
Executing data-intensive workloads in a Cloud
Rizwan Mian, Patrick Martin

Database Systems Lab (DSL), School of Computing,
Queen's University, Kingston, Canada.

mian@cs.queensu.ca

Abstract—The promise of “infinite” resources given by the cloud
computing paradigm has led to recent interest in exploiting
clouds for large-scale data-intensive computing. Given this
supposedly infinite resource set, we need a management function
that regulates application workload on these resources. This
doctoral research focuses on two aspects of workload
management, namely scheduling and provisioning. We propose a
novel framework for workload execution and resource
provisioning, and associated models, algorithms, and protocols.

Keywords: data-intensive computing; workload management;
cloud computing.

I. INTRODUCTION
In the current information technology era, the pace and

volume of data being generated is exceeding our ability to
manage and analyze it. Cloud computing is, in turn, helping to
realize the potential of large-scale data-intensive computing by
providing effective scaling of resources. A growing number of
companies, for example Amazon [1] and Google [2], rely on
their ability to process large amounts of data to drive their core
business. The scientific community is also benefiting in
application areas such as astronomy [3] and life sciences [4]
that have very large datasets to store and process.

Data-intensive computing presents new challenges for
systems management in the cloud. One challenge is that data-
intensive applications may be built upon conventional
frameworks, such as shared-nothing database management
systems (DBMSs) [5], or new frameworks, such as MapReduce
[6], and so have very different resource requirements. A second
challenge is that the parallel nature of large-scale data-intensive
applications requires that scheduling and resource allocation be
done to avoid data transfer bottlenecks. A third challenge is the
need to support effective scaling of resources when large
amounts of data are involved.

Workload management is an important component of
systems management. In a cloud, the two main mechanisms
used for workload management are scheduling requests and
provisioning resources. Since the load on a data service in the
cloud can fluctuate rapidly among its multiple workloads it is
impossible for systems administrators to manually adjust the
system configurations in order to maintain the workloads’
objectives during their execution. It is therefore necessary to be
able to automatically manage the workloads on a data service.

In this paper, we present our research plan for the problem
of efficiently managing data-intensive workloads in a cloud. In
the next section, we present our study of the area [7, 8] as
related work. We formulate the problem of workload execution
and appropriate resource provisioning in Section 3. Section 4

presents our framework that addresses this problem, parts of
which have already been published [9]. Section 5 outlines our
evaluation approach. Intended research is described in Section
6. The concluding sections 7 and 8 highlight the major
contributions of the proposed research and its significance to
the cloud users.

II. RELATED WORK
We have examined the state-of-the-art of workload

management for data-intensive computing in clouds [7, 8]. In
these works, a taxonomy is presented, which is then used to
classify and evaluate current workload management
mechanisms and systems. We present a summary of the survey
below, and focus on the short-comings that our thesis aims to
address.

We presently see a gap between data-intensive computing
systems and provisioning systems. Most systems surveyed use
shared-nothing clusters for large-scale data processing. On the
other hand, the provisioning systems surveyed are usually
applied to applications that do not require large-scale data
processing. HadoopDB [10] uses Amazon’s Elastic Cloud
(EC2) [1] but does not use elasticity during execution of the
MapReduce workflow. Similarly, Amazon has made Hadoop
available in its cloud with Elastic MapReduce [11], however
the number of VMs has to be selected before the execution
starts. We believe that data-intensive computing systems must
exploit a cloud’s elasticity in order to cope with ever growing
data sizes. Our proposed framework uses elasticity during
workload execution.

Due to their disjoint nature, we discuss data-intensive
computing systems and provisioning systems in separate sub-
sections below.

A. Data-intensive computing systems
We see many data-intensive computing systems perform

task scheduling and data replication independently, and place
tasks close to data. Creating replicas for performance reasons is
a good idea since moving large data takes time. However, there
is a need to explore different replication strategies that best
exploit data locality given a workload.

The data centers used by clouds are likely to scale into
hundreds of thousands of nodes [12]. Using low cost unreliable
commodity hardware to build a shared-nothing data center has
its benefits. However, the probability of a node failure during
data processing increases rapidly with scale [6, 10]. Therefore,
fault-resiliency must be built into systems to address such
issues.

The authors acknowledge research support from National Science and
Engineering Research Council of Canada (NSERC).

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4691-9/12 $26.00 © 2012 IEEE

DOI 10.1109/CCGrid.2012.18

758

Most of the systems surveyed use workflow as a unit of
execution and employ on-the-fly mapping of tasks to resources.
This mapping approach is scalable and adapts to resource
heterogeneity and failures [13]. Nevertheless, we believe that a
system could benefit from prediction-revision mapping
techniques that incorporate some pre-execution planning,
workflow optimization, heuristics or history analysis. This
additional analysis could help in creating an appropriate
number of replicas or determining an appropriate amount of
resources required for a computation.

Minimal execution time (makespan) is the prevalent
objective function for workload execution in the survey.
Clouds, however, are competitive and dynamic market systems
in which users and providers have their own objectives. We
therefore believe that objective functions related to cost and
revenue, or participants’ utilities, and scheduling policies based
on them are appropriate and require further study.

B. Provisioning Systems
We observe that much of the current work related to

provisioning in clouds involves scaling. Some of the scaling
techniques involve a user defining rules in terms of condition
and action pairs to deal with a situation e.g. overload. With
multiple rules, many questions arise such as can multiple rules
be defined on the same metrics, can they overlap and contradict
each other?

In the ROM system [14], the data storage in a private cloud
is decoupled from that in the public cloud so that the latter is
not tied to the former through shared or replicated data
resources. This seems to be a reasonable approach for large
read-mostly data. Maintaining data consistency for read/write
operations for large data between sites in a hybrid cloud is still
an open problem.

The mechanisms for current provisioning techniques to
handle varying workload demand may not scale for large-scale
data processing. Nonetheless, one can admire the potential
benefits of these techniques and argue that relevant
mechanisms need to be developed for large data. Armbrust et
al. point out that there is a need to create a storage system that
could harness the advantage of elastic resources provided by a
cloud while meeting existing storage systems expectations in
terms of data consistency, data persistence and performance
[12].

Systems that jointly employ scheduling and provisioning
have been explored in grids. The Falkon [15] scheduler triggers
a provisioner component for host increase or decrease. This
host variation has also been explored during the execution of a
workload hence providing dynamic provisioning. Presently,
tasks stage data from a data repository. Since this can become a
bottleneck as data scales, scheduling exploiting data locality is
suggested as a solution. The MyCluster project [16] similarly
allows Condor or SGE clusters to be overlaid on top of
TeraGrid resources to provide a user with personal clusters.
Various provisioning policies with different tradeoffs are
explored including dynamic provisioning. The underlying
motivation is to minimize wastage of resources. However,

MyCluster is aimed at compute-intensive tasks. Given the
similarities between grids and clouds, the joint techniques for
scheduling and provisioning in these systems and related work
are worth exploring for their relevance in clouds.

III. PROBLEM STATEMENT
We formulate the problem of workload execution and

appropriate resource provisioning in a cloud as follows. A data-
intensive workload consists of requests that involve a
significant amount of data access under some constraints.
Given a set of data-intensive applications A, we say that the
workload for A is a set of requests that are issued by the set of
clients for A. Each request is an instance of a request type Qi
from a set Q = {Q1, Q2, …, Qn} for A. The data used by A is a
set of data objects D = {D1, D2, …, Dm}.

The request types in Q are grouped into request classes. A
request class QCi is a subset of Q, such that all requests in the
class access the same subset of data objects Pi (subset of D)
and all requests have the same service level objective SLOi.
We call Pi a data partition and we assume that the Pi’s can
overlap. The SLA for A is composed of the set of all SLOi’s for
all the request classes in A.

A configuration C for the application set A contains the
following:

• A set of VMs Vi = {v1, v2, …, vr}, where each VM vk is a
specific type (e.g. small, medium, large), has a specific
cost rate per unit time (e.g. hour), and has attached storage
with its associated cost.

• A mapping of the request classes, QCi’s, to VMs in V such
that every request class and corresponding data partition is
assigned to at least one VM. Assignment to more than one
VM involves replication of the partition. Overlapping
partitions on the same VM share the same copy of the
common data objects.

The provisioning problem is to select a configuration C for
A such that an objective function is maximized (or minimized)
and all the SLOs in the SLA for A are satisfied.

The problem of finding an optimal assignment for a set of
tasks is NP-Complete in the general case and in several limited
cases, even when communication among tasks is not
considered [17]. Therefore, we explore various search methods
to find a suitable configuration.

IV. FRAMEWORK
Our approach of workload execution is simple. A

configuration plays a central role in workload execution. A
search algorithm hunts for a suitable configuration given an
objective such as minimal dollar-cost. Using this
configuration, the resources are made available or provisioned,
and the workload is mapped on those resources. Finally,
dynamic refinements are used to address any changes in the
environment, workload or the SLOs.

759

Figure 1. high-level architecture of a workload management framework in a cloud.

 The architecture of the framework is shown in Fig 1. We
provide a high-level description of the framework
components and their interactions below. We identify four
major parties in the framework: a client, a manager, storage
and execution resources, and an archive. A client has some
application workload that needs to be executed. The manager
supervises the workload execution. The processing resources
are booted with settings retrieved from the archive. The
storage resources get a copy of the data in the archive. Both
processing and storage resources are combined to provide an
execution platform. The workload is executed on a number
of execution platforms.

A client submits a workload to the manager. The
manager consists of three components (a) a configurator, (b)
a scheduler, and (c) a provisioner. The configurator is the
brains of the system. It determines a suitable configuration,
consisting of storage and processing resources, to execute the
workload against an objective. This configuration is then
passed to the provisioning process or the provisioner. The
provisioner prepares the execution platforms. It allocates the
processing resources (VMs) as required by the configuration.

The provisioner also attaches data partitions to the
processing resources. In addition, the provisioner creates
replicas of data partitions if needed. Once the provisioner
finishes, the scheduler maps requests of the workload to the
execution platforms as required by the configuration, and the
workload execution begins.

The workload is executed and some feedback is sent back
to the manager periodically. The feedback could include
heartbeats or execution times. The manager may suggest a
new configuration based on the feedback. Revisions to the
current configuration may be necessary due to a number of
reasons such as excessive SLA violations or a change in the
workload. If the deployed configuration is revised, the
provisioner and the scheduler respectively adjust the
resources and dispatch the workload according to the new
configuration .

The provisioning process facilitates the manager in
meeting the objective of the workload execution. At the start,
it provisions storage and execution resources and, as the time
goes on, it acquires more resources or releases held resources
as needed.

A. Determining a suitable configuration
We represent the set of all possible configurations for an

application A as a directed graph Configs = (N(A), E(A)).
The set of nodes, N(A), and the set of edges, E(A) are
defined respectively as:

N(A) = {C | C is a valid configuration for A} and
E(A) = {(Ci, Cj) | configuration Cj is obtained from Ci

using a permitted modification},
An edge (Ci, Cj) in the search space indicates that

configuration Cj can be obtained from configuration Ci by
applying one of the modifications. Examples of
modifications include adding a cheap VM, or load-balancing
workload amongst existing VMs.

760

The configurator employs a search algorithm to explore
the search space. The high-level architecture of the
configurator is shown in Fig 2. Given a workload and an
objective, a search algorithm looks for a suitable
configuration. At every iteration, the search algorithm
chooses a suitable modification on the current configuration.
The modified configuration is evaluated using a cost model,
and the cost is passed back to the search algorithm. Then,
the algorithm decides whether to keep exploring the search
space or to flag the evaluated configuration as a suitable
one.

Figure 2. Architecture of the configurator

We have developed and evaluated a cost model that
determines the dollar-cost of a configuration [9]. This cost
model is a function of resource expense and penalties due to
SLA violations. The cost model uses Queuing Network
Models (QNMs) to forecast a SLO breach.

The elegance of this architecture is that various search
algorithms can be used with various cost models and vice
versa. Similarly, different cost models can be used with
different prediction models.

In general, the size of a workload is unknown. Therefore,
we argue it is appropriate to calculate the cost of workload
execution per unit time, say an hour. Consequently, we
parameterize our cost function with a unit time.

1) Algorithms
The space of possible configurations is very large and

heuristics must be used to prune the search space. Therefore,
we have developed some algorithms that explore the search
space selectively. These algorithms are: (a) greedy, (b)
adaptiveGreedy, and (c) tabu search. We use the greedy
heuristics in the evaluation of our approach [9]. We intend to
explore other search methods discussed later in the intended
research.

2) Approaches for dynamic refinements
Presently, we consider two complementary processes for

dynamic refinements: SLA improvements and system load-
balancing. The SLA improvement process may acquire
additional resources, while system load-balancing may
relinquish unneeded resources. Both can operate
simultaneously and independent of each other, and may or

may not suggest actions to the manager. We also consider
where these processes work together to improve SLA
conditions of the workload classes while promoting
workload balance amongst existing VMs.

V. EVALUATION
We claim to provide a novel, generic and autonomic

framework for data-intensive workload execution and
appropriate resource provisioning in clouds. The evaluation
of the framework will be done at different stages, first by
developing individual components, and then combining all
the pieces to implement a complete prototype. This involves
a considerable amount of work since each of the modules
represents a large area of research. We will limit our current
work within the scope of optimal workload execution against
various objective functions for the Ph.D. dissertation, and
continue with the rest of the framework as future research.

In our recent work [9], we evaluate the provisioning
aspect of the system. We use a TPC-H [18] like workload,
which queries large amounts of data, and hence qualifies as
data-intensive. We also consider different cases of SLO
penalties on the request classes in order to evaluate the
impact of our approach for capturing SLOs in our
framework. The experiments are performed on a public
cloud i.e. Amazon EC2. The objective function used is
minimal dollar-cost. We see that there is at most a 7%
difference in the predicted and measured overall costs so our
configurator gives a good initial representative model.
However, we see that the response times for requests can
vary by as much as 70% from the measured response times.
We suggest another possible approach to solving this
problem later in the intended research. This new approach
replaces the current prediction model (QNM), without
changing the framework. Our framework is generic since it
can execute workload with multiple objectives, when the
right cost and prediction models are plugged-in. We also
intend to evaluate our work against realistic and/or diverse
workloads discussed later in the intended work.

We intend to quantitatively compare our work against
other work where possible. This process is simpler when the
other work consists of formulae, or the corresponding system
has a fairly direct match with our work and it exists online.

VI. INTENDED RESEARCH
We propose to complete the following work to satisfy the

requirements for the doctoral thesis.

Prediction Model: Currently, we use an analytical model
(QNM) for predictions, and experience highly inaccurate
forecasts [9]. This is because the analytical models do not
capture the inherent complexity of a cloud environment, such
as affects on the buffer pool of concurrently executing
requests [19].

Increasingly the research community is using
experiment-driven performance modeling for database and
multitier systems. We are considering experiment based
methods to build a regression and/or a multi-layer perceptron
(mlp) predictors. In these models, every request type is
considered a dimension. A Latin Hypercube Sampling (LHS)

761

protocol reduces the number of experiments necessary while
providing good coverage of the space of possible request
mixes [19]. We can further prune the sample space by only
considering the request types that place a measurable load on
the system, or considering simple presence/absence of a
request in the mix. This is our intermediate milestone. This is
because building a prediction model from the generated
samples suffers from a fundamental limitation: it requires re-
learning the model for new workload or VM types, rendering
them ineffective for online performance modeling. Gaussian
response time models predict response times of TPC-H
workload fairly accurately [20]. In addition, these models are
trained experimentally offline as well as online. This way the
models are adaptive to changing workload, suitable for our
dynamic case. Sheikh et al. also develop a configuration
model to deal with changing configuration. This is relevant
for various types of VMs.

Workloads: We have used different static SLO
workloads in our recent work [9]. We intend to explore
dynamic workloads, which change in request types or
number, or in SLA. We will also consider realistic and/or
OLTP/OLAP mix workloads. Realistic workloads include
Yahoo!’s Cloud Serving Benchmarks (YCSB) [21] and
analyzing data of E-opinions.com [22]. While TPC-C [23]
and TPC-E [24] are standard OLTP benchmarks, we already
use a standard OLAP benchmark TPC-H [18]. Finally, we
will use a random benchmark, which will be a synthetic
dataset aimed to stretch the prediction model and dynamic
refinement schemes.

User-centric Objectives: Presently, an objective
function is defined over the complete workload, which may
consist of multiple applications. An immediate opportunity is
to define objective functions on a per application level. We
also intend to explore other objective functions for workload
execution.

Cost Models: Currently, we have a cost model only for
estimating expense of a configuration. This cost model
assumes a constant expense for communication. We would
extend the current cost model to include more factors such as
communication cost, remote data access and data replication.

Space Search: We have developed algorithms that
search for the minimal dollar-cost configuration. These
algorithms consist of: (a) greedy, (b) adaptiveGreedy, and (c)
tabu search. We intend to provide another variant of greedy
approach called (d) greedyTabu. Further, we can explore
additional exotic search techniques like genetic algorithms or
simulated annealing. We also intend to explore mathematical
methods like linear programming to determine the optimal
configuration.

Dynamic Refinements: Currently, we employ a simple
greedy heuristic for dynamic refinements, which stops at the
first bad configuration. This approach does not step outside a
local minimum. We intend to reuse search algorithms in the
configurator to modify the deployed configuration to obtain a
more satisfactory configuration. For example, tabu search
and regression prediction models can reused for this purpose.
This approach is also relevant when the workload or the SLA
changes. Further, after suggesting an initial configuration,

the configurator need not stop. It can continue to explore the
state space, hunting for a better configuration. In case of
finding a better configuration, that is deployed at a suitable
opportunity.

Partitioning: Our framework currently assumes that the
data partitioning has been done prior to workload execution.
We could extend our framework to assign partitions to
execution resources so that workload being mapped onto
resources use local data. We limit the scope of our graduate
work, and assume that partitions are provided.

VII. EXPECTED CONTRIBUTIONS
We formulate the problem of workload execution and

appropriate resource provisioning in the clouds, and the
constructs to represent it. In traditional workload execution
literature, the resource pool is assumed static. However, we
extend the execution constructs to include provisioning
resources during execution. An appropriate number of
processing and storage resources depend on a suitable
configuration. We transform the requirement for a suitable
configuration into a search problem, and use standard search
methods and heuristics.

We propose a novel, generic and autonomic framework
for workload execution in a cloud. The framework executes a
workload efficiently against a given objective. The
management function in the framework exploits cloud’s
elasticity and dynamic refinements to uphold the goal.

Our framework allows pluggable cost and prediction
models. We develop objective functions and associated cost
models. We reuse search algorithms and prediction models
where possible.

VIII. SIGNIFICANCE OF WORK
We integrate dollar-cost with workload management

using our framework. We expect our work to be useful from
a number of angles: (a) estimate the expense of executing a
workload in a cloud, (b) offer scale to workload execution by
harnessing cloud’s elasticity, (c) reduce time to result by
exploiting rapid provisioning of cloud’s resources, and (d)
close the gap between data growth and the processing ability.

ACKNOWLEDGMENT
The authors acknowledge input from Dr. Farhana

Zulkernine on the format of a research proposal, and Wendy
Powley for reviewing the paper.

REFERENCES
[1] Amazon, “Elastic Compute Cloud (EC2),”
http://aws.amazon.com/ec2/.
[2] “Google App engine,” http://code.google.com/intl/de-
DE/appengine/.
[3] I. Raicu, I. Foster, A. Szalay and G. Turcu, “AstroPortal: A
Science Gateway for Large-scale Astronomy Data Analysis,” Proc.
TeraGrid Conference, 2006.
[4] F. Desprez and A. Vernois, “Simultaneous Scheduling of
Replication and Computation for Data-Intensive Applications on the Grid,”
Journal of Grid Computing, vol. 4, no. 1, 2006, pp. 19-31.
[5] D. Dewitt and J. Gray, “Parallel database systems. The future of
high performance database systems,” Communications of the ACM, vol. 35,
no. 6, 1992, pp. 85-98.

762

[6] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the ACM, vol. 51, no. 1,
2008, pp. 107-113.
[7] R. Mian, P. Martin, A. Brown and M. Zhang, “Managing Data-
Intensive Workloads in a Cloud,” Grid and Cloud Database Management,
G. Aloisio and S. Fiore, eds., Springer, 2011.
[8] R. Mian, Managing Data-Intensive Workloads in a Cloud
(Ph.D. Depth Paper), 2011-581, P. Martin, School of Computing, Queen's
University, http://research.cs.queensu.ca/TechReports/Reports/2011-
581.pdf, 2011.
[9] R. Mian, P. Martin and J.L. Vazquez-Poletti, “Provisioning data
analytic workloads in a cloud,” Future Generation Computer Systems
(FGCS), 2011, pp. in press.
[10] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz
and S.A. Rasin, “HadoopDB: an architectural hybrid of MapReduce and
DBMS technologies for analytical workloads,” Proc. VLDB Endow., vol. 2,
no. 1, 2009, pp. 922-933.
[11] Amazon, “Elastic MapReduce,”
http://aws.amazon.com/elasticmapreduce/.
[12] M. Armbrust, et al., “A view of cloud computing,” Commun.
ACM, vol. 53, no. 4, 2010, pp. 50-58; DOI 10.1145/1721654.1721672.
[13] D.J. Abadi, “Data Management in the Cloud: Limitations and
Opportunities.,” IEEE Data Eng. Bull., vol. 32, no. 1, 2009, pp. 3-12.
[14] H. Zhang, G. Jiang, K. Yoshihira, H. Chen and A. Saxena,
“Resilient workload manager: Taming bursty workload of scaling internet
applications,” Proc. 6th International Conference on Autonomic
Computing, ICAC'09, Association for Computing Machinery, 2009, pp. 19-
28.
[15] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster and M. Wilde,
“Falkon: a Fast and Light-weight tasK executiON framework,” Book
Falkon: a Fast and Light-weight tasK executiON framework, Series
Falkon: a Fast and Light-weight tasK executiON framework, ed., Editor
ed.^eds., ACM, 2007, pp.
[16] E. Walker, J.P. Gardner, V. Litvin and E.L. Turner, “Creating
personal adaptive clusters for managing scientific jobs in a distributed
computing environment,” Inst. of Elec. and Elec. Eng. Computer Society,
2006, pp. 95-103.
[17] H. El-Rewini, T.G. Lewis and H.H. Ali, Task scheduling in
parallel and distributed systems, Prentice-Hall, Inc., 1994, p. 290.
[18] “TPC-H Benchmark (Decision Support),”
http://www.tpc.org/tpch/.
[19] S. Tozer, T. Brecht and A. Aboulnaga, “Q-Cop: Avoiding bad
query mixes to minimize client timeouts under heavy loads,” Proc. Data
Engineering (ICDE), 2010 IEEE 26th International Conference on, IEEE,
2010, pp. 397-408.
[20] M.B. Sheikh, et al., “A bayesian approach to online
performance modeling for database appliances using gaussian models,”
Book A bayesian approach to online performance modeling for database
appliances using gaussian models, Series A bayesian approach to online
performance modeling for database appliances using gaussian models, ed.,
Editor ed.^eds., ACM, 2011, pp. 121-130.
[21] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and R.
Sears, “Benchmarking cloud serving systems with YCSB,” Proc. 1st ACM
Symposium on Cloud Computing, SoCC '10, June 6, 2010 - June 11, 2010,
Association for Computing Machinery, 2010, pp. 143-154.
[22] P. Massa and P. Avesani, “Controversial users demand local
trust metrics: An experimental study on Epinions.com community,” Proc.
20th National Conference on Artificial Intelligence and the 17th Innovative
Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05,
American Association for Artificial Intelligence, 2005, pp. 121-126.
[23] “TPC-C Benchmark,” http://www.tpc.org/tpcc/.
[24] “TPC-E Benchmark,” http://www.tpc.org/tpce/.

763

