shows the SQL template for Q14. DATE is a parameter which is restricted to being

the first day of a month, randomly selected from a random year between 1993 and

1997.
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TPC BenchmarkTM H Standard Specification Revision 2.14.0 Page 12 

1.2 Database Entities, Relationships, and Characteristics 

The components of the TPC-H database are defined to consist of eight separate and individual tables (the Base 
Tables). The relationships between columns of these tables are illustrated in Figure 2: The TPC-H Schema. 
 

F igure 2: The TPC-H Schema 
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Legend: 

 The parentheses following each table name contain the prefix of the column names for that table; 

 The arrows point in the direction of the one-to-many relationships between tables; 

 The number/formula below each table name represents the cardinality (number of rows) of the table. Some 
are factored by SF, the Scale Factor, to obtain the chosen database size. The cardinality for the LINEITEM 
table is approximate (see Clause 4.2.5). 

Figure B.1: TPCH Schema

TPC BenchmarkTM H Standard Specification Revision 2.14.0 Page 51 

2.4.14 Promotion E ffect Query (Q14) 
This query monitors the market response to a promotion such as TV advertisements or a special campaign. 

2.4.14.1 Business Question 
The Promotion Effect Query determines what percentage of the revenue in a given year and month was derived from 
promotional parts. The query considers only parts actually shipped in that month and gives the percentage. Revenue 
is defined as (l_extendedprice * (1-l_discount)). 

2.4.14.2 Functional Query Definition 

select 
100.00 * sum(case  

when p_type like 'PROMO%' 
then l_extendedprice*(1-l_discount) 
else 0 

end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue 
from  

lineitem,  
part 

where  
l_partkey = p_partkey 
and l_shipdate >= date '[DATE]' 
and l_shipdate < date '[DATE]' + interval '1' month; 
 

2.4.14.3 Substitution Parameters 
Values for the following substitution parameter must be generated and used to build the executable query text: 

1. DATE is the first day of a month randomly selected from a random year within [1993 .. 1997]. 

2.4.14.4 Query Validation 
For validation against the qualification database the query must be executed using the following values for substitu-
tion parameters and must produce the following output data: 
Values for substitution parameters: 

1. DATE = 1995-09-01. 

2.4.14.5 Sample Output 
 
  

!"#$#%"&'&()&*

+,-./*
  

*

Figure B.2: Q14 Template
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Configurations

Sort Heap Cfg Scheduling Approach Sort Heap Model

1 CF1 BQS AVG
2 CF1 SJFS AVG
3 CF1 FFS AVG
4 CF1 BQS DOM
5 CF1 SJFS DOM
6 CF1 FFS DOM
7 CF1 BQS MAX
8 CF1 SJFS MAX
9 CF1 FFS MAX
10 CF2 BQS AVG
11 CF2 SJFS AVG
12 CF2 FFS AVG
13 CF2 BQS DOM
14 CF2 SJFS DOM
15 CF2 FFS DOM
16 CF2 BQS MAX
17 CF2 SJFS MAX
18 CF2 FFS MAX
19 CF3 BQS AVG
20 CF3 SJFS AVG
21 CF3 FFS AVG
22 CF3 BQS DOM
23 CF3 SJFS DOM
24 CF3 FFS DOM
25 CF3 BQS MAX
26 CF3 SJFS MAX
27 CF3 FFS MAX

Table C.1: Configurations using the proposed scheduling methods.
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Sort Heap Cfg MPL

28 CF1 3
29 CF1 4
30 CF1 5
31 CF1 12
32 CF2 3
33 CF2 4
34 CF2 5
35 CF2 12
36 CF3 3
37 CF3 4
38 CF3 5
39 CF3 12

Table C.2: Configurations using Multiprogramming Levels (MPLs)
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Absolute Results
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Figure D.1: The total execution time for the workload under different sort heap configurations,
sort heap models and scheduling methods.
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Figure D.2: The number of post-threshold operations under different sort heap configurations,
organized by sort heap model and then by scheduling method. The three right-most bars show
the number of post-threshold operations under different MPLs.



APPENDIX D. ABSOLUTE RESULTS 71

900000

1100000

1300000

1500000

1700000

1900000

BQS   SJFS   FFS   BQS   SJFS   FFS   BQS   SJFS   FFS   3 4 5

AVG DOM MAX MPL

So
rt
  T
im

e
  (
m
s)

(a) CF1

800000

1000000

1200000

1400000

1600000

1800000

BQS   SJFS   FFS   BQS   SJFS   FFS   BQS   SJFS   FFS   3 4 5

AVG DOM MAX MPL

So
rt
  T
im

e
  (
m
s)

(b) CF2

700000

900000

1100000

1300000

1500000

1700000

BQS   SJFS   FFS   BQS   SJFS   FFS   BQS   SJFS   FFS   3 4 5

AVG DOM MAX MPL

So
rt
  T
m
e
  (
m
s)

(c) CF3

Figure D.3: The total sort time under different sort heap configurations, organized by sort
heap model and then by scheduling method. The three right-most bars represent sort time
under different MPLs. The errors bars indicate one standard deviation in either direction of
the average total sort time among all eight workload runs.
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Additional Wait Time Results
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Figure E.1: CF2 Wait Time Results
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Figure E.2: CF3 Wait Time Results
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Additional Scaling Results
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Figure F.1: Total Execution Time with Scaling

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

FFS SFs SFm FFS SFs SFm FFS SFs SFm

CF1 CF2 CF3

To
ta
l  S
o
rt
  T
im

e
  (
m
s)

Figure F.2: Total Sort Time with Scaling
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Figure F.3: Post-threshold Operations with Scaling
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Figure F.4: Total Wait Time with Scaling
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Figure F.5: Stretch with Scaling


