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Abstract—The promise of “infinite” resources given by the cloud 
computing paradigm has led to recent interest in exploiting 
clouds for large-scale data-intensive computing. Given this 
supposedly infinite resource set, we need a management function 
that regulates application workload on these resources. This 
doctoral research focuses on two aspects of workload 
management, namely scheduling and provisioning. We propose a 
novel framework for workload execution and resource 
provisioning, and associated models, algorithms, and protocols. 
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I.  INTRODUCTION  
In the current information technology era, the pace and 

volume of data being generated is exceeding our ability to 
manage and analyze it. Cloud computing is, in turn, helping to 
realize the potential of large-scale data-intensive computing by 
providing effective scaling of resources. A growing number of 
companies, for example Amazon [1] and Google [2], rely on 
their ability to process large amounts of data to drive their core 
business. The scientific community is also benefiting in 
application areas such as astronomy [3] and life sciences [4] 
that have very large datasets to store and process. 

Data-intensive computing presents new challenges for 
systems management in the cloud.  One challenge is that data-
intensive applications may be built upon conventional 
frameworks, such as shared-nothing database management 
systems (DBMSs) [5], or new frameworks, such as MapReduce 
[6], and so have very different resource requirements. A second 
challenge is that the parallel nature of large-scale data-intensive 
applications requires that scheduling and resource allocation be 
done to avoid data transfer bottlenecks. A third challenge is the 
need to support effective scaling of resources when large 
amounts of data are involved. 

Workload management is an important component of 
systems management. In a cloud, the two main mechanisms 
used for workload management are scheduling requests and 
provisioning resources. Since the load on a data service in the 
cloud can fluctuate rapidly among its multiple workloads it is 
impossible for systems administrators to manually adjust the 
system configurations in order to maintain the workloads’ 
objectives during their execution. It is therefore necessary to be 
able to automatically manage the workloads on a data service. 

In this paper, we present our research plan for the problem 
of efficiently managing data-intensive workloads in a cloud. In 
the next section, we present our study of the area [7, 8] as 
related work. We formulate the problem of workload execution 
and appropriate resource provisioning in Section 3. Section 4 

presents our framework that addresses this problem, parts of 
which have already been published [9]. Section 5 outlines our 
evaluation approach. Intended research is described in Section 
6. The concluding sections 7 and 8 highlight the major 
contributions of the proposed research and its significance to 
the cloud users. 

II. RELATED WORK 
We have examined the state-of-the-art of workload 

management for data-intensive computing in clouds [7, 8]. In 
these works, a taxonomy is presented, which is then used to 
classify and evaluate current workload management 
mechanisms and systems. We present a summary of the survey 
below, and focus on the short-comings that our thesis aims to 
address. 

We presently see a gap between data-intensive computing 
systems and provisioning systems.  Most systems surveyed use 
shared-nothing clusters for large-scale data processing. On the 
other hand, the provisioning systems surveyed are usually 
applied to applications that do not require large-scale data 
processing. HadoopDB [10] uses Amazon’s Elastic Cloud 
(EC2) [1] but does not use elasticity during execution of the 
MapReduce workflow. Similarly, Amazon has made Hadoop 
available in its cloud with Elastic MapReduce [11], however 
the number of VMs has to be selected before the execution 
starts. We believe that data-intensive computing systems must 
exploit a cloud’s elasticity in order to cope with ever growing 
data sizes. Our proposed framework uses elasticity during 
workload execution. 

Due to their disjoint nature, we discuss data-intensive 
computing systems and provisioning systems in separate sub-
sections below. 

A. Data-intensive computing systems 
We see many data-intensive computing systems perform 

task scheduling and data replication independently, and place 
tasks close to data. Creating replicas for performance reasons is 
a good idea since moving large data takes time. However, there 
is a need to explore different replication strategies that best 
exploit data locality given a workload. 

The data centers used by clouds are likely to scale into 
hundreds of thousands of nodes [12]. Using low cost unreliable 
commodity hardware to build a shared-nothing data center has 
its benefits. However, the probability of a node failure during 
data processing increases rapidly with scale [6, 10]. Therefore, 
fault-resiliency must be built into systems to address such 
issues. 
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Most of the systems surveyed use workflow as a unit of 
execution and employ on-the-fly mapping of tasks to resources. 
This mapping approach is scalable and adapts to resource 
heterogeneity and failures [13]. Nevertheless, we believe that a 
system could benefit from prediction-revision mapping 
techniques that incorporate some pre-execution planning, 
workflow optimization, heuristics or history analysis. This 
additional analysis could help in creating an appropriate 
number of replicas or determining an appropriate amount of 
resources required for a computation. 

Minimal execution time (makespan) is the prevalent 
objective function for workload execution in the survey. 
Clouds, however, are competitive and dynamic market systems 
in which users and providers have their own objectives. We 
therefore believe that objective functions related to cost and 
revenue, or participants’ utilities, and scheduling policies based 
on them are appropriate and require further study. 

B. Provisioning Systems 
We observe that much of the current work related to 

provisioning in clouds involves scaling. Some of the scaling 
techniques involve a user defining rules in terms of condition 
and action pairs to deal with a situation e.g. overload. With 
multiple rules, many questions arise such as can multiple rules 
be defined on the same metrics, can they overlap and contradict 
each other?  

In the ROM system [14], the data storage in a private cloud 
is decoupled from that in the public cloud so that the latter is 
not tied to the former through shared or replicated data 
resources. This seems to be a reasonable approach for large 
read-mostly data. Maintaining data consistency for read/write 
operations for large data between sites in a hybrid cloud is still 
an open problem.  

The mechanisms for current provisioning techniques to 
handle varying workload demand may not scale for large-scale 
data processing. Nonetheless, one can admire the potential 
benefits of these techniques and argue that relevant 
mechanisms need to be developed for large data. Armbrust et 
al. point out that there is a need to create a storage system that 
could harness the advantage of elastic resources provided by a 
cloud while meeting existing storage systems expectations in 
terms of data consistency, data persistence and performance 
[12]. 

Systems that jointly employ scheduling and provisioning 
have been explored in grids. The Falkon [15] scheduler triggers 
a provisioner component for host increase or decrease. This 
host variation has also been explored during the execution of a 
workload hence providing dynamic provisioning. Presently, 
tasks stage data from a data repository. Since this can become a 
bottleneck as data scales, scheduling exploiting data locality is 
suggested as a solution. The MyCluster project [16] similarly 
allows Condor or SGE clusters to be overlaid on top of 
TeraGrid resources to provide a user with personal clusters. 
Various provisioning policies with different tradeoffs are 
explored including dynamic provisioning. The underlying 
motivation is to minimize wastage of resources. However, 

MyCluster is aimed at compute-intensive tasks. Given the 
similarities between grids and clouds, the joint techniques for 
scheduling and provisioning in these systems and related work 
are worth exploring for their relevance in clouds. 

III. PROBLEM STATEMENT 
We formulate the problem of workload execution and 

appropriate resource provisioning in a cloud as follows. A data-
intensive workload consists of requests that involve a 
significant amount of data access under some constraints. 
Given a set of data-intensive applications A, we say that the 
workload for A is a set of requests that are issued by the set of 
clients for A. Each request is an instance of a request type Qi 
from a set Q = {Q1, Q2, …, Qn} for A. The data used by A is a 
set of data objects D = {D1, D2, …, Dm}.  

The request types in Q are grouped into request classes. A 
request class QCi is a subset of Q, such that all requests in the 
class access the same subset of data objects Pi (subset of D) 
and all requests have the same service level objective SLOi. 
We call Pi a data partition and we assume that the Pi’s can 
overlap. The SLA for A is composed of the set of all SLOi’s for 
all the request classes in A. 

A configuration C for the application set A contains the 
following: 

• A set of VMs Vi = {v1, v2, …, vr}, where each VM vk is a 
specific type (e.g. small, medium, large), has a specific 
cost rate per unit time (e.g. hour), and has attached storage 
with its associated cost. 

• A mapping of the request classes, QCi’s, to VMs in V such 
that every request class and corresponding data partition is 
assigned to at least one VM. Assignment to more than one 
VM involves replication of the partition. Overlapping 
partitions on the same VM share the same copy of the 
common data objects.  

The provisioning problem is to select a configuration C for 
A such that an objective function is maximized (or minimized) 
and all the SLOs in the SLA for A are satisfied. 

The problem of finding an optimal assignment for a set of 
tasks is NP-Complete in the general case and in several limited 
cases, even when communication among tasks is not 
considered [17]. Therefore, we explore various search methods 
to find a suitable configuration. 

IV. FRAMEWORK 
Our approach of workload execution is simple. A 

configuration plays a central role in workload execution. A 
search algorithm hunts for a suitable configuration given an 
objective such as minimal dollar-cost. Using this 
configuration, the resources are made available or provisioned, 
and the workload is mapped on those resources. Finally, 
dynamic refinements are used to address any changes in the 
environment, workload or the SLOs. 
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Figure 1. high-level architecture of a workload management framework in a cloud. 

 The architecture of the framework is shown in Fig 1. We 
provide a high-level description of the framework 
components and their interactions below. We identify four 
major parties in the framework: a client, a manager, storage 
and execution resources, and an archive. A client has some 
application workload that needs to be executed. The manager 
supervises the workload execution. The processing resources 
are booted with settings retrieved from the archive. The 
storage resources get a copy of the data in the archive. Both 
processing and storage resources are combined to provide an 
execution platform. The workload is executed on a number 
of execution platforms. 

A client submits a workload to the manager. The 
manager consists of three components (a) a configurator, (b) 
a scheduler, and (c) a provisioner. The configurator is the 
brains of the system. It determines a suitable configuration, 
consisting of storage and processing resources, to execute the 
workload against an objective. This configuration is then 
passed to the provisioning process or the provisioner. The 
provisioner prepares the execution platforms. It allocates the 
processing resources (VMs) as required by the configuration. 

The provisioner also attaches data partitions to the 
processing resources. In addition, the provisioner creates 
replicas of data partitions if needed. Once the provisioner 
finishes, the scheduler maps requests of the workload to the 
execution platforms as required by the configuration, and the 
workload execution begins. 

The workload is executed and some feedback is sent back 
to the manager periodically. The feedback could include 
heartbeats or execution times. The manager may suggest a 
new configuration based on the feedback. Revisions to the 
current configuration may be necessary due to a number of 
reasons such as excessive SLA violations or a change in the 
workload. If the deployed configuration is revised, the 
provisioner and the scheduler respectively adjust the 
resources and dispatch the workload according to the new 
configuration . 

The provisioning process facilitates the manager in 
meeting the objective of the workload execution. At the start, 
it provisions storage and execution resources and, as the time 
goes on, it acquires more resources or releases held resources 
as needed. 

A. Determining a suitable configuration 
We represent the set of all possible configurations for an 

application A as a directed graph Configs = (N(A), E(A)). 
The set of nodes, N(A), and the set of edges, E(A) are 
defined respectively as: 

N(A) = {C | C is a valid configuration for A} and  
E(A) = {(Ci, Cj) | configuration Cj is obtained from Ci 

using a permitted modification}, 
An edge (Ci, Cj) in the search space indicates that 

configuration Cj can be obtained from configuration Ci by 
applying one of the modifications. Examples of 
modifications include adding a cheap VM, or load-balancing 
workload amongst existing VMs. 
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The configurator employs a search algorithm to explore 
the search space. The high-level architecture of the 
configurator is shown in Fig 2. Given a workload and an 
objective, a search algorithm looks for a suitable 
configuration. At every iteration, the search algorithm 
chooses a suitable modification on the current configuration. 
The modified configuration is evaluated using a cost model, 
and the cost is passed back to the search algorithm. Then, 
the algorithm decides whether to keep exploring the search 
space or to flag the evaluated configuration as a suitable 
one. 

Figure 2. Architecture of the configurator 

We have developed and evaluated a cost model that 
determines the dollar-cost of a configuration [9]. This cost 
model is a function of resource expense and penalties due to 
SLA violations. The cost model uses Queuing Network 
Models (QNMs) to forecast a SLO breach.  

The elegance of this architecture is that various search 
algorithms can be used with various cost models and vice 
versa. Similarly, different cost models can be used with 
different prediction models. 

In general, the size of a workload is unknown. Therefore, 
we argue it is appropriate to calculate the cost of workload 
execution per unit time, say an hour. Consequently, we 
parameterize our cost function with a unit time. 

1) Algorithms 
The space of possible configurations is very large and 

heuristics must be used to prune the search space. Therefore, 
we have developed some algorithms that explore the search 
space selectively. These algorithms are: (a) greedy, (b) 
adaptiveGreedy, and (c) tabu search. We use the greedy 
heuristics in the evaluation of our approach [9]. We intend to 
explore other search methods discussed later in the intended 
research. 

2) Approaches for dynamic refinements 
Presently, we consider two complementary processes for 

dynamic refinements: SLA improvements and system load-
balancing. The SLA improvement process may acquire 
additional resources, while system load-balancing may 
relinquish unneeded resources. Both can operate 
simultaneously and independent of each other, and may or 

may not suggest actions to the manager. We also consider 
where these processes work together to improve SLA 
conditions of the workload classes while promoting 
workload balance amongst existing VMs. 

V. EVALUATION 
We claim to provide a novel, generic and autonomic 

framework for data-intensive workload execution and 
appropriate resource provisioning in clouds. The evaluation 
of the framework will be done at different stages, first by 
developing individual components, and then combining all 
the pieces to implement a complete prototype. This involves 
a considerable amount of work since each of the modules 
represents a large area of research. We will limit our current 
work within the scope of optimal workload execution against 
various objective functions for the Ph.D. dissertation, and 
continue with the rest of the framework as future research. 

In our recent work [9], we evaluate the provisioning 
aspect of the system. We use a TPC-H [18] like workload, 
which queries large amounts of data, and hence qualifies as 
data-intensive. We also consider different cases of SLO 
penalties on the request classes in order to evaluate the 
impact of our approach for capturing SLOs in our 
framework. The experiments are performed on a public 
cloud i.e. Amazon EC2. The objective function used is 
minimal dollar-cost. We see that there is at most a 7% 
difference in the predicted and measured overall costs so our 
configurator gives a good initial representative model. 
However, we see that the response times for requests can 
vary by as much as 70% from the measured response times. 
We suggest another possible approach to solving this 
problem later in the intended research. This new approach 
replaces the current prediction model (QNM), without 
changing the framework. Our framework is generic since it 
can execute workload with multiple objectives, when the 
right cost and prediction models are plugged-in. We also 
intend to evaluate our work against realistic and/or diverse 
workloads discussed later in the intended work. 

We intend to quantitatively compare our work against 
other work where possible. This process is simpler when the 
other work consists of formulae, or the corresponding system 
has a fairly direct match with our work and it exists online. 

VI. INTENDED RESEARCH 
We propose to complete the following work to satisfy the 

requirements for the doctoral thesis. 

Prediction Model: Currently, we use an analytical model 
(QNM) for predictions, and experience highly inaccurate 
forecasts [9]. This is because the analytical models do not 
capture the inherent complexity of a cloud environment, such 
as affects on the buffer pool of concurrently executing 
requests [19].  

Increasingly the research community is using 
experiment-driven performance modeling for database and 
multitier systems. We are considering experiment based 
methods to build a regression and/or a multi-layer perceptron 
(mlp) predictors. In these models, every request type is 
considered a dimension. A Latin Hypercube Sampling (LHS) 
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protocol reduces the number of experiments necessary while 
providing good coverage of the space of possible request 
mixes [19]. We can further prune the sample space by only 
considering the request types that place a measurable load on 
the system, or considering simple presence/absence of a 
request in the mix. This is our intermediate milestone. This is 
because building a prediction model from the generated 
samples suffers from a fundamental limitation: it requires re-
learning the model for new workload or VM types, rendering 
them ineffective for online performance modeling. Gaussian 
response time models predict response times of TPC-H 
workload fairly accurately [20]. In addition, these models are 
trained experimentally offline as well as online. This way the 
models are adaptive to changing workload, suitable for our 
dynamic case. Sheikh et al. also develop a configuration 
model to deal with changing configuration. This is relevant 
for various types of VMs. 

Workloads: We have used different static SLO 
workloads in our recent work [9]. We intend to explore 
dynamic workloads, which change in request types or 
number, or in SLA. We will also consider realistic and/or 
OLTP/OLAP mix workloads. Realistic workloads include 
Yahoo!’s Cloud Serving Benchmarks (YCSB) [21] and 
analyzing data of E-opinions.com [22]. While TPC-C [23] 
and TPC-E [24] are standard OLTP benchmarks, we already 
use a standard OLAP benchmark TPC-H [18]. Finally, we 
will use a random benchmark, which will be a synthetic 
dataset aimed to stretch the prediction model and dynamic 
refinement schemes. 

User-centric Objectives: Presently, an objective 
function is defined over the complete workload, which may 
consist of multiple applications. An immediate opportunity is 
to define objective functions on a per application level. We 
also intend to explore other objective functions for workload 
execution. 

Cost Models: Currently, we have a cost model only for 
estimating expense of a configuration. This cost model 
assumes a constant expense for communication. We would 
extend the current cost model to include more factors such as 
communication cost, remote data access and data replication. 

Space Search: We have developed algorithms that 
search for the minimal dollar-cost configuration. These 
algorithms consist of: (a) greedy, (b) adaptiveGreedy, and (c) 
tabu search. We intend to provide another variant of greedy 
approach called (d) greedyTabu. Further, we can explore 
additional exotic search techniques like genetic algorithms or 
simulated annealing. We also intend to explore mathematical 
methods like linear programming to determine the optimal 
configuration. 

Dynamic Refinements: Currently, we employ a simple 
greedy heuristic for dynamic refinements, which stops at the 
first bad configuration. This approach does not step outside a 
local minimum. We intend to reuse search algorithms in the 
configurator to modify the deployed configuration to obtain a 
more satisfactory configuration. For example, tabu search 
and regression prediction models can reused for this purpose. 
This approach is also relevant when the workload or the SLA 
changes. Further, after suggesting an initial configuration, 

the configurator need not stop. It can continue to explore the 
state space, hunting for a better configuration. In case of 
finding a better configuration, that is deployed at a suitable 
opportunity. 

Partitioning: Our framework currently assumes that the 
data partitioning has been done prior to workload execution. 
We could extend our framework to assign partitions to 
execution resources so that workload being mapped onto 
resources use local data. We limit the scope of our graduate 
work, and assume that partitions are provided. 

VII. EXPECTED CONTRIBUTIONS 
We formulate the problem of workload execution and 

appropriate resource provisioning in the clouds, and the 
constructs to represent it. In traditional workload execution 
literature, the resource pool is assumed static. However, we 
extend the execution constructs to include provisioning 
resources during execution. An appropriate number of 
processing and storage resources depend on a suitable 
configuration. We transform the requirement for a suitable 
configuration into a search problem, and use standard search 
methods and heuristics. 

We propose a novel, generic and autonomic framework 
for workload execution in a cloud. The framework executes a 
workload efficiently against a given objective. The 
management function in the framework exploits cloud’s 
elasticity and dynamic refinements to uphold the goal. 

Our framework allows pluggable cost and prediction 
models. We develop objective functions and associated cost 
models. We reuse search algorithms and prediction models 
where possible. 

VIII. SIGNIFICANCE OF WORK 
We integrate dollar-cost with workload management 

using our framework. We expect our work to be useful from 
a number of angles: (a) estimate the expense of executing a 
workload in a cloud, (b) offer scale to workload execution by 
harnessing cloud’s elasticity, (c) reduce time to result by 
exploiting rapid provisioning of cloud’s resources, and (d) 
close the gap between data growth and the processing ability. 
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