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Abstract 

Workload adaptation is a performance manage-
ment process in which an autonomic database 
management system (DBMS) efficiently makes 
use of its resources by filtering or controlling the 
workload presented to it in order to meet its Ser-
vice Level Objectives (SLOs). This paper pre-
sents a framework and a prototype 
implementation of a query scheduler that per-
forms workload adaptation in a DBMS. The sys-
tem manages multiple classes of queries to meet 
their performance goals by allocating DBMS 
resources through admission control in the pres-
ence of workload fluctuation. The resource allo-
cation plan is derived by maximizing the 
objective function that encapsulates the perform-
ance goals of all classes and their importance to 
the business. A first-principle performance 
model is used to predict the performance under 
the new resource allocation plan. Experiments 
with IBM® DB2® Universal Database™ are con-
ducted to show the effectiveness of the frame-
work. 

1 Introduction 
Performance management for database man-
agement systems (DBMSs) is becoming increas-
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ingly important to businesses as their workloads 
become more diverse and complex. The emerg-
ing trend of server consolidation has led to an 
environment with increased competition for 
shared resources between applications from po-
tentially disjoint organizations in a single in-
stance of the DBMS; this results in a workload 
with diverse and dynamic resource demands 
with competing performance objectives for these 
applications. In addition, Web-based applica-
tions introduce a need for flexible and guaran-
teed application service levels because they tend 
to involve unpredictable workloads, with a high 
rate of overall growth in workload size [6]. Allo-
cating DBMS resources to competing workloads 
to meet performance objectives is a challenge. 
Simply maximizing overall resource utilization 
does not guarantee that individual performance 
objectives will be met. Performance manage-
ment is complicated by the fact that the perform-
ance objectives for each application or workload 
class often have no strong relation to their re-
source demands, and vary widely. Workload 
classes with similar performance objectives 
might have different resource demands, while 
workload classes with similar resource demands 
may have different performance objectives. The 
business importance of each class must also be 
considered in performance management.  
 Most contemporary DBMSs have their own 
performance management component, for exam-
ple, the IBM® DB2® Universal Database sys-
tem (DB2 UDB) Query Patroller [8]. These 
controllers enforce efficient resource utilization 
through the use of statically determined priori-
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ties and thresholds on factors such as cost limits 
and MPLs (multiprogramming levels). The con-
trollers do not automatically respond to work-
load changes and adjustments of performance 
goals.  
 Workload adaptation is a performance man-
agement process in which an autonomic DBMS 
efficiently makes use of its resources by filtering 
or controlling the workload presented to it in 
order to meet its Service Level Objectives 
(SLOs). For example, if a DBMS is experienc-
ing a heavy load from a less important applica-
tion, it could delay these queries in order to 
allow queries from more important applications 
to meet their performance goals. Workload adap-
tation is a simple and effective method for work-
load control. It does not directly deal with 
resource allocation, and therefore, it does not 
require low-level resource control infrastructure 
in the DBMS or operating system support. Al-
though workload adaptation does not directly 
manipulate resource allocations, it can still per-
form workload control at a fine granularity by 
admitting individual work requests. 
 Our work makes two main contributions to 
providing workload control in autonomic 
DBMSs. The first contribution is a general 
framework for performance-oriented workload 
adaptation in autonomic DBMSs. The frame-
work classifies queries based on their perform-
ance goals and schedules the execution of 
queries from these classes based on the perform-
ance goals, the real performance, and resource 
utilization. The framework is based on a feed-
back loop that continually monitors system per-
formance and the utilization of the various 
resources of the database system while, at regu-
lar intervals, determining the best scheduling 
plan that efficiently uses available resources to 
meet the different SLOs for the current workload. 
 The second contribution is a prototype im-
plementation, called Query Scheduler, which 
adapts the workload for an instance of DB2 
UDB. Query Scheduler manages multiple 
classes of queries to meet their SLOs by allocat-
ing DBMS resources through admission control 
in the presence of workload fluctuation. The 
resource allocation plan is derived by maximiz-
ing the objective function, which encapsulates 
the performance goals of all classes and their 
importance to the business. A first-principle per-
formance model is used to predict the perform-
ance of the DBMS under the new resource 

allocation plan. We present experiments that 
evaluate the effectiveness of the Query Sched-
uler and compare it to the performance of an 
existing workload controller, namely DB2 Query 
Patroller (DB2 QP). 
 The rest of the paper is structured as follows. 
Section 2 describes related work. Section 3 ex-
plains our framework for workload adaptation 
and Section 4 discusses Query Scheduler, which 
is a prototype implementation of the framework. 
The evaluation of Query Scheduler is outlined in 
Section 5. We conclude and suggest future work 
in Section 6. 

2 Related Work 

The area of workload adaptation in DBMSs has 
been examined by a number of researchers. 
Brown et al. [3] propose an algorithm that auto-
matically adjusts MPLs and memory allocation 
to achieve a set of per-class response time goals 
for a complex workload in DBMSs. The interde-
pendency between classes that results from the 
competition for shared resources is solved by 
performance feedback. Pang et al. [14] propose 
an algorithm called Priority Adaptation Query 
Resource Scheduling to minimize the number of 
missed deadlines for a multi-class query work-
load, while at the same time ensuring that any 
deadline misses are scattered across the different 
classes according to an administratively-defined 
miss distribution. This objective is achieved by 
admission control, allocating memory and as-
signing priorities based on current resource us-
age, workload characteristics and performance 
experienced. Both of these approaches use heu-
ristics to determine new workload control plans. 
Performance objectives are dealt with individu-
ally. In our study, we use performance objective 
encapsulation techniques to combine individual 
performance objectives into an objective func-
tion. It is optimized based on a performance 
model to find a solution for workload control. 
 Commercial systems currently support re-
source-oriented workload control. Teradata’s 
Active System Management [2, 4] controls the 
workload presented to a DBMS by using prede-
fined rules based on thresholds of the workload 
such as MPLs and number of users. DB2 QP [8] 
uses estimated query costs and MPLs to perform 
admission control. It can dynamically control the 
admission of queries against DB2 UDB data-
bases so that small queries and high-priority 
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queries can be run promptly, and system re-
sources are used efficiently.  
 DB2 QP provides three mechanisms to help 
control query flow, namely, cost-based query 
classification, submitter queue prioritization, and 
threshold management. A query class is defined 
by specifying a cost range and an MPL threshold. 
Queries are assigned to query class based on the 
cost of query, which is the resource demand es-
timated by the query optimizer. The MPL 
threshold is the maximum number of queries in 
that class that can execute concurrently. When 
the threshold is reached, new queries are placed 
on the query class queue and are submitted for 
execution when the MPL falls below the thresh-
old. This allows queries with different resource 
demands to be treated differently by specifying 
several query classes each with potentially dif-
ferent MPL thresholds thus using system re-
sources more effectively. Submitter queue 
prioritization assigns high priorities to queries 
submitted by certain users so that these queries 
are run with shorter delays than others in the 
same query class queue. When the MPL thresh-
old for a query class is reached, new queries are 
inserted into different positions in the query 
class queue based on the defined queue priority 
of the query submitter. This ensures that higher 
priority queries in a query class get submitted for 
execution first. By setting optional system level 
cost thresholds, DB2 QP automatically puts 
large queries on hold so that they can be can-
celled or scheduled to run during off-peak hours. 
Unlike our approach, DB2 QP does not use per-
formance objectives as guides. 
 Workload adaptation techniques have also 
been applied in the area of web services. Me-
nascé et al. [11, 12, 13] propose a Quality of 
Service (QoS) Controller to manage workloads 
in an E-commerce environment. The QoS Con-
troller adjusts system configuration parameters 
so that the Quality of Service requirements of 
the system are constantly met. The QoS Control-
ler uses analytic performance models combined 
with combinatorial search techniques that run 
periodically to determine the best possible con-
figuration for the system given its workload. 
 Pacifici et al. [15] present an architecture 
and prototype implementation of a performance 
management system for cluster-based web ser-
vices. In this approach, web service workloads 
are partitioned into multiple service classes in 
each gateway and server resources are reactively 

allocated through admission control by adjusting 
MPLs for each gateway and service class to 
maximize the expected value of a given cluster 
utility function in the face of workload changes.  
As a function of the performance delivered to 
the various service classes, the cluster utility 
function plays a key role in providing differenti-
ated service. Service levels are maintained by 
feedback control that incorporates a performance 
model. 
 Menascé and Pacifici both assume that the 
work requests are similar in size to simplify the 
performance model and perform admission con-
trol based on MPLs. Although this assumption 
may be valid in a web services environment, it 
does not hold true in DBMSs. Queries vary 
widely in size and in resource demand, which 
calls for more sophisticated performance models 
and admission control techniques. 

3 The Framework for 
Workload Adaptation 

Workload adaptation, as defined earlier, is a 
process of optimizing resource usage by control-
ling the workload presented to the system. As 
shown in Figure 1, we view workload adaptation 
to be composed of two processes, namely work-
load detection and workload control. The proc-
esses are in turn made up of four functional 
components - workload characterization, per-
formance modeling, workload control, and sys-
tem monitoring. 
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3.1 Functional Components 
Workload characterization is concerned with 
measuring and modeling production workloads 
[9, 10]. The purpose of characterizing a work-
load is to understand and determine the resource 
usage and performance behavior for subsequent 
workload control.  
 Performance modeling tries to predict the 
performance of the target system through a 
model that describes the features of the target 
system [10]. The inputs to a performance model 
are workload parameters (such as resource de-
mand and arrival rate) generated by the work-
load characterization component. The outputs 
are system performance and resource utilization 
parameters. In the autonomic era, systems are 
self-configurable, which calls for adaptive per-
formance modeling techniques that evolve per-
formance models in response to changes in the 
system [5]. 
 Workload control components find and en-
force an optimal workload control plan to meet 
the performance objectives when fluctuation in 
the workload causes the system performance to 
degrade. Based on the support of the underlying 
system, the control plan can be a plan for direct 
resource allocation, parameter tuning or admis-
sion control. Control actions are triggered by 
workload changes. 
 System monitoring, or feedback, indicates 
how well the system is performing by continu-
ously acquiring the execution information of the 
workload and the resource usage of the system. 
The feedback information not only can be used 
as an indicator for workload changes to assist in 
workload characterization, but also aids in the 
evolution of performance models by tracking 
changes to systems [3, 7, 12]. 

3.2 Workload Detection Proc-
ess 

Workload detection identifies workload changes 
by monitoring and characterizing current work-
loads and predicting future workload trends. As 
shown in Figure 1, two functional components, 
workload characterization and system monitor-
ing, are involved in the workload detection proc-
ess. 
 The workload characterization component 
partitions the workload, analyzes workload char-
acteristics, and calculates resource demands with 

the help of feedback information from the sys-
tem monitoring component. Partitioning the 
workload reduces the complexity of workload 
characterization by reducing the population to be 
probed. Analyzing workload characteristics, 
such as arrival rate and composition of workload 
components, helps to formulate a workload con-
trol strategy. Feedback information from system 
monitoring plays an important role in the proc-
ess of workload detection. Alternatively, work-
load changes can be detected by monitoring the 
changes in performance and/or resource utiliza-
tion [12, 15]. This is an effective approach to 
workload detection when workload characteriza-
tion is impossible or too costly, or some charac-
teristics cannot be directly derived from the 
workload itself. 

3.3 Workload Control Process 
Workload control involves system management 
via efficient allocation of resources. There are 
three approaches to workload control. First, di-
rect resource allocation allocates a certain 
amount of resources to a workload, a workload 
class, or a single piece of work. Private memory 
for a process is usually allocated in this way. 
Second, parameter tuning regulates resources 
allocated to the work by changing the parameters 
related to resource usage. For example, increas-
ing the buffer pool size in a DBMS improves the 
performance of an OLTP (On Line Transaction 
Processing) workload. There is no explicit as-
signment of resources to the OLTP workload, 
but an OLTP workload indeed benefits from 
increased buffer hit rates. Third, admission con-
trol regulates resource allocation by controlling 
the contention level on resources within a ser-
vice class or across service classes. The more 
work requests that are admitted, the heavier the 
resource contention.  
 One of the main issues regarding workload 
control is how to determine the appropriate 
amount of control. This involves performance 
prediction under the suggested workload control 
plan or configuration. Performance administra-
tors can determine the new configuration manu-
ally based on their experiences. Performance 
management systems require performance mod-
els to predict performance in order to be self-
managing [5, 12]. When workload changes are 
detected, the workload control component de-
termines whether or not an adjustment is needed. 
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In the positive case, it generates workload con-
trol plans and submits them to the performance 
modeling component for evaluation. It then 
chooses the optimal plan to exert control over 
the workload. Three functional components, the 
workload control, the performance modeling and 
the system monitoring, are involved in the work-
load control process (Figure 1). 

SLO
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Figure 2: Query Scheduler 

4 Query Scheduler 

The Query Scheduler, which is shown in Figure 
2, is a proof-of-concept implementation of the 
workload adaptation framework discussed above. 
It automatically controls the workload to DB2 
UDB in order to satisfy defined performance 
goals. 
 Query Scheduler uses DB2 QP to intercept 
queries and acquire query information and, via 
direct commands to QP, release queries. In this 
implementation, DB2 QP is configured to auto-
matically intercept all queries, record detailed 
query information, block the DB2 agent respon-
sible for executing the query until an explicit 
operator command is received. Finally, DB2 QP 
was modified to inform Query Scheduler each 
time a query was intercepted.  The Monitor then 
collects the information about the query from the 
DB2 QP control tables, including query identifi-
cation information, query cost, query execution 
information etc. The Monitor passes the query 
information to the classifier and the scheduling 
planner. The Classifier assigns the query to an 
appropriate service class based on its perform-
ance goal and places the query in the associated 
queue manipulated by the dispatcher. The Dis-
patcher receives a scheduling plan from the 
Scheduling Planner and releases the queries in 
the class queues according to the plan. 
 In our implementation a scheduling plan is a 
set of class cost limits. Each service class is as-
signed a class cost limit expressed in timerons, 
which is a generic cost measure used by the DB2 
UDB optimizer to express the combined re-
source cost to execute a query. This limit is the 
maximum allowable total cost of all concurrent 
queries belonging to a service class. A query in a 
class queue is released only if the sum of the 
total cost of all executing queries of the service 
class plus the cost of the query does not exceed 
the class cost limit. The Dispatcher releases a 
query for execution by calling the unblocking 
API provided by DB2 QP, which releases the 

blocked agents. The Scheduling Planner consults 
with the Performance Solver at regular intervals 
to determine an optimal scheduling plan, and 
passes this plan to the Dispatcher. 

4.1 SLO Encapsulation 
Managing multiple performance goals with dif-
ferent business importance levels is complex. 
Not only does the complexity increase with the 
number of performance goals, but the interde-
pendencies among the performance goals make 
it even more difficult to control the workload. It 
is desirable to collectively manage all the per-
formance goals along with their business impor-
tance levels. 

4.1.1 SLOs 
SLOs are often specified by an importance level 
and a performance goal [1]. An importance level 
describes how important it is to the business to 
meet the performance goal relative to the other 
work competing for the same set of system re-
sources. It identifies the order in which service 
classes should receive or donate resources when 
the system capacity is insufficient for all service 
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classes to meet their goals. A performance goal 
defines the desired performance objective.  
 The most widely used performance goals 
are response time, throughput, and execution 
velocity [7]. Response time and throughput are 
well understood. These measures, however, are 
only useful when the work requests are similar 
in size. For workloads with widely varying re-
sponse times, execution velocity, which is a 
measure of the time a query spends executing 
compared to its total time in the system, is a bet-
ter choice. 
 Because the Query Scheduler is currently 
implemented outside DB2 UDB, the overhead 
associated with managing queries with the 
Query Scheduler means that it is impractical to 
try to manage online transaction processing 
(OLTP) workloads, which are composed mainly 
of small queries. Instead, we focus on manage-
ment of large queries, such as those found in 
decision support systems (DSSs). We therefore 
use the TPC-H DSS benchmark [16] as the 
workload in our experiments discussed below.  
 DSS workloads, such as TPC-H, contain 
queries with widely varying response times so a 
velocity-type goal is most appropriate. Moti-
vated by the need to see a clear division between 
waiting and execution when performing admis-
sion control, we use the metric Query_Velocity, 
which we define as  

   
_

_ /
Query Velocity
Execution Time Response_Time

=

 The wait time for admission is dependent 
upon the policy governing admission control. If 
an admission control policy allows a query to be 
admitted earlier, the wait time for admission is 
small, otherwise, it is large. In order to make a 
meaningful comparison between different ad-
mission control policies, it is necessary to ensure 
that the expected execution time for a query is 
stable when the system is busy. We do this by 
setting a total cost limit for concurrently execut-
ing queries. Through experimentation, we found 
that a total cost limit of 300000 timerons is a 
reasonable saturation threshold (see Section 5.2) 
and we use this cost as the total cost limit in our 
experiments. 

4.1.2 Objective Functions 
Consider a system with n SLOs. Formally, an 
SLO is described as ,i ig i , where ig is the per-

formance goal to be achieved and is the impor-
tance level of the performance goal to be 
achieved. We denote

ii

1 2, ,..., ng g g  as the pre-
dicted performance given a workload control 
plan. The utility [15] of the ith service class, , 
describing how well the system meets an SLO, 
is the function of 

iu

,i ig i  and ig : ( ), ,i i i i iu f g i g= . 
Multiple SLOs can be encapsulated into an ob-
jective function 1 2( , ,..., )nf u u u . By properly 
choosing if  and f , the workload control prob-
lem becomes one of optimizing the objective 
function f to find the optimal workload control 
plan. 
 In our implementation we choose the objec-
tive function as 
 if u= ∑     (1) 
and the utility functions as 

 1
i i

i

g g
g

i iu a
−

= −    (2) 
where is a constant indicating the importance 
of the service class. A larger , denotes a higher 
degree of importance. From the shape of the 
utility function shown in Figure 3, we observe 
that as

ia

ia

ig increases, the curve becomes smoother. 
That is to say, when the service class achieves its  
 

      
 
                     Figure 3: Utility Function 
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performance goal ( i ig g≥ ),  its utility increases 
slowly as its performance improves. This dic-
tates that the system should not assign more re-
sources to the service class when the service   
class is already meeting its performance goal. 
When ig is decreasing, the curve becomes 
steeper. That is to say that when the service class 
violates its performance goal ( i ig g< ), the mar-
ginal utility rapidly increases as more resources 
are assigned to the service class. In this case, 
allocating more resources to the service class 
should bring the class closer to meeting its per-
formance goal. 

4.2 Workload Characterization 
The workload characterization component is the 
Classifier in our implementation. It identifies the 
characteristics, mainly resource demand, of a 
query, and classifies it into an appropriate ser-
vice class. As shown in Figure 2, the information 
used in the Classifier includes SLOs, and query 
identification information and cost from the 
monitor component. 
 Resource demand must be acquired before 
making any control decisions in our framework. 
Acquiring resource demand for queries is diffi-
cult because a) queries vary widely in size, b) 
the resource demand of a query may be different 
during multiple executions because of the inter-
ference of other queries, and c) the resource de-
mand of a query is dependent upon the 
configuration of the DBMS. Query costs esti-
mated by the query optimizer roughly reflect the 
relative costs of queries in an ideal environment 
and we use these costs to represent the resource 
demand in the framework. 
 Query classification is based on perform-
ance goals. Each service class has a performance 
goal. The performance goals are predefined in 
SLOs and the query identification information 
from the monitor component is used to deter-
mine the performance goal of a query during 
runtime. 

4.3 Performance Modeling 
Admission control is based on the principle that 
system resources are shared by the queries run-
ning in the system. If the volume or multipro-
gramming level of service class A is larger than 
those of service class B, service class A is pro-

portionally assigned more resources, and is 
given preference. The performance modeling 
problem is to predict the performance of a new 
admission control plan: a set of class cost limits. 
 Suppose there are m terminal users who 
submit queries one after another in a service 
class that is assigned a class cost limit of 1kC − at 
the control interval with the query veloc-
ity

( 1)thk −
1kV − . The performance modeling problem is 

to predict the query velocity at the control 
interval given the class cost limit . 

kV thk
kC

 Suppose the average service time isT . As 
per queuing theory, the average queue length at 
the  control interval is . The aver-
age response time

( 1)thk − 1m −
1kR −  and wait time  at the  1kW −

( 1)thk − control interval are: 
  1kR m− = T

T  1 ( 1)kW m− = −
We have: 
 1 1 11 1k k kV W R− − −= − = / m  
When the class cost limit becomes , either the 
service time or the queue length is changed by a 
factor of

kC

1kC C− k due to the change of the class 
cost limit. Now, the average response time and 
wait time at the control interval is: thk
 1( )k k kR C C m−= T  
 1(( ) 1)k k kW C C m−= − T  
We have: 

 
1 1

1

1 1

1
1 (( ) 1) (( ) )

*1

k k k

k k k k

k k

k k k

V W R
C C m C C m

C C m
V C C

− −

−

− −

= −

= − −

=

=

    (3) 

 Now given the new class cost limit, we can 
predict the performance for the next control in-
terval based on the performance and the class 
cost limit of the current control interval. 
 As shown in Figure 2, the performance 
modeling component is the Performance Solver 
in our implementation. It receives a new sched-
uling plan, a set of new class cost limits, from 
the Scheduling Planner and predicts the per-
formance of each service class under this sched-
uling plan based on the performance of the 
current control interval from the Monitor com-
ponent. 
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4.4 Workload Control 
The workload control component finds an opti-
mal scheduling plan and executes the plan. In 
our implementation, it consists of the Scheduling 
Planner and the Dispatcher. The Scheduling 
Planner finds an optimal scheduling plan at regu-
lar intervals and the Dispatcher executes it. 

4.4.1 Performance Optimization 
Finding an optimal scheduling plan can be de-
scribed as following an optimization problem. 
We denote: 
 : The performance goal of service class i iV
 : The performance of service class i at 
the control interval 

k
iV

thk
 : The class cost limit of service class i at 
the control interval 

k
iC

thk
 : The utility of service class i at the 

control interval 

k
iu

thk
 C: The total cost limit allowed for all ser-
vice classes 
From equations (1), (2) and (3) we have: 
     (4)

 

∑= k
iuf

1

k
i i

k
i

V V
Vk

i iu a
−

= −    (5) 
 1k k k k

i i i iV V C C−= 1−    (6) 
Replacing in (5) with (6) and in (4) with 
(5), the objective function becomes the function 
of the new workload control plan:  

k
iV k

iu

 1 2( , ,..., )k k k
nf C C C  

with the constraint: 
 . 1 2 ...k k k

nC C C C+ + + ≤

 If 1 2( , ,..., )k k k
nf C C C  is a continuous function, 

we can use Lagrange method or searching tech-
niques to solve it. Otherwise, we must solve it 
using searching techniques. 
 The Scheduling Planner receives SLOs and 
the query execution information from the moni-
tor component, and predicts the performance of 
each service class by consulting the Performance 
Solver to find an optimal scheduling plan. 

4.4.2 Admission Control 
Admission control is performed by the Dis-
patcher when a new query arrives or when a 
query completes or aborts. The Dispatcher uses 

the following algorithm to execute the schedul-
ing plan and perform admission control: 
 

A query q arrived, completed or aborted;
 the service class of q;

the total cost of concurrent queries 
          of the service class ;

the class cost limit of service class ;
If (completed or

T
i

L
i

i
C

i
C i

←

←

←

 aborted)
      the cost of q;
      ;

the cost of the query at the front of
       the class queue ;
If ( )
      Release the query at the front of the
      class queue ;

T T
i i

T L
i i

c
C C c

c
i

C c C

i

←

← −

←

+ ≤

 

4.5 System Monitoring 
The system monitoring component consists of 
the Monitor and a trigger in DB2 QP that in-
forms the Query Scheduler of the arrival of new 
queries and the termination of running queries. 
When a query is submitted to the DBMS, the 
DB2 UDB agent responsible for the query in-
forms DB2 QP that a new query has arrived. 
DB2 QP (with the threshold 
MAX_QUERY_ALLOWED set to 0) intercepts 
the query and blocks it. Whenever a query is 
intercepted, a new entry is added to the 
TRACK_QUERY_INFORMATION control 
table of DB2 QP to store the query information 
which includes query identification information, 
query execution information, the query cost, etc. 
The query execution information is updated 
whenever the query is completed or aborted, and 
is used for evaluating the performance of each 
service class. 
 A trigger on insertion or update defined on 
this table calls a stored procedure to connect to 
the Query Scheduler (the Monitor component) 
via a TCP socket to inform Query Scheduler that 
a new query was intercepted or completed. The 
Monitor watches the arrival and departure of 
queries, collects query identification data, per-
formance data and resource usage data from 
DB2 QP and reports to the Classifier and the 
Scheduling Planner. 
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5 Experiments 
In this section we describe a set of experiments 
to study the effectiveness of Query Scheduler in 
providing differentiated service to workload 
classes with different SLOs. We also compare it 
to the effectiveness of DB2 QP, which is typical 
of the level of control available in current 
DBMSs.  
 The computer system used as the database 
server is an IBM xSeries® 240 machine with 
dual 1 GHZ CPUs, four PCI/ISA controllers, 
and 17 Seagate ST 318436LC SCSI disks. We 
use IBM DB2 UDB Version 8.2 and Query Pa-
troller as supporting components. 

5.1 Workload 
As discussed above, we use the TPC-H standard 
DSS benchmark as our workload. The workload 
consists of two classes of TPC-H queries sub-
mitted by interactive clients or batch jobs, each 
class having a performance goal. Each client or 
batch job submits queries one after another with 
zero think time. The database consists of 500MB 
of data. Four very large queries (queries 16, 19, 
20 and 21) are excluded from the workload. 
Workload intensity is controlled by the number 
of clients or batch jobs for each class (see Figure 
4). Each test ran for 12 hours and consists of 6 2-
hour periods. 
 Class 0 is deemed more important than 
Class 1. This is indicated by setting a stricter 
performance goal for Class 0 than for Class 1. 
The heaviest workload is in period 3 where 15 
clients from Class 0 and 5 clients from Class 1 
are issuing queries simultaneously. 

5.2 The System Cost Threshold 
The relationship between the total cost of con-
current queries in the system and the correspond-
ing performance can be used to determine the 
system cost threshold – the total cost limit. 
Query admission is controlled by the total cost 
of active queries in the system and the corre-
sponding average response time and throughput 
is calculated. The curves of total cost vs. average 
response time (Figure 5) and total cost vs. 
throughput (Figure 6) are plotted to determine 
the total cost limit that keeps the system satu-
rated. We find that the circled point in Figure 5 
and 6 with total cost limit of 300,000 timerons is  
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Figure 6: Throughput vs. Total Cost 
 
the proper saturation point. If we increase the 
total cost limit further, we see a small increase in 
throughput, but we note that the average re-
sponse time still increases linearly. 

5.3  Experiments 
The following set of experiments show the effec-
tiveness of Query Scheduler relative to that of 
DB2 QP. The analysis of the results is discussed 

 9



in Section 5.4. In all experiments, we use the 
workload shown in Figure 4. 

5.3.1 No Class Control  
In this experiment, no control is exerted over the 
workload except for the total cost limit. This 
experiment serves as our baseline measure to 
observe how the performance changes with the 
changes of workload. The result is shown in 
Figure 7. 
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Figure 7: Query Velocity with No Control 
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Figure 8: Query Velocity with DB2 QP with Pri-
ority Control 
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Figure 9: Query Velocity with DB2 QP without 
Priority Control 

5.3.2 Class Control with DB2 QP 
In this experiment, we use DB2 QP as the per-
formance controller. The workload is partitioned 
into three groups based on the cost of queries: 
large, medium and small. The cost threshold for 
large group is chosen as the lowest percentile 
cost of 95 of all queries and 80 for medium 
group: 
 Large:   
  cost > the lowest percentile cost of 95 
 Medium:  
  the lowest percentile cost of 80 < cost ≤ 
the lowest percentile cost of 95 
 Small:  
  cost ≤ the lowest percentile cost of 80 
 In order to demonstrate how DB2 QP pro-
vides differentiated services, we first perform 
service class control by setting priorities for the 
two classes. The priority of Class 0 is higher 
than that of Class 1, for example 600 for Class 0, 
and 500 for Class 1.The result of this experiment 
is shown in Figure 8. We then turn off priority 
control. The result is shown in Figure 9. 
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Figure 10: Query Velocity with Query Scheduler 
with Goals (0.65, 0.45) 
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5.3.3 Class Control with Query 
Scheduler 

This experiment uses Query Scheduler to control 
performance. The performance goals for Class 0 
and Class 1 are set as 0.65 and 0.45 respectively. 
The total cost limit is 300000 timerons. Class 
control is performed by setting class cost limits. 
The sum of all class cost limits is equal to the 
total system cost limit. Class cost limits are cal-
culated during execution according to the per-
formance of each workload class and predefined 
utility functions. In other words, class cost limits 
are calculated by optimizing the objective func-
tion. The results are shown in Figure 10 for the 
query velocity and in Figure 11 for the adjust-
ment of class cost limit. 
 To show the ability of Query Scheduler to 
adapt to the changes of performance goals, we 
ran a second experiment with a tighter perform-
ance goal (0.75) for Class 0. The results are 
shown in Figure 12 for the query velocity and in 
Figure 13 for the adjustment of class cost limits. 
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Figure 12: Query Velocity with Query Scheduler 
with Goals (0.75, 0.45) 
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Figure 13: Adjustment of Class Cost Limit with 
Query Scheduler with Goals (0.75, 0.45) 

5.4 Analysis of the Results 
 Differentiated services: The results of our 
experiments show that both DB2 QP and Query 
Scheduler can provide differentiated services, 
while No class control cannot. DB2 QP provides 
differentiated services by assigning different 
priorities to different service classes. As shown 
in Figure 8, with the higher priority assigned to 
Class 0, Class 0 always performs better than 
Class 1. When priority control is turned off as 
shown in Figure 9, the query velocity curves of 
both classes are similar to the case of No class 
control (Figure 7). As shown in Figure 10 and 12 
for Query Scheduler, Class 0 can better meet its 
performance goals than Class 1 because Class 0 
is more important than Class 1. 
 Quality of differentiated services:  DB2 
QP with priority control sets static priorities to 
different service classes (600 to Class 0, and 500 
to Class 1). Class 0 is always given higher prior-
ity even when it is exceeding its performance 
goal and Class 1 is in violation of its goal in pe-
riods 2, 4 and 6 as shown in Figure 8. Query 
Scheduler dynamically adjusts the class cost 
limits based on the performance as shown in 
Figures 11 and 13. Although it always gives 
preference to the important class, Class 0, it 
never allocates too many resources to Class 0 to 
prevent Class 1 from meeting its performance 
goal if possible as shown in the periods 2, 4 and 
6 in Figures 10 and 12. When the workload is 
too heavy to meet both performance goals in 
periods 3 and 4, DB2 QP with priority control 
cannot meet the performance goals for Class 1 as 
shown in Figure 8, while Query Scheduler is 
able to keep both classes converging on their 
performance goals as shown in Figure 10 and 12. 
 Importance of classes: We notice that 
Query Scheduler can assure that both classes 
converge on their performance goals when the 
performance goals are 0.65 and 0.45 (Figure 10). 
When the performance goal of Class 0 is 
changed to a tighter goal 0.75, Query Scheduler 
cannot meet the performance goals for both 
classes in periods 3 and 4 (Figure 12). However, 
Query Scheduler recognizes that Class 0 is more 
important than Class 1 and attempts to minimize 
the goal violations for the important class, to the 
detriment of Class 1, as seen in Figure 12. Al-
though Class 0 is more important than Class 1, 
Query Scheduler can assign more resources to 
Class 1 than DB2 QP with priority control when 
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Class 0 meets its performance goals in periods 2 
and 6. This means that the importance level of a 
class is in effect only when the class violates its 
performance goals and is not synonymous with 
priority. 
 Dynamic resource allocation: From Fig-
ures 11 and 13, we observe that Query Scheduler 
adjusts the class cost limits according to the 
workload changes. A higher class cost limit 
means more resources are allocated to the class. 
The amount of resources allocated to a class is 
based on its need to meet its performance goal, 
as shown in periods 2, 5 and 6 in Figures 11 and 
13. In the case of DB2 QP with priority control, 
Class 0 always has the privilege to possess more 
resources even when it exceeds its performance 
goal as shown in Figure 8. 
 To conclude, our framework for workload 
adaptation in autonomic DBMSs is effective. It 
is able to respond to the workload changes using 
admission control to give preference to impor-
tant service classes, or to the service classes 
whose performance goals are violated. 

6 Future Work and Con-
clusions 

In this paper we present a framework and proto-
type implementation – Query Scheduler, for 
workload adaptation in autonomic DBMSs. We 
use query cost as resource demand and perform 
admission control based on SLOs and system 
resource utilization. Class cost limits are deter-
mined dynamically through optimizing the ob-
jective function that encapsulates the SLOs with 
utility functions. Through a set of experiments 
we have shown the effectiveness of the frame-
work. 
 In the future, we plan to repeat our experi-
ments with different systems to check its univer-
sality. We plan to add an OLTP workload as 
well as additional service classes to examine the 
effectiveness of the framework with a more 
complex workload. The experiments we have 
conducted are based on a relative stable work-
load. We plan to experiment using a randomly 
changing workload and apply tracking tech-
niques to track workload changes. Finally, we 
expect that using detailed costs (CPU cost and 
I/O cost) in place of total query cost will produce 
finer control over performance. 
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