A Self-Protective Key Management Framework

Anne V.D.M. Kayem, Patrick Martin, Selim G. Akl and Wendy Powley
School of Computing, Queen’s University
Kingston, Ontario, CANADA, K7L 3N6

{kayem, martin, akl, wendy }@Qcs.queensu.ca

Position Paper

Abstract

Self-protection is a key property of autonomic com-
puting systems that researchers have only begun to
study. The problem of designing adaptive key man-
agement schemes for access control is addressed. We
explain why standard key management schemes are un-
able to efficiently adjust to dynamic scenarios and we
present a possible solution to the problem by drawing on
the paradigm of autonomic computing. The approach
we propose uses a stochastic model supported by data
replication to preemptively adjust the resources (in this
case, cryptographic keys and encrypted data) to handle
varying scenarios in a seamless manner.

1. Introduction

The paradigm of autonomic computing has inspired
the creation of numerous computing models aimed at
coping adaptively with varying complex scenarios [6].
Yet, these methods have not gained as much popu-
larity in the domain of access control for reasons that
include skepticism and reluctance [4]. Skepticism, be-
cause security mistakes (failures) can have far reaching
consequences. We have only to recall security scandals
like the one that occurred in January 2007, when hack-
ers broke into Winners’! computers and stole customer
credit card information [9]. The public outrage was ob-
vious, how did hackers get into the system? Interest-
ingly enough, failure in other domains is not treated in
the same way probably because users are given some
assurance or alternative solution. For instance, power
failures/surges do not raise the same dust and yet can be
equally, perhaps even more, costly. However, since elec-
trical systems have additional backup generators and
power protectors to name but a few, the fear of power

IDepartmental store in the US and Canada specialized in
clothing, shoes and accessories.

failure does not generate as much paranoia. Further-
more, the reluctance is born out of the outrage resulting
from security failures. Business owners want to trust the
software they purchase to yield the results it promises.
Costly law suits filed by discontented users are defi-
nitely not a part of the bargain. Thus, autonomic se-
curity schemes are questioned as to their reliability and
dependability in handling complex scenarios.

A number of questions need to be addressed to mo-
tivate users to accept the idea of autonomic control in
security schemes [6]. First, how can this be done with-
out destroying the very shaky trust that business own-
ers and users have in the power of security schemes?
Second, is there a way of establishing when too much
control has been handed over to the system? Third,
how can we guarantee that the source of a breach will
be easier to trace than in standard security schemes?
The answers to these questions are not straight forward.
However, the growing complexity of computing system
management undeniably tips the balance in favor of au-
tonomic computing. Breaches are currently difficult to
trace and prevent, and the problem will only become
worse with time [4].

We focus on the problem of cryptographic key man-
agement (KM) for shared data access control. In this
context, the privileges associated with a role can change
dynamically, making it difficult for a security admin-
istrator to envisage all the possible update scenarios
and update the keys associated with a role. The crux
of the problem here is that shared key usage requires
that key updates be performed in real-time to meet ser-
vice level agreements. Handling this manually creates
delays that impact negatively on performance, making
the benefits of autonomicity appealing. We advocate
the creation of KM schemes that play the role of self-
protectors for a system. Here, self-protection implies
that the KM scheme possesses the ability not only to
assign users cryptographic keys that prevent security
breaches, but also to study user behavior patterns and
to adjust the security characteristics of the scheme to



cope with the perceived changes. Consequently, the
scheme transcends its current status of quasi-static se-
curity into the realm of dynamic security making for
adaptable and better security.

Our approach does not change the inherent char-
acteristics of standard KM schemes, instead it builds
on the foundation they lay, using a stochastic model
and data replication, to adjust KM to handle a per-
ceived scenario. We propose to model the arrival of
user join/leave requests and to use the model to pre-
dict subsequent arrival rates. Since an existing key is
linked to a data object (file) that is encrypted with it,
key replacement implies that the associated data needs
to be re-encrypted with the new key. Predicted arrival
rates are used to solve the problem by creating an op-
timal number of background replicas and keys that can
take over when the change needs to be effected. The
background keys are time-bounded to prevent data in-
consistency.

This paper presents a self-protective key manage-
ment (SPKM) framework centered on shared data ac-
cess control. We begin in Section 2 with an example to
support the argument in favor of SPKM and explain
why autonomic computing has not been successful in
the domain of security. In Section 3, we discuss our
proposed SPKM framework and analyze the pros and
cons. Concluding remarks are offered in Section 4.

2. Shared Data Access - Background

We focus on using cryptographic keys to control ac-
cess to shared data. Applications based on shared data
are popular because of the flexibility they afford both
users and system administrators. Several applications
attest to this popularity including web-based distrib-
uted collaborative systems (like Facebook [5]).

]
0 6 Ug, \t{
eparts
\ oo
U \ﬁ/ \\ U,
Uy u11\t1 Departs 6%>t2
|

“ )
2 &

Figure 1. Example of a Dependent Key Graph

Security management is facilitated by classifying
data into a number of classes Ck,, such that 1 <¢<n
where n is the maximum number of user groups in the
hierarchy and K; is the cryptographic key used to en-
crypt the data. Possession of a correct key grants a user
access to the data.

Cryptographic keys for the various user groups re-
quiring access to part of the shared data are defined
by classifying users into a number of disjoint security
groups Uj;, represented by a partially ordered set (5, <),
where S = {Uy, Uy, ...,Up—1} [1]. In the partially or-
dered set U; < U; implies that users in group U; can
have access to information destined for users in U;, but
not the reverse.

The downside of this traditional method of KM is
that whenever a group’s membership changes, the group
key needs to be replaced and the associated data re-
encrypted with the new key. Furthermore, when the
keys are modeled with a dependency key graph (i.e.
each group is assigned a single key from which sibling
keys can be derived) all the keys in the affected sub-tree
need to be replaced. For example, in Figure 1, when a
user ugg departs from Uy both K and the correlated
keys K7, and K5 need to be changed to prevent the
departed ugo from continuing to access Ck,, and Ck,.
Likewise, when usg departs from Us the keys K, and
K1 need to be changed in addition to K5 so that K can
derive the new K. Additionally the change must guar-
antee that the new K5 does not overlap with K; and
unknowingly grant U; access to Ck, or vice versa. This
approach to key assignment is not scalable for environ-
ments with frequent group membership changes where
meeting the goals of service level agreements is an addi-
tional constraint [10]. To address these limitations, we
advocate using a method suggested by the paradigm of
autonomic computing [2, 3].

Autonomicity endows the KM scheme with the ca-
pability of self-management allowing it to overcome its
difficulties in coping with dynamic scenarios [6]. The
KM scheme can predict future situations based on cur-
rent observations of user behavior. In essence, the job
of the security administrator (SA) is made easier since
the SA no longer needs to take care of every key update
case that arises but rather, the SA presets specific para-
meters and allows the scheme to run on its own. Cases
directly requiring the SA would henceforth be limited
to situations that require the consent/advice of the SA
to proceed. In response to the question as to how to
design an autonomic KM scheme to achieve this objec-
tive, we present a SPKM framework that automatically
protects a system based on observed user behavior pat-
terns.

3. SPKM Framework

We argue that SPKM for shared data access control
can provide performance gains and a reduced manage-
ment cost. Adaptive KM is modeled with a feedback
control loop from autonomic management systems [6].
As shown in Figure 2, the model is composed of seven
principal components: sensor, monitor, analyzer, plan-



Planner

— Compute Optimal Replication Degree

Replication Degree

A
Computation Parameters'
|

Scheduling

parameters

Executor

Insert Task into
Queue (Schedule)

Probability &
Analyzer Resource Identifiers
Compute probability
Current Arrival Rate that
Ae :: Ar
R — L
1
Monitor
Compute Arrival Rate of Files
Join/Leave Requests
U,\ = .'\[' = /\[
oy >" d)

Number of join/
leave requests

We : Time Window

Key Server

Join/ Leave

Requests

Request

Data Server

Access
Requests

Users

Figure 2. Self-Protective Key Management (SPKM) Framework.

ner, executor, effector, and knowledge base. The com-
ponents react and adjust system parameters according
to observations in behavior patterns exhibited by the
managed component, namely the data and key servers.
For simplicity, the scheme is explained as though we are
dealing with a single node in the hierarchy. However, in
practice, all the nodes are involved and parameters are
set on a node by node basis.
3.1 Sensor and Monitor

The sensor captures requests for key updates emitted
by users to the key server during a preset time window
W, and transmits the information to the monitor. The
monitoring function computes the mean arrival rate A,
of join/leave requests during the current window W,
and compares this value to a preset threshold value of
arrival rates, A\;. If the deviation o\ = A, — \; is greater
than a preset threshold value dy, the event is tagged
and transmitted to the analyzer.

3.2 Analyzer

Based on the assumption that the arrival rate fol-
lows a Poisson process, the analyzer computes an ex-
pected time window W, and an expected arrival rate
Ae. Here, “expected” refers to a future or predicted rate.
The probability py that A, will surpass A; is computed
and compared to the probability threshold value p;. If
Po > Py, the analyzer tags the event and transmits pg

as well as the resource identifiers (keys and associated
file names) to the Planner.

3.3 Planner

The overhead generated by check pointing can be
alleviated by equipping the Planner with a method of
determining an acceptable degree of replication to main-
tain in the system [7,8]. Our proposed approach uses a
Markov process to design the optimal replication degree
algorithm. With this model, the Planner evaluates the
expected overhead for a given number of replicas with
respect to the degree of availability @ (probability that
the system can satisfy a given request before a set dead-
line) and uses the information to determine an optimum
number of replicas N to generate in response to A\.. The
optimum values for N, W,, and « as well as the identi-
fiers of the keys and files concerned are transmitted to
the executor.

3.4 Executor and Effector

The executor proceeds to create the required repli-
cas and instruct the key server to create time-bounded
keys for the replicas and encrypt the copies. A time-
bounded key K is defined by a combination of the key
K; associated with a security class U; and the dura-
tion of its validity ¢, such that T, < ¢ < Ty. Here T}
and T refer to the start and finish times of the bound.



For instance in Figure 3, the replicas under U; are en-
crypted with keys Kf“, ...,Kit"‘l. Updates on backup
copies are only accepted if they are encrypted with the
key that is associated with the primary copy. When the
key K f", associated with the primary copy, expires (i.e.
the time-bound T, < ¢ < Ty is no longer valid) or a
join/leave request requires replacing the key Kfo, the
replica R« is destroyed. The key Kf ! is then distrib-
uted to the users in group U; and R, becomes the

new primary copy.

R

—to
K,

Primary Copy

Figure 3. Replication based time-bound K\

4. Conclusions

In the preceding sections we outlined some of the rea-
sons behind the hesitancy to adopt autonomicity into
security frameworks. We noted that for reasons per-
taining to cost and credibility, business owners prefer to
have full control over their security mechanisms. Our
aim therefore, was to argue that an autonomic approach
can enhance the underlying scheme making the job of
the SA easier. In this way the SA can focus on more
intellectually demanding tasks.

Specifically, we considered the problems that arise in
shared data access scenarios drawing attention to the
fact that dynamic key updates are beyond the scope of
quasi-static schemes and that the increasing complex-
ity of access scenarios implies by default that effective
security would be impossible even with full time man-
ual dedication to the problem. We then proceeded to
present a simple but effective SPKM framework that
does not detract from the basic qualities of the stan-
dard security scheme but rather enhances its capabili-
ties with a combination of a stochastic model and repli-
cation. The stochastic model determines an acceptable
degree of replication to maintain based on an observed
arrival rate and the potential impact of checkpointing
on the overall performance of the system. In this way
backup replicas and keys are generated to preemptively
handle situations of high demand. The advantage of
this approach is that user transactions no longer need
to be delayed while the system adjusts security parame-
ters to cope with requests for changes. Additionally, the
SA now only has to preset required parameters and let
the system run, without having to be present to manu-
ally handle every change.

In a nutshell, if “trust” is defined as the ability of
a system to inspire confidence in its users by yielding

the results expected of it, then we can affirm that our
proposed idea of a SPKM scheme addresses this con-
cern in the sense that the design of the KM scheme
remains the responsibility of the SA while the stochas-
tic processes help to meet performance goals. Can we
guarantee that these theories will work well in prac-
tice? An implementation and experimentation aimed
at testing and validating the hypothesis will probably
give a more accurate view. One might also ask what is
to stop a lower level user from maliciously attempting
to join a group to which they should not belong? The
assumption is that the SA would specify what groups a
user can join at the authentication level and implement
these policies so that they are incorporated autonomat-
ically into the SPKM scheme.

In closing, we mention some challenges that need
to be addressed in implementing the framework. The
assumption that users arrive according to a Poisson
process may not always be true. Are there other dis-
tributions that may be more effective? Is there a good
way to define adequate monitoring thresholds?

References

[1] S. G. Akl and P. D. Taylor. Cryptographic solution
to a problem of access control in a hierarchy. ACM
Transactions on Computer Systems, 1(3):239-248, Au-
gust 1983.

[2] R. Bastos, F. de Oliveira, and de Oliveira J.P.M. Au-
tonomc computing approach for resource allocation.
Elsevier: Expert Systems with Applications, 28:9-19,
2005.

[3] K. Birman, R. van Renesse, and V. Werner. Adding
high availability and autonomic behaviour to web ser-
vices. Proc. of 26" International Conf. on Software
Engineering (ICSE’04), pages 17-26, 2004.

[4] D. Chess, C. Palmer, and S. White. Security in an auto-
nomic computing environment. IBM Systems Journal,
42(1):107-118, 2003.

[5] Facebook. Facebook. http://www.facebook.com/, 2007.

| J. Kephart. Research challenges of autonomic comput-

ing. In Proceedings of 27th International Conference
on Software engineering, St. Louis, MO, USA, pages

15-22, 2005.

[7] M. Mat Deris, J. Abawaly, and A. Mamat. An efficient
replicated data access approach for large-scale distrib-
uted systems. Future Generation Computer Systems,
(In Press.) 2007.

[8] M. Mat Deris, J. Abawaly, and A. Mamat. Rwar: A re-
silient window-consistent asynchronous replication pro-
tocol. In Proc. 2"% Int’l Conf. on Awvailability, Relia-
bility and Security, pages 499-505, 10-13 April 2007.

[9] N. Post. Credit card information stolen from win-
ners. http://www.canada.com/nationalpost/story.himl,
Jan. 2007.

[10] S. Zhu, S. Setia, and S. Jajodia. Performance opti-
mizations for group key management schemes. Proc.
of 23" International Conference on Distributed Com-
puting Systems (ICDCS ’03), pages 163-171, 2003.



