
Automatic Diagnosis of
Performance Problems in

Database Management Systems

by

Darcy G. Benoit

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen's University

Kingston, Ontario, Canada

June 2003

Copyright © Darcy G. Benoit, 2003

 i

Abstract

Database performance is directly linked to the allocation of the resources used by the

Database Management System (DBMS). The complex relationships between numerous

DBMS resources make problem diagnosis and performance tuning complex and time-

consuming tasks. Costly Database Administrators (DBAs) are currently needed to

initially tune a DBMS for performance and then to retune the DBMS as the database

grows and workloads change. Automatic diagnosis and resource management removes

the need for DBAs, greatly reducing the cost of ownership for the DBMS. An automated

system also allows the DBMS to respond more quickly to changes in the workload as

performance can be monitored 24 hours a day. An automated diagnosis and resource

management system allows the DBMS to improve performance for both static and

dynamic workloads.

One of the key issues in automatic resource management is the capability of the system to

diagnose resource problems. Diagnosis of the resource allocation problem is the first step

in the process of tuning the resources. In this dissertation, we propose an automatic

diagnosis framework and algorithm that can be used to diagnose DBMS resource

problems. We formally define the DBMS diagnosis problem and analyze problem

complexity. We develop a model to diagnosis the DBMS and demonstrate the ability of

the model to correctly identify system bottlenecks for a generic OLTP workload. We

 ii

modify the OTLP workload to further demonstrate the ability of the diagnosis system to

handle changing workloads.

The diagnosis system is evaluated by comparing the performance of the DBMS workload

tuned by the diagnosis system to the performance of the same workload tuned by an

expert and by the Performance Tuning Wizard software included with our test database.

Achieving workload performance that is close to or better than these tuning methods will

deem the diagnosis system a success.

The contributions of this dissertation include the formalization of the diagnosis problem,

an analysis of the complexity of the problem, the development and implementation of

models to demonstrate that the diagnosis process can be successfully automated and the

presentation of a generic diagnosis system that can be adapted to other software systems

that rely on resource feedback for performance tuning.

 iii

Acknowledgements

My journey through university has been a long a winding road which has taken me across

the paths of many interesting and helpful people, of which there are too many to mention.

It is due to these people that my journey has been worthwhile, for the knowledge that I

have received from books has paled in comparison to all that I have learned from those

close to me. It is with this in mind that I would like to thank those who have helped me

though this process.

First and foremost, I would like to thank my supervisor Patrick Martin, who has been

extremely supportive and patient in dealing with me. My journey has not always been

easy, but he has been with me every step of the way – prodding when I needed prodding,

dispensing advice when needed, and generally guiding me along my path. I hope that he

is pleased with the final results.

I would also like to thank Wendy Powley, who has helped me solve many problems

during the course of my stay at Queen’s. Without her help my journey would have been

significantly more difficult. She deserves more praise that I will ever be able to bestow

upon her.

Along a research vein, I would like to thank IBM Canada and the IBM Center for

Advanced Studies for their support on this project.

 iv

To everyone else in the School of Computing at Queen’s, I would like to express my

gratitude. Irene, Debby, Lynda and Sandra have all gone beyond the call of duty to help

me when needed, as have Tom, Gary, Dave and Richard when I was having computer

troubles. To the softball team and those involved in lively debates in the coffee room –

you are in some of my best memories of Queen’s.

Last, but not least, I would like to thank my family and my wife, Elizabeth. Their love,

support and sometimes gentle prodding were key in helping me complete my journey. It

is their faith in me that made my journey worthwhile.

 v

Table of Contents

Abstract... i

Acknowledgements ..iii

List of Figures ...viii

List of Tables .. x

Chapter 1 - Introduction.. 1

1.1 Definitions... 2

1.2 Motivation... 3

1.3 Contributions.. 6

1.4 Evaluation ... 7

1.5 Organization of Thesis .. 7

Chapter 2 - Related Work... 8

2.1 Previous Efforts.. 8

2.1.1 Automated Diagnosis ... 9

2.1.2 Automated Tuning.. 11

2.2 Diagnosis ... 14

Rule -based diagnosis.. 14

Model-based Diagnosis.. 16

2.2.1 Optimization... 18

Generic Optimization... 19

Dynamic Programming Model... 19

Linear Programming Model.. 20

Queuing Network Models ... 21

2.2.2 Case-Based Reasoning... 22

2.2.3 Expert Systems .. 24

 vi

2.3 How related work can apply to our problem... 25

2.4 Database Benchmarks ... 26

Chapter 3 - Diagnosis Framework.. 30

3.1 Modeling the Problem... 30

3.1.1 DBMS Assumptions... 30

3.1.2 DBMS Diagnosis Modeling.. 31

3.2 Resource Model ... 34

3.2.1 Resources.. 35

3.2.2 Resource Relationships.. 38

3.2.3 Generating Resource Subtrees .. 41

3.3 Workload Model .. 44

3.4 Diagnosis Rules.. 47

3.5 Diagnosis Tree.. 48

3.6 The Diagnosis System... 50

Chapter 4 - Building the Diagnosis Tree ... 51

4.1 The Initial Diagnosis Tree.. 51

4.2 Tuning the Tree.. 54

4.2.1 Interpreting the Data... 57

4.3 Modifying the Diagnosis Tree... 63

4.4 A Generic Tuning Tree ... 66

Chapter 5 - Evaluation of Diagnosis Framework... 69

5.1 The Test Environment... 70

5.2 The Evaluation Process... 72

5.3 Typical Tuning Scenarios... 77

5.4 Scenario 1 – Size Increase.. 79

5.5 Scenario 2 – Modified Workload.. 91

5.6 Scenario 3 – Workload Change... 95

5.7 Diagnosis Tree Lifespan...101

 vii

5.8 Summary ...103

Chapter 6 - Conclusions..105

6.1 Contributions..106

6.2 Future Work..107

References...112

Appendix A - Test Environment ...119

Appendix B - TPC-C Benchmark...120

Appendix C - DBMS Resources ...123

Appendix D - Performance Data Collected...125

Appendix E - Glossary of Terms ...127

Appendix F - Confidence Intervals ...131

Appendix G - Performance Monitor Database Schema ..133

Appendix H - Decision Database Schema ...136

Appendix I - Forward and Reverse Resource Trees ..140

Appendix J - Statistical Analysis Data...145

Vita ...148

 viii

List of Figures

Figure 1 - Example decision tree. ... 16

Figure 2 – Overview of the Diagnosis Models... 33

Figure 3 - The Quartermaster Architecture. .. 34

Figure 4 - ER diagram of the formal resource definition.. 37

Figure 5 - ER diagram of the resource model... 40

Figure 6 - An example resource model. ... 40

Figure 7 - An example of a generated forward resource tree. .. 43

Figure 8 - An example of a generated reverse resource tree. ... 44

Figure 9 - ER diagram for the workload model.. 46

Figure 10 - Sample Diagnosis Tree. ... 49

Figure 11 - The initial diagnosis tree.. 52

Figure 12 - The impact of I/O cleaners on performance. .. 58

Figure 13 – The impact of deadlock check time on performance. .. 61

Figure 14 - The impact of the changed pages threshold resource on performance. ... 62

Figure 15 - The tuned diagnosis tree. ... 64

Figure 16 - The effects of the Log Buffer Size on performance.. 66

Figure 17 - Proposed generic diagnosis tree. .. 67

Figure 18 - Evaluation Process.. 73

Figure 19- Throughput results for the original workload on a small database.. 84

Figure 20 - Reverse resource tree with Locklist Size as root... 87

Figure 21 - Reverse resource tree with I/O Cleaners as root.. 88

Figure 22 - Throughput results for the diagnosis of the original workload on a large database...................... 90

Figure 23 - Throughput results for the diagnosis of the modified workload on a small database................... 93

Figure 24 - Throughput results for the diagnosis of the modified workload on a large database.................... 95

 ix

Figure 25 - The effect of sort overflows on sort query response time.. 97

Figure 26 - Throughput results for the changed workload on a small database. .. 99

Figure 27 - Throughput results for the changed workload on a large database. ...101

Figure 28 - TPC-C table schema. ..121

Figure 29 - Confidence interval equation..131

Figure 30 - Forward resource tree for the number of I/O cleaners resource. ..140

Figure 31 - Reverse resource tree for the number of I/O cleaners resource..141

Figure 32 - Forward resource tree for the deadlock check time resource. ...141

Figure 33 - Reverse resource tree for the deadlock check time resource...141

Figure 34 - Forward resource tree for the lock timeout resource. ...142

Figure 35 - Reverse resource tree for the lock timeout resource. ..142

Figure 36 - Forward resource tree for the locklist size resource. ..142

Figure 37 - Reverse resource tree for the locklist size resource. ...143

Figure 38 - Forward resource tree for the sort heap size resource. ...143

Figure 39 - Reverse resource tree for the sort heap size resource. ..143

Figure 40 - Forward resource tree for the sort heap threshold resource...144

Figure 41 - Reverse resource tree for the sort heap threshold resource. ..144

 x

List of Tables

Table 1 – Example resources for diagnosis tree tuning. ... 55

Table 2 - Statistical analysis of test workload. ... 71

Table 3 - DBMS resource values.. 75

Table 4 – Tuning strategy... 76

Table 5 - DBMS tuning scenarios... 77

Table 6 – Transaction frequencies for the original and modified workloads.. 78

Table 7 - Diagnosis of the original workload on a small database.. 80

Table 8 - Diagnosis of the original workload on a large database. ... 90

Table 9 - Diagnosis of the modified workload on a small database. .. 92

Table 10 - Diagnosis of the modified workload on a large database.. 94

Table 11 - Diagnosis of the changed workload on a small database. ... 98

Table 12 - Diagnosis of the changed workload on a large database. ..100

Table 13 - TPC-C data relations..121

Table 14 - Transaction requirements..122

Table 15 - Data used for standard deviation calculation...132

 1

Chapter 1

Introduction

A DataBase Management System (DBMS) is an application that allows a user to create,

access, and maintain a collection of related data. A DBMS is a complex system that is

composed of a collection of subsystems, each with a specific task. It is the job of the

DBMS software to control each of these smaller subsystems during the life of a database.

Due to the inherent competition for system resources, it is understandable that achieving

a high level of performance from a DBMS is a difficult task. System resources are

allocated for use by the DBMS through DBMS resource settings. The initial difficulty

confronted when tuning a DBMS is determining which of the numerous resources need to

be adjusted in order to solve the performance problem. In this dissertation, we consider

the difficulties associated with diagnosing DBMS performance problems and propose a

method for automating the diagnosis process.

 2

1.1 Definitions

In order to discuss the various issues involved with DBMS performance, several concepts

must first be introduced.

Resource – A resource is a piece of software or hardware that is in limited supply. An

example of a hardware resource is the physical memory in the system. An example of a

software resource is a logical limit placed on the number of allowed concurrent

processes.

Resource Tuning – Resource tuning is the process of determining how to adjust the

setting for a particular resource in order to alleviate a bottleneck in the DBMS.

Determining how to adjust a resource involves knowledge of how that particular resource

affects the running system as well as how adjusting that resource affects other resources.

DBMS Tuning – DBMS tuning is the process of increasing or decreasing the

performance of the DBMS by altering the amount of physical and logical resources

available to the DBMS.

Diagnosis – DBMS diagnosis is the process of determining which of the database

resources needs to be adjusted in order to solve a performance problem. Once the

offending resource has been identified, we perform resource tuning to determine how to

adjust the problem resource.

 3

1.2 Motivation

A DBMS has the responsibility for accessing and maintaining large amounts of data.

Maintaining data integrity and supporting concurrent users introduces a significant

amount of overhead to a DBMS. This overhead decreases the ability of the DBMS to

serve the data to the users quickly. We must decrease overhead while maintaining data

integrity and providing information to the users as quickly as possible.

DBMS performance is regulated by adjusting DBMS resource parameters. The large

number of tuning parameters and the complexity of workloads makes achieving and

maintaining peak DBMS performance a non-trivial task [SHI00] [CHA00] [WEI94].

DataBase Administrators (DBAs), who are the people with the knowledge and expertise

needed to tune DBMSs, are scarce and expensive to employ [CHA99] [LOM99]

[WEI94].

The process of DBMS tuning can be broken down into two distinct tasks: diagnosis and

resource adjustment. Diagnosis involves determining which of the resources in the

DBMS is responsible for the performance problem. Resource adjustment involves

altering the settings for a particular resource (and others that may be related to it) in order

to achieve better performance. Resource adjustment is also referred to as “resource

tuning”. As databases increase in size and complexity, the ability to manually control

performance becomes “impractical” [BRO94] [BRO95]. Several calls for the automation

of the diagnosis and tuning processes have been made in recent years [BER98] [BRO94]

 4

[CHA00] [CHA99] [LOM99] [MAR00] [WEI94]. Automation would allow the DBMS

to quickly achieve peak performance without any human interaction.

It is important to clarify that two different levels of “tuning” exist for DBMSs. In one

case, DBMS resources are adjusted in order to increase or maintain performance. In the

other case, performance tuning consists of application optimization, data placement

concerns, hardware issues and other factors external to the DBMS. This dissertation will

focus on the adjustment of DBMS resources as the method of affecting performance.

DBMS tuning involves the collection and analysis of DBMS performance statistics in

order to determine the cause of the performance problem [IBM00]. The statistics

collected may be simple to read and understand, or they may need to be calculated from

other data and then analyzed. It is a time-consuming task for a DBA to analyze the large

amount of performance data that can be collected from a running DBMS. A DBA must

narrow down the amount of data to be analyzed by considering the type of performance

problem and then rule out some of the resources.

By automating the analysis of the performance data, it is possible to consider a large

amount of data in a very short period of time. Automatic diagnosis should lead to a more

thorough inspection of all of the data while quickly producing a list of possible culprit

resource allocations.

 5

The inevitable increase in hardware performance will ultimately lead to more powerful

computers embedded in various systems and Internet appliances. Appliances that store

and manage information will be candidates for embedded DBMSs. The interfaces

associated with such Internet appliances will not likely provide the option for adjusting

DBMS parameters, so the underlying DBMS in such a device will have to be self-

managing [BER98].

A DBMS is a natural choice as an interface to provide large amounts of data on the

Internet. Unfortunately, the Internet does not provide a stable workload for a DBMS. The

workload changes as the number of people browsing increases and decreases throughout

the day. It is impossible for a DBA to tune a database quickly enough to keep up with a

consistently shifting workload. Automating the diagnosis and tuning processes will

enable the DBMS to dynamically manage the available resources in these situations.

Cost is another consideration in the quest for a self-managing DBMS. DBAs are

expensive to hire, even for short durations. A full-time DBA is a heavy burden for small

and medium-sized businesses. Automation of the tuning process can remove much of the

need for a DBA. It can also mean less hardware cost since the DBMS can make the best

use of available resources. At present, many companies use overpowered machines to run

their DBMSs in order to compensate for inadequate performance tuning. An overpowered

machine is able to support mediocre performance tuning while handling shifting

workloads with the extra hardware resources. Automatic tuning provides better usage of

the hardware resource, thereby eliminating the need to buy an overpowered machine.

 6

1.3 Contributions

An algorithm is proposed to automatically diagnose DBMS performance problems. The

algorithm uses a diagnosis tree and a resource model along with hardware and workload

models to diagnose resource bottlenecks. The diagnosis algorithm is constructed as part

of the Quartermaster framework, which is a goal-oriented framework for diagnosing and

tuning DBMS resources [BEN99]. Such a diagnosis and tuning framework can be applied

to other types of software systems where performance is an issue.

The contributions of this dissertation are the following:

• a formal description of the DBMS diagnosis problem;

• an analysis of the complexity of the diagnosis problem;

• the development and implementation of models to demonstrate successful

automation;

• the development of a generic diagnosis system that can be adapted to other

software systems

• a systematic experimental evaluation of our approach as compared to an

experienced DBA and the DB2 Tuning Wizard

This dissertation shows that the collection of underlying performance data can be used to

diagnose performance problems, allowing an automated system to manage and control

the resources.

 7

1.4 Evaluation

The diagnosis model was implemented and tested using IBM’s DB2/UDB. The

throughput resulting from each complete diagnosis was compared to various throughput

values obtained by using the DB2 Tuning Wizard, a performance application included

with the DBMS. Although DB2 was used as an example throughout, the principles used

in the creation of the diagnosis system can be applied to other DBMSs as the workloads

are not inherently linked to the DB2 software.

1.5 Organization of Thesis

Chapter 2 of this dissertation describes approaches to DBMS diagnosis proposed in the

literature. Chapter 3 describes the models used for DBMS diagnosis and explains how the

models work together to diagnose a DBMS. Chapter 4 explains the process used to create

and tune the diagnosis tree. Chapter 5 presents the results returned from testing our

system on a working DBMS. Results are discussed along with the effectiveness of the

diagnosis algorithm. Chapter 6 concludes the dissertation by summarizing the results of

the research and presenting additional areas of research in the area of automatic

diagnosis.

 8

Chapter 2

Related Work

Related literature has provided information in two distinct areas: previous work on

automating DBMS tuning and approaches to the general problem of diagnosing faults in

systems. The chapter is divided into four sections. The first section reviews DBMS

tuning literature, focusing on the issues of general resource management as well as tuning

algorithms for specific resources. The second section introduces the area of diagnosis and

presents three different approaches to diagnosing faults in generic systems. The third

section discusses how the related work can apply to our proposed system. The final

section presents DBMS benchmarks, invaluable tools for evaluation and tuning.

2.1 Previous Efforts

Several efforts have been made in the area of automating the control of DBMS resources.

Automating resource management requires that the automated system be able both to

diagnose the resource causing the performance problem as well as to properly adjust the

 9

resource to remove the bottleneck. Each previous effort falls either into the category of

automated diagnosis or automated tuning.

2.1.1 Automated Diagnosis

Automated DBMS resource management is the ultimate goal for work in the area of

resource management. The following papers address the issue of automating the

diagnosis process.

Chaudhuri and Weikum present the idea that the current method of controlling

resources in DBMSs is outdated and that a new database system architecture must be

considered [CHA00]. They argue that the present model has an overloaded feature set, a

query language that is difficult to use, unpredictable performance, overly difficult tuning

and various other problems. They believe that the best way to solve the problems facing

DBMSs today is by recreating the database management system with a RISC-style

architecture. They believe that the performance tuning problems will be solved by

restructuring DBMSs into better defined components that are easier to tune. By reducing

the number of components involved in the tuning process, automatic resource tuning for

DBMSs will be achievable.

Hellerstein has proposed an architecture for a generic automated tuning system (ATS)

that uses “a feedback control loop that is layered on top of a target system” [HEL97].

This approach recognizes the complexity associated with performance tuning for all types

of computer systems. Other work by Hellerstein and others assesses the application of

 10

“control theory to the evaluation of controllers” used for software management [PAR01].

Hellerstein also points out the desirability of having a proactive resource management

system that can detect problems before they occur as opposed to a reactive system that

merely fixes the performance of a degraded system.

Hart et al propose a method to isolate performance problems of systems where

performance data is stored in multidimensional databases (MDDBs) [HAR99]. This

system is designed to use performance data stored in an MDDB to determine the source

of the performance problem. The proposed diagnosis system is applicable to any

computer system where performance data is stored in an MDDB. The diagnosis system

does not address the problem of adjusting the resources once a problem has been

diagnosed.

Bigus et al have recently proposed a generic agent for automated performance tuning

[BIG00]. The generic agent is designed to support tuning for systems where no prior

knowledge is known to systems where effective resource controllers exist. The generic

agent used in the automatic tuning process relies heavily on intelligent control. The test

system presented in the paper depends on a neural prediction agent that learns the system

model, a neural prediction agent that is adapted to determine the appropriate control

settings and an agent responsible for monitoring the workload and performance. The test

system is a Lotus Notes server. The automated resource management system is able to

reduce the queue length in the server over time.

 11

Weikum et al address the need for automatic memory management in data servers

[WEI99]. The paper surveys the possible approaches to memory management such as the

self-tuning of cache memory and exploiting distributed memory and speculative

prefetching for data and web servers.

2.1.2 Automated Tuning

Resource management can only be completely automated if system resources can be

automatically adjusted to increase system performance. Many papers and approaches

exist in the area of resource tuning. This section overviews the various approaches to this

problem.

Several papers exist in the area of automatic memory tuning for DBMSs. Brown et al

explore the area of automatic memory management [BRO93] [BRO94] [BRO95]. The

main focus of the research work presented in these papers is the relationship between the

user-defined goals associated with classes of transactions and the allocation of memory

resources in the buffer pool. Brown also considers adjusting multiprogramming levels

instead of memory to achieve the same result [BRO94]. Brown’s work approaches the

idea of tuning as a goal-oriented problem where the “optimal” resource allocation is

when all of the workload goals are achieved.

Chung et al are also interested in goal-oriented buffer pool management [CHU95]. The

approach by Chung [CHU95] differs from Brown’s [BRO95] in that the performance

index is not calculated based on the I/O response times for transaction classes but by

 12

measuring the response time of the buffer pool. Buffer pool performance indexes are

calculated and they attempt to achieve a “lexicographically minimal performance index

vector” by adjusting the size of the buffer pools [CHU95].

Martin et al present a “dynamic reconfiguration algorithm” to resize automatically

buffer pools based on class goals set by an administrator [MAR00]. The reconfiguration

algorithm takes into consideration the goals set for each of the transaction classes in the

workload and uses response times as a basis for reallocating buffer pool memory. An

“Achievement Index” is used to determine if a transaction class meets its goals by

comparing actual response times with goal response times. Cost estimate equations are

used to estimate the effect of moving memory from one buffer pool to another. Buffer

pool memory is reallocated until all response times fall within a specified percentage of

the required goals.

Xu et al approach the problem of automated memory management by addressing the

issue of buffer pool configurations [XU02]. One key memory management issue is the

assignment of tables and indexes to particular buffer pools. Assigning two fundamentally

different tables to the same buffer pool may result in contention for memory and

adversely affect performance. The approach taken involves defining a feature vector for

each database object and then using a data-clustering algorithm to define similar groups

of database objects. The resulting groups are then assigned to buffer pools that are sized

appropriately, resulting in a configuration that performs as well as one designed by an

expert DBA.

 13

Chaudhuri and Narasayya approach the area of dynamic resource allocation from the

perspective of automating statistics management for the DBMS query optimizers

[CHA00-2]. DBMSs use statistics about the data stored in the database to determine the

query plan used. Knowing which statistical information is needed is currently left to the

DBA. This paper presents techniques for automatically determining which statistics are

essential and which statistics are non-essential.

Agrawal et al investigate automating the selection of indexes and materialized views for

DBMSs [AGR00]. Both indexes and materialized views can greatly increase DBMS

performance if the correct set exist during query execution. Maintaining every possible

index or materialized view is not possible, resulting in an incomplete set in the DBMS.

Choosing the indexes or materialized views that will best serve the workload is a difficult

decision. Agrawal et al present algorithms and an architecture that can identify a small

set of candidate materialized views and indexes.

Weikum et al explore the subject of automated tuning systems for DBMSs with the

“Comfort Automatic Tuning Project” [WEI94]. The project exp lores system design

principles needed to create an automated tuning system for DBMSs. The paper reiterates

the need for dynamically adjustable resource parameters to allow the feedback loop to

adjust resources while the workload is running. Several tuning algorithms for specific

problems such as load control for locking and self-tuning memory management are

described.

 14

2.2 Diagnosis

“Diagnostic reasoning requires a means of assigning credit or blame to parts of the model

based on observed behavioral discrepancies” [deK92]. Using this definition of diagnostic

reasoning, we should be able to use diagnostic reasoning to determine what resources are

affecting the performance of a DBMS. We consider two different types of diagnostic

systems – rule-based diagnosis and model-based diagnosis.

Rule-based diagnosis

Building a traditional rule-based diagnosis system for troubleshooting first involves the

accumulation of data from experts [DAV92] [PAU98] [RYM92]. Empirical associations

and rules about objects are created by the experts most familiar with the system at hand.

This information is then used to build a rule-based diagnosis system to troubleshoot the

system. Such rule-based diagnosis systems are very dependent on the device for which

they are designed and require a new set of rules for each new device or version of the

device. Gathering information from experts can also be a difficult task, as a large body of

information and experience may be needed before a useful algorithm can be devised

[DAV92]. An example of a rule-based system is XCON, an expert system used to

configure DEC computers. Approximately 500 rules were needed to configure the VAX

780 computer. The number of rules increased to 6000 as additional models were added to

the rule base [LUG93]. Gathering and programming rules of this type is a time-

consuming and difficult task.

 15

A variation on rule-based diagnosis involves the use of decision trees [DAV92]

[RYM92]. Decision trees stem from the state space representation of some problems

[LUG93]. In a state space representation of a problem, states of the solved problem are

stored at each node in the tree. The tree is then traversed, using the rules stored at the

nodes along with facts about the current world state to solve the problem. The tree

traversal can be either goal-directed, where the goal is known and the tree is traversed to

find the data, or data-directed, where the data is known and we traverse the tree to

determine the goal [LUG93].

In a decision tree, rules are stored at each node. As the tree is traversed, each node is

evaluated and the result determines which branch of the tree will be followed. As nodes

in the tree are evaluated and branches of the tree are traversed, other branches and nodes

in the tree are excluded or “pruned” during the traversal [LUG93]. Pruning the tree can

quickly reduce the number of possible solutions while focusing on those solutions most

likely to solve the problem. For example, consider the decision tree in Figure 1. If the

decision made at Node 1 causes Node 5 to be next to be traversed, then in that single step

the entire left side of the tree under Node 2 is pruned from the search space.

 16

Figure 1 - Example decision tree.

Model-based Diagnosis

In diagnostic reasoning, a model of the system is used to determine what parts of the

system are not performing correctly. The model of the system is presumed to be correct

and any differences between the model and the actual system are used to point out

malfunctions in the system. Model-based diagnosis is acknowledged as a wide ranging

area [deK92]. Model-based diagnosis includes troubleshooting mechanical devices,

circuits, and modeling physical or biological systems [deK92].

The primary application area for diagnostic reasoning is electronics, specifically circuits

and other multi-component systems [deK89], [deK92], [MOZ91]. The key issue with

systems of this nature is to find the component or components that are causing the

Node 1

Node 4 Node 3 Node 7 Node 6

Node 5 Node 2

… … … …

 17

problem and to replace or repair them. This requires the component to be performing

incorrectly, as diagnosis in a circuit is really a test of correctness. Problems in circuits can

usually be traced to the malfunction of a component – such as an adder that is not adding

or a broken XOR switch. Component error can be quantified and isolated, making it

identifiable to the diagnostic process. This is not the case when diagnosing a DBMS. In

DBMSs, resources do not have a quantifiable “broken” state; instead, they do not perform

to capacity. We do not know the upper performance limit of many resources as the

capacity of the resource is unknown and is dependent on many factors. Since there is no

“broken” part in the DBMS, the traditional methods of testing for malfunctioning

components do not apply.

When diagnosing circuits and other component-based systems, the solution to the

problem usually involves the replacement of the broken component. After replacing the

broken component the circuit is retested to ensure that replacement part is functioning

properly. Alleviating a bottleneck in a DBMS system involves the reallocation of

resources. There is no “correct” allocation for any one particular resource in a DBMS.

What may be an optimal allocation for one workload and computer system may not work

for a different workload or computer system.

A model of the DBMS system is needed to use model-based diagnostic reasoning for

system diagnosis. Davis and Hamscher [DAV92] discuss the issue of systems that are

either too simple or too complex to model. The complex end of the spectrum is bound by

problems “involving subtle and complicated interactions in the device, interactions whose

 18

outcome is too hard to predict…” [DAV92]. The relationships between resources in a

DBMS are complex and not well understood. Resources can be related either by the

sharing of an underlying physical resource, or by having a software dependence on

another resource in the system. The complex web of relationships between physical and

logical resource allocations results in the relationship between resources being unclear.

This already complex model is further complicated by the workload the DBMS is

expected to run. Accurately modeling the DBMS is not presently possible due to the

complexities of the system.

2.2.1 Optimization

“Optimization is a technology for calculating the best possible utilization of resources

needed to achieve a desired result” [EOP02]. Determining the best utilization of

resources depends on the boundaries set by those trying to solve a given problem. In one

case, the best utilization of resources may mean solving the problem in the least amount

of time. Another case may require that the problem be solved with the least amount of

resources. A third case may involve maximizing the throughput for the given problem. In

all of these cases, optimization involves maximizing or minimizing one aspect of the

problem such as time, throughput or resources. With respect to the DBMS resource

problem, we could apply optimization techniques to maximize the throughput of the

system or to minimize the amount of resources used by the system. Either method would

produce the desired effect of better performance with fewer resources. Several different

optimization algorithms are reviewed in here – generic optimization, dynamic

programming and linear programming. Some of these optimization algorithms are very

 19

specific to a particular problem, while others are more generic and can be applied to

several different types of problems [MOL89].

Generic Optimization

Optimization usually involves finding a maximum or minimum value for the presented

problem by solving a series of equations that are used to model the system [GAS75]. We

must therefore first be able to create a series of equations to model the system. This is

possible only if the relationships between the various resources are documented and well

defined.

In the case of a DBMS system, there are simply too many resources (typically hundreds)

to consider defining every interdependency between all of the resources. The complexity

of creating a series of equations for a generic optimization algorithm to use far outweighs

the cost associated with diagnosing the DBMS.

Dynamic Programming Model

Dynamic programming is a technique for solving many different types of optimization

problems [CUR97]. Dynamic programming was introduced by Richard Bellman in 1957

[BEL57]. He introduced the idea of the Principle of Optimality that states:

“An optimal policy has the property that whatever the initial state and initial decision are,

the remaining decisions must constitute an optimal policy with regard to the state

resulting from the first decision”

 20

Bird and de Moor [BIR93] state that dynamic programming can be used to solve an

optimization problem if the solution to that problem is composed of optimal solutions to

subproblems. This requires that the initial problem be divided into smaller subproblems

that have optimal solutions. In general, dynamic programming is used where a sequence

of decisions is needed to solve a particular problem. By computing various solutions to

smaller subproblems, dynamic programming reuses the solutions to various subproblems

as a way of avoiding unnecessary computation [CUR96].

We are not able to divide the initial DBMS diagnosis problem into smaller, solvable

optimization problems because of the level of interaction between the various DBMS

resources. It is not possible to find the optimal allocation for one resource without taking

into consideration the allocations of other resources. Without the ability to break the

larger problem into smaller, solvable subproblems, the dynamic programming solution is

impractical.

Linear Programming Model

Linear programming problems are a subset of general ma thematical problems in which

the description of the mathematical model of the problem can be stated using linear

equations [GAS75]. Linear equations are those equations which, when plotted on a graph,

are straight lines. Linear programming was developed and introduced by American

George B. Dantzig in 1947 as a method for solving linear problems presented by the U.S.

Air Force. Once introduced to the world, it became clear that linear programming could

be used for a wide range of production and optimization problems. The original simplex

 21

method that was introduced by Dantzig has since been replaced with a faster method

presented by Naranda Karmarker in 1983[COL00].

The strength of the linear programming method is its ability to find the optimal solution

quickly. Linear programming is able to handle large numbers of variables (in the

thousands [COL00]) and still produce a solution in a reasonable amount of time.

Although this method may seem tempting for our diagnosis problem, the problem in

using this method lies not in its ability to solve a linear system of equations, but in being

able to generate the appropriate system of equations. The system of equations must define

all of the relationships between the various DBMS resource, a task that is presently too

complex to complete.

Queuing Network Models

Queuing network models have been used for many years to predict the effects of changes

to a computer system. These models are able to estimate the impact of hardware,

software, and load changes on a particular system. The amount of CPU time needed to

process a queuing network model algorithm is very small, and the results are available

quickly [LAZ84].

Information about the workload components is needed to use a queuing network model.

For each workload component, the system load for that component and the resource

demands for that component are needed [SEV81]. Although queuing network models

work well for small and mid-range problems, very large systems with diverse workload

 22

components become problematic, forcing approximate solutions to be returned from the

algorithm.

One of the issues with using queuing network models for predicting the performance of a

DBMS involves the inputs used by the queuing network model. Queuing network models

are able to predict the performance of a system when additional hardware such as disks or

CPUs are added. The queuing network model deals specifically with the interaction

between the workload and the hardware resources, allowing the model to predict the

effect of adding additional hardware. The queuing network model does not deal with two

key issues in database system performance, namely the relationships between the

transactions in the workload and the relationships between the transactions and the data.

In order to tune a DBMS we need to increase the ability of the DBMS to process

particular queries, and not just increase the performance of the system in general.

Queuing network models do not have the granularity needed to predict the perfo rmance

of the queries within the DBMS – they are only able to predict the performance of the

system as a whole [SEV81].

2.2.2 Case-Based Reasoning

Case-based reasoning is a method of solving problems using the specific knowledge from

problems that have already been solved [AAM94]. Case-based reasoning does not use

generalized rules derived from previous solutions, but uses information derived from

actual stored cases of previously solved problems [LEA96]. Case-based reasoning

algorithms recommend a plan of action by matching the new problem to other previously

 23

encountered problems. It is assumed that knowledge of how the previous case was solved

will be helpful for solving the problem at hand.

Generally, case-based reasoning algorithms must go through four steps: retrieve, reuse,

revise and retain [AAM94]. In the retrieve step, the cases that are most similar to the

present problem are retrieved from the collection of cases. In the reuse step, information

from these retrieved cases is used to help solve the problem at hand. During the revision

step, the proposed solution is checked for accuracy to make sure that it actually does

solve the problem at hand. If minor revisions are needed, they are implemented to

achieve the desired goal. Once the solution has been revised, it is then retained as a new

case in the collections of cases. This allows the algorithm to retrieve this case, along with

others, if a similar problem reoccurs.

Case-based reasoning is based on two assumptions: similar problems have similar

solutions, and the same types of problems reoccur in a system [LEA96]. It is possible for

a single DBMS problem to be caused by several different resource allocations. This

means that a single DBMS performance problem may have multiple solutions. DBMS

diagnosis does not follow a basic assumption needed for case-based reasoning, that

similar problems have similar solutions. It may be difficult for a case-based reasoning

method to differentiate between the various solutions to determine the one that is the best.

Case-based reasoning does hold some possibility for DBMS diagnosis. Reusing

knowledge from previous solved problems can help to narrow down different

 24

performance issues and may be a benefit for diagnosis. Case-based reasoning may be

possible if the previously mentioned problems can be overcome.

2.2.3 Expert Systems

Expert systems often make use of extensive knowledge bases to solve a problem

[LUG93]. The knowledge base is a collection of rules and other information collected

from human experts in the subject at hand. Each knowledge base usually covers a

specific domain, allowing the expert system to focus on a narrow set of problems. All of

the information in the knowledge base is extracted from humans; expert systems do not

learn from their experiences, they only make decisions based on their present knowledge

[LUG93].

One key problem associated with expert systems is the quality of the “expert” knowledge

and the heuristic algorithms used to interpret the data and the knowledge in order to

calculate the output of the system. The quality of the knowledge and the heuristics is

related to how well defined the subject area is and how well it is understood. In the well-

defined area of VAX computer hardware configuration, the XCON expert system had to

maintain over 6000 rules in its knowledge base in order to properly configure several

lines of VAX hardware. Experts modified up to 50% of the rules each year due to the

introduction of new machines [BAC84] [LUG93].

The creation of an expert system to solve the DBMS diagnosis problem has several

drawbacks. The first drawback is related to the lack of consistent expert information on

 25

how to tune the system properly. Information found in manuals and retrieved from

experts often contradicts information collected in testing and retrieved from other experts.

Information on how to tune a system depends on the hardware configuration and the

workload running on the DBMS. As the hardware and workload change, so does the

advice given by the experts. Due to the lack of consistency in the information retrieved

from experts and the variability associated with the unlimited number of hardware and

workload combinations, the creation of an expert system is not possible.

2.3 How related work can apply to our problem

After studying the above approaches, we conclude that no one approach is sufficient for

our problem. Optimization algorithms or a model of the DBMS for model based-

diagnosis are very complex solutions. A simple rule-based system depends on associating

various symptoms with a particular fault, which is not immediately possible with a

DBMS. Many poor resource allocations can cause the same symptoms, meaning that the

rules may be too broad and may not help in diagnosing the problem. Knowledge of the

underlying system can be used to assist the rule-based diagnosis, and the addition of this

information may allow such a system to effectively diagnose a DBMS. Building a

knowledge base for an expert system is also complex. Finally, decision trees tend only to

guide tests for the system and do not usually use system-specific information to help with

the diagnosis.

We believe that a rule-based decision tree can provide an effective method for diagnosing

DBMSs. The rule-based portion of the system allows us to test certain parts of the

 26

DBMS, taking information about DBMS performance and, with knowledge of the

structure of the DBMS, use the information to diagnose the system. General performance

questions are usually not sufficient to diagnose such a complex system. A diagnosis tree

allows us to build a picture of the “state” of the DBMS because at every point in the

diagnosis tree we know how previous questions were answered. The diagnosis tree stores

rules in each node and uses performance information to evaluate the rules at the node.

The results of evaluation will determine the path in which the diagnosis tree will be

traversed. The performance-based navigation results in ignoring some portions of the

diagnosis tree in favour of other sections to me more closely scrutinized.

Our approach is similar to expert systems in that we have a “knowledge base” and an

“inference engine”. Our “knowledge base” is the information that we store about the

database. Our “inference engine” is the code that we use to view the data and to

determine which action to take. Unlike the examples of expert systems referenced in

[AAM94], our knowledge base is not programmed in an IF … THEN logic rule structure.

Our approach is more like the “belief networks” and “influence diagrams” found in

[HOR88], but without the probabilities used in their belief networks. Our implementation

does not use existing expert system shells and the traditiona l Artificial Intelligence

languages such as LISP and PROLOG because of their scalability problems [MYL95].

2.4 Database Benchmarks

An invaluable tool when tuning a DBMS is a realistic, repeatable workload that can be

used to measure performance. To insure that a realistic workload and database were used

 27

for our experiments, we use a standard DBMS benchmark. The most popular industry

database benchmark standards are maintained by the Transaction Processing Performance

Council (TPC). The TPC is a non-profit corporation that was founded to create hardware

and software independent benchmark standards and to publish audited performance

reports [TPC2]. The TPC bases each of its benchmarks on a business model. Each of the

different benchmarks is meant to mimic a business model. It is expected that when

comparing systems, a user will compare the results from the benchmark that most closely

resembles their business.

There are many benefits when using a TPC benchmark for performance tuning. The

consistency of the workload is the first benefit, allowing multiple tests with comparable

(although not identical) workloads. The clear performance metric provides a method to

compare the performance from one run to the next. TPC benchmarks measure

performance with a throughput or response time metric and a price/performance metric.

The following sections briefly explain the business model the benchmark is modeled after

and each of the performance metrics.

TPC-C:

The TPC-C benchmark is modeled after actual production On-Line Transaction

Processing (OLTP) workloads. The order-entry workload consists of five transactions

used to simulate entering and delivering orders, recording payments, checking order

status and checking the level of stock. The performance metric of the TPC-C benchmark

is the number of “new order” transactions per minute that can be completed while

 28

executing the four other transactions at a predefined ratio. The number of new order

transactions per minute create the throughput performance metric called “tpmC” or

“Transactions Per Minute C” [TPC] [TPC2].

The TPC-C benchmark also uses a price/performance metric, taking into account the total

price of the system used to generate the throughput results. The price and the throughput

are used to determine a dollar cost for each transaction per minute. This price then allows

a consumer to compare not only the throughput performance, but also the cost associated

with that performance [TPC2].

TPC-H

The TPC-H benchmark is modeled after an On-Line Analytical Processing (OLAP)

application. TPC-H is designed to simulate a large database with various ad-hoc decision

support queries. The ad-hoc nature of the benchmark implies that the queries are

unknown to the DBMS until runtime. TPC-H benchmarks are reported for different

database sizes, producing a result for each size. The TPC-H performance metric is called

the “TPC-H Composite Query-per-Hour Performance Metric” (QphH@Size) [TPC2].

This composite performance metric takes into account performance values collected for

the queries submitted in both single and concurrent streams. We measure the

price/performance metric by determining the dollar cost per QphH@Size.

 29

TPC-R

The TPC-R benchmark is modeled after a business reporting system. TPC-R is similar to

TPC-H with the exception that it is expected that the DBMS has previous knowledge of

the queries, allowing for database optimizations. The performance metric is the “TPC-R

Composite Query-per-Hour Performance Metric” (QphR@Size) [TPC2] and is reported

based on the size of the database. The price/performance metric is determined by the cost

per QphR@Size.

TPC-W

The TPC-W benchmark is modeled after a web-based e-commerce application. Unlike

previous benchmarks in which well-defined business transactions are modeled, the TPC-

W benchmark simulates an internet business where web browsing and online purchasing

occur. The TPC-W workload is characterized by multiple, online browser sessions,

dynamic page generation, consistent objects, data contention, and transaction integrity

[TPC2]. The performance metric for TPC-W is measured on the number of “Web

Interactions Per Second” (WIPS) [TPC2]. The initial performance metric is based on a

workload model that consists of mostly shopping. In order to model other scenarios, the

TPC has also provided mainly ordering (WIPSo) and mainly browsing (WIPSb) options.

As with TPC-H and TPC-R, TPC-W results are also based on a particular size. The

price/performance metric used is the dollar cost per WIPS.

 30

Chapter 3

Diagnosis Framework

We begin this chapter by defining the DBMS diagnosis problem. The diagnosis problem

definition includes an explanation of the assumptions made when modeling the DBMS.

We then explain the resource tree model, diagnosis tree model and workload model and

why each of them is required for the diagnosis process.

3.1 Modeling the Problem

This section contains assumptions made about the DBMS and definitions used to describe

the diagnosis problem.

3.1.1 DBMS Assumptions

The following assumptions were used during the development of the diagnosis system

and system models.

• We assume that a DBMS has access to a limited supply of hardware and software

resources. Optimal performance is a maximum amount of performance achievable

 31

by the DBMS given the limited resources. Diagnosing a DBMS involves

determining which of the resources is causing the performance bottleneck.

• Overall DBMS performance is directly related to the performance of underlying

DBMS resources. Performance such as transaction throughput and response time

is ultimately related to the performance of underlying resources such as the buffer

pools and the input/output subsystem. Improving the performance of the

underlying resources will result in improving the performance of the DBMS

workload.

• We assume that the hardware used in these experiments is functioning well and is

not the system bottleneck. It is expected that DBMS diagnosis will be different for

the situation where the hardware, not the software, is the bottleneck.

• We assume that DBMS performance can be measured in two ways – the

throughput of the workload and the performance of the underlying resources. For

example, adjusting a resource may result in an increase in throughput, a

measurable increase in performance. Adjusting a resource may also result in a

decrease of some underlying performance measure, such as the amount of time

required to do a sort. We regard such a reallocation to be beneficial to the DBMS

even if there is no significant increase in throughput.

3.1.2 DBMS Diagnosis Modeling

Our approach to DBMS diagnosis and tuning involves several steps. In consultation with

DBMS documentation and expertise, we create a resource model, a workload model,

diagnosis rules and finally we define a diagnosis tree. The creation of the diagnosis tree is

 32

a complex task that requires input from both the workload model and the diagnosis rules.

The resource model and the diagnosis tree are then used to diagnose the working DBMS.

The diagnosis produces a set of resources where tuning each resource is a possible

solution to the performance problem. Tuning algorithms are used to determine the

resource that will provide the greatest performance increase and that resource is adjusted.

The running system is then observed and performance data is collected for the next

diagnosis. This diagnosis and tuning loop continues until the diagnosis algorithm is

unable to diagnose any more poorly performing resources or the system performance is

determined to be adequate. Figure 2 gives an overview of the diagnosis system.

The core of the diagnosis process is the use of the diagnosis tree and the resource model.

System diagnosis is accomplished by traversing the diagnosis tree. Starting at the root

node of the tree, questions are posed about the performance of the DBMS. Depending on

the values of particular performance indicators within the DBMS, a decision is made to

traverse either the left or right branch of the tree. This continues until a leaf node in the

diagnosis tree is reached. The leaf node contains a list of one or more resources that

should be considered for tuning. A sample tree is located in Figure 10 on page 49.

Once the list of resources has been acquired, the resource model can then be used either

to expand the list of resources to consider for tuning, or to generate a list of resources that

may be affected by adjusting a resource from the current list. This is done with the use of

resource trees that are generated from the resource model. The resource model is also

 33

available to any tuning algorithm that may wish to access information about resource

relationships.

The diagnosis system is designed to fit into Quartermaster, a framework for automating

performance management of DBMS systems [BEN99] [MAR00]. Quartermaster supports

the collection and storage of performance data and the monitoring of performance goals.

An overview of the Quartermaster framework is presented in Figure 3. The “Planner”

module in the Quartermaster framework is responsible for determining the resource that

should be tuned to solve a performance problem. The diagnosis framework defined in this

dissertation provides the Planner module.

Resource
Model

Workload
Model

Diagnosis
Tree

Diagnosis

Tune DBMS

DBMS Expertise and Documentation Legend

Actions

Data

Models

Resources
to be Tuned

Diagnostic
Rules

Collect
Performance Data

Figure 2 – Overview of the Diagnosis Models.

 34

Figure 3 - The Quartermaster Architecture.

3.2 Resource Model

The resource model is a collection of information about the DBMS, DBMS resources,

and the relationships between those resources. Information about the resources is

gathered from several different sources. DBMS manuals provide much of the information

about the DBMS and resources. This information is further expanded using other DBMS

documentation and technical reference books. A more in-depth view of the DBMS

resources can be produced by consultation with DBMS programmers and DBAs.

Consultation allows for the inclusion of undocumented information in the model. The

 35

resource model is used to present a consolidated view of DBMS information from many

sources and make this information available to for diagnosis purposes. The focus of the

resource model is to establish two types of information – information about the resources

and information about the relationships between the various resources. We now consider

the two types of information.

3.2.1 Resources

Resources are defined as any object used by the DBMS where the amount of the object

can be adjusted. Resources are further refined into two categories – physical and logical

resources. Physical resources are hardware-oriented resources whose allocations have a

direct effect on the physical hardware. Examples of physical resources are main memory

or disk space. Allocations of physical resources are limited by the hardware available

from the system for the DBMS. In general, the more physical resources available to the

DBMS the better it will perform. Logical resources are those resources that are provided

by the DBMS. An example of a logical resource is the number of processes allocated to

write data to disk. Logical resource allocations are limited by the DBMS. Some of the

limits may be indirectly linked to the amount of physical resources available (such as the

DBMS denying the creation of a process due to a lack of memory). Logical resource

allocations do have an effect on physical resources, as the DBMS must use memory and

CPU to maintain these processes. Some logical resources, such as the number of I/O

processes, will also have an affect on system resources such as disk drive performance.

 36

In our model, a resource in the DBMS has the following attributes:

• Impact – The impact that this resource has on DBMS performance. Impact is

categorized as either high, medium or low. High impact resources will have a

greater effect on performance than low impact resources.

• Allowable range – The allowable (legal) range of values that the resource may be

assigned. Lower and upper limits of the range are specified by the DBMS

documentation. The allowable range of resource values is strictly a software or

hardware limitation; the allowable range is not based on performance.

• Default value – The default value assigned to the resource by the DBMS.

• Marker values – A list of marker names and values. Markers are observed or

calculated values that can be used to determine how the system is performing with

respect to the resource in question.

• Setting values – A list of setting values associated with the resource. A single

resource may be associated with several tuning parameters. A setting value is a

tuning parameter and its current value.

A resource can be represented by a single tuple

 R = <M, I, <S, A>, D>

where M = {M1, M2, …, Mn}; Mi is a marker of the form <mname, mvalue>; I is the

impact that the particular resource has on performance; <S, A> = a set of tuples <Si, Ai>

where Si is a setting of the form <sname, svalue> and Ai is the range of possible values

that setting may have in the form of {set}; D is the default value assigned by the DBMS.

 37

This formal resource definition is used to create the ER diagram of a resource (shown in

Figure 4), which is the basis of the relational model used for our specific implementation.

1

Resource

MarkerImpact Default Value

Value NameRange

Setting

has

1

m

Figure 4 - ER diagram of the formal resource definition.

An example of a DB2 database resource is the number of Input/Output (I/O) cleaner

processes allocated in the DBMS. The I/O Cleaners can be expressed in the tuple:

num_iocleaners = < <% of async writes, 95>, <num_iocleaners, 10, {0-255}>, HIGH, 1>

In this example, the marker value used to determine the performance of the number of

I/O cleaners resource is the percentage of asynchronous writes made by the DBMS. If the

percentage of asynchronous writes is low, then the I/O cleaners are not properly writing

dirty pages back to disk and slower synchronous writes are being used. The setting va lue

used in this example is 10, signifying the number of I/O cleaners presently allocated in

the DBMS. Increasing the number of I/O cleaners will increase concurrency but may

 38

overload a system that cannot handle more concurrency. The impact of the I/O cleaners

resource on the DBMS has been rated as HIGH by the documentation. The HIGH rating

signifies that adjusting this resource can have a significant impact on the performance of

the system. The range of legal values for the I/O cleaners resource is between 0 and 255.

The DBMS software will allow a DBA to specify anywhere from 0 I/O cleaner processes

to 255 I/O cleaner processes. Internal structures in the DBMS will not allow more I/O

cleaners to be allocated, limiting the maximum number of I/O cleaners in the system. We

are allowed to specify a lower number of 0 I/O cleaners for the situation where the

database is read-only, removing the need to write updates back to the database and

rendering the I/O cleaner processes unneeded. The final attribute for the I/O cleaner

resource is the default value used by IBM when the DBMS is initially installed. The

default value for this resource is 1, indicating that a single I/O cleaner process will be

allocated under the default settings. We store the default DBMS resource settings as a

reference point to an out-of-the-box resource allocation. All of the information used to

define the tuple for the I/O cleaner resource was extracted from DB2 documentation and

experience using DB2.

3.2.2 Resource Relationships

Key data required for the construction of the resource model pertains to the relationships

between various DBMS resources. Relationship information is critical because adjusting

the value of one resource will have an effect on those resources that are closely related to

it. Information about resource relationships can be extracted from DBMS documentation

or from DBA experience. DB2 documentation specifies the relationship between various

 39

resources. Consider, for example, the I/O cleaners resource. Documentation for DB2

specifies that if the number of I/O cleaners is modified, we should also consider adjusting

the related parameters buffer pool size and changed pages threshold. Buffer pool size is

the amount of cache memory that we have allocated for use by the DBMS. Changed

Pages Threshold is the percentage of updated pages required in the buffer pool before the

I/O cleaner processes are started to write the changed pages back to disk.

Determining the relationships between various resources is important for DBMS

diagnosis. Knowing that adjusting one resource may have an effect on other resources

allows us to make a more knowledgeable decision when diagnosing the DBMS. It should

be noted that resource relationship information is directional. DB2 documentation

suggests that while adjusting the buffer pool size we should also consider adjusting the

changed pages threshold parameter, but while adjusting the changed pages threshold the

documentation does not recommend adjusting the size of the buffer pool.

The resource model can be represented by the set

RM = {<R, {E}>}

where in each tuple of the set, R in the set is a resource and E = {E1, E2, … Ei}; Ei is a

directed edge from that resource to another resource in the resource model. A directed

edge from Ri to Rj indicates that a change in resource Ri can have a direct effect on

resource Rj. The resource model is visually represented as a directed graph. It is possible

to have two edges between a pair of nodes – one in each direction. We simplify our

resource model by reducing these pairs of edges to a single edge with arrows on both

 40

ends. Relationship information must be gathered before the resource model is

constructed. Collecting resource relationship information is a one-time task for a DBMS.

The ER diagram for the resource model is shown in Figure 5. This ER model is the basis

for our relational implementation. Figure 6 is an example resource model.

Resource Edgehas

rName

n m

Figure 5 - ER diagram of the resource model.

Buffer Pool Size

LockList Size

Log Buffer SizeCatalog Cache Size

Database Heap Size

Changed Pages Threshold

Lock Timeout

Maxlocks

Sort Heap Threshold

Sort Heap Size

Max Number of Agents

Application Heap Size

Max Number of Applications

Application Control Heap Size

Number of I/O Cleaners

Deadlock Check Time

Average Num of Applications

Figure 6 - An example resource model.

 41

3.2.3 Generating Resource Subtrees

The resource model is used to store information about relationships between various

resources in the DBMS. The considerable size of the resource model makes it beneficial

to generate smaller resource trees when dealing with a DBMS resource. Smaller resource

trees are used to simplify resource information for a given resource. The smaller resource

“subtrees” can be used during the diagnosis process. Cycles from the original resource

model are removed during the generation of the smaller resource subtrees. Eliminating

cycles from the graph removes the possibility of a resource occurring in the subtree

multiple times.

The resource model stores directional information relating to the impact of one resource

on another. Knowing that one resource has an impact on another resource allows us to

predict the impact of adjusting each DBMS resource. For each resource adjusted in the

DBMS, we can determine the “ripple effect” this adjustment will have on other resources

in the system. This allows us to predict the effects of resource adjustment. To predict the

effects of resource adjustment, we can generate a forward resource tree. A forward

resource tree will have, as the root node, the resource that is to be adjusted. Each node in

the forward resource tree that is one edge away from the root will be directly affected by

an adjustment of the root resource. A forward resource tree can be generated as many

levels deep as desired, further determining the effect of adjusting the resource at the root

of the tree.

 42

Forward resource trees are generated by first determining a node to act as the root of the

forward resource tree. Next, all of the resources that are directly affected by the root node

are included in the forward resource tree, with arrows pointing from the root node to each

node added to the tree. Each of these new nodes is a “Level 1” node. For each individual

resource in Level 1, we determine all of the resources that are directly affected by that

individual resource and include them in the tree as part of “Level 2”, with arrows from

the Level 1 resource to these new resources. It should be noted that any individual

resource should only appear in a forward resource tree once, eliminating circular

references. Duplicate resource nodes should be ignored and not included in the forward

resource tree. After this process has been completed for all of the nodes in Level 1, then a

full forward resource tree will have been generated to two levels. If further levels are

desired, all of the nodes in Level 2 can be examined and new resource nodes can be

added to create Level 3. A sample forward resource tree is found in Figure 7. The

forward resource tree in Figure 7 is generated from the resource model example in Figure

6 with the Buffer Pool Size as the root node. The forward resource tree in Figure 7 is

generated to a depth of two.

 43

Figure 7 - An example of a generated forward resource tree.

Although the forward resource trees are useful for determining the effects of adjusting a

particular resource, they do not help in determining which resource settings may cause

another resource to perform poorly. For example, assume that the buffer pool resource is

chosen for adjustment by a diagnosis algorithm. It may be beneficial for both the

diagnosis and tuning algorithms to know which resource adjustments may have caused

the buffer pool resource to perform poorly. To determine which resources may have

affected the buffer pool resource, we generate a reverse resource tree. A reverse

resource tree has the selected resource as the root. Each node one edge away from the

root is a resource that, if adjusted, will have an effect on the root resource. By generating

a reverse resource tree, it is possible to determine if the root cause of the performance

problem is actually the resource at the root node or another resource that is causing the

resource at the root node to behave poorly. Reverse resource trees are also effective in

that if we have multiple resources that are being considered for tuning, it is possible to

 44

compare reverse resource trees to see if the resources have a resource in common that

may be affecting the resources considered for tuning. Figure 8 is an example of a reverse

resource tree with the buffer pool resource as the root node.

Figure 8 - An example of a generated reverse resource tree.

3.3 Workload Model

Knowledge about the system workload is vital to the proper diagnosis of the DBMS. The

diagnosis tree will differ for each type of DBMS workload. Workloads are typically

categorized into three different types – On-Line Analytical Processing (OLAP), On-Line

Transaction Processing (OLTP), or a mixture of the two. An OLAP workload consists

mainly of ad-hoc decision-support queries. These queries are CPU and time intensive. An

OLTP workload consists of many short, transaction-oriented queries. OLTP workloads

are characterized by the large volume of queries that are processed. A mixed workload

can consist of transactions from both workload types. A workload model is needed to

 45

provide information about the DBMS workload for diagnosis purposes. Allowing the

diagnosis system to access information from the workload model separates the workload

from the rest of the diagnosis system, allowing each to be updated individually.

DBMS performance information is used to create the workload model. The workload

model is a collection of data concerning how the DBMS performs and reacts to a given

workload. The workload model can be represented as the set

W = {N, H, I}

where in each tuple <N, H, I>, N = {N1, N2, … Nm}; Ni is a resource associated with one

or more sets of thresholds and indicators; H = {H1, H2, … Hn}; Hi is a threshold in the

form of <hName, hValue>; I = {I1, I2, … In}; Ij is an indicator value in the form of

<iName, iValue>. An indicator value is a calculated or measured performance value.

Indicator values are compared to threshold values to determine if a particular resource is

performing well. An example of such a tuple is for the number of I/O cleaners resource.

In this case, the resource N is the number of I/O cleaners. The indicator value I is the

percentage of asynchronous writes. The threshold value, H, is 95%, indicating our desire

that more then 95% of the writes are asynchronous. To determine if the I/O cleaners are

performing effectively, we compare the measured number of asynchronous writes to the

threshold value. The diagnosis tree will determine a problem with the number of I/O

cleaners if the measured number of asynchronous writes does not meet the specified

indicator threshold. The ER diagram for the workload model is shown in Figure 9. The

ER diagram is the basis of our relational implementation of the workload model.

 46

Workload Threshold

Resource

Indicator

Figure 9 - ER diagram for the workload model.

Diagnosing poor performance depends on knowledge of how each resource should

perform given a particular workload type. Threshold values can be determined based on

the hardware and workload configurations. The performance level of each resource in the

workload model can be measured while a workload is running. For a given workload,

acceptable threshold values can be used to determine if a resource is performing well or

not. Acceptable threshold values are determined by consulting the DBMS documentation

and by observing similar workloads where the performance is known to be good.

Workload models may differ significantly for different workloads. For example, consider

OLTP and OLAP workloads. Generic OLTP workloads typically do not have large sort

queries, so the workload model may not contain any information about the performance

of sort-related resources. If the workload were to change to include OLAP-type queries

that performed large sorts, the workload model would now need to contain information

 47

about resource performance for large sorts. The resulting workload model would differ

from the original depending on the workload.

Performance information can be collected automatically from a well- tuned database and a

given workload. Extracting these performance threshold values allow them to be used for

similar workloads at a later point in time. Several different workload models will have to

exist for the different workload types. Our initial results indicate that workload models

are fairly robust and can be used for different workloads, indicating that only a limited

number of workload models would need to be produced to handle most all workloads.

3.4 Diagnosis Rules

Many approaches may be used to diagnose a DBMS performance problem. Diagnosis can

begin with a check on high- impact resources, a check on low-impact resources, a check

on memory related resources, etc. Diagnosing and adjusting high- impact resources first

will result in an aggressive tuning approach while diagnosing and adjusting low-impact

resources first will result in a more conservative tuning approach. The approach used in

this dissertation is neither aggressive nor conservative with no one set of resources given

any preference over another.

Diagnosis rules are also used to determine which resources should be considered for

diagnosis. A single performance value may be an ind icator that a number of resources

can be avoided for diagnosis. By reducing the number of resources checked during the

diagnosis process, we can increase the speed of the diagnosis process. The process of

 48

using a single performance value to circumvent the diagnosis of other resources is known

as pruning.

3.5 Diagnosis Tree

The diagnosis tree combines the information from the workload model and the diagnosis

rules, an example of which is found in Figure 10. The combination of the diagnosis rules

and the workload model into a diagnosis tree provides an easily-understood method of

determining the possible resource problem. In Figure 10, non- leaf nodes are decision

nodes and are labeled as Di where i is a unique number for each node. Leaf nodes are

tuning nodes and are likewise labeled as Ti. These labels are used to identify the nodes

throughout the remainder of this dissertation.

The diagnosis tree and the resource model differ in several ways. The edges in the

diagnosis tree do not hold the same meaning as the edges in the resource mode. Edges in

the resource model indicate a relationship between the resources, while edges in a

diagnosis tree only indicate which node should be evaluated next. The resource model

stores as much information as possible about the resources while the diagnosis tree stores

very little resource information, concentrating on diagnosis information. It is this extra

information that is stored in the diagnosis tree that requires a separate structure to be used

for diagnosis.

The diagnosis tree is an ordering of the nodes from the workload model based on the

diagnosis rules. The workload model defines several resources and the threshold and

 49

indicator values associated with those resources, while the diagnosis rules determine the

order in which the resources should be evaluated. The diagnosis tree is traversed from the

root node, with an evaluation occurring at each node. The result of the node evaluation

determines the direction the tree traversal algorithm takes. Each decision at a node results

in pruning. Pruning is the process of ignoring some portion of the diagnosis tree in favour

of the further traversal of another portion of the tree. Pruning allows us to focus on key

resources which appear to be causing the resource problem while ignoring others that do

not seem to be causing the resource problem. Pruning does not alter the structure of the

diagnosis tree – it merely eliminates some portions of the tree from the search in order to

keep the search space manageable.

Figure 10 - Sample Diagnosis Tree.

 50

3.6 The Diagnosis System

The automatic diagnosis system can be represented by the tuple

S = <R, D>

where R is a resource model to represent the resources and D is a diagnosis tree used in

the diagnosis process. Each component of the automatic diagnosis system, such as the

resource model or the diagnosis tree, is needed to properly diagnose the DBMS.

Components can be individually modified for different DBMSs.

The diagnosis system is first activated when the Quartermaster architecture determines

that some performance level has not been achieved. The diagnosis tree is traversed,

returning a list of one or more resources that should be considered for tuning. Information

from resource trees generated by the resource model are used to either expand or possibly

reduced the number of resources to be considered for tuning. Tuning algorithms are used

to determine which resource will achieve the largest performance increase. Resource

adjustments can be made and the Quartermaster system will continue to monitor

performance to determine if the diagnosis system is further needed.

 51

Chapter 4

Building the Diagnosis Tree

The success of automatic DBMS diagnosis depends on the applicability of the diagnosis

tree for a specific situation. The diagnosis tree is used with resource model and

performance information to diagnose performance problems, as seen in Figure 2. The

positioning of the decision nodes in the decision tree and the threshold values used to

assess DBMS performance are key to correctly diagnosing performance problems.

Creation and tuning of the diagnosis tree can only be completed after gathering

information about the interactions between the DBMS and the workload. This chapter

describes the process for an example diagnosis tree for an OLTP workload on IBM’s

DB2 DBMS.

4.1 The Initial Diagnosis Tree

The initial diagnosis tree, shown in Figure 11, is constructed based on DB2

documentation [IBM00] and information from experts. Non- leaf nodes are decision

 52

nodes and are labeled as Di where i is a unique number for each node. Each decision node

is a set of one or more resources Ni, each with a list of one or more threshold values Ti

and indicator values Ii. Threshold and indicator values are used to determine the

performance of the resources, affecting the tree traversal decision made at decision node

Di. Leaf nodes are tuning nodes and are labeled as Ti. Tuning nodes contain a list of

resources, Ni, that should be further examined by tuning algorithms for adjustment. The

initial diagnosis tree was constructed from general heuristics used by a DBA when tuning

a DBMS. Node D1, which refers to the buffer pool hit rate in the initial diagnosis tree, is

one that many DBAs would ask when beginning to diagnose a DBMS. Following the

same logic, node D2 is modeled after the next logical question a DBA would ask given

the answer to the question in D1. We continued building the tree in this way with the

assumption that it would model the tuning actions of a DBA.

Figure 11 - The initial diagnosis tree.

 53

Each DBMS is tuned differently for different types of workloads. The initial tree is

designed for a general OLTP workload. The choice of resources to include in the tree is

based on the impact of the resource on OLTP workload performance. High and medium

impact resources are selected due to their effect on the system. High impact nodes are

placed closer to the root of the tree to ensure that they are diagnosed first, while resources

with lower impacts are positioned further down the tree. For example, root node D1

examines the buffer pool hit rate to determine if the buffer pool size needs to be adjusted

since the size of the buffer pools has a significant effect on performance.

The ability of the diagnosis tree to diagnose the DBMS’ performance effectively depends

on the accuracy of the threshold values. For example, node D1 in Figure 11 uses a

threshold value of 90% to determine whether or not the buffer pool hit rate is acceptable.

A hit rate of 90% is not unreasonable depending on the OLTP workload. Poor threshold

values can result in performance problems being improperly diagnosed as correct or they

can direct the diagnosis process towards resources that may not need to be adjusted.

Threshold values vary based on the DBMS workload.

We perform a series of tests to determine appropriate threshold values for each workload.

These tests are described in detail in Section 4.2. We collect DB2 performance data along

with the number of transactions completed for each test. Individual tests are done for

multiple allocations of each resource in the diagnosis tree. Each series of tests provides a

snapshot of how the workload reacts to various settings for a particular resource.

 54

Performance data are also analyzed to determine the best indicator variables for each

resource. Indicator variables are observed or calculated values that are either directly or

inversely related to the performance of the resource in question. The value of the

indicator variable changes significantly when the performance of the system increases or

drops. Threshold values are adjusted based on changes in indicator variables to determine

if the resource is performing well. For example, in Figure 11 the indicator used to

determine how well system I/O is working is the buffer pool hit rate. A low buffer pool

hit rate indicates that there is a problem with system I/O. A high buffer pool hit rate

indicates that system I/O is working well. We set a threshold value to distinguish between

good and poor performance for the buffer pool.

4.2 Tuning the Tree

The effect of DBMS resources on the workload and the level of performance expected

from the DBMS are needed to tune the diagnosis tree. We determine the effect of specific

DB2 resources on performance through a series of experiments. Each resource is

modified while all others are held constant and performance data is collected.

The OLTP workload used for our tests is based on the TPC-C benchmark specification

[TPC]. The benchmark is discussed in Appendix B. Several portions of the benchmark

specification were not implemented for this dissertation thus the results presented are not

representative of published TPC-C benchmark results.

 55

We verified the impact of each resource on DB2 by running the workload several times

while varying the value of the resource. The default resource settings are determined by

the DB2 Performance Wizard [IBM00]. The DB2 Performance Wizard is a tool shipped

with DB2 that can be used for the initial allocation of resources. During each test all

resource values are set at their “Wizard” default values with the exception of the resource

being studied. Performance data is collected for each run and stored for further analysis.

Table 1 includes information about the default resource values and the settings of each

resource used in the testing.

Resource Name Default Value
(unit)

Values Tested

Changed Pages Threshold 80 (percent) 10, 20, 30, 40, 50, 60, 70, 80, 90

Database Heap 1215 (4k pages) 1215, 2049, 3072, 4096, 5120, 6144

Deadlock Check Time 10,000 (msec) 10,000, 20,000, 30,000, 40,000,
50,000, 75,000, 100,000

Locklist Size 295 (4k pages) 200, 300, 400, 500, 750, 1000, 5000,
10,000

Lock Timeout Infinity (lock will
never time out)

9, 10, 11, 15, 20, 30, 50, 100,
infinity

Log Buffer Size 48 (4k pages) 48, 500, 1000, 1500, 2000, 2500,
3000, 5000, 10,000, 20,000

Minimum Commit 1 (count) 1, 2, 3, 4, 5, 10, 15, 20, 25

Number of I/O Cleaners 5 (process) 5, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100

Sortheap Threshold 10,000 (4k pages) 250, 500, 1000, 2000, 3000, 5000,
10,000

Sortheap Size 256 (4k pages) 20, 25, 30, 35, 40, 50, 100, 150, 200,
250, 500, 1000

Softmax 70 (percent) 50, 75, 100, 150, 200, 250, 300, 400

Table 1 – Example resources for diagnosis tree tuning.

 56

The DBMS workload is run for a period of 20 minutes for each individual resource

setting. We consider the first three minutes of each run to be a warmup period that allows

the workload to stabilize. We collect throughput data every five seconds during the entire

run but ignore the warmup period when calculating average throughput values. We

determined that this sample size ensures that the throughput measurements are accurate to

within 25 tpmC 95% of the time. tpmC is the term used to specify the transactions per

minute “C” for the Transaction Processing Performance Council’s (TPC’s) “C”

benchmark. tpmC is the average number of New Order transactions processed by the

DBMS each minute.

DB2 performance information was collected during each workload run. Performance

information included internal DBMS counters and watermarks that are accessed through

performance monitoring tools included with the DB2 software. This performance data are

vital to diagnosis as it is used to determine how the internal DBMS components are

working. Data is collected for two five-minute periods during each 20 minute run. The

first collection period begins at the one minute mark while the second begins at the 10

minute mark. Performance data are collected at the beginning of the run to allow

observation of DBMS performance during ramp-up time. It is important to collect data

early in the run as poor resource allocations can cause the database to stop executing

transactions during an early part of the run. Early data collection allows us to determine

how the DBMS is performing in the early portion of the run for those situations where no

data are collected at a later time in the run. Failure is possible later in a run if enough

deadlocks occur. Performance data are collected during the middle of the run to provide

 57

observation during a stable period in the workload. A list of the data collected is located

in Appendix D.

4.2.1 Interpreting the Data

Several examples of collected performance data are presented below along with an

interpretation of the data.

Number of I/O Cleaners

I/O cleaners are asynchronous processes that remove dirty (modified) pages from the

buffer pool in order to make room for new pages. Without the I/O cleaners, transaction

processes are forced to pause execution in order to synchronously write a dirty page back

to disk. Synchronously writing dirty pages back to disk is known as a dirty page steal.

Dirty page steals reduce throughput performance because the CPU is forced to suspend

the execution of a transaction to make a synchronous I/O to disk. The number of I/O

cleaners is a high- impact resource for non-read-only workloads. Figure 12 shows the

impact on performance when the number of I/O cleaners is adjusted for the test workload.

In Figure 12 the left y-axis shows the percentage of asynchronous writes made during the

collection period. The right y-axis shows the throughput of the system in tpmC. The x-

axis shows the number of I/O cleaners that are allocated for a run. The point shown is an

average throughput value and represents the particular test run for the number of I/O

cleaners.

 58

The performance of the DBMS and the throughput of the workload are affected by the

allocation of I/O cleaners. As we reduce the number of I/O cleaners below 30, the

throughput drops. As the number of I/O cleaners increases over 60, the tpmC value

begins to decline slightly. Performance is level between 30 and 60 I/O cleaners. The main

negative performance impact occurs when too few I/O cleaners are allocated in a system.

The peak in tpmC in Figure 12 shows that there is an optimal I/O setting for this

configuration, as either too many or too few I/O cleaners result in degraded performance.

Number of I/O Cleaners

0

20

40

60

80

100

120

10
0 80 60 40 20 5

num_iocleaners

%
 a

sy
nc

hr
on

ou
s

w
ri

te
s

3000

3200

3400

3600

3800

4000

4200

4400

4600

tp
m

C

% asyncWrites
tpmC

Figure 12 - The impact of I/O cleaners on performance.

We can also see that the percentage of asynchronous writes is a good indicator value for

the I/O cleaners resource. The total number of writes that occur are a combination of

asynchronous and synchronous writes. Increasing asynchronous writes results in a

 59

decrease in synchronous writes. Our tests show that the peak throughput for our workload

occurs where the percentage of asynchronous writes reaches 100%. The curve mapping

the throughput and number of I/O cleaners matches the curve mapping the percentage of

asynchronous writes and number of I/O cleaners. These matching curves show the

relation between an increase in the number of I/O cleaners and an increase in throughput.

Our test results show that asynchronous write levels of less than 95% are detrimental to

DBMS throughput. It can be concluded that a threshold value of 95% for asynchronous

writes is appropriate for this workload. An observed percentage of asynchronous writes

less than 95% signifies a performance issue and indicates than the number of I/O cleaners

should be adjusted.

Deadlock Check Time

The deadlock check time resource allows the DBA to set, in milliseconds, the amount of

time that the DBMS wait s before it checks for deadlocks. If the deadlock check time is

set too low, then deadlock checking is performed frequently, which consumes CPU

resources. If the deadlock check time is set too high, then deadlocked processes may wait

for a long period of time before they are either resolved by the system or they time out.

The effect of different deadlock check time settings on the test workload is demonstrated

in Figure 13. The left y-axis shows the number of deadlocks that occur per 10,000

transactions for our workload. The right y-axis illustrates both the tpmC and the average

lock wait time for the workload. The x-axis shows the values for the deadlock check time

resource. We define the deadlock rate to be the number of deadlocks that occur for every

10,000 transactions. The deadlock rate is affected by several different workload and

 60

system factors such as they amount of data contention, the number of concurrent

transactions, the size of the lock list, the positioning of data within the tables and the

throughput of the application. Average lock wait time is calculated from the amount of

time spent waiting for locks and the number of locks issued. Calculations are made using

performance information collected from DB2.

Decreasing the deadlock check time will result in decreases of the deadlock rate and the

average lock wait time while increasing throughput. Deadlocks are resolved more quickly

when the deadlock check time is set low. Resolving deadlocks more quickly results in a

lower average lock wait time. Reducing the lock wait time has a direct effect on the

throughput of the system, as time spent waiting for locks is wasted time. The CPU

overhead of checking for deadlocks more frequently is offset by the time saved by

resolving deadlocks. It should be noted that data contention will almost always occur in

an OLTP workload with updates. It is therefore not uncommon to observe some number

of deadlocks occurring in the system. For this reason, completely eliminating deadlocks

from the system is not a practical option.

The presence of unresolved deadlocked transactions in the DBMS is an invitation for

more deadlocks to occur since deadlocked transactions retain their locks on data objects.

Figure 13 shows an increase in the deadlock rate as the deadlock check time increases.

Although we measured an increase in the deadlock rate with the increase in the deadlock

check time, we do not choose the deadlock rate as an indicator value.

 61

Deadlock Check Time

0
2
4
6
8

10
12
14
16
18

10
00

00

75
00

0

50
00

0

40
00

0

30
00

0

20
00

0

10
00

0

dlchktime

d
ea

d
lo

ck
 ra

te
 p

er
 1

0,
00

0
tr

an
sa

ct
io

n
s

0

1000

2000

3000

4000

5000

6000

tp
m

C
 &

 A
ve

ra
g

e
lo

ck
 w

ai
t

tim
e

Deadlock Rate

tpmC

Average Lock
Wait Time (ms)

Figure 13 – The impact of deadlock check time on performance.

Deadlock rate is not chosen as an indicator variable due to the variance in the acceptable

deadlock rate for different workloads. Instead, we choose the average lock wait time as

an indicator variable for the deadlock check time resource. System throughput decreases

as the average lock wait time increases. The best performance occurs when the average

lock wait time is low. Figure 13 shows acceptable throughput when the average lock wait

time is below 1000 msec. We chose a threshold value of 1000 msec for the test workload.

Changed Pages Threshold

Changed pages threshold is a value set by the user to determine when the I/O cleaners

should begin to clean dirty (modified) pages out of the buffer pool. It is expressed as the

percentage of dirty pages that must exist in the buffer pool before the I/O cleaners are

triggered. Legal values for the changed pages threshold setting range from 5 to 99. A low

 62

changed pages threshold may result in overcleaning the buffer pool, i.e., modified pages

are written to disk and then modified again while still in the buffer pool. Overcleaning

results in data pages being written back to disk multiple times, creating extra disk I/O and

wasting CPU cycles. If the changed pages threshold value is set too high, then agents

may be forced to execute dirty page steals because no clean pages are available. The

changed pages threshold setting should be set based on the number of I/O cleaners and

the workload type.

The effects of altering the changed pages threshold resource on the performance of the

test workload can be observed in Figure 14. The left y-axis shows the percentage of

victim writes and changed pages threshold triggers. The right y-axis shows the

throughput in tpmC. The x-axis indicates the changed pages threshold setting for each

data point.

Changed Pages Threshold

0

5

10

15

20

25

30

35

40

90 80 70 60 50 40 30 20 10

chngpgs_thresh

p
er

ce
n

ta
g

e

3300

3500

3700

3900

4100

4300

4500

4700

tp
m

C % victim Writes

% CPT triggers
TPM

Figure 14 - The impact of the changed pages threshold resource on performance.

 63

The impact of the changed pages threshold on the performance of the DBMS is less

obvious than with the number of I/O cleaners and the deadlock check time. Figure 14

presents a case where the workload performance does not vary significantly regardless of

the value of the changed pages threshold. The best throughput occurs when the number of

changed pages threshold triggers is low and the number of victim writes (or dirty page

steals) is between 20% and 25%. There is a decrease in performance when the percentage

of changed pages threshold triggers is larger than the percentage of victim writes. These

observations result in a node in the diagnosis tree that compares the percentage of victim

writes to the percentage of changed pages threshold triggers. If the percentage of changed

pages threshold triggers is greater than the percentage of victim writes, the diagnosis

algorithm suggests an increase in the changed pages threshold value.

4.3 Modifying the Diagnosis Tree

The initial diagnosis tree in Figure 11 embodies all of the aspects of the DBMS

documentation and tuning experience available during construction. The tuned tree based

on our experiments is shown in Figure 15. The first difference between the tuned tree and

the initial tree from Figure 11 is in the structure of the diagnosis tree. The root node in the

initial diagnosis tree examines the buffer pool hit rate. Although checking the buffer pool

hit rate is a logical first step in diagnosing DBMS performance, the buffer pool hit rate is

only a valid measure of performance for this workload if other conditions are met. For

example, the buffer pool hit rate cannot be used as a valid measure of performance if lock

escalations are occurring in the DBMS. Early experiments showed that lock escalations

can cause a well-configured buffer pool to have a low hit rate. Increasing the size of the

 64

buffer pool will not increase the hit rate, as the size of the buffer pool is not the source of

the hit rate problem. It is necessary to determine if lock escalations are occurring before

the buffer pool hit rate can be used for diagnosis. The tuned diagnosis tree eva luates lock

escalations before the buffer pool hit rate.

Figure 15 - The tuned diagnosis tree.

The second difference is that the tuned diagnosis tree contains more specific threshold

values than the initial diagnosis tree. Initial threshold values are estimates based on little

performance information. Evaluating the workload performance on the DBMS provides

reasonable threshold values for the diagnosis tree. Threshold values partially depend on

the tuning policy desired, as threshold values for a conservative system will differ from

those for an aggressive system. A conservative system will forsake some performance for

stability and will be more restrained in the modification of resource values. An aggressive

 65

system will forsake some stability for performance and will be less restrained in the

allocation of resources to gain performance. An automated system should provide the

ability for individual DBAs to adjust threshold values. The tree shown in Figure 15 is

somewhat aggressive in that it considers only resources with a high or medium impact on

the DBMS.

A third difference between the initial and tuned diagnosis trees is that DBMS testing

provided new information about certain resources. An example of this involves the

changed pages threshold. Documentation for the changed pages threshold implies that it

is an important resource with a high impact on the performance of the DBMS. DBMS

documentation also implies that changed pages threshold triggers have less overhead than

dirty page steal triggers. The results in Figure 14 show this to be false for the hardware,

software and workload used and, in fact, dirty page steals are preferred to changed pages

threshold triggers for this workload. This information is included in the modified

diagnosis tree.

A fourth difference is the removal of some resources from the diagnosis tree. One

example is the log buffer size. Although it was assumed that the size of the log buffer

would have an effect on the throughput of the DBMS, the results show this is not the case

for our test workload. Figure 16 shows that adjusting the size of the log buffer has very

little effect on the throughput of the workload. Little or no change can be seen in the

throughput, the percentage of dirty page steals, the percentage of log triggers or the

percentage of asynchronous writes.

 66

Log Buffer Size

0

20

40

60

80

100

120

20
00

0
10

00
0

50
00

30
00

25
00

20
00

15
00

10
00 50

0
logbufsz (4k pages)

p
er

ce
n

ta
g

e

4200
4250
4300
4350
4400
4450
4500
4550
4600

T
P

M

% CPT Triggers

% Async Writes

% Log Triggers

TPM

Figure 16 - The effects of the Log Buffer Size on performance.

4.4 A Generic Tuning Tree

The diagnosis tree in Figure 15 presents a good foundation for the creation of a generic

diagnosis tree for OLTP workloads. Additional diagnosis nodes have to be added to

provide the ability to diagnose all resource allocation problems. A more generic diagnosis

tree would have the ability to diagnose the database heap size, the catalog cache size and

the package cache size as well as other DB2 resources. The diagnosis tree proposed in

Figure 17 is a more general diagnosis tree than the one used in this dissertation. As the

generic diagnosis tree was created as a result of our testing, it was not used for any of our

experiments. Further testing is needed to determine the appropriate threshold values and

the tree structure is open to the insertion of new diagnosis nodes. Verification of this tree

is beyond the scope of this thesis.

 67

Figure 17 - Proposed generic diagnosis tree.

The new nodes proposed for the generic diagnosis tree are meant to diagnose the database

heap, catalog cache and package cache memory sizes. The database heap memory is

memory allocated when the first connection is made to the database. Control block

information for tables, indexes, table spaces and buffer pools are all kept in this memory

space. The catalog cache is a reserved piece of memory available for caching table

descriptors for tables and views. The catalog cache is used to store these descriptors in

memory in order to avoid disk accesses. The descriptors are needed when compiling an

SQL statement. The package cache is a reserved piece of memory used to cache package

information when executing static and dynamic SQL statements.

 68

Node D9 is proposed in order to determine if the catalog cache is full. A catalog cache

that is not full indicates wasted memory, and the catalog cache size should be reduced

accordingly. Node D10, using the knowledge that the catalog cache is full, is proposed to

determine the activity in the catalog cache. Frequent catalog cache overflows or a low

catalog cache hit rate indicates that the catalog cache size may be too small. Tuning node

T12 also suggests the database heap as a possible tuning parameter, as the catalog cache

in contained within the amount of memory allocated to the database heap. If the catalog

cache seems to be performing well with no overflows and a good hit rate, we move on to

proposed node D11. D11 checks the performance of several parameters associated with

the package cache, including the package cache hit rate, the package cache size top and

the number of package cache overflows. If any of these performance values indicate poor

package cache performance, then tuning node T11 will suggest that the package cache

and/or the database heap be increased in size. If the package cache performance is good,

then we will continue with node D3 which was part of the tuning tree presented in this

dissertation.

 69

Chapter 5

Evaluation of Diagnosis Framework

The success of the diagnosis system presented in this dissertation is based on the ability

of the system to correctly diagnose performance problems in a working DBMS. In this

chapter we present a set of experiments that illustrate the diagnostic ability of a prototype

diagnosis system on a working DB2 database system.

Portions of the diagnosis system have been implemented for evaluation purposes. At

present, we have constructed a resource model, a workload model and a resulting

diagnosis tree for a subset of the resources available for DB2. The implemented resources

were chosen based on their significant impact on the workloads used. We have

implemented a diagnosis tree and a resource model to deal with the selected resources

from DB2. Our algorithm will traverse the resource tree and return tuning suggestions

from a tuning node. A forward resource tree is automatically generated by the traversal

algorithm. Reverse resource trees are presently generated by hand. Adjusting the

 70

resources suggested by the diagnosis tree is also done manually, as DB2 does not yet

support the dynamic adjustment of resources.

5.1 The Test Environment

The test environment consists of an IBM server running the Windows NT Server

operating system and DB2 version 7.2 as the DBMS. Detailed information about the test

hardware and software can be found in Appendix A. The database workload is based on

the Transaction Processing Council OLTP benchmark, TPC-C [TPC]. The transactions

are based on an order-entry environment that simulates placing and delivering orders,

recording payments, monitoring stock levels and checking the status of orders.

Information about the TPC-C benchmark is found in Appendix B.

The test database contains 100 warehouses (approximately 10GB of data in total).

Transactions are executed against the database by 60 client processes. Throughput data

are collected by the database workload application in five-second intervals throughout the

run. DB2 performance information is collected over a five minute period from the 10

minute mark to the 15 minutes mark of the run. The total run time for each test is 20

minutes. The throughput is averaged over the last 17 minutes of each run.

The workload used for testing is a version of the TPC-C database benchmark workload.

This workload is used because it exemplifies a generic OLTP workload. The

benchmarking workload is able to adequately test the DBMS in a non-deterministic

fashion while still producing comparable and repeatable results. The TPC-C workload is

cyclic in nature, running five different transactions continuously for the duration of the

 71

tests. Each transaction type will differ only in the data used in the transaction, resulting in

a workload that is cyclic in nature. The workload is able to provide, during a single run,

multiple data points that can be used for statistical purposes. In order to show that there is

no significant difference between the data collected in multiple runs, we have completed

a statistical analysis of three workload runs where none of the DBMS parameters are

changed. The resulting tpmC for the three runs are very close in value, ranging from

4245.76 tpmC to 4265.72 tpmC. The observed variance is high due to the variability in

the tpmC values collected every five seconds. The statistical analysis shows that with two

degrees of freedom, we calculated an F value of 0.367566 and an F-critical value of

3.012417. With the value of F smaller than F-critical, we fail to reject the null hypothesis

that there is significant difference between the means. In order to reject the null

hypothesis with a confidence of 95%, we need a P-value of less than 0.05. Our P-value of

0.692591 is much higher than 0.05, further strengthening the fact that there is no

statistical difference between the three runs. Data for the statistical analysis is shown in

Table 2. Data points collected for our statistical analysis are found in Appendix J.

54227469134Total

50799.6154027431790Within Groups

3.0124170.6925910.36756618672.22237344.45Between Groups

F critP-valueFMSdfSSSource of Variation

ANOVA

54665.814265.724772096181Run 3

48042.024245.762768483181Run 2

49691.014259.006770880181Run 1

VarianceAverageSumCountGroups

SUMMARY

Single Factor

Table 2 - Statistical analysis of test workload.

 72

Calculating the confidence interval for the workload is important in order to determine

the confidence that can be given to the measured workload throughput. Appendix F

contains the calculation of the confidence interval for our workload. The resulting

confidence interval is 25.3 tpmC, meaning that our calculated throughput results are

within 25.3 tpmC of the actual throughput. Combining this information with the

statistical analysis showing the repeatability of workload throughputs, it was decided that

individual data point collection could be used for our experiments. As a result, the data

points shown in our experiments are not averages of multiple runs, but the results of an

individual test run.

5.2 The Evaluation Process

Determining the ability of the diagnosis system to diagnose a DBMS correctly involves

five distinct steps – initializing the DBMS, restoring the database, running and

monitoring the workload, diagnosing the performance data and tuning the DBMS. Figure

18 is a diagram of the evaluation process. DBMS initialization occurs only once during

each series of tests. The remaining steps are repeated until the diagnosis algorithm has

determined that the DBMS is tuned. Each diagnosis loop results in the collection of

throughput data that we use to graph the performance of the workload. We describe the

steps in detail below.

 73

Figure 18 - Evaluation Process.

1) – Initialization

Initialization prepares the database and DBMS by adjusting them to a set of defa ult

resource allocations. The values used in the default resource allocation have been shown

in our experiment to adversely affect DBMS performance. A list of the resource values

used for the untuned DBMS allocation is found in the “Untuned” column of Table 3.

Table 3 also lists the values for each resource when tuned by either an expert or by the

DBMS Tuning Wizard. The expert and wizard values are used as comparisons when

evaluating the diagnosis algorithm.

 74

2) – Restoring the database

The database must be restored after each time the workload is run on the DBMS.

Restoring the data ensure that each run is conducted under the same database initial

conditions, that is, the same initial database state.

3) – Running and monitoring the workload

While a workload is run, the monitor program collects performance data from the DBMS

and the workload applications. Performance data is collected over a five minute period

starting 10 minutes into the run. Throughput data is collected every five seconds for the

duration of the run. The performance data is stored in a separate database where it can be

accessed by the diagnosis algorithm. The schema for the performance data is found in

Appendix G. A list of the performance data collected is found in Appendix D.

4) – Diagnosis

Diagnosis begins once the data is collected. The performance data is retrieved from the

database where it was stored to aid in the diagnosis of the DBMS. Upon examination of

the data, the diagnosis algorithm suggests a list of resources for tuning. The diagnosis

algorithm may also return no list, signifying that no resources have been flagged for

adjustment.

 75

Resource Expert Tuned Untuned DBMS Wizard

Locklist size 295 4k pages 40 4k pages 295 4k pages

Number of I/O Cleaners 40 1 5

Deadlock Check Time 20,000 msec 100,000 msec 10,000 msec

Lock Timeout -1 (infinity) 5 seconds -1 (infinity)

Changed Pages Threshold 60 20 80

Sortheap Size 10,000 4k pages 256 4k pages 256 4k pages

Sortheap Threshold 10,000 4k pages 512 4k pages 10,000 4k pages

Table 3 - DBMS resource values.

5) – Tuning

The DBMS is tuned by adjusting each resource according to the associated strategy in

Table 4. The resource adjustment strategy is used to ensure that resource adjustments are

consistent throughout all experiments. Resource allocations were modified only when

indicated by the diagnosis algorithm. Single adjustments are made to the system in order

to determine the impact of the resource on performance. Adjustments are made using the

values shown in Table 4. The initial value of the resource is indicated in the table, as are

the values to be used if the resource is diagnosed. For example, consider the locklist size

resource. The initial value is 40 4k pages. If the locklist size is diagnosed, we will adjust

the resource to the value stored in the Step 1 column, 60 4k pages. If the locklist size is

diagnosed again, we will further adjust the resource to the value stored in the Step 2

column, 80 4k pages. We will continue with this naïve tuning strategy using the

appropriate steps and values shown in Table 4.

 76

In general, we diagnose and tune only one resource per diagnosis tree traversal. There are

two exceptions to this, involving two sort-oriented resources and two lock-oriented

resources. In the case of the sortheap size and sortheap threshold resources,

documentation clearly indicates that these resources must be adjusted as a pair [IBM00].

They are therefore diagnosed and tuned as a pair. In Node T4 of the diagnosis tree in

Figure 15, the diagnosis is to adjust either the deadlock check time or the lock timeout

resource. A naïve strategy of adjusting the deadlock check time twice, followed by

adjusting the lock timeout resource once, was chosen. This pattern is followed whenever

Node T4 is the result of a diagnosis.

Resource (unit of measure) Initial Value Step 1 Step 2 Step 3 Step 4

Locklist Size (4k pages) 40 60 80 100 120

Number of I/O Cleaners 1 10 20 30 40

Deadlock Check Time (msec) 100,000 50,000 10,000 5,000 2,000

Changed Pages Threshold (%) 20 30 40 50 60

Locktimeout (seconds) 5 10 20 50 100

Sortheap Size (4k pages) 256 512 1024 2048 4096

Sortheap Threshold (4k pages) 512 1024 2048 4096 8192

Table 4 – Tuning strategy.

Using the results of the diagnosis, one or more resources are chosen for adjustment.

Resource adjustments made will remain for the rest of the runs in this test. Steps 2-5 are

then repeated until the diagnosis algorithm determines that the database is tuned.

 77

5.3 Typical Tuning Scenarios

Tuning is needed throughout the life of a database in order to maintain peak performance.

Several common situations occur during the lifetime of a database that cause it to need

retuning, such as the addition of new hardware, the addition of new transactions, or an

increase in size of the data stored. Three such situations were chosen as a representative

sample and these scenarios are outlined in Table 5.

Scenario Explanation

Size Increase An increase in the database size can cause the DBMS to

perform poorly. We simulate doubling the size of the database

by reducing the buffer pool size by half.

Workload Shift Altering the occurrence of transactions in the workload can

cause poor performance. Adjusting transaction percentages in

the workload simulates a workload shift.

Transaction Variation Varying the transactions that are executed against the database

can reduce DBMS performance. In the transaction variation

scenario, a new type of transaction is added to the workload.

Table 5 - DBMS tuning scenarios.

The database size scenario is a significant problem for DBAs. DBMS tuning values

become outdated as the database grows or shrinks in size. Database growth depends on

the number and frequency of updates. The percentage of data held in the buffer pools

decreases as the amount of data accessed from the tables increases, which has a negative

effect on the buffer pool hit rate. A buffer pool is an area of memory that is used to cache

data and index information from the DBMS disks. Increasing the amount of data may

 78

also have an effect on the number of I/O cleaners needed to move data, the number of I/O

servers needed to retrieve the data from the disks, and various other DBMS resources.

The workload shift scenario simulates a change in the way that a database is used. Each

transaction presents a different load on the DBMS. As the percentage of each transaction

changes in the workload, the workload requirements on the DBMS shifts. Table 6 lists

the original percentages and the modified percentages of each transaction in the

workload.

Transaction Name Original workload Workload Shift

New Order 45% 24%

Payment 43% 24%

Order Status 4% 22%

Delivery 4% 4%

Stock Level 4% 26%

Table 6 – Transaction frequencies for the original and modified workloads.

The transaction variation scenario involves the addition of a new transaction to the

workload that uses the same data as the original transactions and so interferes with the

original workload to some extent. The transaction added to the workload is a sort query

that is embedded in a loop. It is not required that the sort query be run a particular

percentage of times during each test, but that the query is run as many times as possible

during each test period.

 79

5.4 Scenario 1 – Size Increase

Original Configuration

We ran the original OLTP workload with the relative frequencies specified in Table 6.

The buffer pool was 100,000 4k pages in size, which is approximately 400MB. This

allows us to simulate a relatively small database situation where sufficient memory is

available for good system performance. Table 7 presents the data from the tuning process

for the original workload. For each run, the “Changed Resource” column indicates the

resource value that was altered from the previous run, the “Diagnosis” column provides

the diagnosis made by the algorithm for this particular run and the “tpmC ” column shows

the resulting throughput expressed in Transactions Per M inute C (tpmC) for the run.

The evaluation process in Figure 18 shows that the diagnosis process will iterate until the

“tuned” condition is met. The diagnosis tree in Figure 15 contains T7, the tuning leaf that

signifies when the system is tuned. If a tree traversal results in the return of node T7, then

the diagnosis tree was unable to diagnose any performance problems and the database is

considered tuned. The results in Table 7 for Run 1 show that during the first run the

resource allocations are so poor that the throughput (tpmC) is zero. The zero throughput

is a result of poor lock resource allocations, resulting in a deadlocked system. The

diagnosis tree suggests tuning the locklist size parameter resulting in an adjustment

according to the tuning strategy outlined in Table 4. The locklist parameter is adjusted

from 40 pages to 60 pages and the workload is run again, which results in the diagnosis

found in Run 2 of Table 7. Increasing the size of the locklist alleviates the deadlock

problem and results in increased throughput.

 80

Run Changed Resource Diagnosis tpmC

1 Starting Configuration Locklist 0.00

2 locklist = 60 Number of I/O Cleaners 3897.18

3 num_iocleaners = 10 Number of I/O Cleaners 3150.18

4 num_iocleaners = 20 Deadlock check time and/or Lock timeout 4254.41

5 dlchktime = 50000 Deadlock check time and/or Lock timeout 2984.18

6 dlchktime = 10000 Number of I/O Cleaners 4593.00

7 num_iocleaners = 30 Deadlock check time and/or Lock timeout 4258.88

8 locktimeout = 10 Deadlock check time and/or Lock timeout 1418.29

9 dlchktime = 5000 Number of I/O Cleaners 5986.94

10 num_iocleaners = 40 Done 6270.76

Table 7 - Diagnosis of the original workload on a small database.

Although the change from Run 1 to Run 2 is a significant performance increase, the

diagnosis algorithm suggests that the number of I/O cleaners should be adjusted. The

number of I/O cleaners is increased from one to 10. Increasing the number of I/O cleaners

results in a decrease in throughput. This decrease in throughput is caused by an increase

in the average lock wait time. Further diagnosis suggests another increase in the number

of I/O cleaners. This diagnosis may seem counter-productive, as the previous drop in

performance was caused by an increased average lock wait time triggered by an increase

in the number of I/O cleaners. It should be noted that both I/O cleaners and lock wait time

have poor measured performance at this point in time – the number of I/O cleaners is

diagnosed first due to its position in the diagnosis tree. Adjusting the number of I/O

 81

cleaners for Run 4 results in a performance increase that more than compensates for the

decrease noticed from Run 2 to Run 3.

Diagnosis of the performance data from Run 4 results in the tuning suggestion of

adjusting either the deadlock check time or lock timeout resources. This diagnosis results

from an average lock wait time that is above the threshold value. In the case where two

resources are diagnosed for tuning, a tuning policy must be followed to determine the

order in which the resources are tuned. In the case of the deadlock check time and lock

timeout resources, the tuning policy used requires that the deadlock check time resource

be adjusted twice for every adjustment of the lock timeout resource. As a result, the first

two times that this tuning combination is suggested by the diagnosis algorithm, the

deadlock check time will be adjusted. When the combination is suggested a third time,

the lock timeout will be adjusted. The pattern of tuning the deadlock check time twice for

each adjustment of the lock timeout continues from there. As a result of this tuning

pattern, the deadlock check time resource is adjusted from 100,000 msec to 50,000 msec,

resulting in a decrease in tpmC from 4254.41 to 2984.18. A further diagnosis is made to

adjust again the deadlock check time resource from 50,000 msec to 10,000 msec,

resulting in an increase in tpmC from 2984.18 to 4593.00. The temporary decrease in

performance when the deadlock check time resource was set at 50,000 msec was caused

by an increase in the average lock wait time performance measurement. When the

deadlock check time was set at 100,000 msec, deadlocks were given enough time to

resolve themselves, resulting in the recorded performance. When the deadlock check time

was reduced to 50,000 msec, the deadlocks did not have enough time to resolve, resulting

 82

in many lost transactions and a high lock wait time, greatly reducing performance. The

continued reduction in the deadlock check time resource to 10,000 msec results in the

deadlocks being resolved faster, resulting in less lock wait time and higher throughput.

Run 6 diagnosis results in adjusting the number of I/O cleaners from 20 to 30 due to a

low percentage of asynchronous writes. The resulting decrease in tpmC is due to

increased lock wait time due to increased data contention. The increased lock wait time

results in the diagnosis in Run 7 requiring the adjustment of either the deadlock check

time resource or the lock timeout resource. The deadlock check time resource has already

been adjusted twice so the lock timeout resource is now adjusted. The resulting resource

change produces a significant drop in tpmC from 4258.88 to 1418.29. This drop in

performance is directly related to a significant increase in the lock wait time due to the

increase in the amount of time a lock must wait before timing out. The increase in lock

wait time results in the Run 8 diagnosis of deadlock check time and lock timeout. We

modify the deadlock check time resource (based on our naïve tuning strategy), resulting

in an increase in performance from 1418.29 to 5986.94 while reducing our average lock

wait time. The diagnosis for Run 9 involves adjusting the number of I/O cleaners due to a

low percentage of asynchronous writes. The adjustment results in increasing the

percentage of asynchronous writes and increasing performance. Diagnosis of the

performance data results in the “tuned” node being returned. The diagnosis algorithm has

no further suggestions and the diagnosis and tuning process is complete.

 83

We evaluate the success of the diagnosis algorithm by comparing the final throughput of

the DBMS with tpmC values achieved by our expertly tuned system and a system tuned

by the DB2 Tuning Wizard. The expertly tuned system represents the best possible

throughput achieved when tuning the system by hand. The expert who tuned the DBMS

for these experiments is a DBA and research associate for the Database System

Laboratory at Queen’s University with over 10 years of experience tuning DB2. Table 3

shows the resource allocations used for both the expert and tuning wizard configurations.

The final measured throughput for the diagnosed configuration is 6270.86 tpmC. The

throughput for the expert configuration is 6355.65 tpmC while the throughput for the

wizard configuration is 4966.00 tpmC. The diagnosis system is able to tune the system to

98.67% of the expert throughput and 126.28% of the tuning wizard throughput.

Throughput values are summarized in Figure 19.

Figure 19 shows that each step taken during the diagnostic process does not always

increase system throughput. The changes made in several of the iterations actually cause

a decrease in database throughput. The diagnosis algorithm does not consider database

throughput during the diagnosis process, but instead examines the values of the indicator

variables. Resource adjustments are made if an adjustment will increase or decrease the

indicator variable appropriately. Improving the value of indicator variables will result in

improved database performance.

 84

Unmodified Driver, Buffer Pool size of 100,000 4k pages

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

Run Number

tp
m

C

Expert Configuration

Wizard Configuration

Diagnosis Algorithm

Figure 19- Throughput results for the original workload on a small database.

A resource adjustment is considered valuable if the performance of the resource or

indicator variable increases. For example, in Run 6 shown in Table 7, the throughput of

the workload is 4593.00 tpmC. The diagnosis algorithm suggests increasing the number

of I/O cleaners from 20 to 30. The diagnosis is based on performance data which

indicates that the percentage of asynchronous writes is 85.0%. The diagnosis tree

recognizes that the percentage of asynchronous writes is below the threshold of 95% and

suggests an increase in the number of I/O cleaners to fix the problem. Increasing the

number of I/O cleaners to 30 results in 99.7% asynchronous writes for Run 7, a value

above the threshold. The throughput for Run 7 is 4258.88 tpmC, a decrease of 334.12

tpmC from the previous run. Although the performance of the system decreased slightly,

increasing the number of I/O cleaners as suggested by Run 6 is the appropriate action.

The throughput decrease can be attributed to a shift in the performance bottleneck. In

 85

Run 6 the performance bottleneck is due to a lack of I/O cleaners and a low percentage of

asynchronous writes. Increasing the number of I/O cleaners results in an increase in the

percentage of asynchronous writes, allowing more data to be processed by the database.

Processing the extra data increases the percentage of log triggers, an indication that

problems exist with the deadlock check time and lock timeout variables. The increased

data contention in Run 7 results in a lower throughput than recorded in Run 6. Although

the resource adjustment suggested in Run 6 is beneficial to the overall performance of the

database, the resulting throughput recorded for Run 7 is lower than in Run 6. This type of

resource adjustment is only detrimental to system performance if tuning is stopped at Run

7. By continuing with the diagnosis and tuning process, the new bottleneck can be

diagnosed and throughput improved.

Diagnosis time is an important factor for an automated diagnosis system. Diagnosis time

is measured by the amount of time needed from one diagnosis to the next. Each iteration

of the diagnosis process involves running the workload, waiting for the workload to

stabilize, collecting the performance and throughput data, running the diagnosis

algorithm and then making the resource adjustment. Reducing the time required per

iteration will reduce the amount of time needed to completely diagnose the system. In our

present setup, the workload is run for a period of 20 minutes per iteration. The 20 minutes

includes a warm-up period for the workload to stabilize, data throughput collection and

performance data collection. The average run time for the diagnosis algorithm is between

10 and 20 seconds and the time needed to adjust the diagnosed DBMS resource is less

 86

than 30 seconds. The total amount of time needed per iteration is therefore approximately

21 minutes.

The amount of time currently needed per iteration is restricted by the inability to adjust

DBMS resources while the database is running. This restriction requires that the DBMS

be shut down and restarted before changes take effect, resulting in longer iterations times.

As database technology advances, dynamically adjustable database tuning parameters

will greatly reduce iteration time.

We can also reduce the number of iterations to further reduce the total amount of time

needed to diagnose a DBMS. In Table 7, the number of iterations needed to tune the

workload is 10. Several of the tuning steps in Table 7 require the same resource to be

tuned twice in a row, such as diagnosing the number of I/O cleaners in Step 2 and Step 3.

Step 2 suggests adjusting the number of I/O cleaners from 1 to 10 while Step 3 suggests

adjusting the I/O cleaners from 10 to 20. The use of a more intelligent tuning algorithm

during the diagnosis in Step 2 may result in increasing the number of I/O cleaners from 1

to 20, effectively eliminating Step 3. The use of intelligent tuning algorithms instead of

the naïve tuning process from Table 4 can help reduce the number of iterations needed to

tune the DBMS. In the case outlined in Table 7 the number of iterations could be reduced

from 10 to 7.

Another method to reduce the number of iterations needed to tune the DBMS is the use of

resource trees. A reverse resource tree enables us to expand the diagnosis space once a

 87

problem resource is identified. Expanding the diagnosis space to include related resources

provides information that can be beneficial to the tuning process. In Step 1 of Table 7, the

locklist resource is selected for tuning. The reverse resource tree generated in Figure 20

indicates that the resources directly related to locklist are deadlock check time, lock

timeout, maximum number of locks, and maximum number of applications. The

maximum number of agents and the average number of applications are indirectly related

through the maximum number of applications resource. In this case, both the deadlock

check time and lock timeout resources are later diagnosed by the diagnosis tree. Using

the resource tree identifies both of these resources as potential tuning candidates early in

the diagnosis process, allowing us to run tuning algorithms for these resources. Intelligent

tuning algorithms may suggest earlier adjustments for both deadlock check time and lock

timeout, reducing the number of iterations needed to tune the DBMS.

Locklist Size

Lock Timeout

Maxlocks

Max Number of Agents

Max Number of Applications

Deadlock Check Time

Average Num of Applications

Figure 20 - Reverse resource tree with Locklist Size as root.

 88

Step 2 and Step 3 in Table 7 both diagnose the number of I/O cleaners resource as the

cause of performance problems. The reverse resource tree shown in Figure 21 identifies

the buffer pool and changed pages threshold resources as related to the number of I/O

cleaners and possible causes of the performance problem. Although identified as

resources to be considered for tuning, neither related resource is adjusted during this run.

This also applies for Steps 6 and 9 where the number of I/O cleaners is diagnosed. The

forward and reverse resource trees used can be found in Appendix I.

Buffer Pool SizeChanged Pages Threshold

Number of I/O Cleaners

Figure 21 - Reverse resource tree with I/O Cleaners as root.

Modified Configuration

We simulate database growth by reducing the size of the buffer pool to 50,000 4k pages.

We simulated database growth as opposed to building a larger database in order to avoid

hardware complications such as lack of disks. We simulate growth by decreasing the

memory to data ratio by decreasing the amount of available memory. The original OLTP

workload is used and the DBMS resources are set to the untuned values (see Table 3).

The results of the diagnosis process are found in Table 8. Figure 22 shows the workload

performance at each step of the diagnosis.

 89

The diagnosis system is able to tune the system to 98.91% of the expert throughput, and

achieves a throughput of 121.95% of the tuning wizard configuration. The diagnostic and

tuning process requires 10 iterations to meet the stop condition. Figure 22 shows that

even though some individual tuning steps actually decrease the workload throughput, the

overall resulting throughput is high.

The number of iterations to tune the DBMS in this case could be reduced to as little as

four iterations with improved tuning algorithms. Step 2 and Step 3 in Table 8 both

suggest changes to the number of I/O cleaners. An intelligent tuning algorithm may be

able to reduce the pair of iterations to a single iteration by suggesting an immediate jump

in I/O cleaners from 1 to 20. Step 4 through Step 7 could also be condensed into one or

two steps while Step 8 and Step 9 could be condensed to one step. Tuning algorithms that

would allow larger steps to be taken during the tuning process would reduce the number

of iterations needed to tune a workload.

Once again the first resource diagnosed by the diagnosis tree is the locklist size. The

reverse resource tree in Figure 20 shows that the resource is directly affected by deadlock

check time, lock timeout, the maximum number of locks and the maximum number of

applications. Table 8 shows that both deadlock check time and lock timeout are adjusted

during the tuning process. Tuning algorithms could have predicted these changes earlier,

thereby reducing the number of iterations needed during the tuning process.

 90

Run Changed Resource Diagnosis (End) tpmC

1 Starting Configuration Locklist 0.00

2 locklist = 60 Number of I/O Cleaners 3222.76

3 num_iocleaners = 10 Number of I/O Cleaners 3449.41

4 num_iocleaners = 20 Deadlock Check Time and/or Lock Timeout 3188.88

5 dlchktime = 50000 Deadlock Check Time and/or Lock Timeout 2834.59

6 dlchktime = 10000 Deadlock Check Time and/or Lock Timeout 3819.82

7 locktimeout = 10 Deadlock Check Time and/or Lock Timeout 2587.59

8 dlchktime = 5000 Number of I/O Cleaners 3868.65

9 num_iocleaners = 30 Number of I/O Cleaners 4097.65

10 num_iocleaners = 40 Done. 4233.65

Table 8 - Diagnosis of the original workload on a large database.

Unmodified Workload, Buffer Pool size of 50,000 4k pages

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10

Run Number

tp
m

C

Expert Configuration

Wizard Configuration

Diagnosis Algorithm

Figure 22 - Throughput results for the diagnosis of the original workload on a large database.

 91

5.5 Scenario 2 – Modified Workload

The modified workload scenario consists of the same transactions as the original

workload with different relative frequencies. The frequencies for the modified workload

are specified in Table 6. The modified workload is intended to simulate a shift in

workload over time. The modified workload is tested on both the large and small

database configurations.

Small Database Configuration

When the small database is used with the modified workload, the diagnosis system is able

to tune the system to 97.1% of the expert throughput and 185.4% of the tuning wizard

throughput. The diagnostic and tuning process, located in Table 9, requires 10 iterations

to finish. A graph of the resulting throughput for each configuration step along with the

wizard and expert configuration throughputs are presented in Figure 23.

As discussed in Section 5.4, the end throughput of the diagnosis process is high despite

the fact that several individual steps in the tuning process cause decreases in throughput.

The number of iterations needed to tune the DBMS is 10, but that number can be reduced

by using more intelligent tuning algorithms. Better tuning algorithms may condense steps

two and three, steps four through seven and steps eight and nine, reducing the number of

needed iterations from 10 to five.

 92

Run Changed Resource Diagnosis tpmC

1 Starting Configuration Locklist Size 376.76

2 locklist = 60 Number of I/O Cleaners 3388.00

3 num_iocleaners = 10 Number of I/O Cleaners 3785.12

4 num_iocleaners = 20 Deadlock Checktime and/or Lock Timeout 4124.00

5 dlchktime = 50000 Deadlock Checktime and/or Lock Timeout 2289.12

6 dlchktime = 10000 Deadlock Checktime and/or Lock Timeout 2763.24

7 locktimeout = 10 Deadlock Checktime and/or Lock Timeout 1931.65

8 dlchktime = 5000 Number of I/O Cleaners 5649.24

9 num_iocleaners = 30 Number of I/O Cleaners 5984.00

10 num_iocleaners = 40 Done 6241.29

Table 9 - Diagnosis of the modified workload on a small database.

As discussed in Section 5.4, the diagnosis of the locklist size in Step 1 result in the

resource tree in Figure 20 that predicts the adjustment of deadlock check time and lock

timeout.

 93

Modified Workload, Buffer Pool size of 100,000 4k pages

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

Run Number

tp
m

C Expert Configuration

Wizard Configuration

Diagnosis Algorithm

Figure 23 - Throughput results for the diagnosis of the modified workload on a small database.

Large Database Configuration

When the large database is used with the modified workload, the diagnosis system is able

to tune the system to 96.01% of the expert throughput and 180.74% of the tuning wizard

throughput. The diagnostic and tuning process is completed in eight iterations. A graph of

the resulting throughput of the configuration steps along with the wizard and expert

configurations are presented in Figure 24.

As discussed in Section 5.4, the decrease in throughput due to individual tuning steps

does not hinder the ability of the diagnosis tree to effectively diagnose the DBMS.

Diagnosis requires eight iterations in this case. More effective tuning algorithms could

reduce the process to four iterations by combining steps one and two and steps four

 94

through seven. This would reduce the total number of iterations needed to diagnose this

case from eight to four.

Run Changed Resource Diagnosis tpmC

1 Starting Configuration Number of I/O Cleaners 972.24

2 num_iocleaners = 10 Number of I/O Cleaners 0.00

3 num_iocleaners = 20 Locklist Size 634.00

4 locklist = 60 Deadlock Checktime and/or Lock Timeout 1465.12

5 dlchktime = 50000 Deadlock Checktime and/or Lock Timeout 2056.00

6 dlchktime = 10000 Deadlock Checktime and/or Lock Timeout 2004.53

7 locktimeout = 10 Deadlock Checktime and/or Lock Timeout 1558.06

8 dlchktime = 5000 Done 2175.29

Table 10 - Diagnosis of the modified workload on a large database.

The initial diagnosis in Table 10 is the number of I/O cleaners. The reverse resource tree

in Figure 21 recommends considering both the buffer pool size and the changed pages

threshold for tuning. Neither of these resources is later tuned by the diagnosis tree, as the

buffer pool hit rate threshold does not drop below 95%. The diagnosis in Step 3 is for

locklist size. As described in Section 5.4 and Figure 20, deadlock check time, lock

timeout, maximum number of locks and maximum number of applications are suggested

for tuning consideration. Both deadlock check time and lock timeout are later diagnosed

by the diagnosis tree and adjusted.

 95

Changes in a DBMS workload can alter the delicate balance of a tuned system. The

ability to adjust to changes in transaction frequency allows a DBMS to perform well with

a modified workload. Results presented in Table 9 and Table 10 show the ability of the

diagnosis tree to correctly diagnose performance problems for a modified workload.

Although the resulting throughput is lower for the large database configuration as

compared to the small database configuration, the throughput in both cases is higher than

the corresponding expert and wizard configurations. These runs show that the

effectiveness of the diagnosis tree is not dependent on a specific workload.

Modified Workload, Buffer Pool size of 50,000 4k pages

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Run Number

tp
m

C

Expert Configuration

Wizard Configuration

Diagnosis Algorithm

Figure 24 - Throughput results for the diagnosis of the modified workload on a large database.

5.6 Scenario 3 – Workload Change

A new transaction is added to the original database workload in order to simulate a

workload change. The new transaction issues a sort query that sorts data found in the item

 96

table of th7e TPCC database. The sort transaction interacts with the same data as the

original queries. The addition of the sort transaction tests the ability of the diagnosis

algorithm to correctly diagnose a new workload. The new workload is tested on the

simulated small and the large database configurations.

The sort transaction differs significantly from the other transactions that comprise the

workload. The sort query is not related to the other queries – it runs independently of the

other queries. The sort query makes use of the sortheap memory, resulting in our being

able to diagnose sort overflows and sortheap usage. The sort query is a select of the Item

Name and Item ID fields from a table and sorting them based on the Item ID field. Each

query sorts 100,000 records.

Small Database Configuration

When the small database configuration is used in the first test with the changed workload,

the diagnosis system is able to tune the system to 100.09% of the expert throughput and

to 126.31% of the tuning wizard throughput. The diagnostic and tuning process takes 13

iterations to finish. A graph of the resulting throughput of the configuration steps along

with the wizard and expert configurations can be found in Figure 26.

With intelligent tuning algorithms, Step 2 to Step 3, Step 4 to Step 5, Step 7 to Step 8 and

Step 10 to Step 12 can all be reduced to one step each allowing the workload to be tuned

in only eight iterations as opposed to 13. It should be noted that the last three steps in the

tuning process (Step 10 to Step 13) do not seem to have an impact on the throughput of

 97

the workload (from 6134.00 to 6202.65 tpmC). The tuning that occurred from Step 10 to

Step 13 involves improving the sort query. The sort query does not have a direct effect on

the resulting throughput, resulting in only a small increase in tpmC. The performance

data for runs 10 through 12 indicates sort overflows occurring in the system. Sort

overflows occur when there is not enough memory allocated in the sortheap for the sort

to occur in memory. A sort overflow indicates that temporary space on the hard drive will

be used to aid in the sort. These sort overflows do not occur in step 13 because of the

increased sort heap and sort heap threshold. Reducing the number of sort overflows is

beneficial to the performance of the underlying database engine. Separate testing of the

sort query, shown in Figure 25, shows that sort overflows reduce the response time of the

sort query.

Sort query response times

0

100

200

300

400

500

600

700

With sort overflows Without sort overflows

m
se

c

Figure 25 - The effect of sort overflows on sort query response time.

 98

Testing shows that for the sort query in question, the sort time when sort overflows

happen is 605 msec. Increasing the sort heap and sort heap thresholds removes the sort

overflow and results in a sort time of 235 msec.

Run Changed Resource Diagnosis tpmC

1 Starting Configuration Locklist Size 1.35

2 locklist = 60 Number of I/O Cleaners 2854.18

3 Num_iocleaners = 10 Number of I/O Cleaners 5198.88

4 Num_iocleaners = 20 Deadlock Checktime and/or Lock Timeout 3415.06

5 dlchktime = 50000 Deadlock Checktime and/or Lock Timeout 4019.94

6 dlchktime = 10000 Number of I/O Cleaners 4545.53

7 Num_iocleaners = 30 Deadlock Checktime and/or Lock Timeout 3770.76

8 Locktimeout = 10 Deadlock Checktime and/or Lock Timeout 1833.29

9 dlchktime = 5000 Number of I/O Cleaners 5889.00

10 Num_iocleaners = 40 Sortheap Size and Sortheap Threshold 6134.00

11

sortheap = 512

sheapthresh = 1024 Sortheap Size and Sortheap Threshold 6155.29

12

sortheap = 1024

sheapthresh = 2048 Sortheap Size and Sortheap Threshold 6187.06

13

sortheap = 2048

sheapthresh = 4096 Done 6202.65

Table 11 - Diagnosis of the changed workload on a small database.

The locklist size is diagnosed in Step 1 of Table 11. As discussed in Section 5.4, the

adjustment of deadlock check time and lock timeout are accurately predicted. Use of

 99

intelligent tuning algorithms could result in both of these resources being tuned earlier,

reducing the number of iterations needed for tuning.

Changed Workload, Buffer Pool size of 100,000 4k pages

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13

Run Number

tp
m

C Expert Configuration

Wizard Configuration

Diagnosis Algorithm

Figure 26 - Throughput results for the changed workload on a small database.

Large Database Configuration

When the large database is used the diagnosis system is able to tune the system to

101.2% of the expert throughput and 123.60% of the tuning wizard throughput. The

diagnostic process requires 13 iterations to finish. Diagnosis results are found in Table

12. A graph of the resulting throughput for each configuration step along with the wizard

and expert configurations is represented by Figure 27.

The large database changed workload test takes 13 iterations to properly diagnose and

tune, which can be reduced with intelligent tuning algorithms. Step 2 through Step 5,

 100

Step 7 though Step 8, and Step 9 through Step 11 can all be condensed to one step each,

reducing the number of iterations needed to tune the DBMS to seven.

Run Changed Resource Diagnosis tpmC

1 Starting Configuration Locklist Size 51.06

2 locklist = 60 Number of I/O Cleaners 3111.53

3 Number of I/O Cleaners = 10 Number of I/O Cleaners 3516.18

4 Number of I/O Cleaners = 20 Number of I/O Cleaners 3300.71

5 Number of I/O Cleaners = 30 Number of I/O Cleaners 4010.59

6 Number of I/O Cleaners = 40 Deadlock Checktime and/or Lock Timeout 3083.24

7 Deadlock Check Time = 50000 Sortheap Size and Sortheap Threshold 4019.29

8

Sortheap = 512

Sortheap Threshold = 1024 Sortheap Size and Sortheap Threshold 3763.12

9

Sortheap = 1024

Sortheap Threshold = 2048 Deadlock Checktime and/or Lock Timeout 3292.12

10 Deadlock Check Time = 10000 Deadlock Checktime and/or Lock Timeout 2666.71

11 Lock Timeout = 10 Deadlock Checktime and/or Lock Timeout 2390.12

12 Deadlock Check Time = 5000 Sortheap Size and Sortheap Threshold 4172.59

13

Sortheap = 2048

Sortheap Threshold = 4096 Done 4214.88

Table 12 - Diagnosis of the changed workload on a large database.

The reverse resource tree generated for Step 1 accurately predicts the adjustment of the

deadlock check time and the lock timeout resources. The use of the resource tree and

tuning algorithms could result in both of these resources being tuned much earlier in the

diagnosis process.

 101

Changed Workload, Buffer Pool size of 50,000 4k pages

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13

Run Number

tp
m

C

Expert Configuration

Wizard Configuration

Diagnosis Algorithm

Figure 27 - Throughput results for the changed workload on a large database.

5.7 Diagnosis Tree Lifespan

The diagnosis tree must be able to adapt to different workload situations. Results from

Section 5.4 through Section 0 show that the diagnosis tree is able to diagnose a DBMS

workload given a change in workload or a change in database size. Although some

changes in workload can be handled by the diagnosis tree, a significant change in the

workload may render the diagnosis tree unable to diagnose a performance problem. The

ability of the diagnosis tree to correctly diagnose performance problems related to new

transactions is a function of the diversity in the transactions used when creating the initial

diagnosis tree. For example, the sample diagnosis tree in Figure 10 contains the node D4

to detect package cache inserts. In the tuned diagnosis tree (Figure 15) this node is

eliminated because the workload does not generate any package cache inserts beyond the

warmup period, making it impossible to collect data on how to correctly tune the DBMS

 102

when they happen. As a result, a transaction that causes package cache inserts cannot be

properly diagnosed by the diagnosis tree in Figure 15, requiring that the diagnosis tree be

retuned or regenerated if such a transaction is added to the workload. If a transaction

causing package cache inserts had been included in the initial workload when the

diagnosis tree was created, the diagnosis tree would be able to diagnose package cache

insert problems. If new transactions generate performance problems beyond the scope of

the diagnosis tree, it will be unable to diagnose these problems.

A significant change in the DBMS workload will also cause the diagnosis tree to need to

be retuned or rebuilt. The experiments presented in this dissertation demonstrate that the

addition of new OLTP transactions, changing transaction frequencies and increasing the

size of the database do not alter the effectiveness of the diagnosis tree. The addition of

queries that are not handled by the diagnosis tree, such as queries that cause significant

package cache inserts, will reduce the effectiveness of the diagnosis tree.

The lifespan of the diagnosis tree is also based on the hardware configuration. Changes to

the hardware configuration such as adding more memory or disks will alter the

effectiveness of the diagnosis tree. Resources will react differently in the DBMS

depending on the underlying hardware, rendering the data collected to tune the diagnosis

tree obsolete. A change in hardware, such as modifying the number of disks or amount of

memory, may result in the need to retune the diagnosis tree.

 103

5.8 Summary

The results over the six test cases have shown to be very positive in diagnosing DBMS

resource problems and helping to improve overall database performance. Using only a

naïve tuning strategy, we are able to correctly diagnose and tune each test case to within a

few percentage points of the expert throughput, and in all cases we are able to outperform

the wizard throughput. Our measure of success was to achieve at least the performance of

the Tuning Wizard, something that we have surpassed. By matching the performance of

the expert configuration, we deem this method successful for the diagnosis of

performance problems in our test DBMS.

Building and tuning the various models and diagnosis trees have provided several

opportunities for the acquisition of knowledge. Several lessons were learned over the

course of model construction and testing, including the following:

- The relationships between resources are complex and poorly understood.

- The performance impact of some resources is complex and poorly understood.

- The relationships between resources can have a significant impact on the

diagnosis process.

- Resource performance can only be used for diagnosis and tuning purposes if the

state and performance of related resources are also taken into consideration.

- Workload throughput may not be the best measuring unit during the tuning

process as some useful tuning steps may result in lower throughput values.

Further tuning steps may result in performance increases that compensate for

temporary drops in throughput.

 104

- Using diagnosis and relationship models results in a well-defined strategy for

diagnosis and tuning. This provides a clear diagnosis and tuning path that can be

easily studied to derive new tuning strategies.

Our initial attempt to create a diagnosis system has resulted in a robust diagnosis tree and

resource model that is presently able to diagnosis performance problems in several

different scenarios. These scenarios include changing the size of the database, changing

the frequency of transactions within the workload, adding new transactions to the

workload, and combinations of both types of workload modification with database size

changes. The accuracy of the diagnosis system given these six situations leads us to

conclude that the diagnosis tree is able to handle workload changes that may be seen by a

database over time. The robustness of the workload lends strength to belief that the

creation of a single diagnosis tree for a given workload type is possible, bringing us

closer to a completely automated DBMS.

 105

Chapter 6

Conclusions

Achieving a high level of performance from a DBMS is a difficult task. The inherent

competition that exists between DBMS tasks places a strain on various hardware and

software resources. A delicate balance must be achieved when allocating resources in

order to obtain high levels of performance. The issue of performance is further

complicated by the fact that DBMSs do not stay in tune forever – as the data in the

database changes and the application workload changes, database performance may drop.

A DBMS must be tuned regularly in order to maintain high levels of performance. The

automation of DBMS resource management removes the need for human interaction in

order to maintain performance levels. Automation involves two steps: diagnosing the

offending resource and then adjusting that resource to increase performance. With

hundreds of possible DBMS resources to adjust, diagnosing which resource to adjust is

the starting point for self-managing DBMSs. This dissertation focuses on the diagnosis

process, outlining a framework for automating the diagnosis process.

 106

6.1 Contributions

Designing an automated DBMS diagnosis system is an important research issue. As the

complexity of DBMSs and workloads increase, the need for an automated system to

configure and maintain the DBMS increases. DBMS diagnosis and tuning is time-

consuming, repetitive and expensive. The ability to automatically diagnose performance

problems will reduce the need for expensive DBAs and lower the operating costs

associated with a DBMS. A reduction in operating costs coupled with a decrease in the

complexity of database administration will encourage a more widespread use of DBMSs.

This dissertation demonstrates that a diagnosis framework can be constructed to

automatically diagnose at least a subset of DBMS performance problems. The diagnosis

model and the resource model are designed so that they can adapt to a specific DBMS

environment. The models are designed to fit within the Quartermaster framework to

provide a fully automated diagnosis and tuning system. The research contributions of this

work include:

• A formal definition the DBMS diagnosis problem and analysis of the complexity

of the problem. We show heuristic methods are required to solve the problem.

• The development of the diagnosis model demonstrates that the diagnosis process

can be successfully automated. The results presented in Chapter 5 confirm the

ability of a sample diagnosis tree to correctly identify system bottlenecks for a

generic OLTP workload. The diagnosis model provides a basis for the creation of

other diagnosis trees for different database workloads and different DBMSs.

 107

• Chapter 4 presents generalized methods used to create diagnosis trees. These

methods can be applied to different workloads in order to determine how that

particular database should be tuned. The methods presented generate specific

information for the workload, DBMS and hardware configuration at hand. This

information can be used to generate specific diagnosis and tuning rules while

avoiding generalized tuning rules that may not apply to the given setup. The

presentation of these methods sets the stage for further research into automatic

generation of the diagnosis tree.

• The models used demonstrate that the diagnosis system is consistently able to

correctly diagnose performance problems on a working DBMS. The diagnosis

system is able to perform when the database size changes, the workload

frequencies are changed or new transactions are added. The results presented in

Chapter 5 show that the diagnosis system is able to adapt to a changing workload,

further exemplifying the versatility of the model.

• The models presented in Chapter 3 provide the basis for a generic tuning model.

The models presented in this dissertation can be applied to other software systems

where resource allocation is an issue.

6.2 Future Work

The research in this dissertation has many possible extensions. Relevant research topics

include the automatic generation and modification of diagnosis trees, the creation of a

generic workload, the convergence of the diagnosis process, increasing the number of

resources that can be diagnosed by the system, the creation of intelligent tuning

 108

algorithms and integrating the diagnosis tree into a DBMS application. The creation of

the diagnosis tree is presently done by hand using performance data collected while

running the workload. The diagnosis tree is then modified by hand when adjustments are

needed. Further research is needed into automating the construction and modification of

the diagnosis tree. The ability to automate the construction of the diagnosis tree would

almost completely remove the need for a DBA to tune the DBMS, further reducing the

operating costs for the DBMS. A learning and self-modifying diagnosis tree would be

able to alter itself as the workload changed, adjusting threshold values and node

positioning in order to maintain peak DBMS performance regardless of the workload.

Further research is needed into the creation of a generic test workload. Presently the

workload used to create and tune the diagnosis tree is the same workload that would be

run on the target system. The creation of a generic OLAP or OLTP workload would

allow the creation of a diagnosis tree based on the resource interactions of a generic

workload. This would result in a more generic diagnosis tree able to handle all new

transactions added to the workload, eliminating the problem of a diagnosis tree becoming

outdated when new types of transactions are added to the workload.

The convergence of the diagnostic process to insure optimal performance also deserves

consideration. There is presently no method to determine if the diagnosis tree will

eventually tune the DBMS to a state of optimal performance. Research into the optimal

performance of a DBMS and the ability of the diagnosis tree to tune the DBMS correctly

is needed.

 109

Significant work is needed to increase the size of the diagnosis tree. At present, the

number of resources diagnosed by the diagnosis tree is only a portion of the resources

available for adjustment. An increase in the number of resources diagnosed is needed if a

completely self-diagnosing system is to be achieved.

An increase in the number of automatic tuning algorithms must coincide with a larger

diagnosis tree. An increase in the size of the diagnosis tree is not beneficial for an

automated system unless the appropriate tuning algorithms exist for the resources

diagnosed. Replacing the present naïve tuning strategy with intelligent tuning algorithms

will greatly reduce the number of iterations needed to tune the DBMS.

The present diagnostic system is intended to run on performance data that was collected

from a running DBMS. The diagnosis system is run separately from the DBMS and the

results of the diagnosis are then applied to the DBMS. Research into the integration of the

diagnosis system into a DBMS application is needed. Integration would supply the

diagnosis system with more performance data, allowing the diagnosis system to better

determine how the DBMS is working and suggest more appropriate resource allocations.

Additional research is needed to determine how the diagnosis algorithms and the

Quartermaster framework can be applied to other software applications, such as web

servers, operating systems and other resource-intensive applications.

 110

Finally, work is needed to integrate the diagnosis system into a working DBMS. The

present diagnosis system is designed and constructed to work outside of a DBMS.

Integrating the diagnosis system into a DBMS may result in changes to both the DBMS

and the diagnosis system. Integration of the diagnosis system should begin on a small

scale with the implementation of a diagnosis tree and tuning algorithms that can manage

some of the DBMS resources. The initial integration of a diagnosis system for well-

understood resources with well-defined tuning algorithms will serve as a well-defined

enhancement to a DBMS that can be further tested for design and implementation issues

as well as an easily understood addition for customers to use. By slowly introducing a

well-defined automatic diagnosis to the customer base, a DBMS company will more

easily be able to convince customers of the merits of an automated diagnosis and tuning

system. As automated diagnosis becomes better understood at the developer and

customer levels, the scope of the diagnosis algorithms can be widened to include more

resources until all DBMS resources are managed automatically.

The integration of the automated diagnosis system will require some changes to be made

at the DBMS level. One of the most significant changes that must be made to the DBMS

is the ability to modify resource allocations without having to stop the DBMS engine.

Dynamically adjusting resources is key to fully automating the resource diagnosis and

tuning process. It is also expected that the diagnosis system will have to be modified to

allow DBAs to override various DBMS resource settings. The present diagnosis system

assumes that all of the resources in the diagnosis tree are available for tuning. It is

possible that a DBA may decide, for some reason unknown to the diagnosis process, that

 111

a resource should not be adjusted. The diagnosis algorithm will have to be adjusted to

handle such situations where only a subset of the resources can be adjusted.

The automatic diagnosis system presented in this dissertation is designed to run parallel

to any DBMS. It is expected that integration of the diagnosis system into a DBMS will

result in significant changes to the implementation of the diagnosis system. It is believed

that the underlying principles of our automated diagnosis system will remain regardless

of how it is implemented.

 112

References

[AAM94] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational

Issues, Methodological Variations, and System Approaches, Artificial

Intelligence Communications, IOS Press, Vol. 7 No. 1, pp. 39- 59, 1994.

[AGR00] Sanjay Agrawal, Surajit Chaudhuri and Vivek Narasayya. Automated

Selection of Materialized Views and Indexes for SQL Databases,

Proceedings of the 26th International Conference on Very Large Databases,

September 10-14, Cairo, Egypt, pp. 496-505, Morgan Kaufmann Publishers,

2000.

[BAC84] J. Bachant and J. McDermott. R1 revisited: Four years in the trenches, AI

Magazine Vol. 5, No. 3, 1984.

[BEN99] Darcy Benoit, Wendy Powley and Patrick Martin. Quartermaster: A

Framework for Automatic Tuning of Database Management Systems,

Department of Computing and Information Science, Queen’s University,

June 1999.

[BER98] Phil Bernstein et al. The Asilomar Report on Database Research, SIGMOD

Record, Vol. 27, No. 4, pp. 74-80, December 1998.

[BEL57] Richard Bellman. Dynamic Programming, Princeton University Press, 1957.

[BIG00] J.P. Bigus, J.L. Hellerstein, T.S. Jayram, and M.S. Squillante. AutoTune: A

Generic Agent for Automated Performance Tuning, Practical Application of

Intelligent Agents and Multi Agent Technology, 2000.

 113

[BIR93] R.S. Bird and O. de Moor. From Dynamic Programming to Greedy

Algorithms. In Formal Program Development, Volume 755 of Lecture

Notes in Computer Science, C. Moller, H. Partsch and S. Schuman, Editors,

pages 43-61, 1993.

[BRO92] Carla E. Brodley and Paul E. Utgoff. Multivariate Decision Trees, COINS

Technical Report 92-82, University of Massachusetts, December 1992.

[BRO93] Kurt P. Brown, Michael J. Carey and Miron Livny. Towards an Autopilot in

the DBMS Performance Cockpit, High Performance Transaction Systems

Workshop, 1993.

 [BRO94] Kurt P. Brown, Manish Mehta, Michael J. Carey and Miron Livny. Towards

Automated Performance Tuning For Complex Workloads, Proceedings of

the 20th International VLDB Conference, pp. 72-84, Santiago, Chile, 1994.

[BRO95] Kurt P. Brown. Goal-Oriented Memory Allocation in Database Management

Systems, PhD Thesis, University of Wisconsin-Madison, 1995.

[CHA99] Surajit Chaudhuri. Letter from the Special Issue Editor, Bulletin of the

Technical Committee on Data Engineering, Vol. 22, No. 2, page 2, June

1999.

[CHA00] Surajit Chaudhuri and Gerhard Weikum. Rethinking Database System

Architecture: Towards a Self-tuning RISC-style Database System,

Proceedings of the 26th International Conference on Very Large Databases,

pp. 1-10, Cairo, Egypt, 2000.

 114

[CHA00-2] Surajit Chaudhuri and Vivek Narasayya. Automating Statistics Management

for Query Optimizers. Proceedings of 16th International Conference on

Data Engineering, pp. 339-348, San Diego, USA 2000

 [CHU95] Jen-Yao Chung, Donald Ferguson, George Wang, Christos Nikolaou and

Jim Teng. Goal oriented dynamic buffer pool management for data base

systems, IBM Technical Report TR94-0125, 1994.

[CHV83] Vašek Chvátal. Linear Programming, W.H. Freeman and Company, 1983.

[COL00] The Columbia Encyclopedia, Sixth Edition,

http://www.bartleby.com/65/li/linearpr.html, 2001.

[CUR96] Sharon Curtis. A Relational Approach to Optimization Problem, PhD

Thesis, Somerville College, University of Oxford, April 1996.

[CUR97] Sharon Curtis. Dynamic Programming: A Different Perspective, In

Algorithmic Languages and Calculi, R. Bird and L. Meertens, Editors, pp.

1-23, Chapman & Hall, London, U.K., 1997.

 [DAV92] Randall Davis and Walter Hamscher. Model-based reasoning:

Troubleshooting, in Reading in Model-based Diagnosis, pp. 3-24, Morgan

Kaufmann Publishers, 1992.

[deK92] Johan deKleer and Brian C. Williams. Diagnosing Multiple Faults, in

Readings in Model-based Diagnosis, pp. 100-117, Morgan Kaufmann

Publishers, 1992.

[deK89] Johan deKleer and Brian C. Williams. Diagnosis with Behavioral Modes,

Proceedings IJCAI-89, Detroit, Mi, pp104-109, 1989.

[EOP02] http://www.e-optimization.com/resources

 115

[GAS75] Saul Gass. Linear Programming: Methods and Applications, Fourth

Edition, The Kingsport Press, 1975.

[HAR99] David G. Hart, Joseph L. Hellerstein and Po C. Yue. Automated Drill

Down: An Approach To Automated Problem Isolation For Performance

Management, In Proceedings of the Computer Measurement Group, pp.

376-384, 1999.

[HEL97] Joseph L. Hellerstein. Automated Tuning Systems: Beyond Decision

Support. In the Proceedings of the 1997 Computer Measurement Group,

1997.

[HOR88] Eric Horvitz, John Breese and Max Henrion. Decision Theory in Expert

Systems and Artificial Intelligence, International Journal of Approximate

Reasoning, pp. 247-302, 1988.

[IBM00] IBM DB2 Universal Database Administration Guide Version 7.1, 2000.

[JOH92] Robert Johnson. Elementary Statistics, Sixth Edition, PWS-Kent Publishing

Company, 1992.

[LAZ84] Edward D. Lazowska, John Zahorjan, G. Scott Graham and Kenneth C.

Sevcik. Quantitative System Performance: Computer System Analysis Using

Queueing Network Models, Prentice-Hall, New Jersey, 1984.

[LEA96] David Leake. CBR in Context: The Present and Future, in Case-Based

Reasoning: Experiences, Lessons, and Future Directions, D. Leake, Editor,

pp. 3-30, AAAI Press/MIT Press, 1996.

 116

[LEU93] Scott T. Leutenegger and Daniel Dias. A Modeling Study of the TPC-C

Benchmark, In Proceedings of the ACM SIGMOD International Conference

on Management of Data, pp. 22-31, Washington, D.C., May 1993.

[LOM99] David Lomet. Letter from the Editor-in-Chief, Bulletin of the Technical

Committee on Data Engineering, Vol. 22, No. 2, page 1, June 1999.

[LUG93] George F. Luger and William A. Stubblefield. Artificial Intelligence –

Structures and Strategies for Complex Problem Solving, Second Edition,

1993.

[MAR00] Patrick Martin, Min Zheng, Hoi-Ying Li, Keri Romanufa and Wendy

Powley. Dynamic Reconfiguration: Dynamically Tuning Multiple Buffer

Pools, Proceedings of the International Conference on Database and Expert

System Applications (DEXA'2000), pp. 92-101, September, 2000.

[MOL89] Michael K. Molloy. Fundamentals of Performance Modeling, Macmillan

Publishing Company, New York, 1989.

[MOZ91] Igor Mozetic. Hierarchical Model-Based Diagnosis, International Journal of

Man-Machine Studies, Vol. 35 No. 3, pp 329-362, 1991.

[MYL95] John Mylopoulos, Vinay Chaudhri, Dimitris Plexousakis, Adel Shrufi and

Thodoros Topaloglou. Building Knowledge Base Management Systems,

Very Large Databases Journal, Vol. 5, No. 4, pp. 238-263, October 1996.

[PAR01] Sujay Parekh, Neha Gandhi, Joseph Hellerstein, Dawn Tilbury, T.S. Jayram,

and Joe Bigus. Using Control Theory to Achieve Service Level Objectives

In Performance Management, in Real-Time Systems, Vol. 23, No. 1-2, pp.

127-141, 2002.

 117

[PAU98] Daniel Paul, Sudhakak Yalamanchili, Karsten Schwan, and Rakesh Jha.

Decision Models for Adaptive Resource Management in Multiprocessor

Systems, http://www.htc.honeywell.com/projects/arm/, 1998.

[RYM92] Ron Rymon. More On Goal-Directed Diagnosis, in Proceedings of the Third

International Workshop on Principles of Diagnosis, 1992.

[SEV81] Kenneth Sevcik. Data base System Performance Prediction Using an

Analytical Model, In Proceedings of the 7th International Conference on

Very Large Data Bases, Cannes, France, pp. 182-197, September, 1981.

[SHI00] Tetsuya Shirai et al. DB2 UDB V7.1 Performance Tuning Guide, IBM

Redbooks, 2000.

[SWE99] Steven Sweet. Think About It: Artificial Intelligence & Expert Systems,

How Computers Work, Vol. 3, Issue 4, November 1999.

[TPC] TPC-C Benchmark Specification, http://www.tpc.org

[TPC2] TPC Website, http://www.tpc.org/

[WEI94] Gerhard Weikum, Christof Hasse, Axel Mönkeberg and Peter Zabback. The

Comfort Automatic Tuning Project, Information Systems, Vol. 19, No. 5,

pages 381-432, 1994.

[WEI99] Gerhard Weikum, Arnd Christian König, Achim Kraiss and Markus

Sinnwell. Towards Self-Tuning Memory Management for Data Servers,

Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, pp. 3-11, 1999.

 118

[XU02] Xiaoyi Xu, Patrick Martin and Wendy Powley. Configuring Buffer Pools in

DB2 UDB, IBM Centre for Advanced Studies Conference (CASCON),

Toronto, 2002.

[ZUZ95] Alenka Zuzek, Franc Novak, Anton Biasizzo, Iztok Savnik, and Bojan

Cestnik. Sequential Diagnosis Tool for System Maintenance and Repair,

Electronical Review, Ljubljana, Vol. 62, No. 3-4, pp. 224-231, 1995.

 119

Appendix A

Test Environment

The test hardware consists of an IBM eServer xSeries 240 with two Intel Pentium-III

1GHz processors and 2 GB of RAM. The system contains 22 SCSI 7200rpm disks spread

across five disk controllers. Two of the disks are located in the main computer case on a

single drive controller and are used for the operating system, the DBMS software and log

files. The other 20 disks are located in two EXP300 external storage expansion units.

Each of four disk controllers run five disks in the expansion units. The data is spread

across all 20 of the disks. The operating system used is Windows NT 4.0 Server (Service

Pack 6). The DBMS software is IBM’s DB2/UDB version 7.1.

 120

Appendix B

TPC-C Benchmark

The Transaction Processing Performance Council (TPC) is a non-profit corporation

founded to define transaction processing, create standardized database benchmarks, and

be the distribution point for benchmark results. The goal of the TPC is to create

benchmarks that can be run on any hardware, operating system and DBMS combination

[TPC2]. The third benchmark produced by the TPC is known as the “C” benchmark and

is directed toward On-Line Transaction Processing (OLTP) systems. The “C” benchmark,

commonly referred to as “TPC-C”, is modeled after real production systems and is

intended to simulate an order-entry environment. The environment includes entering

orders, delivering orders, recording payments, checking order status and stock level

monitoring.

The logical database design of a TPC-C database is based on the nine relations found in

Table 13 [LEU93]. The schema for the TPC-C database is found in Figure 28 [TPC]. In

Figure 28, the numbers in the entity blocks represent the cardinality of the tables and the

numbers next to the arrows represent the cardinality of the relationships. The plus symbol

is used to denote that a number is subject to small variations [TPC].

 121

Relation Name Cardinality Tuple Length (bytes) Tuples Per 4K page

Warehouse W 89 46

District W*10 95 43

Customer W*30K 655 6

Stock W*100K 306 13

Item 100K 82 49

Order 24 170

New-Order 8 512

Order-Line 54 75

History 46 89

Table 13 - TPC-C data relations.

W a r e h o u s e
W

Distr ict
W * 1 0

Cus tomer
W*30K

10

3K

History
W * 3 0 K +

1+

Stock
W*100k

I tem
100k100K W

Orde r
W * 3 0 K +

N e w - O r d e r
W * 5 k

Order-L ine
W*300k+

0-1

5 -151+

3+

Figure 28 - TPC-C table schema.

 122

TPC-C consists of five transactions. Each transaction is required to execute a specific

percentage of all transactions executed by the benchmark. The transaction requirements

are listed in Table 14. The transactions are as follows: [TPC]

• New Order is a read-write transaction that places an order for items in the

warehouse. New Order has a high frequency of execution.

• Payment updates the balance of the customer accounts and propagates this

information to the district and warehouse sales statistics. Payment has a high

frequency of execution.

• Order-Status is a read-only transaction that queries the status of customer orders.

It has a low frequency of execution.

• Delivery is a transaction based on processing batches of new orders. Orders are

processed in batches of 10. Delivery has a low frequency of execution.

• Stock Level checks stocks levels to determine which stock is below a specified

threshold. Stock level is a read-only transaction with a low frequency of

execution.

Transaction Name Percentage of workload

New Order 45%

Payment 43%

Order Status 4%

Delivery 4%

Stock Level 4%

Table 14 - Transaction requirements.

 123

Appendix C

DBMS Resources

Asynchronous Page Cleaners – (see I/O Cleaners)

Buffer Pool Size – A buffer pool is a segmented piece of memory used by the database

to cache data. The size of the buffer pool can be adjusted by DBAs.

Catalog Cache – Catalog cache is a defined portion of memory used to cache the

database catalog.

Changed Pages Threshold (CPT) – The Changed Pages Threshold is the percentage of

modified pages allowed in the buffer pool before the I/O cleaner processes are

started.

Database Heap – The database heap is the portion of memory allocated per database for

use by all applications connected to the database.

Deadlock Check Time – The interval of time the DBMS will wait before checking for

deadlocks.

I/O Cleaners – I/O cleaners are processes used by the DBMS to perform asynchronous

writes to disk.

Log Buffer – The log buffer is an allocation section of memory used to buffer data that is

to be written to the database logs.

 124

Lock Timeout – The amount of time two deadlocked process will wait before they time

out and fail.

Log File Size – The size of each log file.

Maxappls – The maximum number of concurrent applications that can be connected to a

database.

Maxlocks – The maximum percentage of lock list to be used before lock escalations

occur.

Number of commits to group – Specifies the number of commits that can be buffered

before being written to disk.

Softmax – The percentage of the log file that would need to be recovered after a crash.

This value can be set above 100, allowing multiple files to need restoration after a

crash.

Sort Heap Size - The amount of memory allocated for sorts.

Sort Heap Threshold – Sort heap threshold is an instance-wide soft limit on the total

amount of memory available for private sorts. Sort heap threshold is also a

database-wide hard limit on the memory available for shared sorts.

 125

Appendix D

Performance Data Collected

Note: All values are measured for the full data collection period unless otherwise

specified.

Data collected Description

Number of Transactions The total number of transactions
completed.

Dirty Page Steals The total number of times a dirty page
was synchronously written to disk by a
transaction process.

Log Triggers The total number of times the log
threshold was triggered.

Threshold Triggers The total number of times the changed
pages threshold was reached.

Logical Reads The total number of logical reads.

Physical Reads The total number of reads that required
disk access.

Data Writes The total number of data pages written
to disk.

Index Writes The total number of index pages
written to disk.

Asynchronous Data Writes The total number of data writes made to
disk asynchronously.

Asynchronous Index Writes The total number of index writes made
to disk asynchronously.

Asynchronous Reads The total number of disk reads that
were made asynchronously.

Asynchronous Read Requests The total number of asynchronous read
requests.

Physical Read Time The total amount of time spent doing
physical reads.

 126

Physical Write Time The total amount of time spent doing
physical writes.

Catalog Cache Inserts The total number of inserts made into
the catalog cache.

Package Cache Inserts The total number of inserts made into
the package cache.

Lock Waits The total number of times processes
had to wait for locks.

Lock Wait Time The total amount of time spent waiting
for locks.

Lock List in use The amount of space in the lock list
being used at the time of the snapshot.

Deadlocks The total number of deadlocks that
have occurred.

Lock Escalations The number of times that locks had to
be escalated in order to reduce the total
number of locks.

Sort Heap Size The total amount of memory allocated
for sorts.

Sort Overflows The total number of sorts that have
overflowed the sort heap.

Post-threshold Sorts The total number of sorts that have
requested space after the sort threshold
has been reached.

Number of Sorts The number of sorts that have occurred.

Sort Time The total amount of time spent
performing sorts.

 127

Appendix E

Glossary of Terms

Asynchronous write – An asynchronous write is when data is written back to disk by a

background I/O cleaner process. Asynchronous writes are beneficial as groups of

data can be written at a time.

Buffer Pool – A buffer pool is a segmented piece of memory used by the database to

cache data. All data is read and written through the buffer pool.

Buffer pool hit rate – The hit rate of a buffer pool is defined as the percentage of times

data is found in the memory as opposed to disk. The formula used for the buffer

pool hit rate is:

reads logical ofNumber
reads physical ofNumber - reads logical ofNumber

 rateHit =

Catalog Cache – Catalog cache is a defined portion of memory used to cache the

database catalog.

Changed Pages Threshold (CPT) – The Changed Pages Threshold is the percentage of

modified pages allowed in the buffer pool before the I/O cleaner processes are

started.

Database Heap – The database heap is the portion of memory allocated per database for

use by all applications connected to the database. The database heap contains

 128

control block information and reserves space for the catalog cache and the log

buffer.

DB2 Performance Wizard – The performance wizard is an application included with

DB2. The application gathers information about the hardware and workload and

suggests resource adjustments to improve performance.

DBMS – Database Management System

DBA – Database Administrator

Deadlock Check Time – The interval of time the DBMS will wait before checking for

deadlocks.

Decision Node – A decision node is a non- leaf node of the decision tree. Each decision

node contains a list of questions related to the performance of the DBMS. The

results of the questions will determine the path the tree traversal algorithm will

follow.

Decision Tree – A binary tree structure containing decision nodes and tuning nodes.

Dirty page steals – A dirty page steal occurs when a database agent is unable to find a

clean page in memory. A modified (i.e. “dirty”) page is selected and written to

disk by the database agent. A dirty page steal is a synchronous write to disk and

should be avoided as the database agent must pause execution of a transaction in

order to perform the write to disk.

Indicator Values – An indicator value is a measured or calculated value used to judge

the performance of a DBMS resource.

I/O Cleaners – I/O cleaners are background processes used by the DBMS to perform

asynchronous writes to disk.

 129

Lock Escalation – Lock escalation occurs when there is not enough room in the

allocated locklist memory for all of the locks needed. Escalation is when locks are

upgraded in order to save memory space, such as upgrading several row-level

locks for one table-level lock.

Log Buffer – The log buffer is a section of memory used to buffer data that is to be

written to the database logs.

OLAP Workload – OLAP stands for “On-Line Analytical Processing”. An OLAP

workload consists of decision-support queries of high complexity and low

volume.

OLTP Workload – OLTP stands for “On-Line Transaction Processing”. An OLTP

workload consists of low complexity queries in high volume.

Resource – A resource is a piece of hardware or software that is in limited supply and

can be regulated in usage.

Synchronous Writes – A synchronous write occurs when a database agent is forced to

write data to disk. The agent must pause transaction processing in order to make

write the data to disk.

Threshold Values – Threshold values are numerical values used as the basis of

comparison to determine how well the DBMS is performing. Indicator values are

compared to threshold values to determine which path will be followed through

the diagnosis tree.

TPC-C – TPC-C is the Transaction Processing Performance Council benchmark for

OLTP workloads.

 130

tpmC – Transactions per Minute “C” for the TPC-C benchmark.

Tuning Node – A tuning node is a leaf node in the diagnosis tree used to store tuning

suggestions.

 131

Appendix F

Confidence Intervals

Data collected every five seconds over the final 17 minutes of a 20 minute run was used

to calculate the standard deviation of the set. The throughput values used are listed in

Table 15. The standard deviation for this data is 185.0. The mean is 3414.97.

Using the standard deviation of 185.0, a set size of 205 elements, a Z value of 1.96 and a

significance level of 5%, the confidence interval is calculated to be 25.3 tpmC. In other

words, the throughput is within 25.3 tpmC 95% of the time. Figure 29 contains the

equation used to calculate the confidence interval [JOH92].

z (α/2) * sd

E
n =

2

Figure 29 - Confidence interval equation.

 132

Several assumptions where made for the calculation of the confidence interval. The first

assumption is that the workload is stable. This assumption is based on the fact that the

TPC-C benchmarking workload is well-known as a stable benchmarking. A second

assumption is that the various measurements taken are representative of the actual

performance of the workload. Given that the TPC-C workload is a repetition of five well-

defined transactions, the measurement at each interval is the calculation of the workload

throughput for the transactions performed during that given interval. The transaction mix

remains constant for the duration of the run, resulting in comparable five second

measurement intervals. It is from these sample measurements that we calculate the

confidence interval for collected data.

3372 3708 3288 3360 3600 3540 3384 3876 3612
3216 3336 3336 3432 3408 3360 3288 3420 3612
3168 3288 3708 3384 3300 2976 3192 3468 3552
3204 3048 3456 3204 3468 3408 3180 3528 3444
3072 3096 3528 3192 3600 3456 3240 3480 3336
3492 3528 3312 3588 3192 3636 3576 3432
3228 3504 3360 3588 3504 3312 3348 3264
3456 3312 3780 3348 3600 3276 3696 3468
3528 3108 3324 3396 3396 3528 3588 3408
3072 3684 3564 3504 3492 3204 3624 3216
3360 2928 3864 3516 3396 3768 3096 3528
3264 3264 3480 3420 3372 3600 3120 3264
3480 3444 3480 3732 3504 3132 3408 3672
3600 3528 3372 3096 3360 3444 3660 3648
3516 3168 3312 3528 3312 3912 3312 3216
3552 3492 3276 3240 3156 3384 3564 3444
3396 3756 3252 3552 3216 3780 3480 3384
3204 3252 3576 3624 3024 3276 3648 3504
3216 3624 2976 3216 3372 3756 3336 3636
3240 3564 3636 3588 3492 3540 3276 3420
3564 3552 3288 3468 3336 3552 3528 3324
3348 3396 3456 3636 2940 3552 3336 3540
3240 3324 3408 3504 3408 3312 3360 3252
3444 3312 3276 3300 3612 3636 3336 3228
3504 3300 3552 3600 3204 3384 3708 3492

Table 15 - Data used for standard deviation calculation.

 133

Appendix G

Performance Monitor Database

Schema

The following database schema was used to store data collected by the performance data

collection program. Information is then retrieved from this database for use by the

diagnosis algorithm.

cc.TimeStamp(
timestamp timestamp not null primary key,
monitorlength integer);

cc.Cache(

timestamp timestamp not null primary key,
cataloginserts integer,
packageinserts integer);

cc.Locks(

timestamp timestamp not null primary key,
lockwaits integer,
lockwaittime integer,
locklistinuse integer,
deadlocks integer,
lockescalations integer);

cc.TransClass(

Name varchar(20) not null primary key,
Freq integer,
Type varchar(15),
SQL varchar(500),
NumLogicalReads smallint);

 134

cc.TCPerfData(

TCID varchar(20) not null,
timestamp timestamp not null,
ResponseTime decimal(7,4),
SnapNumber integer,
IntervalLength smallint,
Deadlocks smallint,
Rejects smallint,
primary key(TCID, timestamp));

cc.BPPerfData(

bpid varchar(20) not null,
bpsize integer,
pagesize integer,
TCName varchar(20),
timestamp timestamp not null,
numlogicalreads integer,
numphysicalreads integer,
datawrites integer,
indexwrites integer,
asyncdatawrites integer,
asyncindexwrites integer,
asyncreads integer,
asyncreadreq integer,
physicalreadtime integer,
physicalwritetime integer,
hitrate decimal(5,2) ,
snap smallint,
primary key(bpid, timestamp));

cc.FreqData(

timestamp timestamp not null,
NumTransRun integer);
create table cc.Goal(
TCID varchar(20) not null primary key,
PerfMeasure varchar(20),
Priority smallint,
Type char(10),
value decimal(7,4));

cc.UsesBP(

BPId varchar(20) not null,
TCID varchar(20) not null,
weight decimal(7, 4),
primary key(BPID, TCID));

 135

cc.SortInfo(

timestamp timestamp not null primary key,
heap_allocated integer,
overflows integer,
post_threshold integer,
total_number integer,
total_time integer,
active integer,
piped_requested integer,
piped_accepted integer);

cc.AsynchIOCleaners(

timestamp timestamp not null primary key,
dirtypagesteals integer,
logtriggers integer,
thrshtriggers integer);

 136

Appendix H

Decision Database Schema

resource_area (
name VARCHAR(50) PRIMARY KEY NOT NULL);

resource (

name VARCHAR(50) PRIMARY KEY NOT NULL);

setting (

name VARCHAR(50) PRIMARY KEY NOT NULL,
default_value VARCHAR(50),
range_value VARCHAR(50),
unit_of_measure VARCHAR(50),
present_value VARCHAR(50),
impact VARCHAR(50));

msetting (

parent VARCHAR(50) NOT NULL,
name VARCHAR(50) NOT NULL,
default_value VARCHAR(50),
range_value VARCHAR(50),
unit_of_measure VARCHAR(50),
present_value VARCHAR(50),
impact VARCHAR(50),
PRIMARY KEY (parent, name),
FOREIGN KEY (parent) REFERENCES setting(name));

marker (

name VARCHAR(50) PRIMARY KEY NOT NULL,
type VARCHAR(50),
unit_of_measure VARCHAR(50),
value VARCHAR(50));

is_in (

resource_area_name VARCHAR(50) NOT NULL,

 137

resource_name VARCHAR(50) NOT NULL,
PRIMARY KEY (resource_area_name, resource_name),
FOREIGN KEY (resource_area_name) REFERENCES resource_area(name),
FOREIGN KEY (resource_name) REFERENCES resource(name));

has_setting (

resource_name VARCHAR(50) NOT NULL,
setting_name VARCHAR(50) NOT NULL,
FOREIGN KEY (resource_name) REFERENCES resource(name),
FOREIGN KEY (setting_name) REFERENCES setting(name));

uses_marker (

resource_name VARCHAR(50) NOT NULL,
marker_name VARCHAR(50) NOT NULL,
FOREIGN KEY (marker_name) REFERENCES marker(name),
FOREIGN KEY (resource_name) REFERENCES resource(name));

related_to (

setting1 VARCHAR(50) NOT NULL,
setting2 VARCHAR(50) NOT NULL,
FOREIGN KEY (setting1) REFERENCES setting(name),
FOREIGN KEY (setting2) REFERENCES setting(name));

decision (

name VARCHAR(50) PRIMARY KEY NOT NULL,
tuning VARCHAR(255));

decision_settings (

decision VARCHAR(50) NOT NULL,
setting VARCHAR(50) NOT NULL,
PRIMARY KEY (decision, setting),
FOREIGN KEY (decision) REFERENCES decision(name),
FOREIGN KEY (setting) REFERENCES setting(name));

decision_tree (

root VARCHAR(50) NOT NULL,
child VARCHAR(50) NOT NULL,
switch INT NOT NULL,
PRIMARY KEY (root, child),
FOREIGN KEY (root) REFERENCES decision(name),
FOREIGN KEY (child) REFERENCES decision(name));

operator (

name VARCHAR(50) PRIMARY KEY NOT NULL,
symbol VARCHAR(50));

 138

equation (
equation_num INT PRIMARY KEY NOT NULL,
setting1 VARCHAR(50) NOT NULL,
setting2 VARCHAR(50) NOT NULL,
issetting INT NOT NULL,
operator VARCHAR(50) NOT NULL,
value VARCHAR(50),
FOREIGN KEY (setting1) REFERENCES setting(name),
FOREIGN KEY (operator) REFERENCES operator(name));

has_equation (

decision VARCHAR(50) NOT NULL,
equation_num INT NOT NULL,
FOREIGN KEY (decision) REFERENCES decision(name),
FOREIGN KEY (equation_num) REFERENCES equation(equation_num));

threshold (

name VARCHAR(50) PRIMARY KEY NOT NULL,
value VARCHAR(50) NOT NULL,
unit_of_measure VARCHAR(50) NOT NULL);

transaction (

name VARCHAR(50) PRIMARY KEY NOT NULL,
frequency INT NOT NULL,
readlevel INT NOT NULL,
priority INT NOT NULL);

trans_has_tables (

transaction VARCHAR(50) NOT NULL,
table VARCHAR(50) NOT NULL,
PRIMARY KEY (transaction, table),
FOREIGN KEY (transaction) REFERENCES transaction(name));

trans_has_index (

transaction VARCHAR(50) NOT NULL,
index VARCHAR(50) NOT NULL,
PRIMARY KEY (transaction, index),
FOREIGN KEY (transaction) REFERENCES transaction(name));

transactionclass (

name VARCHAR(50) PRIMARY KEY NOT NULL);

workload (

name VARCHAR(50) PRIMARY KEY NOT NULL);

has_transaction (

 139

class VARCHAR(50) NOT NULL,
transaction VARCHAR(50) NOT NULL,
PRIMARY KEY (class, transaction),
FOREIGN KEY (class) REFERENCES transactionclass(name),
FOREIGN KEY (transaction) REFERENCES transaction(name));

has_class (

workload VARCHAR(50) NOT NULL,
class VARCHAR(50) NOT NULL,
PRIMARY KEY (workload, class),
FOREIGN KEY (workload) REFERENCES workload(name),
FOREIGN KEY (class) REFERENCES transactionclass(name));

update_history (

name VARCHAR(50) PRIMARY KEY NOT NULL,
start_date TIMESTAMP,
end_date TIMESTAMP,
setting VARCHAR(50),
pvalue VARCHAR(50),
avalue VARCHAR(50),
pperformance VARCHAR(50),
aperformance VARCHAR(50),
feedback INT);

modify (

num INT NOT NULL,
name VARCHAR(50) NOT NULL,
direction VARCHAR(20) NOT NULL,
comments VARCHAR(255),
PRIMARY KEY (num, name),
FOREIGN KEY (name) REFERENCES setting(name));

 140

Appendix I

Forward and Reverse Resource

Trees

The following is a collection of forward and reverse resources trees used for this

dissertation. The root node of each resource tree is noted in bold.

Buffer Pool SizeChanged Pages Threshold

Number of I/O Cleaners

Log Buffer SizeCatalog Cache Size

Database Heap Size

Figure 30 - Forward resource tree for the number of I/O cleaners resource.

 141

Buffer Pool SizeChanged Pages Threshold

Number of I/O Cleaners

Figure 31 - Reverse resource tree for the number of I/O cleaners resource.

LockList SizeMaxlocks

Max Number of Agents

Max Number of Applications

Deadlock Check Time

Average Num of Applications

Figure 32 - Forward resource tree for the deadlock check time resource.

Deadlock Check Time

Figure 33 - Reverse resource tree for the deadlock check time resource.

 142

LockList SizeMaxlocks

Max Number of Agents

Max Number of Applications

Lock Timeout

Average Num of Applications

Figure 34 - Forward resource tree for the lock timeout resource.

Lock Timeout

Figure 35 - Reverse resource tree for the lock timeout resource.

Locklist Size

Maxlocks

Max Number of Agents

Max Number of Applications

Average Num of Applications

Figure 36 - Forward resource tree for the locklist size resource.

 143

Locklist Size

Lock Timeout

Maxlocks

Max Number of Agents

Max Number of Applications

Deadlock Check Time

Average Num of Applications

Figure 37 - Reverse resource tree for the locklist size resource.

Sort Heap Threshold

Sort Heap Size

Figure 38 - Forward resource tree for the sort heap size resource.

Sort Heap Threshold

Sort Heap Size

Figure 39 - Reverse resource tree for the sort heap size resource.

 144

Sort Heap Threshold

Sort Heap Size

Figure 40 - Forward resource tree for the sort heap threshold resource.

Sort Heap Threshold

Sort Heap Size

Figure 41 - Reverse resource tree for the sort heap threshold resource.

 145

Appendix J

Statistical Analysis Data

Run #1

4044 4500 4032 4680 4140 4380
4056 4776 4416 4584 4272 4440
4092 4044 4020 3984 4716 4020
4224 4512 4428 4320 4212 4008
4164 4236 4284 4332 4188 4416
4308 4296 3960 4476 4380 4356
4284 3972 4356 3408 4608 4188
4068 4092 3984 4236 3912 3816
4452 4596 4032 4212 4632 4164
4596 4164 4248 4212 4260 4104
4320 4632 4080 4416 4056 4428
3972 4068 4008 4344 4308 4236
4548 3924 4128 4368 4524 4224
4440 4692 4152 4260 4440 4656
4296 4056 4116 4188 4164 4464
4392 4452 4212 4320 4344 4632
4416 4152 3804 4176 4452 3984
4068 4464 4320 4284 4272 4584
4452 3912 4116 4296 4044 4080
4404 4524 4764 4368 3912 4080
4380 4428 4344 4464 4668 3840
4176 4020 3900 4464 4332 3828
4416 4272 4404 4212 4368 3900
4272 4284 4356 4296 3936 4284
4476 4116 4392 3924 4128 4236
4344 4248 4536 4392 4080 4512
4092 4176 4284 4320 4152
4080 4224 4032 4608 4200
4536 3744 4320 4092 4284
4296 4212 4440 4248 4524
4164 3900 4224 4284 4536

 146

Run #2

4371 4095 4491 4419 4047 3603
3939 4059 4095 3579 4071 4479
4347 4479 3903 4407 4335 4443
4467 4179 4467 4107 3795 4359
4635 4071 4167 4479 4431 4095
4695 4203 4635 3771 4251 4299
4311 4599 4263 4239 4371 4587
4059 4083 3843 4299 4275 4131
4131 3759 4335 4059 4119 4167
4455 4203 3915 4071 4035 3975
3855 3939 4479 4431 4491 4419
4203 4251 4179 4419 4263 4599
4335 3975 3903 4539 4371 4203
4491 4443 4527 4239 4227 4767
4203 4119 4623 4131 4143 4143
4407 4047 4635 4371 4599 3867
4179 4443 4179 4323 4227 4443
4263 4479 4143 4131 4371 4179
4251 4479 4251 4371 4251 4239
4143 4323 4059 4299 4227 4263
4347 4467 4143 4227 4323 4383
4527 4311 4239 4683 4263 4299
4251 4191 4107 4119 4563 4287
4311 4119 4671 4059 4179 4203
3975 4395 4335 4083 4191 4047
4191 3915 4179 4431 4527 3879
4167 4443 4287 4167 4467
4275 4107 4467 4419 4035
3915 4263 3795 4131 4335
3867 4227 4527 4035 4239
4407 4263 3807 4455 4059

 147

Run #3

4060 3964 4084 3880 4120 3880
4336 4636 4144 4504 4132 4072
4396 4504 4252 4492 4072 4336
4648 4648 4384 4156 4804 4600
4312 4060 4240 4060 3904 4204
4060 4288 3988 4432 4432 4060
4228 4444 4252 4324 4216 4036
3952 4780 3940 4108 3856 4300
3796 4240 4024 4276 4360 4480
4540 4360 4312 4480 4204 4396
4336 4360 4240 4252 4132 4312
4252 4396 4156 4288 4144 4720
4456 4012 4564 4828 4048 4024
4144 4096 4528 4264 4132 4756
4060 3808 4312 4012 3736 3892
4780 4588 4588 3904 4228 4624
4120 4048 4720 4600 4552 4036
4108 3928 4288 4504 4072 4324
4120 4252 4120 3940 4672 4360
4204 4108 3700 4396 4444 4216
4288 4192 4636 4336 4540 4480
4108 4420 4564 4060 4132 4180
4576 4408 4504 4288 4036 4348
4408 4624 4168 3952 4588 4144
4336 4204 4720 4300 4312 4252
4168 4264 4432 3988 4384 4432
3916 3952 4120 4300 4168
4120 4312 4084 4060 4084
4408 3904 4012 4216 4492
4120 4456 4264 4468 4300
4288 4252 4360 4540 4276

 148

Vita

Name: Darcy Gerard Benoit

Place and Year of Birth: Antigonish, Nova Scotia, Canada, 1973.

Education: St. Francis Xavier University, 1991-1995.

 B.Sc. Honours, Department of Mathematics,

Computing and Information Systems, 1995.

 Queen’s University, 1995-1997.

 MSc, Department of Computer Science, 1997.

Experience: Lecturer, Jodrey School of Computer Science,

Acadia University, 2002-2003.

 Research Assistant, Department of Computing and

Information Science, Queen’s University, 1996-

2001.

 Teaching Assistant, Department of Computing and

Information Science, Queen’s University, 1995-

2001.

 149

 Database Administrator / Software Developer,

MediaShell Corporation, Kingston, Ontario,

Canada, July 2000 – September 2001.

 Java Instructor, Queen’s University Mini

Enrichment Courses, May 2000, 2001 and 2002.

(Taught several 1-week Java courses to high school

students).

 Research Position, IBM Center for Advanced

Studies, Toronto Lab, IBM Canada, summer 1997,

1998.

 Research Position, Canada Institute for Scientific

and Technical Information, Scientific Numeric

Database Section, National Research Council

Canada, May-September 1995.

 Teaching Assistant, Department of Mathematics,

Computing and Information Systems, St. Francis

Xavier University, 1994-1995.

 150

 Research Assistant, Department of Mathematics,

Computing and Information Systems, St. Francis

Xavier University, 1994.

Awards: PhD Fellowship, IBM Canada, 1997-2000.

 Graduate Scholarships, Queen’s University, 1995 –

2001.

 Teaching Assistant of the Year, Queen’s University

1999-2000.

 Entrance Scholarship, St. Francis Xavier University,

1991.

Publications: Benoit, Darcy G., Automated Diagnosis and

Control of DBMS Resources, Conference on

Extending Database Technology (EDBT) PhD

Workshop, Konstanz, Germany, March 2000.

 Benoit, Darcy G., Dynamic Extensions for

Educational Hypermedia, MSc Thesis, Queen's

University at Kingston, Canada, 1997.

 151

 Scheugraf, Ernst J., and Benoit, Darcy G.,

“Thesaurus Assisted automatic Indexing of

Document Databases:, in Proceedings of the Tenth

International symposium on Computer and

Information Sciences, Volume II, editors A.E.

Harmanci, E. Gelenbe and B. Öencik, pp 239-246,

October 1995.

 Benoit, Darcy G., “Wordnet and its Uses”, APICS

Annual Computer Science Conference Proceedings,

pp 20-29, October 1994.

Posters: Diagnosis and Automatic DBMS Tuning, CASCON

2000.

 Automatic Diagnosis of Performance Problems in

DBMSs, CITO Research Review, 1 May 2001.

 Goal-Oriented Resource Management, CASCON

1997.

 152

 Diagnosis and Automatic DBMS Tuning,

CanDB/IRIS 2000 (Second annual Canadian

Database Research Workshop, 12 Nov 2000,

Institute for Robotics and Intelligent Systems).

 Self-Tuning DBMSs – Automatic Diagnosis

Algorithms, CASCON 1999.

Invited Talks: Benchmarks and Automated Tuning with

DB2/UDB, CASCON 2000.

