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Abstract 

Database performance is directly linked to the allocation of the resources used by the 

Database Management System (DBMS). The complex relationships between numerous 

DBMS resources make problem diagnosis and performance tuning complex and time-

consuming tasks. Costly Database Administrators (DBAs) are currently needed to 

initially tune a DBMS for performance and then to retune the DBMS as the database 

grows and workloads change. Automatic diagnosis and resource management removes 

the need for DBAs, greatly reducing the cost of ownership for the DBMS. An automated 

system also allows the DBMS to respond more quickly to changes in the workload as 

performance can be monitored 24 hours a day. An automated diagnosis and resource 

management system allows the DBMS to improve performance for both static and 

dynamic workloads. 

 

One of the key issues in automatic resource management is the capability of the system to 

diagnose resource problems. Diagnosis of the resource allocation problem is the first step 

in the process of tuning the resources. In this dissertation, we propose an automatic 

diagnosis framework and algorithm that can be used to diagnose DBMS resource 

problems. We formally define the DBMS diagnosis problem and analyze problem 

complexity. We develop a model to diagnosis the DBMS and demonstrate the ability of 

the model to correctly identify system bottlenecks for a generic OLTP workload. We 
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modify the OTLP workload to further demonstrate the ability of the diagnosis system to 

handle changing workloads.  

The diagnosis system is evaluated by comparing the performance of the DBMS workload 

tuned by the diagnosis system to the performance of the same workload tuned by an 

expert and by the Performance Tuning Wizard software included with our test database. 

Achieving workload performance that is close to or better than these tuning methods will 

deem the diagnosis system a success.  

 

The contributions of this dissertation include the formalization of the diagnosis problem, 

an analysis of the complexity of the problem, the development and implementation of 

models to demonstrate that the diagnosis process can be successfully automated and the 

presentation of a generic diagnosis system that can be adapted to other software systems 

that rely on resource feedback for performance tuning.  
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Chapter 1  

Introduction 

A DataBase Management System (DBMS) is an application that allows a user to create, 

access, and maintain a collection of related data. A DBMS is a complex system that is 

composed of a collection of subsystems, each with a specific task. It is the job of the 

DBMS software to control each of these smaller subsystems during the life of a database. 

Due to the inherent competition for system resources, it is understandable that achieving 

a high level of performance from a DBMS is a difficult task. System resources are 

allocated for use by the DBMS through DBMS resource settings. The initial difficulty 

confronted when tuning a DBMS is determining which of the numerous resources need to 

be adjusted in order to solve the performance problem. In this dissertation, we consider 

the difficulties associated with diagnosing DBMS performance problems and propose a 

method for automating the diagnosis process. 
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1.1 Definitions 

In order to discuss the various issues involved with DBMS performance, several concepts 

must first be introduced.  

 

Resource – A resource is a piece of software or hardware that is in limited supply. An 

example of a hardware resource is the physical memory in the system. An example of a 

software resource is a logical limit placed on the number of allowed concurrent 

processes. 

 

Resource Tuning – Resource tuning is the process of determining how to adjust the 

setting for a particular resource in order to alleviate a bottleneck in the DBMS. 

Determining how to adjust a resource involves knowledge of how that particular resource 

affects the running system as well as how adjusting that resource affects other resources. 

  

DBMS Tuning – DBMS tuning is the process of increasing or decreasing the 

performance of the DBMS by altering the amount of physical and logical resources 

available to the DBMS.  

 

Diagnosis – DBMS diagnosis is the process of determining which of the database 

resources needs to be adjusted in order to solve a performance problem. Once the 

offending resource has been identified, we perform resource tuning to determine how to 

adjust the problem resource. 
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1.2 Motivation 

A DBMS has the responsibility for accessing and maintaining large amounts of data. 

Maintaining data integrity and supporting concurrent users introduces a significant 

amount of overhead to a DBMS. This overhead decreases the ability of the DBMS to 

serve the data to the users quickly. We must decrease overhead while maintaining data 

integrity and providing information to the users as quickly as possible. 

 

DBMS performance is regulated by adjusting DBMS resource parameters. The large 

number of tuning parameters and the complexity of workloads makes achieving and 

maintaining peak DBMS performance a non-trivial task [SHI00]  [CHA00]  [WEI94]. 

DataBase Administrators (DBAs), who are the people with the knowledge and expertise 

needed to tune DBMSs, are scarce and expensive to employ [CHA99] [LOM99] 

[WEI94]. 

 

The process of DBMS tuning can be broken down into two distinct tasks: diagnosis and 

resource adjustment. Diagnosis involves determining which of the resources in the 

DBMS is responsible for the performance problem. Resource adjustment involves 

altering the settings for a particular resource (and others that may be related to it) in order 

to achieve better performance. Resource adjustment is also referred to as “resource 

tuning”. As databases increase in size and complexity, the ability to manually control 

performance becomes “impractical” [BRO94] [BRO95]. Several calls for the automation 

of the diagnosis and tuning processes have been made in recent years [BER98] [BRO94] 
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[CHA00] [CHA99] [LOM99] [MAR00] [WEI94]. Automation would allow the DBMS 

to quickly achieve peak performance without any human interaction.  

 

It is important to clarify that two different levels of “tuning” exist for DBMSs. In one 

case, DBMS resources are adjusted in order to increase or maintain performance. In the 

other case, performance tuning consists of application optimization, data placement 

concerns, hardware issues and other factors external to the DBMS. This dissertation will 

focus on the adjustment of DBMS resources as the method of affecting performance.  

 

DBMS tuning involves the collection and analysis of DBMS performance statistics in 

order to determine the cause of the performance problem [IBM00]. The statistics 

collected may be simple to read and understand, or they may need to be calculated from 

other data and then analyzed. It is a time-consuming task for a DBA to analyze the large 

amount of performance data that can be collected from a running DBMS. A DBA must 

narrow down the amount of data to be analyzed by considering the type of performance 

problem and then rule out some of the resources.  

 

By automating the analysis of the performance data, it is possible to consider a large 

amount of data in a very short period of time. Automatic diagnosis should lead to a more 

thorough inspection of all of the data while quickly producing a list of possible culprit 

resource allocations.  
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The inevitable increase in hardware performance will ultimately lead to more powerful 

computers embedded in various systems and Internet appliances. Appliances that store 

and manage information will be candidates for embedded DBMSs. The interfaces 

associated with such Internet appliances will not likely provide the option for adjusting 

DBMS parameters, so the underlying DBMS in such a device will have to be self-

managing [BER98]. 

A DBMS is a natural choice as an interface to provide large amounts of data on the 

Internet. Unfortunately, the Internet does not provide a stable workload for a DBMS. The 

workload changes as the number of people browsing increases and decreases throughout 

the day. It is impossible for a DBA to tune a database quickly enough to keep up with a 

consistently shifting workload. Automating the diagnosis and tuning processes will 

enable the DBMS to dynamically manage the available resources in these situations. 

  

Cost is another consideration in the quest for a self-managing DBMS. DBAs are 

expensive to hire, even for short durations. A full-time DBA is a heavy burden for small 

and medium-sized businesses. Automation of the tuning process can remove much of the 

need for a DBA. It can also mean less hardware cost since the DBMS can make the best 

use of available resources. At present, many companies use overpowered machines to run 

their DBMSs in order to compensate for inadequate performance tuning. An overpowered 

machine is able to support mediocre performance tuning while handling shifting 

workloads with the extra hardware resources. Automatic tuning provides better usage of 

the hardware resource, thereby eliminating the need to buy an overpowered machine.  
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1.3 Contributions 

An algorithm is proposed to automatically diagnose DBMS performance problems. The 

algorithm uses a diagnosis tree and a resource model along with hardware and workload 

models to diagnose resource bottlenecks. The diagnosis algorithm is constructed as part 

of the Quartermaster framework, which is a goal-oriented framework for diagnosing and 

tuning DBMS resources [BEN99]. Such a diagnosis and tuning framework can be applied 

to other types of software systems where performance is an issue. 

 

The contributions of this dissertation are the following: 

• a formal description of the DBMS diagnosis problem; 

• an analysis of the complexity of the diagnosis problem; 

• the development and implementation of models to demonstrate successful 

automation; 

• the development of a generic diagnosis system that can be adapted to other 

software systems 

• a systematic experimental evaluation of our approach as compared to an 

experienced DBA and the DB2 Tuning Wizard 

 

This dissertation shows that the collection of underlying performance data can be used to 

diagnose performance problems, allowing an automated system to manage and control 

the resources.  
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1.4 Evaluation 

The diagnosis model was implemented and tested using IBM’s DB2/UDB. The 

throughput resulting from each complete diagnosis was compared to various throughput 

values obtained by using the DB2 Tuning Wizard, a performance application included 

with the DBMS. Although DB2 was used as an example throughout, the principles used 

in the creation of the diagnosis system can be applied to other DBMSs as the workloads 

are not inherently linked to the DB2 software.  

 

1.5 Organization of Thesis 

Chapter 2 of this dissertation describes approaches to DBMS diagnosis proposed in the 

literature. Chapter 3 describes the models used for DBMS diagnosis and explains how the 

models work together to diagnose a DBMS. Chapter 4 explains the process used to create 

and tune the diagnosis tree. Chapter 5 presents the results returned from testing our 

system on a working DBMS. Results are discussed along with the effectiveness of the 

diagnosis algorithm. Chapter 6 concludes the dissertation by summarizing the results of 

the research and presenting additional areas of research in the area of automatic 

diagnosis.  
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Chapter 2  

Related Work 

Related literature has provided information in two distinct areas: previous work on 

automating DBMS tuning and approaches to the general problem of diagnosing faults in 

systems. The chapter is divided into four sections. The first section reviews DBMS 

tuning literature, focusing on the issues of general resource management as well as tuning 

algorithms for specific resources. The second section introduces the area of diagnosis and 

presents three different approaches to diagnosing faults in generic systems. The third 

section discusses how the related work can apply to our proposed system.  The final 

section presents DBMS benchmarks, invaluable tools for evaluation and tuning. 

 

2.1 Previous Efforts 

Several efforts have been made in the area of automating the control of DBMS resources. 

Automating resource management requires that the automated system be able both to 

diagnose the resource causing the performance problem as well as to properly adjust the 
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resource to remove the bottleneck. Each previous effort falls either into the category of 

automated diagnosis or automated tuning.  

 

2.1.1 Automated Diagnosis 

Automated DBMS resource management is the ultimate goal for work in the area of 

resource management. The following papers address the issue of automating the  

diagnosis process.  

 

Chaudhuri and Weikum present the idea that the current method of controlling 

resources in DBMSs is outdated and that a new database system architecture must be 

considered [CHA00]. They argue that the present model has an overloaded feature set, a 

query language that is difficult to use, unpredictable performance, overly difficult tuning 

and various other problems. They believe that the best way to solve the problems facing 

DBMSs today is by recreating the database management system with a RISC-style 

architecture. They believe that the performance tuning problems will be solved by 

restructuring DBMSs into better defined components that are easier to tune. By reducing 

the number of components involved in the tuning process, automatic resource tuning for 

DBMSs will be achievable. 

 

Hellerstein has proposed an architecture for a generic automated tuning system (ATS) 

that uses “a feedback control loop that is layered on top of a target system” [HEL97]. 

This approach recognizes the complexity associated with performance tuning for all types 

of computer systems. Other work by Hellerstein and others assesses the application of 
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“control theory to the evaluation of controllers” used for software management [PAR01]. 

Hellerstein also points out the desirability of having a proactive resource management 

system that can detect problems before they occur as opposed to a reactive system that 

merely fixes the performance of a degraded system. 

 

Hart et al propose a method to isolate performance problems of systems where 

performance data is stored in multidimensional databases (MDDBs) [HAR99]. This 

system is designed to use performance data stored in an MDDB to determine the source 

of the performance problem. The proposed diagnosis system is applicable to any 

computer system where performance data is stored in an MDDB. The diagnosis system 

does not address the problem of adjusting the resources once a problem has been 

diagnosed. 

 

Bigus et al have recently proposed a generic agent for automated performance tuning 

[BIG00]. The generic agent is designed to support tuning for systems where no prior 

knowledge is known to systems where effective resource controllers exist. The generic 

agent used in the automatic tuning process relies heavily on intelligent control. The test 

system presented in the paper depends on a neural prediction agent that learns the system 

model, a neural prediction agent that is adapted to determine the appropriate control 

settings and an agent responsible for monitoring the workload and performance. The test 

system is a Lotus Notes server. The automated resource management system is able to 

reduce the queue length in the server over time. 
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Weikum et al address the need for automatic memory management in data servers 

[WEI99]. The paper surveys the possible approaches to memory management such as the 

self-tuning of cache memory and exploiting distributed memory and speculative 

prefetching for data and web servers.  

 

2.1.2 Automated Tuning 

Resource management can only be completely automated if system resources can be 

automatically adjusted to increase system performance. Many papers and approaches 

exist in the area of resource tuning. This section overviews the various approaches to this 

problem. 

 

Several papers exist in the area of automatic memory tuning for DBMSs. Brown et al 

explore the area of automatic memory management  [BRO93] [BRO94] [BRO95]. The 

main focus of the research work presented in these papers is the relationship between the 

user-defined goals associated with classes of transactions and the allocation of memory 

resources in the buffer pool. Brown also considers adjusting multiprogramming levels 

instead of memory to achieve the same result [BRO94]. Brown’s work approaches the 

idea of tuning as a goal-oriented problem where the “optimal” resource allocation is 

when all of the workload goals are achieved.  

 

Chung et al are also interested in goal-oriented buffer pool management [CHU95]. The 

approach by Chung [CHU95] differs from Brown’s [BRO95] in that the performance 

index is not calculated based on the I/O response times for transaction classes but by 



 12 

measuring the response time of the buffer pool. Buffer pool performance indexes are 

calculated and they attempt to achieve a “lexicographically minimal performance index 

vector” by adjusting the size of the buffer pools [CHU95].  

 

Martin et al present a “dynamic reconfiguration algorithm” to resize automatically 

buffer pools based on class goals set by an administrator [MAR00]. The reconfiguration 

algorithm takes into consideration the goals set for each of the transaction classes in the 

workload and uses response times as a basis for reallocating buffer pool memory. An 

“Achievement Index” is used to determine if a transaction class meets its goals by 

comparing actual response times with goal response times. Cost estimate equations are 

used to estimate the effect of moving memory from one buffer pool to another. Buffer 

pool memory is reallocated until all response times fall within a specified percentage of 

the required goals. 

 

Xu et al approach the problem of automated memory management by addressing the 

issue of buffer pool configurations [XU02]. One key memory management issue is the 

assignment of tables and indexes to particular buffer pools. Assigning two fundamentally 

different tables to the same buffer pool may result in contention for memory and 

adversely affect performance. The approach taken involves defining a feature vector for 

each database object and then using a data-clustering algorithm to define similar groups 

of database objects. The resulting groups are then assigned to buffer pools that are sized 

appropriately, resulting in a configuration that performs as well as one designed by an 

expert DBA.  
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Chaudhuri and Narasayya approach the area of dynamic resource allocation from the 

perspective of automating statistics management for the DBMS query optimizers 

[CHA00-2]. DBMSs use statistics about the data stored in the database to determine the 

query plan used. Knowing which statistical information is needed is currently left to the 

DBA. This paper presents techniques for automatically determining which statistics are 

essential and which statistics are non-essential.  

 

Agrawal et al investigate automating the selection of indexes and materialized views for 

DBMSs [AGR00]. Both indexes and materialized views can greatly increase DBMS 

performance if the correct set exist during query execution. Maintaining every possible  

index or materialized view is not possible, resulting in an incomplete set in the DBMS. 

Choosing the indexes or materialized views that will best serve the workload is a difficult 

decision. Agrawal et al present algorithms and an architecture that can identify a small 

set of candidate materialized views and indexes.  

 

Weikum et al explore the subject of automated tuning systems for DBMSs with the 

“Comfort Automatic Tuning Project” [WEI94]. The project exp lores system design 

principles needed to create an automated tuning system for DBMSs. The paper reiterates 

the need for dynamically adjustable resource parameters to allow the feedback loop to 

adjust resources while the workload is running. Several tuning algorithms for specific 

problems such as load control for locking and self-tuning memory management are 

described. 
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2.2 Diagnosis 

“Diagnostic reasoning requires a means of assigning credit or blame to parts of the model 

based on observed behavioral discrepancies” [deK92]. Using this definition of diagnostic 

reasoning, we should be able to use diagnostic reasoning to determine what resources are 

affecting the performance of a DBMS. We consider two different types of diagnostic 

systems – rule-based diagnosis and model-based diagnosis.  

 

Rule-based diagnosis 

Building a traditional rule-based diagnosis system for troubleshooting first involves the 

accumulation of data from experts [DAV92] [PAU98] [RYM92]. Empirical associations 

and rules about objects are created by the experts most familiar with the system at hand. 

This information is then used to build a rule-based diagnosis system to troubleshoot the 

system. Such rule-based diagnosis systems are very dependent on the device for which 

they are designed and require a new set of rules for each new device or version of the 

device. Gathering information from experts can also be a difficult task, as a large body of 

information and experience may be needed before a useful algorithm can be devised 

[DAV92]. An example of a rule-based system is XCON, an expert system used to 

configure DEC computers. Approximately 500 rules were needed to configure the VAX 

780 computer. The number of rules increased to 6000 as additional models were added to 

the rule base [LUG93]. Gathering and programming rules of this type is a time-

consuming and difficult task. 
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A variation on rule-based diagnosis involves the use of decision trees [DAV92] 

[RYM92]. Decision trees stem from the state space representation of some problems 

[LUG93]. In a state space representation of a problem, states of the solved problem are 

stored at each node in the tree. The tree is then traversed, using the rules stored at the 

nodes along with facts about the current world state to solve the problem. The tree 

traversal can be either goal-directed, where the goal is known and the tree is traversed to 

find the data, or data-directed, where the data is known and we traverse the tree to 

determine the goal [LUG93]. 

 

In a decision tree, rules are stored at each node. As the tree is traversed, each node is 

evaluated and the result determines which branch of the tree will be followed. As nodes 

in the tree are evaluated and branches of the tree are traversed, other branches and nodes 

in the tree are excluded or “pruned” during the traversal [LUG93]. Pruning the tree can 

quickly reduce the number of possible solutions while focusing on those solutions most 

likely to solve the problem. For example, consider the decision tree in Figure 1. If the 

decision made at Node 1 causes Node 5 to be next to be traversed, then in that single step 

the entire left side of the tree under Node 2 is pruned from the search space. 
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Figure 1 - Example decision tree. 

 

Model-based Diagnosis 

In diagnostic reasoning, a model of the system is used to determine what parts of the 

system are not performing correctly. The model of the system is presumed to be correct 

and any differences between the model and the actual system are used to point out 

malfunctions in the system. Model-based diagnosis is acknowledged as a wide ranging 

area [deK92]. Model-based diagnosis includes troubleshooting mechanical devices, 

circuits, and modeling physical or biological systems [deK92]. 

 

The primary application area for diagnostic reasoning is electronics, specifically circuits 

and other multi-component systems [deK89], [deK92], [MOZ91]. The key issue with 

systems of this nature is to find the component or components that are causing the 

Node 1 

Node 4 Node 3 Node 7 Node 6 

Node 5 Node 2 

… … … … 
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problem and to replace or repair them. This requires the component to be performing 

incorrectly, as diagnosis in a circuit is really a test of correctness. Problems in circuits can 

usually be traced to the malfunction of a component – such as an adder that is not adding 

or a broken XOR switch. Component error can be quantified and isolated, making it 

identifiable to the diagnostic process. This is not the case when diagnosing a DBMS. In 

DBMSs, resources do not have a quantifiable “broken” state; instead, they do not perform 

to capacity. We do not know the upper performance limit of many resources as the 

capacity of the resource is unknown and is dependent on many factors. Since there is no 

“broken” part in the DBMS, the traditional methods of testing for malfunctioning 

components do not apply.  

 

When diagnosing circuits and other component-based systems, the solution to the 

problem usually involves the replacement of the broken component. After replacing the 

broken component the circuit is retested to ensure that replacement part is functioning 

properly. Alleviating a bottleneck in a DBMS system involves the reallocation of 

resources. There is no “correct” allocation for any one particular resource in a DBMS. 

What may be an optimal allocation for one workload and computer system may not work 

for a different workload or computer system.  

 

A model of the DBMS system is needed to use model-based diagnostic reasoning for 

system diagnosis. Davis and Hamscher [DAV92] discuss the issue of systems that are 

either too simple or too complex to model. The complex end of the spectrum is bound by 

problems “involving subtle and complicated interactions in the device, interactions whose 
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outcome is too hard to predict…” [DAV92]. The relationships between resources in a 

DBMS are complex and not well understood. Resources can be related either by the 

sharing of an underlying physical resource, or by having a software dependence on 

another resource in the system. The complex web of relationships between physical and 

logical resource allocations results in the relationship between resources being unclear. 

This already complex model is further complicated by the workload the DBMS is 

expected to run. Accurately modeling the DBMS is not presently possible due to the 

complexities of the system. 

 

2.2.1 Optimization 

“Optimization is a technology for calculating the best possible utilization of resources 

needed to achieve a desired result” [EOP02]. Determining the best utilization of 

resources depends on the boundaries set by those trying to solve a given problem. In one 

case, the best utilization of resources may mean solving the problem in the least amount 

of time. Another case may require that the problem be solved with the least amount of 

resources. A third case may involve maximizing the throughput for the given problem. In 

all of these cases, optimization involves maximizing or minimizing one aspect of the 

problem such as time, throughput or resources. With respect to the DBMS resource 

problem, we could apply optimization techniques to maximize the throughput of the 

system or to minimize the amount of resources used by the system. Either method would 

produce the desired effect of better performance with fewer resources. Several different 

optimization algorithms are reviewed in here – generic optimization, dynamic 

programming and linear programming. Some of these optimization algorithms are very 
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specific to a particular problem, while others are more generic and can be applied to 

several different types of problems [MOL89]. 

 

Generic Optimization 

Optimization usually involves finding a maximum or minimum value for the presented 

problem by solving a series of equations that are used to model the system [GAS75]. We 

must therefore first be able to create a series of equations to model the system. This is 

possible only if the relationships between the various resources are documented and well 

defined.  

 

In the case of a DBMS system, there are simply too many resources (typically hundreds) 

to consider defining every interdependency between all of the resources. The complexity 

of creating a series of equations for a generic optimization algorithm to use far outweighs 

the cost associated with diagnosing the DBMS.  

 

Dynamic Programming Model 

Dynamic programming is a technique for solving many different types of optimization 

problems [CUR97]. Dynamic programming was introduced by Richard Bellman in 1957 

[BEL57]. He introduced the idea of the Principle of Optimality that states: 

 

“An optimal policy has the property that whatever the initial state and initial decision are, 

the remaining decisions must constitute an optimal policy with regard to the state 

resulting from the first decision” 
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Bird and de Moor [BIR93] state that dynamic programming can be used to solve an 

optimization problem if the solution to that problem is composed of optimal solutions to 

subproblems. This requires that the initial problem be divided into smaller subproblems 

that have optimal solutions. In general, dynamic programming is used where a sequence 

of decisions is needed to solve a particular problem. By computing various solutions to 

smaller subproblems, dynamic programming reuses the solutions to various subproblems 

as a way of avoiding unnecessary computation [CUR96]. 

  

We are not able to divide the initial DBMS diagnosis problem into smaller, solvable 

optimization problems because of the level of interaction between the various DBMS 

resources. It is not possible to find the optimal allocation for one resource without taking 

into consideration the allocations of other resources. Without the ability to break the 

larger problem into smaller, solvable subproblems, the dynamic programming solution is 

impractical.  

 

Linear Programming Model 

Linear programming problems are a subset of general ma thematical problems in which 

the description of the mathematical model of the problem can be stated using linear 

equations [GAS75]. Linear equations are those equations which, when plotted on a graph, 

are straight lines. Linear programming was developed and introduced by American 

George B. Dantzig in 1947 as a method for solving linear problems presented by the U.S. 

Air Force. Once introduced to the world, it became clear that linear programming could 

be used for a wide range of production and optimization problems. The original simplex 
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method that was introduced by Dantzig has since been replaced with a faster method 

presented by Naranda Karmarker in 1983[COL00]. 

 

The strength of the linear programming method is its ability to find the optimal solution 

quickly. Linear programming is able to handle large numbers of variables (in the 

thousands [COL00]) and still produce a solution in a reasonable amount of time. 

Although this method may seem tempting for our diagnosis problem, the problem in 

using this method lies not in its ability to solve a linear system of equations, but in being 

able to generate the appropriate system of equations. The system of equations must define 

all of the relationships between the various DBMS resource, a task that is presently too 

complex to complete. 

 

Queuing Network Models 

Queuing network models have been used for many years to predict the effects of changes 

to a computer system. These models are able to estimate the impact of hardware, 

software, and load changes on a particular system. The amount of CPU time needed to 

process a queuing network model algorithm is very small, and the results are available 

quickly [LAZ84]. 

 

Information about the workload components is needed to use a queuing network model. 

For each workload component, the system load for that component and the resource 

demands for that component are needed [SEV81]. Although queuing network models 

work well for small and mid-range problems, very large systems with diverse workload 
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components become problematic, forcing approximate solutions to be returned from the 

algorithm. 

 

One of the issues with using queuing network models for predicting the performance of a 

DBMS involves the inputs used by the queuing network model. Queuing network models 

are able to predict the performance of a system when additional hardware such as disks or 

CPUs are added. The queuing network model deals specifically with the interaction 

between the workload and the hardware resources, allowing the model to predict the 

effect of adding additional hardware. The queuing network model does not deal with two 

key issues in database system performance, namely the relationships between the 

transactions in the workload and the relationships between the transactions and the data. 

In order to tune a DBMS we need to increase the ability of the DBMS to process 

particular queries, and not just increase the performance of the system in general. 

Queuing network models do not have the granularity needed to predict the perfo rmance 

of the queries within the DBMS – they are only able to predict the performance of the 

system as a whole [SEV81].  

 

2.2.2 Case-Based Reasoning 

Case-based reasoning is a method of solving problems using the specific knowledge from 

problems that have already been solved [AAM94]. Case-based reasoning does not use 

generalized rules derived from previous solutions, but uses information derived from 

actual stored cases of previously solved problems [LEA96]. Case-based reasoning 

algorithms recommend a plan of action by matching the new problem to other previously 
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encountered problems. It is assumed that knowledge of how the previous case was solved 

will be helpful for solving the problem at hand. 

 

Generally, case-based reasoning algorithms must go through four steps: retrieve, reuse, 

revise and retain [AAM94]. In the retrieve step, the cases that are most similar to the 

present problem are retrieved from the collection of cases. In the reuse step, information 

from these retrieved cases is used to help solve the problem at hand. During the revision 

step, the proposed solution is checked for accuracy to make sure that it actually does 

solve the problem at hand. If minor revisions are needed, they are implemented to 

achieve the desired goal. Once the solution has been revised, it is then retained as a new 

case in the collections of cases. This allows the algorithm to retrieve this case, along with 

others, if a similar problem reoccurs. 

 

Case-based reasoning is based on two assumptions: similar problems have similar 

solutions, and the same types of problems reoccur in a system [LEA96]. It is possible for 

a single DBMS problem to be caused by several different resource allocations. This 

means that a single DBMS performance problem may have multiple solutions. DBMS 

diagnosis does not follow a basic assumption needed for case-based reasoning, that 

similar problems have similar solutions. It may be difficult for a case-based reasoning 

method to differentiate between the various solutions to determine the one that is the best. 

 

Case-based reasoning does hold some possibility for DBMS diagnosis. Reusing 

knowledge from previous solved problems can help to narrow down different 
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performance issues and may be a benefit for diagnosis. Case-based reasoning may be 

possible if the previously mentioned problems can be overcome. 

 

2.2.3 Expert Systems 

Expert systems often make use of extensive knowledge bases to solve a problem 

[LUG93]. The knowledge base is a collection of rules and other information collected 

from human experts in the subject at hand. Each knowledge base usually covers a 

specific domain, allowing the expert system to focus on a narrow set of problems. All of 

the information in the knowledge base is extracted from humans; expert systems do not 

learn from their experiences, they only make decisions based on their present knowledge 

[LUG93]. 

 

One key problem associated with expert systems is the quality of the “expert” knowledge 

and the heuristic algorithms used to interpret the data and the knowledge in order to 

calculate the output of the system. The quality of the knowledge and the heuristics is 

related to how well defined the subject area is and how well it is understood. In the well-

defined area of VAX computer hardware configuration, the XCON expert system had to 

maintain over 6000 rules in its knowledge base in order to properly configure several 

lines of VAX hardware. Experts modified up to 50% of the rules each year due to the 

introduction of new machines [BAC84] [LUG93]. 

 

The creation of an expert system to solve the DBMS diagnosis problem has several 

drawbacks. The first drawback is related to the lack of consistent expert information on 
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how to tune the system properly. Information found in manuals and retrieved from 

experts often contradicts information collected in testing and retrieved from other experts. 

Information on how to tune a system depends on the hardware configuration and the 

workload running on the DBMS. As the hardware and workload change, so does the 

advice given by the experts. Due to the lack of consistency in the information retrieved 

from experts and the variability associated with the unlimited number of hardware and 

workload combinations, the creation of an expert system is not possible.  

 

2.3 How related work can apply to our problem 

After studying the above approaches, we conclude that no one approach is sufficient for 

our problem. Optimization algorithms or a model of the DBMS for model based-

diagnosis are very complex solutions. A simple rule-based system depends on associating 

various symptoms with a particular fault, which is not immediately possible with a 

DBMS. Many poor resource allocations can cause the same symptoms, meaning that the 

rules may be too broad and may not help in diagnosing the problem. Knowledge of the 

underlying system can be used to assist the rule-based diagnosis, and the addition of this 

information may allow such a system to effectively diagnose a DBMS. Building a 

knowledge base for an expert system is also complex. Finally, decision trees tend only to 

guide tests for the system and do not usually use system-specific information to help with 

the diagnosis. 

 

We believe that a rule-based decision tree can provide an effective method for diagnosing 

DBMSs. The rule-based portion of the system allows us to test certain parts of the  
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DBMS, taking information about DBMS performance and, with knowledge of the 

structure of the DBMS, use the information to diagnose the system. General performance 

questions are usually not sufficient to diagnose such a complex system. A diagnosis tree 

allows us to build a picture of the “state” of the DBMS because at every point in the 

diagnosis tree we know how previous questions were answered. The diagnosis tree stores 

rules in each node and uses performance information to evaluate the rules at the node. 

The results of evaluation will determine the path in which the diagnosis tree will be 

traversed. The performance-based navigation results in ignoring some portions of the 

diagnosis tree in favour of other sections to me more closely scrutinized.  

 

Our approach is similar to expert systems in that we have a “knowledge base” and an 

“inference engine”. Our “knowledge base” is the information that we store about the 

database. Our “inference engine” is the code that we use to view the data and to 

determine which action to take. Unlike the examples of expert systems referenced in 

[AAM94], our knowledge base is not programmed in an IF … THEN logic rule structure. 

Our approach is more like the “belief networks” and “influence diagrams” found in 

[HOR88], but without the probabilities used in their belief networks. Our implementation 

does not use existing expert system shells and the traditiona l Artificial Intelligence 

languages such as LISP and PROLOG because of their scalability problems [MYL95]. 

 

2.4 Database Benchmarks 

An invaluable tool when tuning a DBMS is a realistic, repeatable workload that can be 

used to measure performance. To insure that a realistic workload and database were used 
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for our experiments, we use a standard DBMS benchmark. The most popular industry 

database benchmark standards are maintained by the Transaction Processing Performance 

Council (TPC). The TPC is a non-profit corporation that was founded to create hardware 

and software independent benchmark standards and to publish audited performance 

reports [TPC2]. The TPC bases each of its benchmarks on a business model. Each of the 

different benchmarks is meant to mimic a business model. It is expected that when 

comparing systems, a user will compare the results from the benchmark that most closely 

resembles their business.  

 

There are many benefits when using a TPC benchmark for performance tuning. The 

consistency of the workload is the first benefit, allowing multiple tests with comparable 

(although not identical) workloads. The clear performance metric provides a method to 

compare the performance from one run to the next. TPC benchmarks measure 

performance with a throughput or response time metric and a price/performance metric. 

The following sections briefly explain the business model the benchmark is modeled after 

and each of the performance metrics. 

 

TPC-C:  

The TPC-C benchmark is modeled after actual production On-Line Transaction 

Processing (OLTP) workloads. The order-entry workload consists of five transactions 

used to simulate entering and delivering orders, recording payments, checking order 

status and checking the level of stock. The performance metric of the TPC-C benchmark 

is the number of “new order” transactions per minute that can be completed while 
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executing the four other transactions at a predefined ratio. The number of new order 

transactions per minute create the throughput performance metric called “tpmC” or 

“Transactions Per Minute C” [TPC] [TPC2].  

 

The TPC-C benchmark also uses a price/performance metric, taking into account the total 

price of the system used to generate the throughput results. The price and the throughput 

are used to determine a dollar cost for each transaction per minute. This price then allows 

a consumer to compare not only the throughput performance, but  also the cost associated 

with that performance [TPC2].  

 

TPC-H 

The TPC-H benchmark is modeled after an On-Line Analytical Processing (OLAP) 

application. TPC-H is designed to simulate a large database with various ad-hoc decision 

support queries. The ad-hoc nature of the benchmark implies that the queries are 

unknown to the DBMS until runtime. TPC-H benchmarks are reported for different 

database sizes, producing a result for each size. The TPC-H performance metric is called 

the “TPC-H Composite Query-per-Hour Performance Metric” (QphH@Size) [TPC2]. 

This composite performance metric takes into account performance values collected for 

the queries submitted in both single and concurrent streams. We measure the 

price/performance metric by determining the dollar cost per QphH@Size. 
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TPC-R 

The TPC-R benchmark is modeled after a business reporting system. TPC-R is similar to 

TPC-H with the exception that it is expected that the DBMS has previous knowledge of 

the queries, allowing for database optimizations. The performance metric is the “TPC-R 

Composite Query-per-Hour Performance Metric” (QphR@Size) [TPC2] and is reported 

based on the size of the database. The price/performance metric is determined by the cost 

per QphR@Size. 

 

TPC-W 

The TPC-W benchmark is modeled after a web-based e-commerce application. Unlike 

previous benchmarks in which well-defined business transactions are modeled, the TPC-

W benchmark simulates an internet business where web browsing and online purchasing 

occur. The TPC-W workload is characterized by multiple, online browser sessions, 

dynamic page generation, consistent objects, data contention, and transaction integrity 

[TPC2]. The performance metric for TPC-W is measured on the number of “Web 

Interactions Per Second” (WIPS) [TPC2]. The initial performance metric is based on a 

workload model that consists of mostly shopping. In order to model other scenarios, the 

TPC has also provided mainly ordering (WIPSo) and mainly browsing (WIPSb) options. 

As with TPC-H and TPC-R, TPC-W results are also based on a particular size. The 

price/performance metric used is the dollar cost per WIPS. 
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Chapter 3  

Diagnosis Framework 

We begin this chapter by defining the DBMS diagnosis problem. The diagnosis problem 

definition includes an explanation of the assumptions made when modeling the DBMS. 

We then explain the resource tree model, diagnosis tree model and workload model and 

why each of them is required for the diagnosis process.  

 

3.1 Modeling the Problem 

This section contains assumptions made about the DBMS and definitions used to describe 

the diagnosis problem.  

3.1.1 DBMS Assumptions 

The following assumptions were used during the development of the diagnosis system 

and system models. 

• We assume that a DBMS has access to a limited supply of hardware and software 

resources. Optimal performance is a maximum amount of performance achievable 
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by the DBMS given the limited resources. Diagnosing a DBMS involves 

determining which of the resources is causing the performance bottleneck.  

• Overall DBMS performance is directly related to the performance of underlying 

DBMS resources. Performance such as transaction throughput and response time 

is ultimately related to the performance of underlying resources such as the buffer 

pools and the input/output subsystem. Improving the performance of the 

underlying resources will result in improving the performance of the DBMS 

workload. 

• We assume that the hardware used in these experiments is functioning well and is 

not the system bottleneck. It is expected that DBMS diagnosis will be different for 

the situation where the hardware, not the software, is the bottleneck.  

• We assume that DBMS performance can be measured in two ways – the 

throughput of the workload and the performance of the underlying resources. For 

example, adjusting a resource may result in an increase in throughput, a 

measurable increase in performance. Adjusting a resource may also result in a 

decrease of some underlying performance measure, such as the amount of time 

required to do a sort. We regard such a reallocation to be beneficial to the DBMS 

even if there is no significant increase in throughput. 

 

3.1.2 DBMS Diagnosis Modeling 

Our approach to DBMS diagnosis and tuning involves several steps. In consultation with 

DBMS documentation and expertise, we create a resource model, a workload model, 

diagnosis rules and finally we define a diagnosis tree. The creation of the diagnosis tree is 
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a complex task that requires input from both the workload model and the diagnosis rules. 

The resource model and the diagnosis tree are then used to diagnose the working DBMS. 

The diagnosis produces a set of resources where tuning each resource is a possible 

solution to the performance problem. Tuning algorithms are used to determine the 

resource that will provide the greatest performance increase and that resource is adjusted. 

The running system is then observed and performance data is collected for the next 

diagnosis. This diagnosis and tuning loop continues until the diagnosis algorithm is 

unable to diagnose any more poorly performing resources or the system performance is 

determined to be adequate. Figure 2 gives an overview of the diagnosis system. 

 

The core of the diagnosis process is the use of the diagnosis tree and the resource model. 

System diagnosis is accomplished by traversing the diagnosis tree. Starting at the root 

node of the tree, questions are posed about the performance of the DBMS. Depending on 

the values of particular performance indicators within the DBMS, a decision is made to 

traverse either the left or right branch of the tree. This continues until a leaf node in the 

diagnosis tree is reached. The leaf node contains a list of one or more resources that 

should be considered for tuning. A sample tree is located in Figure 10 on page 49. 

 

Once the list of resources has been acquired, the resource model can then be used either 

to expand the list of resources to consider for tuning, or to generate a list of resources that 

may be affected by adjusting a resource from the current list. This is done with the use of 

resource trees that are generated from the resource model. The resource model is also 
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available to any tuning algorithm that may wish to access information about resource 

relationships. 

 

The diagnosis system is designed to fit into Quartermaster, a framework for automating 

performance management of DBMS systems [BEN99] [MAR00]. Quartermaster supports 

the collection and storage of performance data and the monitoring of performance goals. 

An overview of the Quartermaster framework is presented in Figure 3. The “Planner” 

module in the Quartermaster framework is responsible for determining the resource that 

should be tuned to solve a performance problem. The diagnosis framework defined in this 

dissertation provides the Planner module. 
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Figure 2 – Overview of the Diagnosis Models. 

  



 34 

 
Figure 3 - The Quartermaster Architecture. 

 

3.2 Resource Model 

The resource model is a collection of information about the DBMS, DBMS resources, 

and the relationships between those resources. Information about the resources is 

gathered from several different sources. DBMS manuals provide much of the information 

about the DBMS and resources. This information is further expanded using other DBMS 

documentation and technical reference books. A more in-depth view of the DBMS 

resources can be produced by consultation with DBMS programmers and DBAs. 

Consultation allows for the inclusion of undocumented information in the model. The 
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resource model is used to present a consolidated view of DBMS information from many 

sources and make this information available to for diagnosis purposes. The focus of the 

resource model is to establish two types of information – information about the resources 

and information about the relationships between the various resources. We now consider 

the two types of information. 

 

3.2.1 Resources 

Resources are defined as any object used by the DBMS where the amount of the object 

can be adjusted. Resources are further refined into two categories – physical and logical 

resources. Physical resources are hardware-oriented resources whose allocations have a 

direct effect on the physical hardware. Examples of physical resources are main memory 

or disk space. Allocations of physical resources are limited by the hardware available 

from the system for the DBMS. In general, the more physical resources available to the 

DBMS the better it will perform. Logical resources are those resources that are provided 

by the DBMS. An example of a logical resource is the number of processes allocated to 

write data to disk. Logical resource allocations are limited by the DBMS. Some of the 

limits may be indirectly linked to the amount of physical resources available (such as the 

DBMS denying the creation of a process due to a lack of memory). Logical resource 

allocations do have an effect on physical resources, as the DBMS must use memory and 

CPU to maintain these processes. Some logical resources, such as the number of I/O 

processes, will also have an affect on system resources such as disk drive performance.  
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In our model, a resource in the DBMS has the following attributes: 

• Impact – The impact that this resource has on DBMS performance. Impact is 

categorized as either high, medium or low. High impact resources will have a 

greater effect on performance than low impact resources. 

• Allowable range – The allowable (legal) range of values that the resource may be 

assigned. Lower and upper limits of the range are specified by the DBMS 

documentation. The allowable range of resource values is strictly a software or 

hardware limitation; the allowable range is not based on performance. 

• Default value – The default value assigned to the resource by the DBMS. 

• Marker values – A list of marker names and values. Markers are observed or 

calculated values that can be used to determine how the system is performing with 

respect to the resource in question. 

• Setting values – A list of setting values associated with the resource. A single 

resource may be associated with several tuning parameters. A setting value is a 

tuning parameter and its current value. 

 

A resource can be represented by a single tuple 

 R = <M, I, <S, A>, D> 

where M = {M1, M2, …, Mn}; Mi is a marker of the form <mname, mvalue>; I is the 

impact that the particular resource has on performance; <S, A> = a set of tuples <Si, Ai> 

where Si is a setting of the form <sname, svalue> and Ai is the range of possible values 

that setting may have in the form of {set}; D is the default value assigned by the DBMS. 
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This formal resource definition is used to create the ER diagram of a resource (shown in 

Figure 4), which is the basis of the relational model used for our specific implementation. 
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Figure 4 - ER diagram of the formal resource definition. 

 

An example of a DB2 database resource is the number of Input/Output (I/O) cleaner 

processes allocated in the DBMS. The I/O Cleaners can be expressed in the tuple: 

num_iocleaners = < <% of async writes, 95>, <num_iocleaners, 10, {0-255}>, HIGH, 1> 

In this example, the marker value used to determine the performance of the number of 

I/O cleaners resource is the percentage of asynchronous writes made by the DBMS. If the 

percentage of asynchronous writes is low, then the I/O cleaners are not properly writing 

dirty pages back to disk and slower synchronous writes are being used. The setting va lue 

used in this example is 10, signifying the number of I/O cleaners presently allocated in 

the DBMS. Increasing the number of I/O cleaners will increase concurrency but may 
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overload a system that cannot handle more concurrency. The impact of the I/O cleaners 

resource on the DBMS has been rated as HIGH by the documentation. The HIGH rating 

signifies that adjusting this resource can have a significant impact on the performance of 

the system. The range of legal values for the I/O cleaners resource is between 0 and 255. 

The DBMS software will allow a DBA to specify anywhere from 0 I/O cleaner processes 

to 255 I/O cleaner processes. Internal structures in the DBMS will not allow more I/O 

cleaners to be allocated, limiting the maximum number of I/O cleaners in the system. We 

are allowed to specify a lower number of 0 I/O cleaners for the situation where the 

database is read-only, removing the need to write updates back to the database and 

rendering the I/O cleaner processes unneeded. The final attribute for the I/O cleaner 

resource is the default value used by IBM when the DBMS is initially installed. The 

default value for this resource is 1, indicating that a single I/O cleaner process will be 

allocated under the default settings. We store the default DBMS resource settings as a 

reference point to an out-of-the-box resource allocation. All of the information used to 

define the tuple for the I/O cleaner resource was extracted from DB2 documentation and 

experience using DB2. 

 

3.2.2 Resource Relationships 

Key data required for the construction of the resource model pertains to the relationships 

between various DBMS resources. Relationship information is critical because adjusting 

the value of one resource will have an effect on those resources that are closely related to 

it. Information about resource relationships can be extracted from DBMS documentation 

or from DBA experience. DB2 documentation specifies the relationship between various 
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resources. Consider, for example, the I/O cleaners resource. Documentation for DB2 

specifies that if the number of I/O cleaners is modified, we should also consider adjusting 

the related parameters buffer pool size and changed pages threshold. Buffer pool size is 

the amount of cache memory that we have allocated for use by the DBMS. Changed 

Pages Threshold is the percentage of updated pages required in the buffer pool before the 

I/O cleaner processes are started to write the changed pages back to disk.  

 

Determining the relationships between various resources is important for DBMS 

diagnosis. Knowing that adjusting one resource may have an effect on other resources 

allows us to make a more knowledgeable decision when diagnosing the DBMS. It should 

be noted that resource relationship information is directional. DB2 documentation 

suggests that while adjusting the buffer pool size we should also consider adjusting the 

changed pages threshold parameter, but while adjusting the changed pages threshold the 

documentation does not recommend adjusting the size of the buffer pool.  

 

The resource model can be represented by the set 

RM = {<R, {E}>} 

where in each tuple of the set, R in the set is a resource and E = {E1, E2, … Ei}; Ei is a 

directed edge from that resource to another resource in the resource model. A directed 

edge from Ri to Rj indicates that a change in resource Ri can have a direct effect on 

resource Rj. The resource model is visually represented as a directed graph. It is possible 

to have two edges between a pair of nodes – one in each direction. We simplify our 

resource model by reducing these pairs of edges to a single edge with arrows on both 
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ends. Relationship information must be gathered before the resource model is 

constructed. Collecting resource relationship information is a one-time task for a DBMS. 

The ER diagram for the resource model is shown in Figure 5. This ER model is the basis 

for our relational implementation.  Figure 6 is an example resource model. 
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Figure 5 - ER diagram of the resource model. 
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Figure 6 - An example resource model. 
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3.2.3 Generating Resource Subtrees 

The resource model is used to store information about relationships between various 

resources in the DBMS. The considerable size of the resource model makes it beneficial 

to generate smaller resource trees when dealing with a DBMS resource. Smaller resource 

trees are used to simplify resource information for a given resource. The smaller resource 

“subtrees” can be used during the diagnosis process. Cycles from the original resource 

model are removed during the generation of the smaller resource subtrees. Eliminating 

cycles from the graph removes the possibility of a resource occurring in the subtree 

multiple times. 

 

The resource model stores directional information relating to the impact of one resource 

on another. Knowing that one resource has an impact on another resource allows us to 

predict the impact of adjusting each DBMS resource. For each resource adjusted in the 

DBMS, we can determine the “ripple effect” this adjustment will have on other resources 

in the system. This allows us to predict the effects of resource adjustment. To predict the 

effects of resource adjustment, we can generate a forward resource tree. A forward 

resource tree will have, as the root node, the resource that is to be adjusted. Each node in 

the forward resource tree that is one edge away from the root will be directly affected by 

an adjustment of the root resource. A forward resource tree can be generated as many 

levels deep as desired, further determining the effect of adjusting the resource at the root 

of the tree.  
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Forward resource trees are generated by first determining a node to act as the root of the 

forward resource tree. Next, all of the resources that are directly affected by the root node 

are included in the forward resource tree, with arrows pointing from the root node to each 

node added to the tree. Each of these new nodes is a “Level 1” node. For each individual 

resource in Level 1, we determine all of the resources that are directly affected by that 

individual resource and include them in the tree as part of “Level 2”, with arrows from 

the Level 1 resource to these new resources. It should be noted that any individual 

resource should only appear in a forward resource tree once, eliminating circular 

references. Duplicate resource nodes should be ignored and not included in the forward 

resource tree. After this process has been completed for all of the nodes in Level 1, then a 

full forward resource tree will have been generated to two levels. If further levels are 

desired, all of the nodes in Level 2 can be examined and new resource nodes can be 

added to create Level 3. A sample forward resource tree is found in Figure 7. The 

forward resource tree in Figure 7 is generated from the resource model example in Figure 

6 with the Buffer Pool Size as the root node. The forward resource tree in Figure 7 is 

generated to a depth of two. 
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Figure 7 - An example of a generated forward resource tree. 

 
Although the forward resource trees are useful for determining the effects of adjusting a 

particular resource, they do not help in determining which resource settings may cause 

another resource to perform poorly. For example, assume that the buffer pool resource is 

chosen for adjustment by a diagnosis algorithm. It may be beneficial for both the 

diagnosis and tuning algorithms to know which resource adjustments may have caused 

the buffer pool resource to perform poorly. To determine which resources may have 

affected the buffer pool resource, we generate a reverse resource tree. A reverse 

resource tree has the selected resource as the root. Each node one edge away from the 

root is a resource that, if adjusted, will have an effect on the root resource. By generating 

a reverse resource tree, it is possible to determine if the root cause of the performance 

problem is actually the resource at the root node or another resource that is causing the 

resource at the root node to behave poorly. Reverse resource trees are also effective in 

that if we have multiple resources that are being considered for tuning, it is possible to 
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compare reverse resource trees to see if the resources have a resource in common that 

may be affecting the resources considered for tuning. Figure 8 is an example of a reverse 

resource tree with the buffer pool resource as the root node. 

 

Figure 8 - An example of a generated reverse resource tree. 

 

3.3 Workload Model 

Knowledge about the system workload is vital to the proper diagnosis of the DBMS. The 

diagnosis tree will differ for each type of DBMS workload. Workloads are typically 

categorized into three different types – On-Line Analytical Processing (OLAP), On-Line 

Transaction Processing (OLTP), or a mixture of the two. An OLAP workload consists 

mainly of ad-hoc decision-support queries. These queries are CPU and time intensive. An 

OLTP workload consists of many short, transaction-oriented queries. OLTP workloads 

are characterized by the large volume of queries that are processed. A mixed workload 

can consist of transactions from both workload types. A workload model is needed to 
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provide information about the DBMS workload for diagnosis purposes. Allowing the 

diagnosis system to access information from the workload model separates the workload 

from the rest of the diagnosis system, allowing each to be updated individually.  

DBMS performance information is used to create the workload model. The workload 

model is a collection of data concerning how the DBMS performs and reacts to a given 

workload. The workload model can be represented as the set  

W = {N, H, I} 

where in each tuple <N, H, I>, N = {N1, N2, … Nm}; Ni is a resource associated with one 

or more sets of thresholds and indicators; H = {H1, H2, … Hn}; Hi is a threshold in the 

form of <hName, hValue>; I = {I1,  I2, … In}; Ij is an indicator value in the form of 

<iName, iValue>. An indicator value is a calculated or measured performance value. 

Indicator values are compared to threshold values to determine if a particular resource is 

performing well. An example of such a tuple is for the number of I/O cleaners resource. 

In this case, the resource N is the number of I/O cleaners. The indicator value I is the 

percentage of asynchronous writes. The threshold value, H, is 95%, indicating our desire 

that more then 95% of the writes are asynchronous. To determine if the I/O cleaners are 

performing effectively, we compare the measured number of asynchronous writes to the 

threshold value. The diagnosis tree will determine a problem with the number of I/O 

cleaners if the measured number of asynchronous writes does not meet the specified 

indicator threshold. The ER diagram for the workload model is shown in Figure 9. The 

ER diagram is the basis of our relational implementation of the workload model. 
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Workload Threshold

Resource

Indicator

 

Figure 9 - ER diagram for the workload model. 

 

Diagnosing poor performance depends on knowledge of how each resource should 

perform given a particular workload type. Threshold values can be determined based on 

the hardware and workload configurations. The performance level of each resource in the 

workload model can be measured while a workload is running. For a given workload, 

acceptable threshold values can be used to determine if a resource is performing well or 

not. Acceptable threshold values are determined by consulting the DBMS documentation 

and by observing similar workloads where the performance is known to be good. 

 

Workload models may differ significantly for different workloads. For example, consider 

OLTP and OLAP workloads. Generic OLTP workloads typically do not have large sort 

queries, so the workload model may not contain any information about the performance 

of sort-related resources. If the workload were to change to include OLAP-type queries 

that performed large sorts, the workload model would now need to contain information 
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about resource performance for large sorts. The resulting workload model would differ 

from the original depending on the workload.  

 

Performance information can be collected automatically from a well- tuned database and a 

given workload. Extracting these performance threshold values allow them to be used for 

similar workloads at a later point in time. Several different workload models will have to 

exist for the different workload types. Our initial results indicate that workload models 

are fairly robust and can be used for different workloads, indicating that only a limited 

number of workload models would need to be produced to handle most all workloads.  

 

3.4 Diagnosis Rules 

Many approaches may be used to diagnose a DBMS performance problem. Diagnosis can 

begin with a check on high- impact resources, a check on low-impact resources, a check 

on memory related resources, etc. Diagnosing and adjusting high- impact resources first 

will result in an aggressive tuning approach while diagnosing and adjusting low-impact 

resources first will result in a more conservative tuning approach. The approach used in 

this dissertation is neither aggressive nor conservative with no one set of resources given 

any preference over another.  

 

Diagnosis rules are also used to determine which resources should be considered for 

diagnosis. A single performance value may be an ind icator that a number of resources 

can be avoided for diagnosis. By reducing the number of resources checked during the 

diagnosis process, we can increase the speed of the diagnosis process. The process of 
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using a single performance value to circumvent the diagnosis of other resources is known 

as pruning. 

 

3.5 Diagnosis Tree 

The diagnosis tree combines the information from the workload model and the diagnosis 

rules, an example of which is found in Figure 10. The combination of the diagnosis rules 

and the workload model into a diagnosis tree provides an easily-understood method of 

determining the possible resource problem. In Figure 10,  non- leaf nodes are decision 

nodes and are labeled as Di where i is a unique number for each node. Leaf nodes are 

tuning nodes and are likewise labeled as Ti. These labels are used to identify the nodes 

throughout the remainder of this dissertation. 

 

The diagnosis tree and the resource model differ in several ways. The edges in the 

diagnosis tree do not hold the same meaning as the edges in the resource mode. Edges in 

the resource model indicate a relationship between the resources, while edges in a 

diagnosis tree only indicate which node should be evaluated next. The resource model 

stores as much information as possible about the resources while the diagnosis tree stores 

very little resource information, concentrating on diagnosis information. It is this extra 

information that is stored in the diagnosis tree that requires a separate structure to be used 

for diagnosis. 

 

The diagnosis tree is an ordering of the nodes from the workload model based on the 

diagnosis rules. The workload model defines several resources and the threshold and 
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indicator values associated with those resources, while the diagnosis rules determine the 

order in which the resources should be evaluated. The diagnosis tree is traversed from the 

root node, with an evaluation occurring at each node. The result of the node evaluation 

determines the direction the tree traversal algorithm takes. Each decision at a node results 

in pruning. Pruning is the process of ignoring some portion of the diagnosis tree in favour 

of the further traversal of another portion of the tree. Pruning allows us to focus on key 

resources which appear to be causing the resource problem while ignoring others that do 

not seem to be causing the resource problem. Pruning does not alter the structure of the 

diagnosis tree – it merely eliminates some portions of the tree from the search in order to 

keep the search space manageable.  

 

Figure 10 - Sample Diagnosis Tree. 
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3.6 The Diagnosis System 

The automatic diagnosis system can be represented by the tuple 

S = <R, D> 

where R is a resource model to represent the resources and D is a diagnosis tree used in 

the diagnosis process. Each component of the automatic diagnosis system, such as the 

resource model or the diagnosis tree, is needed to properly diagnose the DBMS. 

Components can be individually modified for different DBMSs. 

 

The diagnosis system is first activated when the Quartermaster architecture determines 

that some performance level has not been achieved. The diagnosis tree is traversed, 

returning a list of one or more resources that should be considered for tuning. Information 

from resource trees generated by the resource model are used to either expand or possibly 

reduced the number of resources to be considered for tuning. Tuning algorithms are used 

to determine which resource will achieve the largest performance increase. Resource 

adjustments can be made and the Quartermaster system will continue to monitor 

performance to determine if the diagnosis system is further needed.  
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Chapter 4  

Building the Diagnosis Tree  

The success of automatic DBMS diagnosis depends on the applicability of the diagnosis 

tree for a specific situation. The diagnosis tree is used with resource model and 

performance information to diagnose performance problems, as seen in Figure 2. The 

positioning of the decision nodes in the decision tree and the threshold values used to 

assess DBMS performance are key to correctly diagnosing performance problems. 

Creation and tuning of the diagnosis tree can only be completed after gathering 

information about the interactions between the DBMS and the workload. This chapter 

describes the process for an example diagnosis tree for an OLTP workload on IBM’s 

DB2 DBMS. 

 

4.1 The Initial Diagnosis Tree 

The initial diagnosis tree, shown in Figure 11, is constructed based on DB2 

documentation [IBM00] and information from experts. Non- leaf nodes are decision 
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nodes and are labeled as Di where i is a unique number for each node. Each decision node 

is a set of one or more resources Ni, each with a list of one or more threshold values Ti 

and indicator values Ii. Threshold and indicator values are used to determine the 

performance of the resources, affecting the tree traversal decision made at decision node 

Di. Leaf nodes are tuning nodes and are labeled as Ti. Tuning nodes contain a list of 

resources, Ni, that should be further examined by tuning algorithms for adjustment. The 

initial diagnosis tree was constructed from general heuristics used by a DBA when tuning 

a DBMS. Node D1, which refers to the buffer pool hit rate in the initial diagnosis tree, is 

one that many DBAs would ask when beginning to diagnose a DBMS. Following the 

same logic, node D2 is modeled after the next logical question a DBA would ask given 

the answer to the question in D1. We continued building the tree in this way with the 

assumption that it would model the tuning actions of a DBA.  

 

Figure 11 - The initial diagnosis tree. 
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Each DBMS is tuned differently for different types of workloads. The initial tree is 

designed for a general OLTP workload. The choice of resources to include in the tree is 

based on the impact of the resource on OLTP workload performance. High and medium 

impact resources are selected due to their effect on the system. High impact nodes are 

placed closer to the root of the tree to ensure that they are diagnosed first, while resources 

with lower impacts are positioned further down the tree. For example, root node D1 

examines the buffer pool hit rate to determine if the buffer pool size needs to be adjusted 

since the size of the buffer pools has a significant effect on performance.   

 

The ability of the diagnosis tree to diagnose the DBMS’ performance effectively depends 

on the accuracy of the threshold values. For example, node D1 in Figure 11 uses a 

threshold value of 90% to determine whether or not the buffer pool hit rate is acceptable. 

A hit rate of 90% is not unreasonable depending on the OLTP workload. Poor threshold 

values can result in performance problems being improperly diagnosed as correct or they 

can direct the diagnosis process towards resources that may not need to be adjusted. 

Threshold values vary based on the DBMS workload.  

 

We perform a series of tests to determine appropriate threshold values for each workload. 

These tests are described in detail in Section 4.2. We collect DB2 performance data along 

with the number of transactions completed for each test. Individual tests are done for 

multiple allocations of each resource in the diagnosis tree. Each series of tests provides a 

snapshot of how the workload reacts to various settings for a particular resource.  
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Performance data are also analyzed to determine the best indicator variables for each 

resource. Indicator variables are observed or calculated values that are either directly or 

inversely related to the performance of the resource in question. The value of the 

indicator variable changes significantly when the performance of the system increases or 

drops. Threshold values are adjusted based on changes in indicator variables to determine 

if the resource is performing well. For example, in Figure 11 the indicator used to 

determine how well system I/O is working is the buffer pool hit rate. A low buffer pool 

hit rate indicates that there is a problem with system I/O. A high buffer pool hit rate 

indicates that system I/O is working well. We set a threshold value to distinguish between 

good and poor performance for the buffer pool. 

 

4.2 Tuning the Tree 

The effect of DBMS resources on the workload and the level of performance expected 

from the DBMS are needed to tune the diagnosis tree. We determine the effect of specific 

DB2 resources on performance through a series of experiments. Each resource is 

modified while all others are held constant and performance data is collected.  

 

The OLTP workload used for our tests is based on the TPC-C benchmark specification 

[TPC]. The benchmark is discussed in Appendix B. Several portions of the benchmark 

specification were not implemented for this dissertation thus the results presented are not 

representative of published TPC-C benchmark results. 
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We verified the impact of each resource on DB2 by running the workload several times 

while varying the value of the resource. The default resource settings are determined by 

the DB2 Performance Wizard [IBM00]. The DB2 Performance Wizard is a tool shipped 

with DB2 that can be used for the initial allocation of resources. During each test all 

resource values are set at their “Wizard” default values with the exception of the resource 

being studied. Performance data is collected for each run and stored for further analysis. 

Table 1 includes information about the default resource values and the settings of each 

resource used in the testing.  

 

Resource Name Default Value 
(unit) 

Values Tested 

Changed Pages Threshold  80 (percent) 10, 20, 30, 40, 50, 60, 70, 80, 90 

Database Heap  1215 (4k pages) 1215, 2049, 3072, 4096, 5120, 6144 

Deadlock Check Time  10,000 (msec) 10,000, 20,000, 30,000, 40,000, 
50,000, 75,000, 100,000  

Locklist Size 295 (4k pages) 200, 300, 400, 500, 750, 1000, 5000, 
10,000  

Lock Timeout Infinity (lock will 
never time out) 

9, 10, 11, 15, 20, 30, 50, 100, 
infinity 

Log Buffer Size 48 (4k pages) 48, 500, 1000, 1500, 2000, 2500, 
3000, 5000, 10,000, 20,000 

Minimum Commit 1 (count) 1, 2, 3, 4, 5, 10, 15, 20, 25 

Number of I/O Cleaners 5 (process) 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 
100 

Sortheap Threshold  10,000 (4k pages) 250, 500, 1000, 2000, 3000, 5000, 
10,000 

Sortheap Size 256 (4k pages) 20, 25, 30, 35, 40, 50, 100, 150, 200, 
250, 500, 1000 

Softmax 70 (percent) 50, 75, 100, 150, 200, 250, 300, 400 

Table 1 – Example resources for diagnosis tree tuning. 
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The DBMS workload is run for a period of 20 minutes for each individual resource 

setting. We consider the first three minutes of each run to be a warmup period that allows 

the workload to stabilize. We collect throughput data every five seconds during the entire 

run but ignore the warmup period when calculating average throughput values. We 

determined that this sample size ensures that the throughput measurements are accurate to 

within 25 tpmC 95% of the time. tpmC is the term used to specify the transactions per 

minute “C” for the Transaction Processing Performance Council’s (TPC’s) “C” 

benchmark. tpmC is the average number of New Order transactions processed by the 

DBMS each minute.  

 

DB2 performance information was collected during each workload run. Performance 

information included internal DBMS counters and watermarks that are accessed through 

performance monitoring tools included with the DB2 software. This performance data are 

vital to diagnosis as it is used to determine how the internal DBMS components are 

working. Data is collected for two five-minute periods during each 20 minute run. The 

first collection period begins at the one minute mark while the second begins at the 10 

minute mark. Performance data are collected at the beginning of the run to allow 

observation of DBMS performance during ramp-up time. It is important to collect data 

early in the run as poor resource allocations can cause the database to stop executing 

transactions during an early part of the run. Early data collection allows us to determine 

how the DBMS is performing in the early portion of the run for those situations where no 

data are collected at a later time in the run. Failure is possible later in a run if enough 

deadlocks occur. Performance data are collected during the middle of the run to provide 
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observation during a stable period in the workload. A list of the data collected is located 

in Appendix D. 

 

4.2.1 Interpreting the Data 

Several examples of collected performance data are presented below along with an 

interpretation of the data. 

 

Number of I/O Cleaners  

I/O cleaners are asynchronous processes that remove dirty (modified) pages from the 

buffer pool in order to make room for new pages. Without the I/O cleaners, transaction 

processes are forced to pause execution in order to synchronously write a dirty page back 

to disk. Synchronously writing dirty pages back to disk is known as a dirty page steal. 

Dirty page steals reduce throughput performance because the CPU is forced to suspend 

the execution of a transaction to make a synchronous I/O to disk. The number of I/O 

cleaners is a high- impact resource for non-read-only workloads. Figure 12 shows the 

impact on performance when the number of I/O cleaners is adjusted for the test workload. 

In Figure 12 the left y-axis shows the percentage of asynchronous writes made during the 

collection period. The right y-axis shows the throughput of the system in tpmC. The x-

axis shows the number of I/O cleaners that are allocated for a run. The point shown is an 

average throughput value and represents the particular test run for the number of I/O 

cleaners.  
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The performance of the DBMS and the throughput of the workload are affected by the 

allocation of I/O cleaners. As we reduce the number of I/O cleaners below 30, the 

throughput drops. As the number of I/O cleaners increases over 60, the tpmC  value 

begins to decline slightly. Performance is level between 30 and 60 I/O cleaners. The main 

negative performance impact occurs when too few I/O cleaners are allocated in a system. 

The peak in tpmC in Figure 12 shows that there is an optimal I/O setting for this 

configuration, as either too many or too few I/O cleaners result in degraded  performance.  
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Figure 12 - The impact of I/O cleaners on performance. 

 

We can also see that the percentage of asynchronous writes is a good indicator value for 

the I/O cleaners resource. The total number of writes that occur are a combination of 

asynchronous and synchronous writes. Increasing asynchronous writes results in a 
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decrease in synchronous writes. Our tests show that the peak throughput for our workload 

occurs where the percentage of asynchronous writes reaches 100%. The curve mapping 

the throughput and number of I/O cleaners matches the curve mapping the percentage of 

asynchronous writes and number of I/O cleaners. These matching curves show the 

relation between an increase in the number of I/O cleaners and an increase in throughput. 

Our test results show that asynchronous write levels of less than 95% are detrimental to 

DBMS throughput. It can be concluded that a threshold value of 95% for asynchronous 

writes is appropriate for this workload. An observed percentage of asynchronous writes 

less than 95% signifies a performance issue and indicates than the number of I/O cleaners 

should be adjusted.  

 

Deadlock Check Time  

The deadlock check time resource allows the DBA to set, in milliseconds, the amount of 

time that the DBMS wait s before it checks for deadlocks. If the deadlock check time is 

set too low, then deadlock checking is performed frequently, which consumes CPU 

resources. If the deadlock check time is set too high, then deadlocked processes may wait 

for a long period of time before they are either resolved by the system or they time out. 

The effect of different deadlock check time settings on the test workload is demonstrated 

in Figure 13. The left y-axis shows the number of deadlocks that occur per 10,000 

transactions for our workload. The right y-axis illustrates both the tpmC and the average 

lock wait time for the workload. The x-axis shows the values for the deadlock check time 

resource. We define the deadlock rate to be the number of deadlocks that occur for every 

10,000 transactions. The deadlock rate is affected by several different workload and 
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system factors such as they amount of data contention, the number of concurrent 

transactions, the size of the lock list, the positioning of data within the tables and the 

throughput of the application. Average lock wait time is calculated from the amount of 

time spent waiting for locks and the number of locks issued. Calculations are made using 

performance information collected from DB2. 

 

Decreasing the deadlock check time will result in decreases of the deadlock rate and the 

average lock wait time while increasing throughput. Deadlocks are resolved more quickly 

when the deadlock check time is set low. Resolving deadlocks more quickly results in a 

lower average lock wait time. Reducing the lock wait time has a direct effect on the 

throughput of the system, as time spent waiting for locks is wasted time. The CPU 

overhead of checking for deadlocks more frequently is offset by the time saved by 

resolving deadlocks. It should be noted that data contention will almost always occur in 

an OLTP workload with updates. It is therefore not uncommon to observe some number 

of deadlocks occurring in the system.  For this reason, completely eliminating deadlocks 

from the system is not a practical option.  

 

The presence of unresolved deadlocked transactions in the DBMS is an invitation for 

more deadlocks to occur since deadlocked transactions retain their locks on data objects. 

Figure 13 shows an increase in the deadlock rate as the deadlock check time increases. 

Although we measured an increase in the deadlock rate with the increase in the deadlock 

check time, we do not choose the deadlock rate as an indicator value.  
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Figure 13 – The impact of deadlock check time on performance. 

 

Deadlock rate is not chosen as an indicator variable due to the variance in the acceptable 

deadlock rate for different workloads. Instead, we choose the average lock wait time as 

an indicator variable for the deadlock check time resource. System throughput decreases 

as the average lock wait time increases. The best performance occurs when the average 

lock wait time is low. Figure 13 shows acceptable throughput when the average lock wait 

time is below 1000 msec. We chose a threshold value of 1000 msec for the test workload.  

 

Changed Pages Threshold 

Changed pages threshold is a value set by the user to determine when the I/O cleaners 

should begin to clean dirty (modified) pages out of the buffer pool. It is expressed as the 

percentage of dirty pages that must exist in the buffer pool before the I/O cleaners are 

triggered. Legal values for the changed pages threshold setting range from 5 to 99. A low 
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changed pages threshold may result in overcleaning the buffer pool, i.e., modified pages 

are written to disk and then modified again while still in the buffer pool. Overcleaning 

results in data pages being written back to disk multiple times, creating extra disk I/O and 

wasting CPU cycles. If the changed pages threshold value is set too high, then agents 

may be forced to execute dirty page steals because no clean pages are available. The 

changed pages threshold setting should be set based on the number of I/O cleaners and 

the workload type.  

 

The effects of altering the changed pages threshold resource on the performance of the 

test workload can be observed in Figure 14. The left y-axis shows the percentage of 

victim writes and changed pages threshold triggers. The right y-axis shows the 

throughput in tpmC. The x-axis indicates the changed pages threshold setting for each 

data point.  
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Figure 14 - The impact of the changed pages threshold resource on performance. 
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The impact of the changed pages threshold on the performance of the DBMS is less 

obvious than with the number of I/O cleaners and the deadlock check time. Figure 14 

presents a case where the workload performance does not vary significantly regardless of 

the value of the changed pages threshold. The best throughput occurs when the number of 

changed pages threshold triggers is low and the number of victim writes (or dirty page 

steals) is between 20% and 25%. There is a decrease in performance when the percentage 

of changed pages threshold triggers is larger than the percentage of victim writes. These 

observations result in a node in the diagnosis tree that compares the percentage of victim 

writes to the percentage of changed pages threshold triggers. If the percentage of changed 

pages threshold triggers is greater than the percentage of victim writes, the diagnosis 

algorithm suggests an increase in the changed pages threshold value. 

 

4.3 Modifying the Diagnosis Tree 

The initial diagnosis tree in Figure 11 embodies all of the aspects of the DBMS 

documentation and tuning experience available during construction. The tuned tree based 

on our experiments is shown in Figure 15. The first difference between the tuned tree and 

the initial tree from Figure 11 is in the structure of the diagnosis tree. The root node in the 

initial diagnosis tree examines the buffer pool hit rate. Although checking the buffer pool 

hit rate is a logical first step in diagnosing DBMS performance, the buffer pool hit rate is 

only a valid measure of performance for this workload if other conditions are met. For 

example, the buffer pool hit rate cannot be used as a valid measure of performance if lock 

escalations are occurring in the DBMS. Early experiments showed that lock escalations 

can cause a well-configured buffer pool to have a low hit rate. Increasing the size of the 
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buffer pool will not increase the hit rate, as the size of the buffer pool is not the source of 

the hit rate problem. It is necessary to determine if lock escalations are occurring before 

the buffer pool hit rate can be used for diagnosis. The tuned diagnosis tree eva luates lock 

escalations before the buffer pool hit rate. 

 

 

Figure 15 - The tuned diagnosis tree. 

 

The second difference is that the tuned diagnosis tree contains more specific threshold 

values than the initial diagnosis tree. Initial threshold values are estimates based on little 

performance information. Evaluating the workload performance on the DBMS provides 

reasonable threshold values for the diagnosis tree. Threshold values partially depend on 

the tuning policy desired, as threshold values for a conservative system will differ from 

those for an aggressive system. A conservative system will forsake some performance for 

stability and will be more restrained in the modification of resource values. An aggressive 
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system will forsake some stability for performance and will be less restrained in the 

allocation of resources to gain performance. An automated system should provide the 

ability for individual DBAs to adjust threshold values. The tree shown in Figure 15 is 

somewhat aggressive in that it considers only resources with a high or medium impact on 

the DBMS. 

 

A third difference between the initial and tuned diagnosis trees is that DBMS testing 

provided new information about certain resources. An example of this involves the 

changed pages threshold. Documentation for the changed pages threshold implies that it 

is an important resource with a high impact on the performance of the DBMS. DBMS 

documentation also implies that changed pages threshold triggers have less overhead than 

dirty page steal triggers. The results in Figure 14 show this to be false for the hardware, 

software and workload used and, in fact, dirty page steals are preferred to changed pages 

threshold triggers for this workload. This information is included in the modified 

diagnosis tree. 

 

A fourth difference is the removal of some resources from the diagnosis tree. One 

example is the log buffer size. Although it was assumed that the size of the log buffer 

would have an effect on the throughput of the DBMS, the results show this is not the case 

for our test workload. Figure 16 shows that adjusting the size of the log buffer has very 

little effect on the throughput of the workload. Little or no change can be seen in the 

throughput, the percentage of dirty page steals, the percentage of log triggers or the 

percentage of asynchronous writes.  
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Figure 16 - The effects of the Log Buffer Size on performance. 

 

4.4 A Generic Tuning Tree 

The diagnosis tree in Figure 15 presents a good foundation for the creation of a generic 

diagnosis tree for OLTP workloads. Additional diagnosis nodes have to be added to 

provide the ability to diagnose all resource allocation problems. A more generic diagnosis 

tree would have the ability to diagnose the database heap size, the catalog cache size and 

the package cache size as well as other DB2 resources. The diagnosis tree proposed in 

Figure 17 is a more general diagnosis tree than the one used in this dissertation. As the 

generic diagnosis tree was created as a result of our testing, it was not used for any of our 

experiments. Further testing is needed to determine the appropriate threshold values and 

the tree structure is open to the insertion of new diagnosis nodes. Verification of this tree 

is beyond the scope of this thesis. 
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Figure 17 - Proposed generic diagnosis tree. 

 

The new nodes proposed for the generic diagnosis tree are meant to diagnose the database 

heap, catalog cache and package cache memory sizes. The database heap memory is 

memory allocated when the first connection is made to the database. Control block 

information for tables, indexes, table spaces and buffer pools are all kept in this memory 

space. The catalog cache is a reserved piece of memory available for caching table 

descriptors for tables and views. The catalog cache is used to store these descriptors in 

memory in order to avoid disk accesses. The descriptors are needed when compiling an 

SQL statement. The package cache is a reserved piece of memory used to cache package 

information when executing static and dynamic SQL statements.  
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Node D9 is proposed in order to determine if the catalog cache is full. A catalog cache 

that is not full indicates wasted memory, and the catalog cache size should be reduced 

accordingly. Node D10, using the knowledge that the catalog cache is full, is proposed to 

determine the activity in the catalog cache. Frequent catalog cache overflows or a low 

catalog cache hit rate indicates that the catalog cache size may be too small. Tuning node 

T12 also suggests the database heap as a possible tuning parameter, as the catalog cache 

in contained within the amount of memory allocated to the database heap. If the catalog 

cache seems to be performing well with no overflows and a good hit rate, we move on to 

proposed node D11. D11 checks the performance of several parameters associated with 

the package cache, including the package cache hit rate, the package cache size top and 

the number of package cache overflows. If any of these performance values indicate poor 

package cache performance, then tuning node T11 will suggest that the package cache 

and/or the database heap be increased in size. If the package cache performance is good, 

then we will continue with node D3 which was part of the tuning tree presented in this 

dissertation. 
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Chapter 5  

Evaluation of Diagnosis Framework 

The success of the diagnosis system presented in this dissertation is based on the ability 

of the system to correctly diagnose performance problems in a working DBMS. In this 

chapter we present a set of experiments that illustrate the diagnostic ability of a prototype 

diagnosis system on a working DB2 database system.  

 

Portions of the diagnosis system have been implemented for evaluation purposes. At 

present, we have constructed a resource model, a workload model and a resulting 

diagnosis tree for a subset of the resources available for DB2. The implemented resources 

were chosen based on their significant impact on the workloads used. We have 

implemented a diagnosis tree and a resource model to deal with the selected resources 

from DB2. Our algorithm will traverse the resource tree and return tuning suggestions 

from a tuning node. A forward resource tree is automatically generated by the traversal 

algorithm. Reverse resource trees are presently generated by hand. Adjusting the 
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resources suggested by the diagnosis tree is also done manually, as DB2 does not yet 

support the dynamic adjustment of resources.  

5.1 The Test Environment 

The test environment consists of an IBM server running the Windows NT Server 

operating system and DB2 version 7.2 as the DBMS. Detailed information about the test 

hardware and software can be found in Appendix A. The database workload is based on 

the Transaction Processing Council OLTP benchmark, TPC-C [TPC]. The transactions 

are based on an order-entry environment that simulates placing and delivering orders, 

recording payments, monitoring stock levels and checking the status of orders. 

Information about the TPC-C benchmark is found in Appendix B. 

 

The test database contains 100 warehouses (approximately 10GB of data in total). 

Transactions are executed against the database by 60 client processes. Throughput data 

are collected by the database workload application in five-second intervals throughout the 

run. DB2 performance information is collected over a five minute period from the 10 

minute mark to the 15 minutes mark of the run. The total run time for each test is 20 

minutes. The throughput is averaged over the last 17 minutes of each run. 

 

The workload used for testing is a version of the TPC-C database benchmark workload. 

This workload is used because it exemplifies a generic OLTP workload. The 

benchmarking workload is able to adequately test the DBMS in a non-deterministic 

fashion while still producing comparable and repeatable results. The TPC-C workload is 

cyclic in nature, running five different transactions continuously for the duration of the 
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tests. Each transaction type will differ only in the data used in the transaction, resulting in 

a workload that is cyclic in nature. The workload is able to provide, during a single run,  

multiple data points that can be used for statistical purposes. In order to show that there is 

no significant difference between the data collected in multiple runs, we have completed 

a statistical analysis of three workload runs where none of the DBMS parameters are 

changed. The resulting tpmC for the three runs are very close in value, ranging from 

4245.76 tpmC to 4265.72 tpmC. The observed variance is high due to the variability in 

the tpmC values collected every five seconds. The statistical analysis shows that with two 

degrees of freedom, we calculated an F value of 0.367566 and an F-critical value of 

3.012417. With the value of F smaller than F-critical, we fail to reject the null hypothesis 

that there is significant difference between the means. In order to reject the null 

hypothesis with a confidence of 95%, we need a P-value of less than 0.05. Our P-value of 

0.692591 is much higher than 0.05, further strengthening the fact that there is no 

statistical difference between the three runs. Data for the statistical analysis is shown in 

Table 2. Data points collected for our statistical analysis are found in Appendix J. 

54227469134Total

50799.6154027431790Within Groups

3.0124170.6925910.36756618672.22237344.45Between Groups

F critP-valueFMSdfSSSource of Variation

ANOVA

54665.814265.724772096181Run 3

48042.024245.762768483181Run 2

49691.014259.006770880181Run 1

VarianceAverageSumCountGroups

SUMMARY

Single Factor

 

Table 2 - Statistical analysis of test workload. 
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Calculating the confidence interval for the workload is important in order to determine 

the confidence that can be given to the measured workload throughput. Appendix F 

contains the calculation of the confidence interval for our workload. The resulting 

confidence interval is 25.3 tpmC, meaning that our calculated throughput results are 

within 25.3 tpmC of the actual throughput. Combining this information with the 

statistical analysis showing the repeatability of workload throughputs, it was decided that 

individual data point collection could be used for our experiments. As a result, the data 

points shown in our experiments are not averages of multiple runs, but the results of an 

individual test run.  

  

5.2 The Evaluation Process 

Determining the ability of the diagnosis system to diagnose a DBMS correctly involves 

five distinct steps – initializing the DBMS, restoring the database, running and 

monitoring the workload, diagnosing the performance data and tuning the DBMS. Figure 

18 is a diagram of the evaluation process. DBMS initialization occurs only once during 

each series of tests. The remaining steps are repeated until the diagnosis algorithm has 

determined that the DBMS is tuned. Each diagnosis loop results in the collection of 

throughput data that we use to graph the performance of the workload. We describe the 

steps in detail below. 
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Figure 18 - Evaluation Process. 

 

1) – Initialization 

Initialization prepares the database and DBMS by adjusting them to a set of defa ult 

resource allocations. The values used in the default resource allocation have been shown 

in our experiment to adversely affect DBMS performance. A list of the resource values 

used for the untuned DBMS allocation is found in the “Untuned” column of Table 3. 

Table 3 also lists the values for each resource when tuned by either an expert or by the 

DBMS Tuning Wizard. The expert and wizard values are used as comparisons when 

evaluating the diagnosis algorithm. 
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2) – Restoring the database 

The database must be restored after each time the workload is run on the DBMS. 

Restoring the data ensure that each run is conducted under the same database initial 

conditions, that is, the same initial database state.  

 

3) – Running and monitoring the workload 

While a workload is run, the monitor program collects performance data from the DBMS 

and the workload applications. Performance data is collected over a five minute period 

starting 10 minutes into the run. Throughput data is collected every five seconds for the 

duration of the run. The performance data is stored in a separate database where it can be 

accessed by the diagnosis algorithm. The schema for the performance data is found in 

Appendix G. A list of the performance data collected is found in Appendix D. 

 

4) – Diagnosis 

Diagnosis begins once the data is collected. The performance data is retrieved from the 

database where it was stored to aid in the diagnosis of the DBMS. Upon examination of 

the data, the diagnosis algorithm suggests a list of resources for tuning. The diagnosis 

algorithm may also return no list, signifying that no resources have been flagged for 

adjustment. 
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Resource Expert Tuned  Untuned  DBMS Wizard 

Locklist size 295  4k pages 40  4k pages 295  4k pages 

Number of I/O Cleaners 40 1  5 

Deadlock Check Time 20,000 msec 100,000 msec 10,000 msec 

Lock Timeout -1 (infinity) 5 seconds -1 (infinity) 

Changed Pages Threshold 60 20  80 

Sortheap Size 10,000  4k pages 256  4k pages 256  4k pages 

Sortheap Threshold 10,000  4k pages 512  4k pages 10,000  4k pages 

Table 3 - DBMS resource values. 

 

5) – Tuning 

The DBMS is tuned by adjusting each resource according to the associated strategy in 

Table 4. The resource adjustment strategy is used to ensure that resource adjustments are 

consistent throughout all experiments. Resource allocations were modified only when 

indicated by the diagnosis algorithm. Single adjustments are made to the system in order 

to determine the impact of the resource on performance. Adjustments are made using the 

values shown in Table 4. The initial value of the resource is indicated in the table, as are 

the values to be used if the resource is diagnosed. For example, consider the locklist size 

resource. The initial value is 40 4k pages. If the locklist size is diagnosed, we will adjust 

the resource to the value stored in the Step 1 column, 60 4k pages. If the locklist size is 

diagnosed again, we will further adjust the resource to the value stored in the Step 2 

column, 80 4k pages. We will continue with this naïve tuning strategy using the 

appropriate steps and values shown in Table 4. 
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In general, we diagnose and tune only one resource per diagnosis tree traversal. There are 

two exceptions to this, involving two sort-oriented resources and two lock-oriented 

resources. In the case of the sortheap size and sortheap threshold resources, 

documentation clearly indicates that these resources must be adjusted as a pair [IBM00]. 

They are therefore diagnosed and tuned as a pair. In Node T4 of the diagnosis tree in 

Figure 15, the diagnosis is to adjust either the deadlock check time or the lock timeout 

resource. A naïve strategy of adjusting the deadlock check time twice, followed by 

adjusting the lock timeout resource once, was chosen. This pattern is followed whenever 

Node T4 is the result of a diagnosis. 

 

Resource (unit of measure) Initial Value Step 1 Step 2  Step 3 Step 4 

Locklist Size (4k pages) 40 60 80 100 120 

Number of I/O Cleaners 1 10 20 30 40 

Deadlock Check Time (msec) 100,000 50,000 10,000 5,000 2,000 

Changed Pages Threshold (%) 20 30 40 50 60 

Locktimeout (seconds) 5 10 20 50 100 

Sortheap Size (4k pages) 256 512 1024 2048 4096 

Sortheap Threshold (4k pages) 512 1024 2048 4096 8192 

Table 4 – Tuning strategy. 

Using the results of the diagnosis, one or more resources are chosen for adjustment. 

Resource adjustments made will remain for the rest of the runs in this test. Steps 2-5 are 

then repeated until the diagnosis algorithm determines that the database is tuned. 
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5.3 Typical Tuning Scenarios 

Tuning is needed throughout the life of a database in order to maintain peak performance. 

Several common situations occur during the lifetime of a database that cause it to need 

retuning, such as the addition of new hardware, the addition of new transactions, or an 

increase in size of the data stored. Three such situations were chosen as a representative 

sample and these scenarios are outlined in Table 5. 

 

Scenario Explanation 

Size Increase An increase in the database size can cause the DBMS to 

perform poorly. We simulate doubling the size of the database 

by reducing the buffer pool size by half.  

Workload Shift Altering the occurrence of transactions in the workload can 

cause poor performance. Adjusting transaction percentages in 

the workload simulates a workload shift. 

Transaction Variation Varying the transactions that are executed against the database 

can reduce DBMS performance. In the transaction variation 

scenario, a new type of transaction is added to the workload.  

Table 5 - DBMS tuning scenarios. 

 

The database size scenario is a significant problem for DBAs. DBMS tuning values 

become outdated as the database grows or shrinks in size. Database growth depends on 

the number and frequency of updates. The percentage of data held in the buffer pools 

decreases as the amount of data accessed from the tables increases, which has a negative  

effect on the buffer pool hit rate. A buffer pool is an area of memory that is used to cache 

data and index information from the DBMS disks.  Increasing the amount of data may 
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also have an effect on the number of I/O cleaners needed to move data, the number of I/O 

servers needed to retrieve the data from the disks, and various other DBMS resources.  

 

The workload shift scenario simulates a change in the way that a database is used. Each 

transaction presents a different load on the DBMS. As the percentage of each transaction 

changes in the workload, the workload requirements on the DBMS shifts. Table 6 lists 

the original percentages and the modified percentages of each transaction in the 

workload. 

 

Transaction Name Original workload Workload Shift 

New Order 45% 24% 

Payment 43% 24% 

Order Status 4% 22% 

Delivery 4% 4% 

Stock Level 4% 26% 

Table 6 – Transaction frequencies for the original and modified workloads. 

 

The transaction variation scenario involves the addition of a new transaction to the 

workload that uses the same data as the original transactions and so interferes with the 

original workload to some extent. The transaction added to the workload is a sort query 

that is embedded in a loop. It is not required that the sort query be run a particular 

percentage of times during each test, but that the query is run as many times as possible 

during each test period.  
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5.4 Scenario 1 – Size Increase 

Original Configuration 

We ran the original OLTP workload with the relative frequencies specified in Table 6. 

The buffer pool was 100,000 4k pages in size, which is approximately 400MB. This 

allows us to simulate a relatively small database situation where sufficient memory is 

available for good system performance. Table 7 presents the data from the tuning process 

for the original workload. For each run, the “Changed Resource” column indicates the 

resource value that was altered from the previous run, the “Diagnosis” column provides 

the diagnosis made by the algorithm for this particular run and the “tpmC ” column shows 

the resulting throughput expressed in Transactions Per M inute C (tpmC) for the run. 

 

The evaluation process in Figure 18 shows that the diagnosis process will iterate until the 

“tuned” condition is met. The diagnosis tree in Figure 15 contains T7, the tuning leaf that 

signifies when the system is tuned. If a tree traversal results in the return of node T7, then 

the diagnosis tree was unable to diagnose any performance problems and the database is 

considered tuned. The results in Table 7 for Run 1 show that during the first run the 

resource allocations are so poor that the throughput (tpmC ) is zero. The zero throughput 

is a result of poor lock resource allocations, resulting in a deadlocked system. The 

diagnosis tree suggests tuning the locklist size parameter resulting in an adjustment 

according to the tuning strategy outlined in Table 4. The locklist parameter is adjusted 

from 40 pages to 60 pages and the workload is run again, which results in the diagnosis 

found in Run 2 of Table 7. Increasing the size of the locklist alleviates the deadlock 

problem and results in increased throughput. 
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Run Changed Resource Diagnosis tpmC 

1 Starting Configuration Locklist 0.00

2 locklist = 60 Number of I/O Cleaners 3897.18

3 num_iocleaners = 10 Number of I/O Cleaners 3150.18

4 num_iocleaners = 20 Deadlock check time and/or Lock timeout 4254.41

5 dlchktime = 50000 Deadlock check time and/or Lock timeout 2984.18

6 dlchktime = 10000 Number of I/O Cleaners 4593.00

7 num_iocleaners = 30 Deadlock check time and/or Lock timeout 4258.88

8 locktimeout = 10 Deadlock check time and/or Lock timeout 1418.29

9 dlchktime = 5000 Number of I/O Cleaners 5986.94

10 num_iocleaners = 40 Done 6270.76

Table 7 - Diagnosis of the original workload on a small database. 

 

Although the change from Run 1 to Run 2 is a significant performance increase, the 

diagnosis algorithm suggests that the number of I/O cleaners should be adjusted. The 

number of I/O cleaners is increased from one to 10. Increasing the number of I/O cleaners 

results in a decrease in throughput. This decrease in throughput is caused by an increase 

in the average lock wait time. Further diagnosis suggests another increase in the number 

of I/O cleaners. This diagnosis may seem counter-productive, as the previous drop in 

performance was caused by an increased average lock wait time triggered by an increase 

in the number of I/O cleaners. It should be noted that both I/O cleaners and lock wait time 

have poor measured performance at this point in time – the number of I/O cleaners is 

diagnosed first due to its position in the diagnosis tree. Adjusting the number of I/O 
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cleaners for Run 4 results in a performance increase that more than compensates for the 

decrease noticed from Run 2 to Run 3.  

 

Diagnosis of the performance data from Run 4 results in the tuning suggestion of 

adjusting either the deadlock check time or lock timeout resources. This diagnosis results 

from an average lock wait time that is above the threshold value. In the case where two 

resources are diagnosed for tuning, a tuning policy must be followed to determine the 

order in which the resources are tuned. In the case of the deadlock check time and lock 

timeout resources, the tuning policy used requires that the deadlock check time resource 

be adjusted twice for every adjustment of the lock timeout resource. As a result, the first 

two times that this tuning combination is suggested by the diagnosis algorithm, the 

deadlock check time will be adjusted. When the combination is suggested a third time, 

the lock timeout will be adjusted. The pattern of tuning the deadlock check time twice for 

each adjustment of the lock timeout continues from there. As a result of this tuning 

pattern, the deadlock check time resource is adjusted from 100,000 msec to 50,000 msec, 

resulting in a decrease in tpmC from 4254.41 to 2984.18. A further diagnosis is made to 

adjust again the deadlock check time resource from 50,000 msec to 10,000 msec, 

resulting in an increase in tpmC from 2984.18 to 4593.00. The temporary decrease in 

performance when the deadlock check time resource was set at 50,000 msec was caused 

by an increase in the average lock wait time performance measurement. When the 

deadlock check time was set at 100,000 msec, deadlocks were given enough time to 

resolve themselves, resulting in the recorded performance. When the deadlock check time 

was reduced to 50,000 msec, the deadlocks did not have enough time to resolve, resulting 
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in many lost transactions and a high lock wait time, greatly reducing performance. The 

continued reduction in the deadlock check time resource to 10,000 msec results in the 

deadlocks being resolved faster, resulting in less lock wait time and higher throughput.  

 

Run 6 diagnosis results in adjusting the number of I/O cleaners from 20 to 30 due to a 

low percentage of asynchronous writes. The resulting decrease in tpmC is due to 

increased lock wait time due to increased data contention. The increased lock wait time 

results in the diagnosis in Run 7 requiring the adjustment of either the deadlock check 

time resource or the lock timeout resource. The deadlock check time resource has already 

been adjusted twice so the lock timeout resource is now adjusted. The resulting resource 

change produces a significant drop in tpmC from 4258.88 to 1418.29. This drop in 

performance is directly related to a significant increase in the lock wait time due to the 

increase in the amount of time a lock must wait before timing out. The increase in lock 

wait time results in the Run 8 diagnosis of deadlock check time and lock timeout. We 

modify the deadlock check time resource (based on our naïve tuning strategy), resulting 

in an increase in performance from 1418.29 to 5986.94 while reducing our average lock 

wait time. The diagnosis for Run 9 involves adjusting the number of I/O cleaners due to a 

low percentage of asynchronous writes. The adjustment results in increasing the 

percentage of asynchronous writes and increasing performance. Diagnosis of the 

performance data results in the “tuned” node being returned. The diagnosis algorithm has 

no further suggestions and the diagnosis and tuning process is complete. 
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We evaluate the success of the diagnosis algorithm by comparing the final throughput of 

the DBMS with tpmC values achieved by our expertly tuned system and a system tuned 

by the DB2 Tuning Wizard. The expertly tuned system represents the best possible 

throughput achieved when tuning the system by hand. The expert who tuned the DBMS 

for these experiments is a DBA and research associate for the Database System 

Laboratory at Queen’s University with over 10 years of experience tuning DB2. Table 3 

shows the resource allocations used for both the expert and tuning wizard configurations.  

 

The final measured throughput for the diagnosed configuration is 6270.86 tpmC. The 

throughput for the expert configuration is 6355.65 tpmC while the throughput for the 

wizard configuration is 4966.00 tpmC. The diagnosis system is able to tune the system to 

98.67% of the expert throughput and 126.28% of the tuning wizard throughput. 

Throughput values are summarized in Figure 19. 

 

Figure 19 shows that each step taken during the diagnostic process does not always 

increase system throughput. The changes made in several of the iterations actually cause 

a decrease in database throughput. The diagnosis algorithm does not consider database 

throughput during the diagnosis process, but instead examines the values of the indicator 

variables. Resource adjustments are made if an adjustment will increase or decrease the 

indicator variable appropriately. Improving the value of indicator variables will result in 

improved database performance.  
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Figure 19- Throughput results for the original workload on a small database. 

 

A resource adjustment is considered valuable if the performance of the resource or 

indicator variable increases. For example, in Run 6 shown in Table 7, the throughput of 

the workload is 4593.00 tpmC. The diagnosis algorithm suggests increasing the number 

of I/O cleaners from 20 to 30. The diagnosis is based on performance data which 

indicates that the percentage of asynchronous writes is 85.0%. The diagnosis tree 

recognizes that the percentage of asynchronous writes is below the threshold of 95% and 

suggests an increase in the number of I/O cleaners to fix the problem. Increasing the 

number of I/O cleaners to 30 results in 99.7% asynchronous writes for Run 7, a value 

above the threshold. The throughput for Run 7 is 4258.88 tpmC, a decrease of 334.12 

tpmC from the previous run. Although the performance of the system decreased slightly, 

increasing the number of I/O cleaners as suggested by Run 6 is the appropriate action. 

The throughput decrease can be attributed to a shift in the performance bottleneck. In 
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Run 6 the performance bottleneck is due to a lack of I/O cleaners and a low percentage of 

asynchronous writes. Increasing the number of I/O cleaners results in an increase in the 

percentage of asynchronous writes, allowing more data to be processed by the database. 

Processing the extra data increases the percentage of log triggers, an indication that 

problems exist with the deadlock check time and lock timeout variables. The increased 

data contention in Run 7 results in a lower throughput than recorded in Run 6. Although 

the resource adjustment suggested in Run 6 is beneficial to the overall performance of the 

database, the resulting throughput recorded for Run 7 is lower than in Run 6. This type of 

resource adjustment is only detrimental to system performance if tuning is stopped at Run 

7. By continuing with the diagnosis and tuning process, the new bottleneck can be 

diagnosed and throughput improved.  

 

Diagnosis time is an important factor for an automated diagnosis system. Diagnosis time 

is measured by the amount of time needed from one diagnosis to the next. Each iteration 

of the diagnosis process involves running the workload, waiting for the workload to 

stabilize, collecting the performance and throughput data, running the diagnosis 

algorithm and then making the resource adjustment. Reducing the time required per 

iteration will reduce the amount of time needed to completely diagnose the system. In our 

present setup, the workload is run for a period of 20 minutes per iteration. The 20 minutes 

includes a warm-up period for the workload to stabilize, data throughput collection and 

performance data collection. The average run time for the diagnosis algorithm is between 

10 and 20 seconds and the time needed to adjust the diagnosed DBMS resource is less 
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than 30 seconds. The total amount of time needed per iteration is therefore approximately 

21 minutes. 

 

The amount of time currently needed per iteration is restricted by the inability to adjust 

DBMS resources while the database is running. This restriction requires that the DBMS 

be shut down and restarted before changes take effect, resulting in longer iterations times. 

As database technology advances, dynamically adjustable database tuning parameters 

will greatly reduce iteration time.  

 

We can also reduce the number of iterations to further reduce the total amount of time 

needed to diagnose a DBMS. In Table 7, the number of iterations needed to tune  the 

workload is 10. Several of the tuning steps in Table 7 require the same resource to be 

tuned twice in a row, such as diagnosing the number of I/O cleaners in Step 2 and Step 3. 

Step 2 suggests adjusting the number of I/O cleaners from 1 to 10 while Step 3 suggests 

adjusting the I/O cleaners from 10 to 20. The use of a more intelligent tuning algorithm 

during the diagnosis in Step 2 may result in increasing the number of I/O cleaners from 1 

to 20, effectively eliminating Step 3. The use of intelligent tuning algorithms instead of 

the naïve tuning process from Table 4 can help reduce the number of iterations needed to 

tune the DBMS. In the case outlined in Table 7 the number of iterations could be reduced 

from 10 to 7. 

  

Another method to reduce the number of iterations needed to tune the DBMS is the use of 

resource trees. A reverse resource tree enables us to expand the diagnosis space once a 
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problem resource is identified. Expanding the diagnosis space to include related resources 

provides information that can be beneficial to the tuning process. In Step 1 of Table 7, the 

locklist resource is selected for tuning. The reverse resource tree generated in Figure 20 

indicates that the resources directly related to locklist are deadlock check time, lock 

timeout, maximum number of locks, and maximum number of applications. The 

maximum number of agents and the average number of applications are indirectly related 

through the maximum number of applications resource. In this case, both the deadlock 

check time and lock timeout resources are later diagnosed by the diagnosis tree. Using 

the resource tree identifies both of these resources as potential tuning candidates early in 

the diagnosis process, allowing us to run tuning algorithms for these resources. Intelligent 

tuning algorithms may suggest earlier adjustments for both deadlock check time and lock 

timeout, reducing the number of iterations needed to tune the DBMS.  

Locklist Size

Lock Timeout

Maxlocks

Max Number of Agents

Max Number of Applications

Deadlock Check Time

Average Num of Applications

 

Figure 20 - Reverse resource tree with Locklist Size as root. 

 



 88 

Step 2 and Step 3 in Table 7 both diagnose the number of I/O cleaners resource as the  

cause of performance problems. The reverse resource tree shown in Figure 21 identifies 

the buffer pool and changed pages threshold resources as related to the number of I/O 

cleaners and possible causes of the performance problem. Although identified as 

resources to be considered for tuning, neither related resource is adjusted during this run. 

This also applies for Steps 6 and 9 where the number of I/O cleaners is diagnosed. The 

forward and reverse resource trees used can be found in Appendix I. 

 

Buffer Pool SizeChanged Pages Threshold

Number of I/O Cleaners

 

Figure 21 - Reverse resource tree with I/O Cleaners as root. 

 

Modified Configuration 
 
We simulate database growth by reducing the size of the buffer pool to 50,000 4k pages. 

We simulated database growth as opposed to building a larger database in order to avoid 

hardware complications such as lack of disks. We simulate growth by decreasing the 

memory to data ratio by decreasing the amount of available memory. The original OLTP 

workload is used and the DBMS resources are set to the untuned values (see Table 3). 

The results of the diagnosis process are found in Table 8. Figure 22 shows the workload 

performance at each step of the diagnosis. 
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The diagnosis system is able to tune the system to 98.91% of the expert throughput, and 

achieves a throughput of 121.95% of the tuning wizard configuration. The diagnostic and 

tuning process requires 10 iterations to meet the stop condition. Figure 22 shows that 

even though some individual tuning steps actually decrease the workload throughput, the 

overall resulting throughput is high. 

 

The number of iterations to tune the DBMS in this case could be reduced to as little as 

four iterations with improved tuning algorithms. Step 2 and Step 3 in Table 8 both 

suggest changes to the number of I/O cleaners. An intelligent tuning algorithm may be 

able to reduce the pair of iterations to a single iteration by suggesting an immediate jump 

in I/O cleaners from 1 to 20. Step 4 through Step 7 could also be condensed into one or 

two steps while Step 8 and Step 9 could be condensed to one step. Tuning algorithms that 

would allow larger steps to be taken during the tuning process would reduce the number 

of iterations needed to tune a workload.  

 

Once again the first resource diagnosed by the diagnosis tree is the locklist size. The 

reverse resource tree in Figure 20 shows that the resource is directly affected by deadlock 

check time, lock timeout, the maximum number of locks and the maximum number of 

applications. Table 8 shows that both deadlock check time and lock timeout are adjusted 

during the tuning process. Tuning algorithms could have predicted these changes earlier, 

thereby reducing the number of iterations needed during the tuning process. 
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Run Changed Resource Diagnosis (End) tpmC 

1 Starting Configuration Locklist 0.00 

2 locklist = 60 Number of I/O Cleaners 3222.76 

3 num_iocleaners = 10 Number of I/O Cleaners 3449.41 

4 num_iocleaners = 20 Deadlock Check Time and/or Lock Timeout 3188.88 

5 dlchktime = 50000 Deadlock Check Time and/or Lock Timeout 2834.59 

6 dlchktime = 10000 Deadlock Check Time and/or Lock Timeout 3819.82 

7 locktimeout = 10 Deadlock Check Time and/or Lock Timeout 2587.59 

8 dlchktime = 5000 Number of I/O Cleaners 3868.65 

9 num_iocleaners = 30 Number of I/O Cleaners 4097.65 

10 num_iocleaners = 40 Done. 4233.65 

Table 8 - Diagnosis of the original workload on a large database. 
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Figure 22 - Throughput results for the diagnosis of the original workload on a large database. 
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5.5 Scenario 2 – Modified Workload 

The modified workload scenario consists of the same transactions as the original 

workload with different relative frequencies. The frequencies for the modified workload 

are specified in Table 6. The modified workload is intended to simulate a shift in 

workload over time. The modified workload is tested on both the large and small 

database configurations. 

 

Small Database Configuration 

When the small database is used with the modified workload, the diagnosis system is able 

to tune the system to 97.1% of the expert throughput and 185.4% of the tuning wizard 

throughput. The diagnostic and tuning process, located in Table 9, requires 10 iterations 

to finish. A graph of the resulting throughput for each configuration step along with the 

wizard and expert configuration throughputs are presented in Figure 23. 

 

As discussed in Section 5.4, the end throughput of the diagnosis process is high despite 

the fact that several individual steps in the tuning process cause decreases in throughput. 

The number of iterations needed to tune the DBMS is 10, but that number can be reduced 

by using more intelligent tuning algorithms. Better tuning algorithms may condense steps 

two and three, steps four through seven and steps eight and nine, reducing the number of 

needed iterations from 10 to five. 
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Run Changed Resource Diagnosis tpmC 

1 Starting Configuration Locklist Size 376.76

2 locklist = 60 Number of I/O Cleaners 3388.00

3 num_iocleaners = 10 Number of I/O Cleaners 3785.12

4 num_iocleaners = 20  Deadlock Checktime and/or Lock Timeout 4124.00

5 dlchktime = 50000 Deadlock Checktime and/or Lock Timeout 2289.12

6 dlchktime = 10000 Deadlock Checktime and/or Lock Timeout 2763.24

7 locktimeout = 10 Deadlock Checktime and/or Lock Timeout 1931.65

8 dlchktime = 5000 Number of I/O Cleaners 5649.24

9 num_iocleaners = 30 Number of I/O Cleaners 5984.00

10 num_iocleaners = 40 Done 6241.29

Table 9 - Diagnosis of the modified workload on a small database. 

 

As discussed in Section 5.4, the diagnosis of the locklist size in Step 1 result in the 

resource tree in Figure 20 that predicts the adjustment of deadlock check time and lock 

timeout.  
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Figure 23 - Throughput results for the diagnosis of the modified workload on a small database. 

 

Large Database Configuration 

When the large database is used with the modified workload, the diagnosis system is able 

to tune the system to 96.01% of the expert throughput and 180.74% of the tuning wizard 

throughput. The diagnostic and tuning process is completed in eight iterations. A graph of 

the resulting throughput of the configuration steps along with the wizard and expert 

configurations are presented in Figure 24. 

 

As discussed in Section 5.4, the decrease in throughput due to individual tuning steps 

does not hinder the ability of the diagnosis tree to effectively diagnose the DBMS. 

Diagnosis requires eight iterations in this case. More effective tuning algorithms could 

reduce the process to four iterations by combining steps one and two and steps four 
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through seven. This would reduce the total number of iterations needed to diagnose this 

case from eight to four. 

 

Run Changed Resource Diagnosis tpmC 

1 Starting Configuration Number of I/O Cleaners 972.24

2 num_iocleaners = 10 Number of I/O Cleaners 0.00

3 num_iocleaners = 20 Locklist Size 634.00

4 locklist = 60 Deadlock Checktime and/or Lock Timeout 1465.12

5 dlchktime = 50000 Deadlock Checktime and/or Lock Timeout 2056.00

6 dlchktime = 10000 Deadlock Checktime and/or Lock Timeout 2004.53

7 locktimeout = 10 Deadlock Checktime and/or Lock Timeout 1558.06

8 dlchktime = 5000 Done 2175.29

Table 10 - Diagnosis of the modified workload on a large database. 

 

The initial diagnosis in Table 10 is the number of I/O cleaners. The reverse resource tree 

in Figure 21 recommends considering both the buffer pool size and the changed pages 

threshold for tuning. Neither of these resources is later tuned by the diagnosis tree, as the 

buffer pool hit rate threshold does not drop below 95%. The diagnosis in Step 3 is for 

locklist size. As described in Section 5.4 and Figure 20, deadlock check time, lock 

timeout, maximum number of locks and maximum number of applications are suggested 

for tuning consideration. Both deadlock check time and lock timeout are later diagnosed 

by the diagnosis tree and adjusted.  
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Changes in a DBMS workload can alter the delicate balance of a tuned system. The 

ability to adjust to changes in transaction frequency allows a DBMS to perform well with 

a modified workload. Results presented in Table 9 and Table 10 show the ability of the 

diagnosis tree to correctly diagnose performance problems for a modified workload. 

Although the resulting throughput is lower for the large database configuration as 

compared to the small database configuration, the throughput in both cases is higher than 

the corresponding expert and wizard configurations. These runs show that the 

effectiveness of the diagnosis tree is not dependent on a specific workload.  
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Figure 24 - Throughput results for the diagnosis of the modified workload on a large database. 

 

5.6 Scenario 3 – Workload Change 

A new transaction is added to the original database workload in order to simulate a 

workload change. The new transaction issues a sort query that sorts data found in the item 
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table of th7e TPCC database. The sort transaction interacts with the same data as the 

original queries. The addition of the sort transaction tests the ability of the diagnosis 

algorithm to correctly diagnose a new workload. The new workload is tested on the 

simulated small and the large database configurations. 

 

The sort transaction differs significantly from the other transactions that comprise the 

workload. The sort query is not related to the other queries – it runs independently of the 

other queries. The sort query makes use of the sortheap memory, resulting in our being 

able to diagnose sort overflows and sortheap usage. The sort query is a select of the Item 

Name and Item ID fields from a table and sorting them based on the Item ID field. Each 

query sorts 100,000 records.  

 

 
Small Database Configuration 
 
When the small database configuration is used in the first test with the changed workload, 

the diagnosis system is able to tune the system to 100.09% of the expert throughput and 

to 126.31% of the tuning wizard throughput. The diagnostic and tuning process takes 13 

iterations to finish. A graph of the resulting throughput of the configuration steps along 

with the wizard and expert configurations can be found in Figure 26. 

 

With intelligent tuning algorithms, Step 2 to Step 3, Step 4 to Step 5, Step 7 to Step 8 and 

Step 10 to Step 12 can all be reduced to one step each allowing the workload to be tuned 

in only eight iterations as opposed to 13. It should be noted that the last three steps in the 

tuning process (Step 10 to Step 13) do not seem to have an impact on the throughput of 
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the workload (from 6134.00 to 6202.65 tpmC ). The tuning that occurred from Step 10 to 

Step 13 involves improving the sort query. The sort query does not have a direct effect on 

the resulting throughput, resulting in only a small increase in tpmC. The performance 

data for runs 10 through 12 indicates sort overflows occurring in the system. Sort 

overflows occur when there is not enough memory allocated in the sortheap for the sort 

to occur in memory. A sort overflow indicates that temporary space on the hard drive will 

be used to aid in the sort. These sort overflows do not occur in step 13 because of the 

increased sort heap and sort heap threshold. Reducing the number of sort overflows is  

beneficial to the performance of the underlying database engine. Separate testing of the 

sort query, shown in Figure 25, shows that sort overflows reduce the response time of the 

sort query.  
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Figure 25 - The effect of sort overflows on sort query response time. 
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Testing shows that for the sort query in question, the sort time when sort overflows 

happen is 605 msec. Increasing the sort heap and sort heap thresholds removes the sort 

overflow and results in a sort time of 235 msec. 

 

Run Changed Resource Diagnosis tpmC 

1 Starting Configuration Locklist Size 1.35

2 locklist = 60 Number of I/O Cleaners 2854.18

3 Num_iocleaners = 10 Number of I/O Cleaners 5198.88

4 Num_iocleaners = 20 Deadlock Checktime and/or Lock Timeout 3415.06

5 dlchktime = 50000 Deadlock Checktime and/or Lock Timeout 4019.94

6 dlchktime = 10000 Number of I/O Cleaners 4545.53

7 Num_iocleaners = 30 Deadlock Checktime and/or Lock Timeout 3770.76

8 Locktimeout = 10 Deadlock Checktime and/or Lock Timeout 1833.29

9 dlchktime = 5000 Number of I/O Cleaners 5889.00

10 Num_iocleaners = 40 Sortheap Size and Sortheap Threshold 6134.00

11 

sortheap = 512  

sheapthresh = 1024 Sortheap Size and Sortheap Threshold 6155.29

12 

sortheap = 1024  

sheapthresh = 2048 Sortheap Size and Sortheap Threshold 6187.06

13 

sortheap = 2048  

sheapthresh = 4096 Done 6202.65

Table 11 - Diagnosis of the changed workload on a small database. 

 

The locklist size is diagnosed in Step 1 of Table 11. As discussed in Section 5.4, the 

adjustment of deadlock check time and lock timeout are accurately predicted. Use of 
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intelligent tuning algorithms could result in both of these resources being tuned earlier, 

reducing the number of iterations needed for tuning. 
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Figure 26 - Throughput results for the changed workload on a small database. 

 

Large Database Configuration  

When the large database is used the diagnosis system is able to tune the system to 

101.2% of the expert throughput and 123.60% of the tuning wizard throughput. The 

diagnostic process requires 13 iterations to finish. Diagnosis results are found in Table 

12. A graph of the resulting throughput for each configuration step along with the wizard 

and expert configurations is represented by Figure 27. 

 

The large database changed workload test takes 13 iterations to properly diagnose and 

tune, which can be reduced with intelligent tuning algorithms. Step 2 through Step 5, 
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Step 7 though Step 8, and Step 9 through Step 11 can all be condensed to one step each, 

reducing the number of iterations needed to tune the DBMS to seven. 

Run Changed Resource Diagnosis tpmC 

1 Starting Configuration Locklist Size 51.06 

2 locklist = 60 Number of I/O Cleaners 3111.53 

3 Number of I/O Cleaners = 10 Number of I/O Cleaners 3516.18 

4 Number of I/O Cleaners = 20 Number of I/O Cleaners 3300.71 

5 Number of I/O Cleaners = 30 Number of I/O Cleaners 4010.59 

6 Number of I/O Cleaners = 40 Deadlock Checktime and/or Lock Timeout  3083.24 

7 Deadlock Check Time = 50000 Sortheap Size and Sortheap Threshold 4019.29 

8 

Sortheap = 512 

Sortheap Threshold = 1024 Sortheap Size and Sortheap Threshold 3763.12 

9 

Sortheap = 1024  

Sortheap Threshold = 2048 Deadlock Checktime and/or Lock Timeout  3292.12 

10 Deadlock Check Time = 10000 Deadlock Checktime and/or Lock Timeout  2666.71 

11 Lock Timeout = 10 Deadlock Checktime and/or Lock Timeout  2390.12 

12 Deadlock Check Time = 5000 Sortheap Size and Sortheap Threshold 4172.59 

13 

Sortheap = 2048 

Sortheap Threshold = 4096 Done 4214.88 

Table 12 - Diagnosis of the changed workload on a large database. 

 

The reverse resource tree generated for Step 1 accurately predicts the adjustment of the 

deadlock check time and the lock timeout resources. The use of the resource tree and 

tuning algorithms could result in both of these resources being tuned much earlier in the 

diagnosis process. 
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Figure 27 - Throughput results for the changed workload on a large database. 

 
 

5.7 Diagnosis Tree Lifespan 

The diagnosis tree must be able to adapt to different workload situations. Results from 

Section 5.4 through Section 0 show that the diagnosis tree is able to diagnose a DBMS 

workload given a change in workload or a change in database size. Although some 

changes in workload can be handled by the diagnosis tree, a significant change in the 

workload may render the diagnosis tree unable to diagnose a performance problem. The 

ability of the diagnosis tree to correctly diagnose performance problems related to new 

transactions is a function of the diversity in the transactions used when creating the initial 

diagnosis tree. For example, the sample diagnosis tree in Figure 10 contains the node D4 

to detect package cache inserts. In the tuned diagnosis tree (Figure 15) this node is 

eliminated because the workload does not generate any package cache inserts beyond the 

warmup period, making it impossible to collect data on how to correctly tune the DBMS 
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when they happen. As a result, a transaction that causes package cache inserts cannot be 

properly diagnosed by the diagnosis tree in Figure 15, requiring that the diagnosis tree be 

retuned or regenerated if such a transaction is added to the workload. If a transaction 

causing package cache inserts had been included in the initial workload when the 

diagnosis tree was created, the diagnosis tree would be able to diagnose package cache 

insert problems. If new transactions generate performance problems beyond the scope of 

the diagnosis tree, it will be unable to diagnose these problems. 

  

A significant change in the DBMS workload will also cause the diagnosis tree to need to 

be retuned or rebuilt. The experiments presented in this dissertation demonstrate that the 

addition of new OLTP transactions, changing transaction frequencies and increasing the 

size of the database do not alter the effectiveness of the diagnosis tree. The addition of 

queries that are not handled by the diagnosis tree, such as queries that cause significant 

package cache inserts, will reduce the effectiveness of the diagnosis tree. 

 

The lifespan of the diagnosis tree is also based on the hardware configuration. Changes to 

the hardware configuration such as adding more memory or disks will alter the 

effectiveness of the diagnosis tree. Resources will react differently in the DBMS 

depending on the underlying hardware, rendering the data collected to tune the diagnosis 

tree obsolete. A change in hardware, such as modifying the number of disks or amount of 

memory, may result in the need to retune the diagnosis tree. 
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5.8 Summary 

The results over the six test cases have shown to be very positive in diagnosing DBMS 

resource problems and helping to improve overall database performance. Using only a 

naïve tuning strategy, we are able to correctly diagnose and tune each test case to within a 

few percentage points of the expert throughput, and in all cases we are able to outperform 

the wizard throughput. Our measure of success was to achieve at least the performance of 

the Tuning Wizard, something that we have surpassed. By matching the performance of 

the expert configuration, we deem this method successful for the diagnosis of 

performance problems in our test DBMS. 

 

Building and tuning the various models and diagnosis trees have provided several 

opportunities for the acquisition of knowledge. Several lessons were learned over the 

course of model construction and testing, including the following: 

- The relationships between resources are complex and poorly understood. 

- The performance impact of some resources is complex and poorly understood. 

- The relationships between resources can have a significant impact on the 

diagnosis process. 

- Resource performance can only be used for diagnosis and tuning purposes if the 

state and performance of related resources are also taken into consideration. 

- Workload throughput may not be the best measuring unit during the tuning 

process as some useful tuning steps may result in lower throughput values. 

Further tuning steps may result in performance increases that compensate for 

temporary drops in throughput. 
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- Using diagnosis and relationship models results in a well-defined strategy for 

diagnosis and tuning. This provides a clear diagnosis and tuning path that can be 

easily studied to derive new tuning strategies.  

 

Our initial attempt to create a diagnosis system has resulted in a robust diagnosis tree and 

resource model that is presently able to diagnosis performance problems in several 

different scenarios. These scenarios include changing the size of the database, changing 

the frequency of transactions within the workload, adding new transactions to the 

workload, and combinations of both types of workload modification with database size 

changes. The accuracy of the diagnosis system given these six situations leads us to 

conclude that the diagnosis tree is able to handle workload changes that may be seen by a 

database over time. The robustness of the workload lends strength to belief that the 

creation of a single diagnosis tree for a given workload type is possible, bringing us 

closer to a completely automated DBMS.   
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Chapter 6  

Conclusions 

Achieving a high level of performance from a DBMS is a difficult task. The inherent 

competition that exists between DBMS tasks places a strain on various hardware and 

software resources. A delicate balance must be achieved when allocating resources in 

order to obtain high levels of performance. The issue of performance is further 

complicated by the fact that DBMSs do not stay in tune forever – as the data in the 

database changes and the application workload changes, database performance may drop. 

A DBMS must be tuned regularly in order to maintain high levels of performance. The 

automation of DBMS resource management removes the need for human interaction in 

order to maintain performance levels. Automation involves two steps: diagnosing the 

offending resource and then adjusting that resource to increase performance. With 

hundreds of possible DBMS resources to adjust, diagnosing which resource to adjust is 

the starting point for self-managing DBMSs. This dissertation focuses on the diagnosis 

process, outlining a framework for automating the diagnosis process.  
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6.1 Contributions 

Designing an automated DBMS diagnosis system is an important research issue. As the 

complexity of DBMSs and workloads increase, the need for an automated system to 

configure and maintain the DBMS increases. DBMS diagnosis and tuning is time-

consuming, repetitive and expensive. The ability to automatically diagnose performance 

problems will reduce the need for expensive DBAs and lower the operating costs 

associated with a DBMS. A reduction in operating costs coupled with a decrease in the 

complexity of database administration will encourage a more widespread use of DBMSs.  

 

This dissertation demonstrates that a diagnosis framework can be constructed to 

automatically diagnose at least a subset of DBMS performance problems. The diagnosis 

model and the resource model are designed so that they can adapt to a specific DBMS 

environment. The models are designed to fit within the Quartermaster framework to 

provide a fully automated diagnosis and tuning system. The research contributions of this 

work include: 

• A formal definition the DBMS diagnosis problem and analysis of the complexity 

of the problem. We show heuristic methods are required to solve the problem. 

• The development of the diagnosis model demonstrates that the diagnosis process 

can be successfully automated. The results presented in Chapter 5 confirm the 

ability of a sample diagnosis tree to correctly identify system bottlenecks for a 

generic OLTP workload. The diagnosis model provides a basis for the creation of 

other diagnosis trees for different database workloads and different DBMSs. 
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• Chapter 4 presents generalized methods used to create diagnosis trees. These 

methods can be applied to different workloads in order to determine how that 

particular database should be tuned. The methods presented generate specific 

information for the workload, DBMS and hardware configuration at hand. This 

information can be used to generate specific diagnosis and tuning rules while 

avoiding generalized tuning rules that may not apply to the given setup. The 

presentation of these methods sets the stage for further research into automatic  

generation of the diagnosis tree. 

• The models used demonstrate that the diagnosis system is consistently able to 

correctly diagnose performance problems on a working DBMS. The diagnosis 

system is able to perform when the database size changes, the workload 

frequencies are changed or new transactions are added. The results presented in 

Chapter 5 show that the diagnosis system is able to adapt to a changing workload, 

further exemplifying the versatility of the model. 

• The models presented in Chapter 3 provide the basis for a generic tuning model. 

The models presented in this dissertation can be applied to other software systems 

where resource allocation is an issue.  

 

6.2 Future Work 

The research in this dissertation has many possible extensions. Relevant research topics 

include the automatic generation and modification of diagnosis trees, the creation of a 

generic workload, the convergence of the diagnosis process, increasing the number of 

resources that can be diagnosed by the system, the creation of intelligent tuning 
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algorithms and integrating the diagnosis tree into a DBMS application. The creation of 

the diagnosis tree is presently done by hand using performance data collected while 

running the workload. The diagnosis tree is then modified by hand when adjustments are 

needed. Further research is needed into automating the construction and modification of 

the diagnosis tree. The ability to automate the construction of the diagnosis tree would 

almost completely remove the need for a DBA to tune the DBMS, further reducing the 

operating costs for the DBMS. A learning and self-modifying diagnosis tree would be 

able to alter itself as the workload changed, adjusting threshold values and node 

positioning in order to maintain peak DBMS performance regardless of the workload. 

 

Further research is needed into the creation of a generic test workload. Presently the 

workload used to create and tune the diagnosis tree is the same workload that would be 

run on the target system. The creation of a generic OLAP or OLTP workload would 

allow the creation of a diagnosis tree based on the resource interactions of a generic 

workload. This would result in a more generic diagnosis tree able to handle all new 

transactions added to the workload, eliminating the problem of a diagnosis tree becoming 

outdated when new types of transactions are added to the workload. 

 

The convergence of the diagnostic process to insure optimal performance also deserves 

consideration. There is presently no method to determine if the diagnosis tree will 

eventually tune the DBMS to a state of optimal performance. Research into the optimal 

performance of a DBMS and the ability of the diagnosis tree to tune the DBMS correctly 

is needed. 
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Significant work is needed to increase the size of the diagnosis tree. At present, the 

number of resources diagnosed by the diagnosis tree is only a portion of the resources 

available for adjustment. An increase in the number of resources diagnosed is needed if a 

completely self-diagnosing system is to be achieved. 

 

An increase in the number of automatic tuning algorithms must coincide with a larger 

diagnosis tree. An increase in the size of the diagnosis tree is not beneficial for an 

automated system unless the appropriate tuning algorithms exist for the resources 

diagnosed. Replacing the present naïve tuning strategy with intelligent tuning algorithms 

will greatly reduce the number of iterations needed to tune the DBMS. 

 

The present diagnostic system is intended to run on performance data that was collected 

from a running DBMS. The diagnosis system is run separately from the DBMS and the 

results of the diagnosis are then applied to the DBMS. Research into the integration of the 

diagnosis system into a DBMS application is needed. Integration would supply the 

diagnosis system with more performance data, allowing the diagnosis system to better 

determine how the DBMS is working and suggest more appropriate resource allocations. 

 

Additional research is needed to determine how the diagnosis algorithms and the 

Quartermaster framework can be applied to other software applications, such as web 

servers, operating systems and other resource-intensive applications. 
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Finally, work is needed to integrate the diagnosis system into a working DBMS. The 

present diagnosis system is designed and constructed to work outside of a DBMS. 

Integrating the diagnosis system into a DBMS may result in changes to both the DBMS 

and the diagnosis system. Integration of the diagnosis system should begin on a small 

scale with the implementation of a diagnosis tree and tuning algorithms that can manage 

some of the DBMS resources. The initial integration of a diagnosis system for well-

understood resources with well-defined tuning algorithms will serve as a well-defined 

enhancement to a DBMS that can be further tested for design and implementation issues 

as well as an easily understood addition for customers to use. By slowly introducing a 

well-defined automatic diagnosis to the customer base, a DBMS company will more 

easily be able to convince customers of the merits of an automated diagnosis and tuning 

system. As automated diagnosis becomes better understood at the developer and 

customer levels, the scope of the diagnosis algorithms can be widened to include more 

resources until all DBMS resources are managed automatically. 

 

The integration of the automated diagnosis system will require some changes to be made 

at the DBMS level. One of the most significant changes that must be made to the DBMS 

is the ability to modify resource allocations without having to stop the DBMS engine. 

Dynamically adjusting resources is key to fully automating the resource diagnosis and 

tuning process. It is also expected that the diagnosis system will have to be modified to 

allow DBAs to override various DBMS resource settings. The present diagnosis system 

assumes that all of the resources in the diagnosis tree are available for tuning. It is 

possible that a DBA may decide, for some reason unknown to the diagnosis process, that 
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a resource should not be adjusted. The diagnosis algorithm will have to be adjusted to 

handle such situations where only a subset of the resources can be adjusted.  

 

The automatic diagnosis system presented in this dissertation is designed to run parallel 

to any DBMS. It is expected that integration of the diagnosis system into a DBMS will 

result in significant changes to the implementation of the diagnosis system. It is believed 

that the underlying principles of our automated diagnosis system will remain regardless 

of how it is implemented.  
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Appendix A  

Test Environment 

The test hardware consists of an IBM eServer xSeries 240 with two Intel Pentium-III 

1GHz processors and 2 GB of RAM. The system contains 22 SCSI 7200rpm disks spread 

across five disk controllers. Two of the disks are located in the main computer case on a 

single drive controller and are used for the operating system, the DBMS software and log 

files. The other 20 disks are located in two EXP300 external storage expansion units. 

Each of four disk controllers run five disks in the expansion units. The data is spread 

across all 20 of the disks. The operating system used is Windows NT 4.0 Server (Service 

Pack 6). The DBMS software is IBM’s DB2/UDB version 7.1. 

 

 

 



 120 

 

Appendix B  

TPC-C Benchmark 

The Transaction Processing Performance Council (TPC) is a non-profit corporation 

founded to define transaction processing, create standardized database benchmarks, and 

be the distribution point for benchmark results. The goal of the TPC is to create 

benchmarks that can be run on any hardware, operating system and DBMS combination 

[TPC2]. The third benchmark produced by the TPC is known as the “C” benchmark and 

is directed toward On-Line Transaction Processing (OLTP) systems. The “C” benchmark, 

commonly referred to as “TPC-C”, is modeled after real production systems and is 

intended to simulate an order-entry environment. The environment includes entering 

orders, delivering orders, recording payments, checking order status and stock level 

monitoring.  

 

The logical database design of a TPC-C database is based on the nine relations found in 

Table 13 [LEU93].  The schema for the TPC-C database is found in Figure 28 [TPC]. In 

Figure 28, the numbers in the entity blocks represent the cardinality of the tables and the 

numbers next to the arrows represent the cardinality of the relationships. The plus symbol 

is used to denote that a number is subject to small variations [TPC].  
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Relation Name Cardinality Tuple Length (bytes) Tuples Per 4K page 

Warehouse W 89 46 

District W*10 95 43 

Customer W*30K 655 6 

Stock W*100K 306 13 

Item 100K 82 49 

Order  24 170 

New-Order  8 512 

Order-Line  54 75 

History  46 89 

Table 13 - TPC-C data relations. 

 

W a r e h o u s e
W

Distr ict
W * 1 0

Cus tomer
W*30K

10

3K

History
W * 3 0 K +

1+

Stock
W*100k

I tem
100k100K W

Orde r
W * 3 0 K +

N e w - O r d e r
W * 5 k

Order-L ine
W*300k+

0-1

5  -151+

3+

 

Figure 28 - TPC-C table schema. 
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TPC-C consists of five transactions. Each transaction is required to execute a specific 

percentage of all transactions executed by the benchmark. The transaction requirements 

are listed in Table 14. The transactions are as follows: [TPC] 

• New Order is a read-write transaction that places an order for items in the 

warehouse. New Order has a high frequency of execution. 

• Payment updates the balance of the customer accounts and propagates this 

information to the district and warehouse sales statistics. Payment has a high 

frequency of execution. 

• Order-Status  is a read-only transaction that queries the status of customer orders. 

It has a low frequency of execution.  

• Delivery is a transaction based on processing batches of new orders. Orders are 

processed in batches of 10. Delivery has a low frequency of execution. 

• Stock Level checks stocks levels to determine which stock is below a specified 

threshold. Stock level is a read-only transaction with a low frequency of 

execution.  

 

Transaction Name Percentage of workload 

New Order 45% 

Payment 43% 

Order Status 4% 

Delivery 4% 

Stock Level 4% 

Table 14 - Transaction requirements. 
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Appendix C 

DBMS Resources 

 

Asynchronous Page Cleaners  – (see I/O Cleaners) 

Buffer Pool Size – A buffer pool is a segmented piece of memory used by the database 

to cache data. The size of the buffer pool can be adjusted by DBAs. 

Catalog Cache  – Catalog cache is a defined portion of memory used to cache the 

database catalog. 

Changed Pages Threshold (CPT) – The Changed Pages Threshold is the percentage of 

modified pages allowed in the buffer pool before the I/O cleaner processes are 

started.  

Database Heap – The database heap is the portion of memory allocated per database for 

use by all applications connected to the database.  

Deadlock Check Time  – The interval of time the DBMS will wait before checking for 

deadlocks.  

I/O Cleaners  – I/O cleaners are processes used by the DBMS to perform asynchronous 

writes to disk. 

Log Buffer – The log buffer is an allocation section of memory used to buffer data that is 

to be written to the database logs. 
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Lock Timeout – The amount of time two deadlocked process will wait before they time 

out and fail. 

Log File Size  – The size of each log file. 

Maxappls – The maximum number of concurrent applications that can be connected to a 

database. 

Maxlocks – The maximum percentage of lock list to be used before lock escalations 

occur. 

Number of commits to group – Specifies the number of commits that can be buffered 

before being written to disk.  

Softmax – The percentage of the log file that would need to be recovered after a crash. 

This value can be set above 100, allowing multiple files to need restoration after a 

crash.  

Sort Heap Size - The amount of memory allocated for sorts. 

Sort Heap Threshold – Sort heap threshold is an instance-wide soft limit on the total 

amount of memory available for private sorts. Sort heap threshold is also a 

database-wide hard limit on the memory available for shared sorts. 
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Appendix D 

Performance Data Collected 

Note: All values are measured for the full data collection period unless otherwise 

specified. 

Data collected Description 
 

Number of Transactions  The total number of transactions  
completed. 

Dirty Page Steals The total number of times a dirty page 
was synchronously written to disk by a 
transaction process. 

Log Triggers The total number of times the log 
threshold was triggered. 

Threshold Triggers The total number of times the changed 
pages threshold was reached. 

Logical Reads The total number of logical reads. 

Physical Reads The total number of reads that required 
disk access. 

Data Writes The total number of data pages written 
to disk. 

Index Writes The total number of index pages 
written to disk. 

Asynchronous Data Writes The total number of data writes made to 
disk asynchronously. 

Asynchronous Index Writes The total number of index writes made 
to disk asynchronously. 

Asynchronous Reads The total number of disk reads that 
were made asynchronously. 

Asynchronous Read Requests The total number of asynchronous read 
requests. 

Physical Read Time  The total amount of time spent doing 
physical reads. 
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Physical Write Time The total amount of time spent doing 
physical writes. 

Catalog Cache Inserts The total number of inserts made into 
the catalog cache. 

Package Cache Inserts The total number of inserts made into 
the package cache. 

Lock Waits The total number of times processes 
had to wait for locks. 

Lock Wait Time The total amount of time spent waiting 
for locks. 

Lock List in use The amount of space in the lock list 
being used at the time of the snapshot. 

Deadlocks  The total number of deadlocks that 
have occurred. 

Lock Escalations The number of times that locks had to 
be escalated in order to reduce the total 
number of locks. 

Sort Heap Size The total amount of memory allocated 
for sorts. 

Sort Overflows The total number of sorts that have 
overflowed the sort heap. 

Post-threshold Sorts The total number of sorts that have 
requested space after the sort threshold 
has been reached. 

Number of Sorts The number of sorts that have occurred. 

Sort Time  The total amount of time spent 
performing sorts. 
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Appendix E 

Glossary of Terms 

Asynchronous write – An asynchronous write is when data is written back to disk by a 

background I/O cleaner process. Asynchronous writes are beneficial as groups of 

data can be written at a time.  

Buffer Pool – A buffer pool is a segmented piece of memory used by the database to 

cache data. All data is read and written through the buffer pool. 

Buffer pool hit rate – The hit rate of a buffer pool is defined as the percentage of times 

data is found in the memory as opposed to disk. The formula used for the buffer 

pool hit rate is: 

reads logical ofNumber 
reads physical ofNumber  - reads logical ofNumber 

  rateHit =  

Catalog Cache  – Catalog cache is a defined portion of memory used to cache the 

database catalog. 

Changed Pages Threshold (CPT) – The Changed Pages Threshold is the percentage of 

modified pages allowed in the buffer pool before the I/O cleaner processes are 

started.  

Database Heap – The database heap is the portion of memory allocated per database for 

use by all applications connected to the database. The database heap contains 
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control block information and reserves space for the catalog cache and the log 

buffer. 

DB2 Performance Wizard – The performance wizard is an application included with 

DB2. The application gathers information about the hardware and workload and 

suggests resource adjustments to improve performance.  

DBMS – Database Management System 

DBA – Database Administrator 

Deadlock Check Time  – The interval of time the DBMS will wait before checking for 

deadlocks.  

Decision Node  – A decision node is a non- leaf node of the decision tree. Each decision 

node contains a list of questions related to the performance of the DBMS. The 

results of the questions will determine the path the tree traversal algorithm will 

follow.  

Decision Tree – A binary tree structure containing decision nodes and tuning nodes.  

Dirty page steals  – A dirty page steal occurs when a database agent is unable to find a 

clean page in memory. A modified (i.e. “dirty”) page is selected and written to 

disk by the database agent. A dirty page steal is a synchronous write to disk and 

should be avoided as the database agent must pause execution of a transaction in 

order to perform the write to disk. 

Indicator Values – An indicator value is a measured or calculated value used to judge 

the performance of a DBMS resource.  

I/O Cleaners  – I/O cleaners are background  processes used by the DBMS to perform 

asynchronous writes to disk. 
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Lock Escalation – Lock escalation occurs when there is not enough room in the 

allocated locklist memory for all of the locks needed. Escalation is when locks are 

upgraded in order to save memory space, such as upgrading several row-level 

locks for one table-level lock. 

Log Buffer – The log buffer is a section of memory used to buffer data that is to be 

written to the database logs. 

OLAP Workload – OLAP stands for “On-Line Analytical Processing”. An OLAP 

workload consists of decision-support queries of high complexity and low 

volume.  

OLTP Workload – OLTP stands for “On-Line Transaction Processing”. An OLTP 

workload consists of low complexity queries in high volume.  

Resource – A resource is a piece of hardware or software that is in limited supply and 

can be regulated in usage. 

Synchronous Writes – A synchronous write occurs when a database agent is forced to 

write data to disk. The agent must pause transaction processing in order to make 

write the data to disk. 

Threshold Values – Threshold values are numerical values used as the basis of 

comparison to determine how well the DBMS is performing. Indicator values are 

compared to threshold values to determine which path will be followed through 

the diagnosis tree. 

 

TPC-C – TPC-C is the Transaction Processing Performance Council benchmark for 

OLTP workloads. 
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tpmC – Transactions per Minute “C” for the TPC-C benchmark. 

Tuning Node  – A tuning node is a leaf node in the diagnosis tree used to store tuning 

suggestions.  
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Appendix F 

Confidence Intervals 

Data collected every five seconds over the final 17 minutes of a 20 minute run was used 

to calculate the standard deviation of the set. The throughput values used are listed in 

Table 15. The standard deviation for this data is 185.0. The mean is 3414.97. 

 

Using the standard deviation of 185.0, a set size of 205 elements, a Z value of 1.96 and a 

significance level of 5%, the confidence interval is calculated to be 25.3 tpmC. In other 

words, the throughput is within 25.3 tpmC 95% of the time. Figure 29 contains the 

equation used to calculate the confidence interval [JOH92].  

z (α/2) * sd
---------------

E
n =

2

 

Figure 29 - Confidence interval equation. 
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Several assumptions where made for the calculation of the confidence interval. The first 

assumption is that the workload is stable. This assumption is based on the fact that the 

TPC-C benchmarking workload is well-known as a stable benchmarking. A second 

assumption is that the various measurements taken are representative of the actual 

performance of the workload. Given that the TPC-C workload is a repetition of five well-

defined transactions, the measurement at each interval is the calculation of the workload 

throughput for the transactions performed during that given interval. The transaction mix 

remains constant for the duration of the run, resulting in comparable five second 

measurement intervals. It is from these sample measurements that we calculate the 

confidence interval for collected data. 

 

3372 3708 3288 3360 3600 3540 3384 3876 3612 
3216 3336 3336 3432 3408 3360 3288 3420 3612 
3168 3288 3708 3384 3300 2976 3192 3468 3552 
3204 3048 3456 3204 3468 3408 3180 3528 3444 
3072 3096 3528 3192 3600 3456 3240 3480 3336 
3492 3528 3312 3588 3192 3636 3576 3432  
3228 3504 3360 3588 3504 3312 3348 3264  
3456 3312 3780 3348 3600 3276 3696 3468  
3528 3108 3324 3396 3396 3528 3588 3408  
3072 3684 3564 3504 3492 3204 3624 3216  
3360 2928 3864 3516 3396 3768 3096 3528  
3264 3264 3480 3420 3372 3600 3120 3264  
3480 3444 3480 3732 3504 3132 3408 3672  
3600 3528 3372 3096 3360 3444 3660 3648  
3516 3168 3312 3528 3312 3912 3312 3216  
3552 3492 3276 3240 3156 3384 3564 3444  
3396 3756 3252 3552 3216 3780 3480 3384  
3204 3252 3576 3624 3024 3276 3648 3504  
3216 3624 2976 3216 3372 3756 3336 3636  
3240 3564 3636 3588 3492 3540 3276 3420  
3564 3552 3288 3468 3336 3552 3528 3324  
3348 3396 3456 3636 2940 3552 3336 3540  
3240 3324 3408 3504 3408 3312 3360 3252  
3444 3312 3276 3300 3612 3636 3336 3228  
3504 3300 3552 3600 3204 3384 3708 3492  

Table 15 - Data used for standard deviation calculation. 
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Appendix G  

Performance Monitor Database 

Schema 

The following database schema was used to store data collected by the performance data 

collection program. Information is then retrieved from this database for use by the 

diagnosis algorithm. 

 

cc.TimeStamp( 
timestamp timestamp not null primary key, 
monitorlength integer); 

 
cc.Cache( 

timestamp timestamp not null primary key, 
cataloginserts integer, 
packageinserts integer); 

 
cc.Locks( 

timestamp timestamp not null primary key, 
lockwaits integer, 
lockwaittime integer, 
locklistinuse integer, 
deadlocks integer, 
lockescalations integer); 

 
cc.TransClass( 

Name varchar(20) not null primary key, 
Freq integer, 
Type varchar(15), 
SQL varchar(500), 
NumLogicalReads smallint); 
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cc.TCPerfData( 

TCID varchar(20) not null, 
timestamp timestamp not null, 
ResponseTime decimal(7,4), 
SnapNumber integer, 
IntervalLength smallint, 
Deadlocks smallint, 
Rejects smallint, 
primary key(TCID, timestamp)); 

 
cc.BPPerfData( 

bpid varchar(20) not null, 
bpsize integer, 
pagesize integer, 
TCName varchar(20), 
timestamp timestamp not null, 
numlogicalreads integer, 
numphysicalreads integer, 
datawrites integer, 
indexwrites integer, 
asyncdatawrites integer, 
asyncindexwrites integer, 
asyncreads integer, 
asyncreadreq integer, 
physicalreadtime integer, 
physicalwritetime integer, 
hitrate decimal(5,2) , 
snap smallint, 
primary key(bpid, timestamp)); 

 
cc.FreqData( 

timestamp timestamp not null, 
NumTransRun integer); 
create table cc.Goal( 
TCID varchar(20) not null primary key, 
PerfMeasure varchar(20), 
Priority smallint, 
Type char(10), 
value decimal(7,4)); 

 
cc.UsesBP( 

BPId varchar(20) not null, 
TCID varchar(20) not null, 
weight decimal(7, 4), 
primary key(BPID, TCID)); 
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cc.SortInfo( 

timestamp timestamp not null primary key, 
heap_allocated integer, 
overflows integer, 
post_threshold integer, 
total_number integer, 
total_time integer, 
active integer, 
piped_requested integer, 
piped_accepted integer); 

 
cc.AsynchIOCleaners( 

timestamp timestamp not null primary key, 
dirtypagesteals integer, 
logtriggers integer, 
thrshtriggers integer); 
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Appendix H 

Decision Database Schema 

resource_area ( 
name VARCHAR(50) PRIMARY KEY NOT NULL); 

 
resource ( 

name VARCHAR(50) PRIMARY KEY NOT NULL); 
 
setting ( 

name VARCHAR(50) PRIMARY KEY NOT NULL, 
default_value VARCHAR(50), 
range_value VARCHAR(50), 
unit_of_measure VARCHAR(50), 
present_value VARCHAR(50), 
impact VARCHAR(50)); 

 
msetting ( 

parent VARCHAR(50) NOT NULL, 
name VARCHAR(50) NOT NULL, 
default_value VARCHAR(50), 
range_value VARCHAR(50), 
unit_of_measure VARCHAR(50), 
present_value VARCHAR(50), 
impact VARCHAR(50), 
PRIMARY KEY (parent, name), 
FOREIGN KEY (parent) REFERENCES setting(name)); 

 
marker ( 

name VARCHAR(50) PRIMARY KEY NOT NULL, 
type VARCHAR(50), 
unit_of_measure VARCHAR(50), 
value VARCHAR(50)); 

 
is_in ( 

resource_area_name VARCHAR(50) NOT NULL, 
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resource_name VARCHAR(50) NOT NULL, 
PRIMARY KEY (resource_area_name, resource_name), 
FOREIGN KEY (resource_area_name) REFERENCES resource_area(name), 
FOREIGN KEY (resource_name) REFERENCES resource(name)); 

 
has_setting ( 

resource_name VARCHAR(50) NOT NULL, 
setting_name VARCHAR(50) NOT NULL, 
FOREIGN KEY (resource_name) REFERENCES resource(name), 
FOREIGN KEY (setting_name) REFERENCES setting(name)); 

 
uses_marker ( 

resource_name VARCHAR(50) NOT NULL, 
marker_name VARCHAR(50) NOT NULL, 
FOREIGN KEY (marker_name) REFERENCES marker(name), 
FOREIGN KEY (resource_name) REFERENCES resource(name)); 

 
related_to ( 

setting1 VARCHAR(50) NOT NULL, 
setting2 VARCHAR(50) NOT NULL, 
FOREIGN KEY (setting1) REFERENCES setting(name), 
FOREIGN KEY (setting2) REFERENCES setting(name)); 

 
decision ( 

name VARCHAR(50) PRIMARY KEY NOT NULL, 
tuning VARCHAR(255)); 

 
decision_settings ( 

decision VARCHAR(50) NOT NULL, 
setting VARCHAR(50) NOT NULL, 
PRIMARY KEY (decision, setting), 
FOREIGN KEY (decision) REFERENCES decision(name), 
FOREIGN KEY (setting) REFERENCES setting(name)); 

 
decision_tree ( 

root VARCHAR(50) NOT NULL, 
child VARCHAR(50) NOT NULL, 
switch INT NOT NULL, 
PRIMARY KEY (root, child), 
FOREIGN KEY (root) REFERENCES decision(name), 
FOREIGN KEY (child) REFERENCES decision(name)); 

 
operator ( 

name VARCHAR(50) PRIMARY KEY NOT NULL, 
symbol VARCHAR(50)); 
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equation ( 
equation_num INT PRIMARY KEY NOT NULL, 
setting1 VARCHAR(50) NOT NULL, 
setting2 VARCHAR(50) NOT NULL, 
issetting INT NOT NULL, 
operator VARCHAR(50) NOT NULL, 
value VARCHAR(50), 
FOREIGN KEY (setting1) REFERENCES setting(name), 
FOREIGN KEY (operator) REFERENCES operator(name)); 

 
has_equation ( 

decision VARCHAR(50) NOT NULL, 
equation_num INT NOT NULL, 
FOREIGN KEY (decision) REFERENCES decision(name), 
FOREIGN KEY (equation_num) REFERENCES equation(equation_num)); 

 
threshold ( 

name VARCHAR(50) PRIMARY KEY NOT NULL, 
value VARCHAR(50) NOT NULL, 
unit_of_measure VARCHAR(50) NOT NULL); 

 
transaction ( 

name VARCHAR(50) PRIMARY KEY NOT NULL, 
frequency INT NOT NULL, 
readlevel INT NOT NULL, 
priority INT NOT NULL); 

 
trans_has_tables ( 

transaction VARCHAR(50) NOT NULL, 
table VARCHAR(50) NOT NULL, 
PRIMARY KEY (transaction, table), 
FOREIGN KEY (transaction) REFERENCES transaction(name)); 

 
trans_has_index ( 

transaction VARCHAR(50) NOT NULL, 
index VARCHAR(50) NOT NULL, 
PRIMARY KEY (transaction, index), 
FOREIGN KEY (transaction) REFERENCES transaction(name)); 

 
transactionclass ( 

name VARCHAR(50) PRIMARY KEY NOT NULL); 
 
workload ( 

name VARCHAR(50) PRIMARY KEY NOT NULL); 
 
has_transaction ( 



 139 

class VARCHAR(50) NOT NULL, 
transaction VARCHAR(50) NOT NULL, 
PRIMARY KEY (class, transaction), 
FOREIGN KEY (class) REFERENCES transactionclass(name), 
FOREIGN KEY (transaction) REFERENCES transaction(name)); 

 
has_class ( 

workload VARCHAR(50) NOT NULL, 
class VARCHAR(50) NOT NULL, 
PRIMARY KEY (workload, class), 
FOREIGN KEY (workload) REFERENCES workload(name), 
FOREIGN KEY (class) REFERENCES transactionclass(name)); 

 
update_history ( 

name VARCHAR(50) PRIMARY KEY NOT NULL, 
start_date TIMESTAMP, 
end_date TIMESTAMP, 
setting VARCHAR(50), 
pvalue VARCHAR(50), 
avalue VARCHAR(50), 
pperformance VARCHAR(50), 
aperformance VARCHAR(50), 
feedback INT); 

 
modify ( 

num INT NOT NULL, 
name VARCHAR(50) NOT NULL, 
direction VARCHAR(20) NOT NULL, 
comments VARCHAR(255), 
PRIMARY KEY (num, name), 
FOREIGN KEY (name) REFERENCES setting(name)); 
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Appendix I 

Forward and Reverse Resource 

Trees 

 

The following is a collection of forward and reverse resources trees used for this 

dissertation. The root node of each resource tree is noted in bold. 

 

Buffer Pool SizeChanged Pages Threshold

Number of I/O Cleaners

Log Buffer SizeCatalog Cache Size

Database Heap Size

 
Figure 30 - Forward resource tree for the number of I/O cleaners resource. 
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Buffer Pool SizeChanged Pages Threshold

Number of I/O Cleaners

 

Figure 31 - Reverse resource tree for the number of I/O cleaners resource. 

 

LockList SizeMaxlocks

Max Number of Agents

Max Number of Applications

Deadlock Check Time

Average Num of Applications

 
Figure 32 - Forward resource tree for the deadlock check time resource. 

 

 

 

Deadlock Check Time

 
Figure 33 - Reverse resource tree for the deadlock check time resource. 
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LockList SizeMaxlocks

Max Number of Agents

Max Number of Applications

Lock Timeout

Average Num of Applications

 
Figure 34 - Forward resource tree for the lock timeout resource. 

Lock Timeout

 
Figure 35 - Reverse resource tree for the lock timeout resource. 

 
 

Locklist Size

Maxlocks

Max Number of Agents

Max Number of Applications

Average Num of Applications

 
Figure 36 - Forward resource tree for the locklist size resource. 
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Locklist Size

Lock Timeout

Maxlocks

Max Number of Agents

Max Number of Applications

Deadlock Check Time

Average Num of Applications

 
Figure 37 - Reverse resource tree for the locklist size resource. 

 
 

Sort Heap Threshold

Sort Heap Size

 
Figure 38 - Forward resource tree for the sort heap size resource. 

 
 
 

Sort Heap Threshold

Sort Heap Size

 
Figure 39 - Reverse resource tree for the sort heap size resource. 
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Sort Heap Threshold

Sort Heap Size

 
Figure 40 - Forward resource tree for the sort heap threshold resource. 

 

Sort Heap Threshold

Sort Heap Size

 
Figure 41 - Reverse resource tree for the sort heap threshold resource. 



 145 

Appendix J 

Statistical Analysis Data 

Run #1 

4044 4500 4032 4680 4140 4380 
4056 4776 4416 4584 4272 4440 
4092 4044 4020 3984 4716 4020 
4224 4512 4428 4320 4212 4008 
4164 4236 4284 4332 4188 4416 
4308 4296 3960 4476 4380 4356 
4284 3972 4356 3408 4608 4188 
4068 4092 3984 4236 3912 3816 
4452 4596 4032 4212 4632 4164 
4596 4164 4248 4212 4260 4104 
4320 4632 4080 4416 4056 4428 
3972 4068 4008 4344 4308 4236 
4548 3924 4128 4368 4524 4224 
4440 4692 4152 4260 4440 4656 
4296 4056 4116 4188 4164 4464 
4392 4452 4212 4320 4344 4632 
4416 4152 3804 4176 4452 3984 
4068 4464 4320 4284 4272 4584 
4452 3912 4116 4296 4044 4080 
4404 4524 4764 4368 3912 4080 
4380 4428 4344 4464 4668 3840 
4176 4020 3900 4464 4332 3828 
4416 4272 4404 4212 4368 3900 
4272 4284 4356 4296 3936 4284 
4476 4116 4392 3924 4128 4236 
4344 4248 4536 4392 4080 4512 
4092 4176 4284 4320 4152  
4080 4224 4032 4608 4200  
4536 3744 4320 4092 4284  
4296 4212 4440 4248 4524  
4164 3900 4224 4284 4536  
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Run #2 

4371 4095 4491 4419 4047 3603 
3939 4059 4095 3579 4071 4479 
4347 4479 3903 4407 4335 4443 
4467 4179 4467 4107 3795 4359 
4635 4071 4167 4479 4431 4095 
4695 4203 4635 3771 4251 4299 
4311 4599 4263 4239 4371 4587 
4059 4083 3843 4299 4275 4131 
4131 3759 4335 4059 4119 4167 
4455 4203 3915 4071 4035 3975 
3855 3939 4479 4431 4491 4419 
4203 4251 4179 4419 4263 4599 
4335 3975 3903 4539 4371 4203 
4491 4443 4527 4239 4227 4767 
4203 4119 4623 4131 4143 4143 
4407 4047 4635 4371 4599 3867 
4179 4443 4179 4323 4227 4443 
4263 4479 4143 4131 4371 4179 
4251 4479 4251 4371 4251 4239 
4143 4323 4059 4299 4227 4263 
4347 4467 4143 4227 4323 4383 
4527 4311 4239 4683 4263 4299 
4251 4191 4107 4119 4563 4287 
4311 4119 4671 4059 4179 4203 
3975 4395 4335 4083 4191 4047 
4191 3915 4179 4431 4527 3879 
4167 4443 4287 4167 4467  
4275 4107 4467 4419 4035  
3915 4263 3795 4131 4335  
3867 4227 4527 4035 4239  
4407 4263 3807 4455 4059  
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Run #3 

4060 3964 4084 3880 4120 3880 
4336 4636 4144 4504 4132 4072 
4396 4504 4252 4492 4072 4336 
4648 4648 4384 4156 4804 4600 
4312 4060 4240 4060 3904 4204 
4060 4288 3988 4432 4432 4060 
4228 4444 4252 4324 4216 4036 
3952 4780 3940 4108 3856 4300 
3796 4240 4024 4276 4360 4480 
4540 4360 4312 4480 4204 4396 
4336 4360 4240 4252 4132 4312 
4252 4396 4156 4288 4144 4720 
4456 4012 4564 4828 4048 4024 
4144 4096 4528 4264 4132 4756 
4060 3808 4312 4012 3736 3892 
4780 4588 4588 3904 4228 4624 
4120 4048 4720 4600 4552 4036 
4108 3928 4288 4504 4072 4324 
4120 4252 4120 3940 4672 4360 
4204 4108 3700 4396 4444 4216 
4288 4192 4636 4336 4540 4480 
4108 4420 4564 4060 4132 4180 
4576 4408 4504 4288 4036 4348 
4408 4624 4168 3952 4588 4144 
4336 4204 4720 4300 4312 4252 
4168 4264 4432 3988 4384 4432 
3916 3952 4120 4300 4168  
4120 4312 4084 4060 4084  
4408 3904 4012 4216 4492  
4120 4456 4264 4468 4300  
4288 4252 4360 4540 4276  
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