
Workload Adaptation in Autonomic DBMSs

Baoning Niu, Patrick Martin, Wendy Powley

School of Computing, Queen’s University, {niu | martin | wendy}@cs.queensu.ca

Randy Horman, Paul Bird

IBM Toronto Lab, { horman | pbird }@ca.ibm.com

Abstract

Workload adaptation is a performance manage-
ment process in which an autonomic database
management system (DBMS) efficiently makes
use of its resources by filtering or controlling the
workload presented to it in order to meet its Ser-
vice Level Objectives (SLOs). This paper pre-
sents a framework and a prototype
implementation of a query scheduler that per-
forms workload adaptation in a DBMS. The sys-
tem manages multiple classes of queries to meet
their performance goals by allocating DBMS
resources through admission control in the pres-
ence of workload fluctuation. The resource allo-
cation plan is derived by maximizing the
objective function that encapsulates the perform-
ance goals of all classes and their importance to
the business. A first-principle performance
model is used to predict the performance under
the new resource allocation plan. Experiments
with IBM® DB2® Universal Database™ are con-
ducted to show the effectiveness of the frame-
work.

1 Introduction
Performance management for database man-
agement systems (DBMSs) is becoming increas-

© Copyright 2006 Baoning Niu, Patrick Martin,
Wendy Powley, and IBM Canada Ltd. Permission to
copy is hereby granted provided the original copyright
notice is reproduced in copies made.

ingly important to businesses as their workloads
become more diverse and complex. The emerg-
ing trend of server consolidation has led to an
environment with increased competition for
shared resources between applications from po-
tentially disjoint organizations in a single in-
stance of the DBMS; this results in a workload
with diverse and dynamic resource demands
with competing performance objectives for these
applications. In addition, Web-based applica-
tions introduce a need for flexible and guaran-
teed application service levels because they tend
to involve unpredictable workloads, with a high
rate of overall growth in workload size [6]. Allo-
cating DBMS resources to competing workloads
to meet performance objectives is a challenge.
Simply maximizing overall resource utilization
does not guarantee that individual performance
objectives will be met. Performance manage-
ment is complicated by the fact that the perform-
ance objectives for each application or workload
class often have no strong relation to their re-
source demands, and vary widely. Workload
classes with similar performance objectives
might have different resource demands, while
workload classes with similar resource demands
may have different performance objectives. The
business importance of each class must also be
considered in performance management.
 Most contemporary DBMSs have their own
performance management component, for exam-
ple, the IBM® DB2® Universal Database sys-
tem (DB2 UDB) Query Patroller [8]. These
controllers enforce efficient resource utilization
through the use of statically determined priori-

 1

ties and thresholds on factors such as cost limits
and MPLs (multiprogramming levels). The con-
trollers do not automatically respond to work-
load changes and adjustments of performance
goals.
 Workload adaptation is a performance man-
agement process in which an autonomic DBMS
efficiently makes use of its resources by filtering
or controlling the workload presented to it in
order to meet its Service Level Objectives
(SLOs). For example, if a DBMS is experienc-
ing a heavy load from a less important applica-
tion, it could delay these queries in order to
allow queries from more important applications
to meet their performance goals. Workload adap-
tation is a simple and effective method for work-
load control. It does not directly deal with
resource allocation, and therefore, it does not
require low-level resource control infrastructure
in the DBMS or operating system support. Al-
though workload adaptation does not directly
manipulate resource allocations, it can still per-
form workload control at a fine granularity by
admitting individual work requests.
 Our work makes two main contributions to
providing workload control in autonomic
DBMSs. The first contribution is a general
framework for performance-oriented workload
adaptation in autonomic DBMSs. The frame-
work classifies queries based on their perform-
ance goals and schedules the execution of
queries from these classes based on the perform-
ance goals, the real performance, and resource
utilization. The framework is based on a feed-
back loop that continually monitors system per-
formance and the utilization of the various
resources of the database system while, at regu-
lar intervals, determining the best scheduling
plan that efficiently uses available resources to
meet the different SLOs for the current workload.
 The second contribution is a prototype im-
plementation, called Query Scheduler, which
adapts the workload for an instance of DB2
UDB. Query Scheduler manages multiple
classes of queries to meet their SLOs by allocat-
ing DBMS resources through admission control
in the presence of workload fluctuation. The
resource allocation plan is derived by maximiz-
ing the objective function, which encapsulates
the performance goals of all classes and their
importance to the business. A first-principle per-
formance model is used to predict the perform-
ance of the DBMS under the new resource

allocation plan. We present experiments that
evaluate the effectiveness of the Query Sched-
uler and compare it to the performance of an
existing workload controller, namely DB2 Query
Patroller (DB2 QP).
 The rest of the paper is structured as follows.
Section 2 describes related work. Section 3 ex-
plains our framework for workload adaptation
and Section 4 discusses Query Scheduler, which
is a prototype implementation of the framework.
The evaluation of Query Scheduler is outlined in
Section 5. We conclude and suggest future work
in Section 6.

2 Related Work

The area of workload adaptation in DBMSs has
been examined by a number of researchers.
Brown et al. [3] propose an algorithm that auto-
matically adjusts MPLs and memory allocation
to achieve a set of per-class response time goals
for a complex workload in DBMSs. The interde-
pendency between classes that results from the
competition for shared resources is solved by
performance feedback. Pang et al. [14] propose
an algorithm called Priority Adaptation Query
Resource Scheduling to minimize the number of
missed deadlines for a multi-class query work-
load, while at the same time ensuring that any
deadline misses are scattered across the different
classes according to an administratively-defined
miss distribution. This objective is achieved by
admission control, allocating memory and as-
signing priorities based on current resource us-
age, workload characteristics and performance
experienced. Both of these approaches use heu-
ristics to determine new workload control plans.
Performance objectives are dealt with individu-
ally. In our study, we use performance objective
encapsulation techniques to combine individual
performance objectives into an objective func-
tion. It is optimized based on a performance
model to find a solution for workload control.
 Commercial systems currently support re-
source-oriented workload control. Teradata’s
Active System Management [2, 4] controls the
workload presented to a DBMS by using prede-
fined rules based on thresholds of the workload
such as MPLs and number of users. DB2 QP [8]
uses estimated query costs and MPLs to perform
admission control. It can dynamically control the
admission of queries against DB2 UDB data-
bases so that small queries and high-priority

 2

queries can be run promptly, and system re-
sources are used efficiently.
 DB2 QP provides three mechanisms to help
control query flow, namely, cost-based query
classification, submitter queue prioritization, and
threshold management. A query class is defined
by specifying a cost range and an MPL threshold.
Queries are assigned to query class based on the
cost of query, which is the resource demand es-
timated by the query optimizer. The MPL
threshold is the maximum number of queries in
that class that can execute concurrently. When
the threshold is reached, new queries are placed
on the query class queue and are submitted for
execution when the MPL falls below the thresh-
old. This allows queries with different resource
demands to be treated differently by specifying
several query classes each with potentially dif-
ferent MPL thresholds thus using system re-
sources more effectively. Submitter queue
prioritization assigns high priorities to queries
submitted by certain users so that these queries
are run with shorter delays than others in the
same query class queue. When the MPL thresh-
old for a query class is reached, new queries are
inserted into different positions in the query
class queue based on the defined queue priority
of the query submitter. This ensures that higher
priority queries in a query class get submitted for
execution first. By setting optional system level
cost thresholds, DB2 QP automatically puts
large queries on hold so that they can be can-
celled or scheduled to run during off-peak hours.
Unlike our approach, DB2 QP does not use per-
formance objectives as guides.
 Workload adaptation techniques have also
been applied in the area of web services. Me-
nascé et al. [11, 12, 13] propose a Quality of
Service (QoS) Controller to manage workloads
in an E-commerce environment. The QoS Con-
troller adjusts system configuration parameters
so that the Quality of Service requirements of
the system are constantly met. The QoS Control-
ler uses analytic performance models combined
with combinatorial search techniques that run
periodically to determine the best possible con-
figuration for the system given its workload.
 Pacifici et al. [15] present an architecture
and prototype implementation of a performance
management system for cluster-based web ser-
vices. In this approach, web service workloads
are partitioned into multiple service classes in
each gateway and server resources are reactively

allocated through admission control by adjusting
MPLs for each gateway and service class to
maximize the expected value of a given cluster
utility function in the face of workload changes.
As a function of the performance delivered to
the various service classes, the cluster utility
function plays a key role in providing differenti-
ated service. Service levels are maintained by
feedback control that incorporates a performance
model.
 Menascé and Pacifici both assume that the
work requests are similar in size to simplify the
performance model and perform admission con-
trol based on MPLs. Although this assumption
may be valid in a web services environment, it
does not hold true in DBMSs. Queries vary
widely in size and in resource demand, which
calls for more sophisticated performance models
and admission control techniques.

3 The Framework for
Workload Adaptation

Workload adaptation, as defined earlier, is a
process of optimizing resource usage by control-
ling the workload presented to the system. As
shown in Figure 1, we view workload adaptation
to be composed of two processes, namely work-
load detection and workload control. The proc-
esses are in turn made up of four functional
components - workload characterization, per-
formance modeling, workload control, and sys-
tem monitoring.

Workload
Control
Process

Workload
Detection
Process

Workload

ure 1: Framework for Workload Adaptation

DBMS

System
Monitoring

Workload
Characterization

Performance
Modeling

Workload
Control

Fig

 3

3.1 Functional Components
Workload characterization is concerned with
measuring and modeling production workloads
[9, 10]. The purpose of characterizing a work-
load is to understand and determine the resource
usage and performance behavior for subsequent
workload control.
 Performance modeling tries to predict the
performance of the target system through a
model that describes the features of the target
system [10]. The inputs to a performance model
are workload parameters (such as resource de-
mand and arrival rate) generated by the work-
load characterization component. The outputs
are system performance and resource utilization
parameters. In the autonomic era, systems are
self-configurable, which calls for adaptive per-
formance modeling techniques that evolve per-
formance models in response to changes in the
system [5].
 Workload control components find and en-
force an optimal workload control plan to meet
the performance objectives when fluctuation in
the workload causes the system performance to
degrade. Based on the support of the underlying
system, the control plan can be a plan for direct
resource allocation, parameter tuning or admis-
sion control. Control actions are triggered by
workload changes.
 System monitoring, or feedback, indicates
how well the system is performing by continu-
ously acquiring the execution information of the
workload and the resource usage of the system.
The feedback information not only can be used
as an indicator for workload changes to assist in
workload characterization, but also aids in the
evolution of performance models by tracking
changes to systems [3, 7, 12].

3.2 Workload Detection Proc-
ess

Workload detection identifies workload changes
by monitoring and characterizing current work-
loads and predicting future workload trends. As
shown in Figure 1, two functional components,
workload characterization and system monitor-
ing, are involved in the workload detection proc-
ess.
 The workload characterization component
partitions the workload, analyzes workload char-
acteristics, and calculates resource demands with

the help of feedback information from the sys-
tem monitoring component. Partitioning the
workload reduces the complexity of workload
characterization by reducing the population to be
probed. Analyzing workload characteristics,
such as arrival rate and composition of workload
components, helps to formulate a workload con-
trol strategy. Feedback information from system
monitoring plays an important role in the proc-
ess of workload detection. Alternatively, work-
load changes can be detected by monitoring the
changes in performance and/or resource utiliza-
tion [12, 15]. This is an effective approach to
workload detection when workload characteriza-
tion is impossible or too costly, or some charac-
teristics cannot be directly derived from the
workload itself.

3.3 Workload Control Process
Workload control involves system management
via efficient allocation of resources. There are
three approaches to workload control. First, di-
rect resource allocation allocates a certain
amount of resources to a workload, a workload
class, or a single piece of work. Private memory
for a process is usually allocated in this way.
Second, parameter tuning regulates resources
allocated to the work by changing the parameters
related to resource usage. For example, increas-
ing the buffer pool size in a DBMS improves the
performance of an OLTP (On Line Transaction
Processing) workload. There is no explicit as-
signment of resources to the OLTP workload,
but an OLTP workload indeed benefits from
increased buffer hit rates. Third, admission con-
trol regulates resource allocation by controlling
the contention level on resources within a ser-
vice class or across service classes. The more
work requests that are admitted, the heavier the
resource contention.
 One of the main issues regarding workload
control is how to determine the appropriate
amount of control. This involves performance
prediction under the suggested workload control
plan or configuration. Performance administra-
tors can determine the new configuration manu-
ally based on their experiences. Performance
management systems require performance mod-
els to predict performance in order to be self-
managing [5, 12]. When workload changes are
detected, the workload control component de-
termines whether or not an adjustment is needed.

 4

In the positive case, it generates workload con-
trol plans and submits them to the performance
modeling component for evaluation. It then
chooses the optimal plan to exert control over
the workload. Three functional components, the
workload control, the performance modeling and
the system monitoring, are involved in the work-
load control process (Figure 1).

SLO

Query
 Scheduler

Query
Patroller

Leaving
Queries

Arriving
Queries

DB2 Agent Execution

Queries
Information

Release
Queries

Classifier

Dispatcher

Monitor

Scheduling
Planner

Perform-
ance Solver

DB2

Query Path Control Path

Figure 2: Query Scheduler

4 Query Scheduler

The Query Scheduler, which is shown in Figure
2, is a proof-of-concept implementation of the
workload adaptation framework discussed above.
It automatically controls the workload to DB2
UDB in order to satisfy defined performance
goals.
 Query Scheduler uses DB2 QP to intercept
queries and acquire query information and, via
direct commands to QP, release queries. In this
implementation, DB2 QP is configured to auto-
matically intercept all queries, record detailed
query information, block the DB2 agent respon-
sible for executing the query until an explicit
operator command is received. Finally, DB2 QP
was modified to inform Query Scheduler each
time a query was intercepted. The Monitor then
collects the information about the query from the
DB2 QP control tables, including query identifi-
cation information, query cost, query execution
information etc. The Monitor passes the query
information to the classifier and the scheduling
planner. The Classifier assigns the query to an
appropriate service class based on its perform-
ance goal and places the query in the associated
queue manipulated by the dispatcher. The Dis-
patcher receives a scheduling plan from the
Scheduling Planner and releases the queries in
the class queues according to the plan.
 In our implementation a scheduling plan is a
set of class cost limits. Each service class is as-
signed a class cost limit expressed in timerons,
which is a generic cost measure used by the DB2
UDB optimizer to express the combined re-
source cost to execute a query. This limit is the
maximum allowable total cost of all concurrent
queries belonging to a service class. A query in a
class queue is released only if the sum of the
total cost of all executing queries of the service
class plus the cost of the query does not exceed
the class cost limit. The Dispatcher releases a
query for execution by calling the unblocking
API provided by DB2 QP, which releases the

blocked agents. The Scheduling Planner consults
with the Performance Solver at regular intervals
to determine an optimal scheduling plan, and
passes this plan to the Dispatcher.

4.1 SLO Encapsulation
Managing multiple performance goals with dif-
ferent business importance levels is complex.
Not only does the complexity increase with the
number of performance goals, but the interde-
pendencies among the performance goals make
it even more difficult to control the workload. It
is desirable to collectively manage all the per-
formance goals along with their business impor-
tance levels.

4.1.1 SLOs
SLOs are often specified by an importance level
and a performance goal [1]. An importance level
describes how important it is to the business to
meet the performance goal relative to the other
work competing for the same set of system re-
sources. It identifies the order in which service
classes should receive or donate resources when
the system capacity is insufficient for all service

 5

classes to meet their goals. A performance goal
defines the desired performance objective.
 The most widely used performance goals
are response time, throughput, and execution
velocity [7]. Response time and throughput are
well understood. These measures, however, are
only useful when the work requests are similar
in size. For workloads with widely varying re-
sponse times, execution velocity, which is a
measure of the time a query spends executing
compared to its total time in the system, is a bet-
ter choice.
 Because the Query Scheduler is currently
implemented outside DB2 UDB, the overhead
associated with managing queries with the
Query Scheduler means that it is impractical to
try to manage online transaction processing
(OLTP) workloads, which are composed mainly
of small queries. Instead, we focus on manage-
ment of large queries, such as those found in
decision support systems (DSSs). We therefore
use the TPC-H DSS benchmark [16] as the
workload in our experiments discussed below.
 DSS workloads, such as TPC-H, contain
queries with widely varying response times so a
velocity-type goal is most appropriate. Moti-
vated by the need to see a clear division between
waiting and execution when performing admis-
sion control, we use the metric Query_Velocity,
which we define as

_

_ /
Query Velocity
Execution Time Response_Time

=

 The wait time for admission is dependent
upon the policy governing admission control. If
an admission control policy allows a query to be
admitted earlier, the wait time for admission is
small, otherwise, it is large. In order to make a
meaningful comparison between different ad-
mission control policies, it is necessary to ensure
that the expected execution time for a query is
stable when the system is busy. We do this by
setting a total cost limit for concurrently execut-
ing queries. Through experimentation, we found
that a total cost limit of 300000 timerons is a
reasonable saturation threshold (see Section 5.2)
and we use this cost as the total cost limit in our
experiments.

4.1.2 Objective Functions
Consider a system with n SLOs. Formally, an
SLO is described as ,i ig i , where ig is the per-

formance goal to be achieved and is the impor-
tance level of the performance goal to be
achieved. We denote

ii

1 2, ,..., ng g g as the pre-
dicted performance given a workload control
plan. The utility [15] of the ith service class, ,
describing how well the system meets an SLO,
is the function of

iu

,i ig i and ig : (), ,i i i i iu f g i g= .
Multiple SLOs can be encapsulated into an ob-
jective function 1 2(, ,...,)nf u u u . By properly
choosing if and f , the workload control prob-
lem becomes one of optimizing the objective
function f to find the optimal workload control
plan.
 In our implementation we choose the objec-
tive function as
 if u= ∑ (1)
and the utility functions as

 1
i i

i

g g
g

i iu a
−

= − (2)
where is a constant indicating the importance
of the service class. A larger , denotes a higher
degree of importance. From the shape of the
utility function shown in Figure 3, we observe
that as

ia

ia

ig increases, the curve becomes smoother.
That is to say, when the service class achieves its

 Figure 3: Utility Function

 6

performance goal (i ig g≥), its utility increases
slowly as its performance improves. This dic-
tates that the system should not assign more re-
sources to the service class when the service
class is already meeting its performance goal.
When ig is decreasing, the curve becomes
steeper. That is to say that when the service class
violates its performance goal (i ig g<), the mar-
ginal utility rapidly increases as more resources
are assigned to the service class. In this case,
allocating more resources to the service class
should bring the class closer to meeting its per-
formance goal.

4.2 Workload Characterization
The workload characterization component is the
Classifier in our implementation. It identifies the
characteristics, mainly resource demand, of a
query, and classifies it into an appropriate ser-
vice class. As shown in Figure 2, the information
used in the Classifier includes SLOs, and query
identification information and cost from the
monitor component.
 Resource demand must be acquired before
making any control decisions in our framework.
Acquiring resource demand for queries is diffi-
cult because a) queries vary widely in size, b)
the resource demand of a query may be different
during multiple executions because of the inter-
ference of other queries, and c) the resource de-
mand of a query is dependent upon the
configuration of the DBMS. Query costs esti-
mated by the query optimizer roughly reflect the
relative costs of queries in an ideal environment
and we use these costs to represent the resource
demand in the framework.
 Query classification is based on perform-
ance goals. Each service class has a performance
goal. The performance goals are predefined in
SLOs and the query identification information
from the monitor component is used to deter-
mine the performance goal of a query during
runtime.

4.3 Performance Modeling
Admission control is based on the principle that
system resources are shared by the queries run-
ning in the system. If the volume or multipro-
gramming level of service class A is larger than
those of service class B, service class A is pro-

portionally assigned more resources, and is
given preference. The performance modeling
problem is to predict the performance of a new
admission control plan: a set of class cost limits.
 Suppose there are m terminal users who
submit queries one after another in a service
class that is assigned a class cost limit of 1kC − at
the control interval with the query veloc-
ity

(1)thk −
1kV − . The performance modeling problem is

to predict the query velocity at the control
interval given the class cost limit .

kV thk
kC

 Suppose the average service time isT . As
per queuing theory, the average queue length at
the control interval is . The aver-
age response time

(1)thk − 1m −
1kR − and wait time at the 1kW −

(1)thk − control interval are:
 1kR m− = T

T 1 (1)kW m− = −
We have:
 1 1 11 1k k kV W R− − −= − = / m
When the class cost limit becomes , either the
service time or the queue length is changed by a
factor of

kC

1kC C− k due to the change of the class
cost limit. Now, the average response time and
wait time at the control interval is: thk
 1()k k kR C C m−= T
 1(() 1)k k kW C C m−= − T
We have:

1 1

1

1 1

1
1 (() 1) (())

*1

k k k

k k k k

k k

k k k

V W R
C C m C C m

C C m
V C C

− −

−

− −

= −

= − −

=

=

 (3)

 Now given the new class cost limit, we can
predict the performance for the next control in-
terval based on the performance and the class
cost limit of the current control interval.
 As shown in Figure 2, the performance
modeling component is the Performance Solver
in our implementation. It receives a new sched-
uling plan, a set of new class cost limits, from
the Scheduling Planner and predicts the per-
formance of each service class under this sched-
uling plan based on the performance of the
current control interval from the Monitor com-
ponent.

 7

4.4 Workload Control
The workload control component finds an opti-
mal scheduling plan and executes the plan. In
our implementation, it consists of the Scheduling
Planner and the Dispatcher. The Scheduling
Planner finds an optimal scheduling plan at regu-
lar intervals and the Dispatcher executes it.

4.4.1 Performance Optimization
Finding an optimal scheduling plan can be de-
scribed as following an optimization problem.
We denote:
 : The performance goal of service class i iV
 : The performance of service class i at
the control interval

k
iV

thk
 : The class cost limit of service class i at
the control interval

k
iC

thk
 : The utility of service class i at the

control interval

k
iu

thk
 C: The total cost limit allowed for all ser-
vice classes
From equations (1), (2) and (3) we have:
 (4)

∑= k
iuf

1

k
i i

k
i

V V
Vk

i iu a
−

= − (5)
 1k k k k

i i i iV V C C−= 1− (6)
Replacing in (5) with (6) and in (4) with
(5), the objective function becomes the function
of the new workload control plan:

k
iV k

iu

 1 2(, ,...,)k k k
nf C C C

with the constraint:
 . 1 2 ...k k k

nC C C C+ + + ≤

 If 1 2(, ,...,)k k k
nf C C C is a continuous function,

we can use Lagrange method or searching tech-
niques to solve it. Otherwise, we must solve it
using searching techniques.
 The Scheduling Planner receives SLOs and
the query execution information from the moni-
tor component, and predicts the performance of
each service class by consulting the Performance
Solver to find an optimal scheduling plan.

4.4.2 Admission Control
Admission control is performed by the Dis-
patcher when a new query arrives or when a
query completes or aborts. The Dispatcher uses

the following algorithm to execute the schedul-
ing plan and perform admission control:

A query q arrived, completed or aborted;
 the service class of q;

the total cost of concurrent queries
 of the service class ;

the class cost limit of service class ;
If (completed or

T
i

L
i

i
C

i
C i

←

←

←

 aborted)
 the cost of q;
 ;

the cost of the query at the front of
 the class queue ;
If ()
 Release the query at the front of the
 class queue ;

T T
i i

T L
i i

c
C C c

c
i

C c C

i

←

← −

←

+ ≤

4.5 System Monitoring
The system monitoring component consists of
the Monitor and a trigger in DB2 QP that in-
forms the Query Scheduler of the arrival of new
queries and the termination of running queries.
When a query is submitted to the DBMS, the
DB2 UDB agent responsible for the query in-
forms DB2 QP that a new query has arrived.
DB2 QP (with the threshold
MAX_QUERY_ALLOWED set to 0) intercepts
the query and blocks it. Whenever a query is
intercepted, a new entry is added to the
TRACK_QUERY_INFORMATION control
table of DB2 QP to store the query information
which includes query identification information,
query execution information, the query cost, etc.
The query execution information is updated
whenever the query is completed or aborted, and
is used for evaluating the performance of each
service class.
 A trigger on insertion or update defined on
this table calls a stored procedure to connect to
the Query Scheduler (the Monitor component)
via a TCP socket to inform Query Scheduler that
a new query was intercepted or completed. The
Monitor watches the arrival and departure of
queries, collects query identification data, per-
formance data and resource usage data from
DB2 QP and reports to the Classifier and the
Scheduling Planner.

 8

5 Experiments
In this section we describe a set of experiments
to study the effectiveness of Query Scheduler in
providing differentiated service to workload
classes with different SLOs. We also compare it
to the effectiveness of DB2 QP, which is typical
of the level of control available in current
DBMSs.
 The computer system used as the database
server is an IBM xSeries® 240 machine with
dual 1 GHZ CPUs, four PCI/ISA controllers,
and 17 Seagate ST 318436LC SCSI disks. We
use IBM DB2 UDB Version 8.2 and Query Pa-
troller as supporting components.

5.1 Workload
As discussed above, we use the TPC-H standard
DSS benchmark as our workload. The workload
consists of two classes of TPC-H queries sub-
mitted by interactive clients or batch jobs, each
class having a performance goal. Each client or
batch job submits queries one after another with
zero think time. The database consists of 500MB
of data. Four very large queries (queries 16, 19,
20 and 21) are excluded from the workload.
Workload intensity is controlled by the number
of clients or batch jobs for each class (see Figure
4). Each test ran for 12 hours and consists of 6 2-
hour periods.
 Class 0 is deemed more important than
Class 1. This is indicated by setting a stricter
performance goal for Class 0 than for Class 1.
The heaviest workload is in period 3 where 15
clients from Class 0 and 5 clients from Class 1
are issuing queries simultaneously.

5.2 The System Cost Threshold
The relationship between the total cost of con-
current queries in the system and the correspond-
ing performance can be used to determine the
system cost threshold – the total cost limit.
Query admission is controlled by the total cost
of active queries in the system and the corre-
sponding average response time and throughput
is calculated. The curves of total cost vs. average
response time (Figure 5) and total cost vs.
throughput (Figure 6) are plotted to determine
the total cost limit that keeps the system satu-
rated. We find that the circled point in Figure 5
and 6 with total cost limit of 300,000 timerons is

Num of Clients

0

5

10

15

20

0 120 240 360 480 600
Time (minute)

N
um

 o
f C

lie
nt

s

Class 0 Class 1

Figure 4: Workload

Response Time

0

30000

60000

90000

120000

50 300 600 1000 1600
Total Cost (*1000 timeron)

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 5: Response Time vs. Total Cost

Throughput

0

4

8

12

16

20

50 300 600 1000 1600
Total Cost (*1000 timeron)

Th
ro

ug
hp

ut
 (p

er
 m

in
ut

e)

Figure 6: Throughput vs. Total Cost

the proper saturation point. If we increase the
total cost limit further, we see a small increase in
throughput, but we note that the average re-
sponse time still increases linearly.

5.3 Experiments
The following set of experiments show the effec-
tiveness of Query Scheduler relative to that of
DB2 QP. The analysis of the results is discussed

 9

in Section 5.4. In all experiments, we use the
workload shown in Figure 4.

5.3.1 No Class Control
In this experiment, no control is exerted over the
workload except for the total cost limit. This
experiment serves as our baseline measure to
observe how the performance changes with the
changes of workload. The result is shown in
Figure 7.

Query Velocity with No Class Control

0.0

0.2

0.4

0.6

0.8

1.0

0 120 240 360 480 600
Time (minute)

Q
ue

ry
 V

el
oc

ity

Class 0 Class 1

Class 0 Goal

Class 1 Goal

Figure 7: Query Velocity with No Control

Query Velocity with QP with Priority Control

0.0

0.2

0.4

0.6

0.8

1.0

0 120 240 360 480 600
Time (minute)

Q
ue

ry
 V

el
oc

ity

Class 0 Class 1

Class 0 Goal

Class 1 Goal

Figure 8: Query Velocity with DB2 QP with Pri-
ority Control

Query Velocity with QP without Priority Control

0.0

0.2

0.4

0.6

0.8

1.0

0 120 240 360 480 600
Time (minute)

Q
ue

ry
 V

el
oc

ity

Class 0 Class 1

Class 0 Goal

Class 1 Goal

Figure 9: Query Velocity with DB2 QP without
Priority Control

5.3.2 Class Control with DB2 QP
In this experiment, we use DB2 QP as the per-
formance controller. The workload is partitioned
into three groups based on the cost of queries:
large, medium and small. The cost threshold for
large group is chosen as the lowest percentile
cost of 95 of all queries and 80 for medium
group:
 Large:
 cost > the lowest percentile cost of 95
 Medium:
 the lowest percentile cost of 80 < cost ≤
the lowest percentile cost of 95
 Small:
 cost ≤ the lowest percentile cost of 80
 In order to demonstrate how DB2 QP pro-
vides differentiated services, we first perform
service class control by setting priorities for the
two classes. The priority of Class 0 is higher
than that of Class 1, for example 600 for Class 0,
and 500 for Class 1.The result of this experiment
is shown in Figure 8. We then turn off priority
control. The result is shown in Figure 9.

Query Velocity with Query Scheduler (0.65, 0.45)

0.0

0.2

0.4

0.6

0.8

1.0

0 120 240 360 480 600
Time (minute)

Q
ue

ry
 V

el
oc

ity

Class 0 Class 1

Class 0 Goal

Class 1 Goal

Figure 10: Query Velocity with Query Scheduler
with Goals (0.65, 0.45)

Cost Limit with Query Scheduler (0.65, 0.45)

0

50000

100000

150000

200000

250000

300000

0 120 240 360 480 600
Time (minute)

C
os

t (
tim

er
on

)

Class 0 Class 1

Figure 11: Adjustment of Class Cost Limit with
Query Scheduler with Goals (0.65, 0.45)

 10

5.3.3 Class Control with Query
Scheduler

This experiment uses Query Scheduler to control
performance. The performance goals for Class 0
and Class 1 are set as 0.65 and 0.45 respectively.
The total cost limit is 300000 timerons. Class
control is performed by setting class cost limits.
The sum of all class cost limits is equal to the
total system cost limit. Class cost limits are cal-
culated during execution according to the per-
formance of each workload class and predefined
utility functions. In other words, class cost limits
are calculated by optimizing the objective func-
tion. The results are shown in Figure 10 for the
query velocity and in Figure 11 for the adjust-
ment of class cost limit.
 To show the ability of Query Scheduler to
adapt to the changes of performance goals, we
ran a second experiment with a tighter perform-
ance goal (0.75) for Class 0. The results are
shown in Figure 12 for the query velocity and in
Figure 13 for the adjustment of class cost limits.

Query Velocity with Query Scheduler (0.75, 0.45)

0.0

0.2

0.4

0.6

0.8

1.0

0 120 240 360 480 600
Time (minute)

Q
ue

ry
 V

el
oc

ity

Class 0 Class 1

Class 0 Goal

Class 1 Goal

Figure 12: Query Velocity with Query Scheduler
with Goals (0.75, 0.45)

Cost Limit with Query Scheduler (0.75, 0.45)

0

50000

100000

150000

200000

250000

300000

0 120 240 360 480 600
Time (minute)

C
os

t (
tim

er
on

)

Class 0 Class 1

Figure 13: Adjustment of Class Cost Limit with
Query Scheduler with Goals (0.75, 0.45)

5.4 Analysis of the Results
 Differentiated services: The results of our
experiments show that both DB2 QP and Query
Scheduler can provide differentiated services,
while No class control cannot. DB2 QP provides
differentiated services by assigning different
priorities to different service classes. As shown
in Figure 8, with the higher priority assigned to
Class 0, Class 0 always performs better than
Class 1. When priority control is turned off as
shown in Figure 9, the query velocity curves of
both classes are similar to the case of No class
control (Figure 7). As shown in Figure 10 and 12
for Query Scheduler, Class 0 can better meet its
performance goals than Class 1 because Class 0
is more important than Class 1.
 Quality of differentiated services: DB2
QP with priority control sets static priorities to
different service classes (600 to Class 0, and 500
to Class 1). Class 0 is always given higher prior-
ity even when it is exceeding its performance
goal and Class 1 is in violation of its goal in pe-
riods 2, 4 and 6 as shown in Figure 8. Query
Scheduler dynamically adjusts the class cost
limits based on the performance as shown in
Figures 11 and 13. Although it always gives
preference to the important class, Class 0, it
never allocates too many resources to Class 0 to
prevent Class 1 from meeting its performance
goal if possible as shown in the periods 2, 4 and
6 in Figures 10 and 12. When the workload is
too heavy to meet both performance goals in
periods 3 and 4, DB2 QP with priority control
cannot meet the performance goals for Class 1 as
shown in Figure 8, while Query Scheduler is
able to keep both classes converging on their
performance goals as shown in Figure 10 and 12.
 Importance of classes: We notice that
Query Scheduler can assure that both classes
converge on their performance goals when the
performance goals are 0.65 and 0.45 (Figure 10).
When the performance goal of Class 0 is
changed to a tighter goal 0.75, Query Scheduler
cannot meet the performance goals for both
classes in periods 3 and 4 (Figure 12). However,
Query Scheduler recognizes that Class 0 is more
important than Class 1 and attempts to minimize
the goal violations for the important class, to the
detriment of Class 1, as seen in Figure 12. Al-
though Class 0 is more important than Class 1,
Query Scheduler can assign more resources to
Class 1 than DB2 QP with priority control when

 11

Class 0 meets its performance goals in periods 2
and 6. This means that the importance level of a
class is in effect only when the class violates its
performance goals and is not synonymous with
priority.
 Dynamic resource allocation: From Fig-
ures 11 and 13, we observe that Query Scheduler
adjusts the class cost limits according to the
workload changes. A higher class cost limit
means more resources are allocated to the class.
The amount of resources allocated to a class is
based on its need to meet its performance goal,
as shown in periods 2, 5 and 6 in Figures 11 and
13. In the case of DB2 QP with priority control,
Class 0 always has the privilege to possess more
resources even when it exceeds its performance
goal as shown in Figure 8.
 To conclude, our framework for workload
adaptation in autonomic DBMSs is effective. It
is able to respond to the workload changes using
admission control to give preference to impor-
tant service classes, or to the service classes
whose performance goals are violated.

6 Future Work and Con-
clusions

In this paper we present a framework and proto-
type implementation – Query Scheduler, for
workload adaptation in autonomic DBMSs. We
use query cost as resource demand and perform
admission control based on SLOs and system
resource utilization. Class cost limits are deter-
mined dynamically through optimizing the ob-
jective function that encapsulates the SLOs with
utility functions. Through a set of experiments
we have shown the effectiveness of the frame-
work.
 In the future, we plan to repeat our experi-
ments with different systems to check its univer-
sality. We plan to add an OLTP workload as
well as additional service classes to examine the
effectiveness of the framework with a more
complex workload. The experiments we have
conducted are based on a relative stable work-
load. We plan to experiment using a randomly
changing workload and apply tracking tech-
niques to track workload changes. Finally, we
expect that using detailed costs (CPU cost and
I/O cost) in place of total query cost will produce
finer control over performance.

Acknowledgements

This research is supported by the IBM Centre for
Advanced Studies (CAS), Toronto, the Natural
Sciences and Engineering Research Council of
Canada, and the Centre for Communication and
Information Technology, a division of Ontario
Centres of Excellence Inc.

About the Author

Baoning Niu is a PhD student from the School
of Computing at Queen’s University. His re-
search interests include: performance manage-
ment for DBMSs, autonomic DBMSs.

Patrick Martin is a Professor and Associate
Director of the School of Computing at Queen’s
University. He holds a BSc from the University
of Toronto, MSc from Queen’s University and a
PhD from the University of Toronto. He is also a
Faculty Fellow with IBM's Centre for Advanced
Studies. His research interests include database
system performance, Web services and auto-
nomic computing systems.

Wendy Powley is a Research Associate and
Adjunct Lecturer in the school of Computing at
Queen’s University. She holds a BA in psy-
chology, a BEd, and an MSc in Computer Sci-
ence from Queen’s University. Her research
interests include database systems, web services
and autonomic computing.

Randy W. Horman, IBM Data Management
Division, IBM Toronto Lab, 8200 Warden Ave,
Markham, Ontario, L6G 1C7 (hor-
man@ca.ibm.com) . Mr. Horman is a Senior
Technical Staff Member on the DB2 develop-
ment team at the IBM Toronto Lab. He received
a B.A. degree in mathematics, computer science,
and economics, as well as an M.Math degree in
computer science from the University of Water-
loo in 1994 and 1995, respectively. He subse-
quently joined IBM at the Toronto Lab, where
he began working on the parallel database sys-
tem, DB2 Parallel Edition. Recently, Mr. Hor-
man has focused his attention on database
manageability, and in particular the applicability
of autonomic technology. Mr. Horman is a
member of the Association for Computing Ma-

 12

chinery and the Computer Society of the Insti-
tute of Electrical and Electronics Engineers.

Paul Bird is a Senior Technical Staff Member in
the DB2 Universal Database for Linux®,
UNIX®, and Windows® Development organi-
zation within the Information Management
group of IBM. His areas of interest include
workload management, security, and general
SQL processing.

References
[1] G. Adam. “Understanding Workload Man-

ager: Basic Metrics”, 2001,
http://www.naspa.com.

[2] C. Ballinger. “Introduction to Teradata’s
Priority Scheduler”, 2002, http://www.tera
datalibrary.com/pdf/eb3092.pdf.

[3] K. P. Brown, M. Mehta, M. J. Carey, and M.
Livny. “Towards Automated Performance
Tuning For Complex Workloads”, Proceed-
ings of the 20th Very Large Data Base Con-
ference, Santiago, Chile, 1994, pp.

[4] D. P. Brown, A. Richards, R. Zeehandelaar,
and D. Galeazzi. “Teradata Active System
Management”, http://www.teradata.com/t
/page/145613/index.html.

[5] Y. Diao, F Eskesen, S. Froehlich, J.
Hellerstein, A. Keller, L. Spainhower, and
M. Surendra. “Generic On-line Discovery of
Quantitative Models for Service Level
Management”, Proceedings of IFIP/IEEE
8th International Symposium on Integrated
Network Management (IM 2003), Mar. 24 -
28, 2003, Colorado Springs, USA, pp. 157 -
170.

[6] D. H. Brown Associate, Inc. “HP Raises the
Bar for UNIX Workload Management”,
2004, http://whitepapers.silicon.com/
0,39024759,60104905p-39000654q,00.htm.

[7] IBM Corporation. MVS Planning: Workload
Management, 7th edition, Oct. 2003.

[8] IBM Corporation. DB2 Query Patroller
Guide: Installation, Administration, and
Usage, 2003.

[9] T. Lo, and M. Douglas. “The Evolution of
Workload Management in Data Processing

Industry: A Survey”, Proceedings of 1986
Fall Joint Computer Conference, 1986, Dal-
las, TX, USA, pp. 768 - 777.

[10] D. A. Menascé, and V. A. F. Almeida. “Ca-
pacity Planning for Web Performance: Met-
rics, Models, and Methods”, Prentice Hall,
Upper Saddle River, NJ, 1998.

[11] D. A. Menascé, V. A. F. Almeida, R.
Fonseca, and M. A. Mendes. “A Methodol-
ogy for Workload Characterization of E-
commerce Sites”, Proceedings of the First
ACM Conference on Electronic Commerce
(EC-99), Nov. 3-5, 1999, Denver, Colorado,
USA, pp. 119 - 128.

[12] D. A. Menascé, and M. N. Bennani. “On the
Use of Performance Models to Design Self-
Managing Computer Systems”, Proceedings
of 2003 Computer Measurement Group
Conference, Dec. 7-12, 2003, Dallas, TX.
USA, pp. 1 - 9.

[13] D. A. Menascé, D. Barbará, and R. Dodge.
“Preserving QoS of E-commerce Sites
through Self-Tuning: A Performance Model
Approach”, Proceedings of the 3rd ACM
conference on Electronic Commerce,
Tampa, Florida, USA, Oct. 14 - 17, 2001,
pp. 224 – 234.

[14] H. Pang, M. J. Carey, and M. Livny. “Mul-
ticlass Query Scheduling in Real-Time Da-
tabase Systems”, IEEE Transaction on
Knowledge and Data Engineering, Vol. 7,
No. 4, Aug. 1995.

[15] G. Pacifici, M. Spreitzer, A. Tantawi, and A.
Youssef. “Performance Management for
Cluster Based Web Services”, IEEE Journal
on Selected Areas in Communications, Vol-
ume 23, Issue 12, Dec. 2005, pp 2333- 2343.

[16] Transaction Processing Performance Coun-
cil. http://www.tpc.org.

Trademarks
IBM, DB2, DB2 Universal Database, and xSer-
ies are trademarks or registered trademarks of
International Business Machines Corporation in
the United States, other countries, or both.
 Windows is a trademark of Microsoft Cor-
poration in the United States, other countries, or
both.

 13

 UNIX is a registered trademark of The
Open Group in the United States and other coun-
tries.
 Linux is a registered trademark of Linus
Torvalds in the United States, other countries, or
both.
 Other company, product, or service names
may be trademarks or service marks of others.

 14

	Abstract(
	1 Introduction
	2 Related Work
	3 The Framework for Workload Adaptation
	3.1 Functional Components
	3.2 Workload Detection Process
	3.3 Workload Control Process

	4 Query Scheduler
	4.1 SLO Encapsulation
	4.1.1 SLOs
	4.1.2 Objective Functions

	4.2 Workload Characterization
	4.3 Performance Modeling
	4.4 Workload Control
	4.4.1 Performance Optimization
	4.4.2 Admission Control

	4.5 System Monitoring

	5 Experiments
	5.1 Workload
	5.2 The System Cost Threshold
	5.3 Experiments
	5.3.1 No Class Control
	5.3.2 Class Control with DB2 QP
	5.3.3 Class Control with Query Scheduler

	5.4 Analysis of the Results

	6 Future Work and Conclusions
	Acknowledgements
	About the Author
	References
	Trademarks

