
A Framework for Self-Protecting Cryptographic Key Management

Anne V.D.M. Kayem, Patrick Martin, Selim G. Akl, and Wendy Powley
School of Computing
Queen’s University

Kingston, Ontario, K7L 3N6, Canada
Email: {kayem, martin, akl, wendy}@cs.queensu.ca

Abstract

Demands to match security with performance in Web ap-
plications where access to shared data needs to be controlled
dynamically make self-protecting security schemes attractive.
Yet, standard schemes focus primarily on correctness as op-
posed to adaptability and so need to be extended to handle
these new scenarios. One of the approaches to enforcing
cryptographically controlled access to shared data is to en-
crypt it with a single secret key that is then distributed to
the users requiring access. Data security is ensured by re-
placing the group key and re-encrypting the affected data
whenever group membership changes. Thus, key manage-
ment (KM) is expensive when changes in group membership
occur frequently and involve large amounts of data. This pa-
per presents a framework, based on the autonomic comput-
ing paradigm, that allows a KM scheme to continually mon-
itor the rate at which changes in group membership occur
and generate keys as well as encrypted replicas to anticipate
future changes. Since the keys and encrypted data are gen-
erated by anticipation rather than on demand, the long-term
cost of KM is minimized. A prototype implementation and ex-
periments showing performance improvements demonstrate
the effectiveness of the proposed framework.

1. Introduction

The increasing complexity of managing security for the
multiple and varied scenarios that arise on the Web have
triggered an interest in applying the autonomic comput-
ing paradigm to designing self-protecting security schemes
[6, 18, 19]. Standard methods of enforcing access control
in Web-based applications include those that are supported
by cryptographic key management (CKM) schemes. Unlike
authentication schemes that rely on system-specific security
policies, cryptographic access control (CAC) schemes do not
rely on the physical security of the system on which the data
resides [1]. CAC schemes use data encryption to enforce ac-
cess control, making unauthorized access more difficult be-
cause the data remains encrypted irrespective of its location,

Figure 1. A Key Replacement Scenario

and only a valid key can be used to decrypt it. Emerging Web-
applications like data out-sourcing, collaborative project de-
velopment, and pay-TV highlight a growing number of ap-
plications of cryptographic access control.

In collaborative applications, controlled access to shared
data can be enforced cryptographically by classifying users
into exactly one of a number of disjoint security classes Ui,
represented by a partially ordered set (S,�), where S =
{U0, U1, ..., Un−1} [1]. In the partially ordered set (poset)
Ui � Uj implies that users in group Uj can have access to
information accessible to users in Ui, while the reverse is not
possible. Security management is facilitated by sub divid-
ing the encrypted data into various categories DKi

, such that
0 ≤ i ≤ n − 1, where n is the maximum number of user
groups in the hierarchy and Ki is the cryptographic key used
to encrypt the data di. Possession of a “correct” key grants a
user access to the data. Key management with a CAC scheme
like the one we have just described is expensive because up-
dates require changing the affected key and re-encrypting the
data. When large amounts of data are involved and rekey-
ing occurs frequently, the key server takes longer to respond
to rekey requests thereby increasing the system’s vulnerabil-
ity [9, 30, 33].

For instance, in Figure 1, when a user u30 moves into
“unsafe” territory, the application reacts by either reducing
his/her privileges and assigning him/her access rights that
are equivalent to those assigned to users in U6 or by lock-

ing him/her out of the system. In order to prevent u30 from
continuing to access DK3 , the key K3 is updated. Addi-
tionally, if possession of the key K3 allows a user to derive
K5 and K6, both keys need to be updated as well. Like-
wise when U2 and U3 are merged, a new common key is re-
quired both for the new group Ux and the dependent groups
U4, U5, and U6. Rekeying implies data re-encryption, and
so frequently rekeying large amounts of data increase the
key server’s response time1 in handling key update situations
thereby widening the vulnerability window2. A larger vul-
nerability window implies a longer wait period for the users
remaining in the group and this period can also be exploited
by an adversary. Hence, the cost of rekeying is a drawback to
integrating CAC schemes into Web-based applications where
security and adaptability to changing scenarios are important
parameters.

This paper presents a framework based on the autonomic
computing paradigm [19] that allows a CKM scheme to adapt
to changing scenarios by minimizing the response time and
the size of the vulnerability window created by frequent
rekeying. The functionalities of the framework are structured
into six components: the sensor, monitor, analyzer, planner,
executor and effector, that are linked together to form a feed-
back control loop (FBCL). The FBCL continually monitors
the arrival rate of rekey requests at the key server and, at reg-
ular intervals, computes an acceptable resource (keys and en-
crypted replicas) allocation plan to minimize the overall cost
of rekeying. Each component of the framework contributes
to enhancing a standard CKM scheme’s performance without
changing its underlying characteristics. A prototype imple-
mentation and experiments showing performance improve-
ments demonstrate the effectiveness of the proposed frame-
work.

The rest of the paper is structured as follows. Section 2 re-
views related work on CKM schemes and autonomic security.
In Section 3, we present our self-protecting CKM framework
and give an example to show how it works. We present and
discuss our prototype implementation as well as experimen-
tal results showing performance improvements, in Section 4.
Concluding remarks are offered in Section 5.

2. Related Work

This section discusses background work on cryptographic
key management (CKM) schemes in relation to the rekey
problem, and the autonomic computing paradigm as a
method of designing self-protecting CKM schemes.

2.1. Cryptographic Key Management

CAC schemes are typically designed using either an in-
dependent or dependent KM model. Schemes based on the

1Time required to generate a new key and re-encrypt the data associated
with the key.

2Period between the emission of a key update request and its satisfaction
by the key server.

Independent key management (IKM) model operate by as-
signing each class a single independent key. A user belonging
to a higher level class is only allowed to access data at lower
levels if he/she holds the “correct” lower level class key [13].
Rekeying is handled by replacing the affected group’s key, re-
encrypting the associated data and distributing the key both
to the users remaining in the group as well as to the users be-
longing to higher level classes that are authorized to access
data encrypted with the updated key.

While the flexibility of the IKM model makes it easy
to implement in practical systems, the drawback is that all
updated keys must be distributed to every class in the hi-
erarchy that needs them to access data. Thus, key re-
distribution is costly and prone to security violations due
to mis-managed or intercepted keys [13]. For example,
in Figure 2(a.), the data d0, d1, d2, d3, d4, and d5 is en-
crypted with the keys K0,K1,K2,K3,K4, and K5 to ob-
tain DK0 , DK1 , DK2 , DK3 , DK4 , and DK5 . In this case, the
IKM model operates by assigning a user all the keys required
to authorize him/her access to portions of the encrypted data.
However, if a key, say K4, is updated the new key needs to
be re-distributed to all the users in the classes U0, U1, U2 and
U4 that use it.

Variants of IKM schemes [4, 5, 9, 26] in the literature pro-
pose minimizing the information distributed either by en-
crypting the keys that are to be distributed with a public key
or by using proxy re-encryption. In the first approach, the en-
crypted keys are placed in some public location and a secret
key is transmitted to each group. Access to a set of keys is
only allowed if a user has the correct secret key. This makes it
easier to exclude users that are compromised and reduces the
number of keys distributed, but the added public key informa-
tion increases the chances of an adversary correctly guessing
at the secret keys being used [9]. The second approach on the
other hand, assigns each group or user in the hierarchy two
pairs of keys (a master and a secondary key) [4]. The sec-
ondary key is used to encrypt files and load them into a block
store where they are made accessible to users outside of the
group. External users retrieve the encrypted data from the
block store and present the retrieved data together with their
secondary key to the access control server. The access control
server re-encrypts the data in a format that can be decrypted
with the user’s secret (master) key, only if the presented sec-
ondary key authorizes him/her access. However, the problem
remains of having to re-encrypt, update, and distribute new
keys when group membership changes.

A good way to alleviate these problems is to mini-
mize the number of keys distributed to any group (class)
in the hierarchy. The dependent key management (DKM)
model does this by assigning higher level classes keys that
can be used to derive lower level keys. For example,
in Figure 2(b.), the data d0, d1, d2, d3, d4, and d5 is en-
crypted with the keys K0,K1,K2,K3,K4, and K5 to ob-
tain DK0 , DK1 , DK2 , DK3 , DK4 , and DK5 . Possession of
the key K1 allows access to DK3 , and DK4 since the key is
associated with the class U1 that is at a higher level than the

Figure 2. Independent vs. Dependent Key Approaches

classes U3, and U4, and the keys K3 and K4 are derivable
from K1. The reverse is not possible because keys belonging
to lower level classes cannot be used to access information at
higher levels.

Instances of the DKM approach in the literature [1,10,13,
16, 20, 25, 26] focus on efficient methods of minimizing the
storage requirements of the keys and the cost of key deriva-
tion but they do not address the issue of key updates. Key
updates are handled in these schemes by updating the whole
hierarchy and re-encrypting the data. Recently, Atallah et
al. [2] and Kayem et al. [17] have proposed methods of up-
dating keys locally, i.e. in the sub-hierarchy associated with
the affected class. However, in both schemes [2, 17] when
rekeying occurs at the highest point in the hierarchy (e.g. U0

in Figure 2(b.)) the entire hierarchy needs to be updated to
ensure continued data security.

Time-bounded schemes [3, 7, 11, 29, 31, 32], address the
key update (rekey) problem by associating a time bound to
each key in way that allows a user to access both the en-
crypted data at his/her class and at lower classes during a
specific interval. At the end of the interval, access is denied
because the key is no longer valid. This makes handling key
updates easier, but is not practical for scenarios where user
behavior is difficult to foresee since it is hard to accurately
predict time bounds to associate with keys.

Other schemes in the literature are lazy re-encryption, and
timestamped schemes [8, 16]. Lazy re-encryption operates
by using correlations in data updates to decide when to rekey.
Since data re-encryption accounts for the larger part of the
cost of key replacement, re-encryption is only performed if
the data changes significantly after a user departs or if the
data is highly sensitive and requires immediate re-encryption
to prevent the user from accessing it. The cost of rekeying is
minimized, but the problem remains of having to re-encrypt
the data after a user’s departure. Moreover, if a sensitive file
does not change frequently, lazy re-encryption can allow a
malicious user time to copy off information from the file into
another file and leave the system without ever being detected.

The timestamped scheme associates each key with a
timestamp. Both the timestamp and key are combined to

compute a verification signature that is used to authenticate
a user before access is granted to the data. Whenever group
membership changes, instead of rekeying and re-encrypting
the data associated with the keys, only the timestamp is
updated and a new verification signature computed. This
scheme significantly reduces the cost of rekeying, and so is
interesting for dynamic scenarios. However, its reliance on
authentication makes it vulnerable, in the sense that, if a ma-
licious user holding a valid key finds a way of generating cor-
rect timestamps, there is no straightforward way of detecting
or even preventing them from accessing the system.

From the previous paragraphs, we note that rekeying
is expensive when it involves data re-encryptions because
this widens the vulnerability window and when data re-
encryptions are reduced in favor of multiple key distributions,
there is an increased chance that the keys could be intercepted
by an adversary. Authentication-based KM schemes mini-
mize the cost of re-encryptions and reduce the size of the
vulnerability window but the security they provide is system
specific. Moreover since re-encryptions are done only once,
if an adversary guesses at the “correct” authentication signa-
ture, it is difficult to detect or even eliminate them from the
system. Therefore, standard KM schemes need to be sup-
ported by a framework that allows them make adjustments to
security specifications based on the situation with which they
are faced.

2.2. Security with Autonomic Computing

The autonomic computing paradigm has inspired the cre-
ation of numerous computing models aimed at coping adap-
tively with varying complex scenarios [18]. Yet, these meth-
ods have not gained as much popularity in the domain of
access control due to skepticism and reluctance towards au-
tonomic approaches on the part of the users [6]. Security
scandals like the one that occurred in January 2007, when
hackers broke into Winners’3 computers and stole customer
credit card information, generate public outrage that in turn

3Departmental store in the US and Canada specialized in clothing, shoes
and accessories.

results in hesitancy in using less conventional security so-
lutions [24]. Hence, business owners tend to opt for secu-
rity schemes that react in pre-specified and predictable ways,
as opposed to those that adapt and evolve dynamically. In-
creasingly, however, Web applications are faced with scenar-
ios that are difficult to predict a priori, which makes manual
security management challenging and prone to error [6, 18].
Breaches created by errors in security policy specifications
are currently difficult to trace and prevent, and this will be-
come even harder as systems become more complex [6].

Security via the autonomic computing paradigm was first
proposed by Chess et al. in 2003 [6] to address the grow-
ing system complexity that makes manual security manage-
ment time consuming and challenging. They suggested us-
ing the autonomic computing paradigm proposed by IBM in
2001 [18,19] whereby, a system can be designed to use auto-
matic reactions to self-configure and self-manage. The func-
tions of an autonomic system are connected to form a feed-
back control loop (FBCL) that has two major components:
the autonomic manager and the managed resource. The auto-
nomic manager adjusts the behavior of the managed resource
on the basis of recorded observations. The autonomic model

Figure 3. The Autonomic Computing Feedback
Control Loop

shown in Figure 3, is comprised of six basic functions: the
sensor, monitor, analyzer, planner, executor, and effector.
The sensor captures information relating to the behavior of
the managed component and transmits this information to the
monitor. The monitor determines whether or not an event is
abnormal by comparing observed values to preset maximum
values in the knowledge base. If the deviations between the
observed and maximum values are significant, the monitor
transmits a message to the analyzer where a detailed analy-
sis is performed to decide what parameters need to be ad-
justed and by how much. The analyzer transmits this infor-
mation to the planner where a decision is made on the action
to take. The executor inserts the task into a scheduling queue
and calls the effector to enforce the changes on the managed
resource in the order indicated by the planner.

Autonomic security aims to provide survivability and
fault-tolerance for security schemes [6, 15]. Johnston et al.
[15] propose a preliminary approach that uses reflex auto-
nomicity in the development of a multi-agent security sys-

tem. This is an interesting approach to self-protecting secu-
rity schemes, but the authors indicate that a real-world imple-
mentation of their prototype system would require additional
security controls. Moreover, as Moreno et al. [23] point out,
the prototype does not support the ability of a security class
to operate independently. We note also that current work on
autonomic access control focuses mainly on security policy
definitions and restrictions on the messages sent and received
by users and/or agents in the system. The problem of sup-
porting CAC schemes with a framework that allows them to
adapt to different scenarios still needs to be addressed.

3. Key Management Framework

This section describes our proposed approach to self-
protecting key management (SPKM) aimed at minimizing
the key server’s response time and the vulnerability window
created in handling rekey requests. As mentioned before, the
framework is composed of six functionalities - sensor, mon-
itor, analyzer, planner, executor, and effector - connected in
the form of a feedback control loop (FBCL). The FBCL con-
tinually monitors (over regular intervals) the arrival rate of
rekey requests at the key server and uses a stochastic model
to predict an acceptable resource (keys and encrypted repli-
cas) allocation plan aimed at minimizing the overall cost of
rekeying.

3.1. Framework Operation

According to this framework, rekeying is handled by mon-
itoring the rate at which the key server (central authority) re-
ceives rekey requests and generating keys as well as backup
replicas in anticipation of future rekey requests. Instead of
waiting to generate replacement keys and re-encrypt the data
associated with the affected key on reception of the rekey
request, the SPKM framework minimizes the vulnerability
window and response time by adjusting the number of avail-
able replicas based on observed user behavior patterns.

We assume that there exists a single trusted central author-
ity (key server) U0 in charge of key generation/assignment
and data encryption. Each class in the access control hierar-
chy represents a group of users authorized to access a portion
of the shared data. Rekey requests can be explicitly formu-
lated by a user wishing to depart from a group, in which case
the user transmits a message encrypted with his/her key to
the key server. Alternatively, the key server can monitor a
group’s behavior and decide to exclude a user from a group.
For instance if a user remains inactive for a long time then the
KM system can lock him/her out for safety reasons. Knowl-
edge of the membership of a group is located in a registry
in the knowledge base. The registry contains the group and
user identification of every user in the system as well as their
associated secret keys. Cases of central server crashes are
assumed to be handled by some fault-tolerance solution like
server replication.

The key server generates a series of keys K0, ...,Kn−1,
according to the rules of access defined by the security ad-
ministrator (SA). The key server then transmits these keys
secretly to the data server where they are stored in a secret
registry of keys. On reception of the key set, the data server
proceeds to encrypt the data and transmits a confirmation
message to the key server. The key server then proceeds to
distribute the keys to the user groups requiring access. Data
is only accessible to users if the key in their possession allows
them to directly decrypt, or to derive the keys required to de-
crypt that data. For example, as shown in Figure 4, u20 can
access data DK2 , DKn−2 , and DKn−1 since his/her key can
be used to directly decrypt DK2 and derive the keys Kn−2

and Kn−1 required to access DKn−2 , and DKn−1 respec-
tively.

As shown in Figure 4, our framework is comprised of six
basic components that are interconnected in the form of a
FBCL situated at the key server. The SA defines an initial ob-
servation period during which rekeying is handled solely by
the conventional approach and data is collected to start off the
adaptive KM process. This initial period is divided into two
time windows denoted by W1 and W2. During W1 the sensor
captures and transmits all rekey requests to the monitor. At
the end of W1, the monitor computes, on a per class basis,
the arrival rate of rekey requests and compares this value to
a preset maximum arrival rate in the knowledge base. If the
current arrival rate is greater than the maximum arrival rate,
a message is transmitted to the analyzer indicating that the
maximum arrival rate has been exceeded. The maximum ar-
rival rate is reset to the current arrival rate while monitoring
continues in the next interval W2. When the current arrival
rate is less than or equal to the maximum arrival rate, the
event is discarded. The analyzer computes a probability pre-
diction to determine whether or not the current resource (keys
and backup replicas) allocation will satisfy the next series
of rekey requests that arrives in the next time interval, W2,
and communicates this value to the planner where an accept-
able number of resources (keys and backup replicas) is com-
puted in anticipation of the next series of rekey requests. The
planner then calls the executor to define a schedule for cre-
ating and assigning the resources, and the executor instructs
the effectors to perform each task according to the priority
defined. The maximum values (against which observed val-
ues are compared) are located in the knowledge base and are
set by the SA on the basis of empirical observations. In the
meantime, the monitor restarts the adaptive cycle by comput-
ing the arrival rate that occurs in W2. The FBCL cycles con-
tinuously over time, analyzing the arrival rate for each subse-
quent period Wx that occurs after W2. Copy consistency is
maintained on the backup copies by periodically checkpoint-
ing the state of the primary on to the backups.

This approach has two main advantages. First, the size
of the vulnerability window and response time between key
replacements is reduced since rekeying is handled by antici-
pation as opposed to on demand. Second, the job of the SA
is made easier, since the SA no longer needs to take care of

Figure 4. Self-Protecting Key Management
Framework

every key replacement scenario but rather, the SA presets spe-
cific parameters and allows the scheme to run on its own.
Cases directly requiring the SA would henceforth be limited
to situations that require the consent/advice of the SA to pro-
ceed.

3.2. Self-Protecting Key Management
(SPKM) Framework

Our SPKM framework uses a Poisson process to describe
the rate of arrival of rekey requests at the key server because it
is suited to modeling the occurrence of random events in time
[12]. The arrival rate of rekey requests at the key server has
this property of randomness as there is no way of accurately
predicting the number of rekey events that will occur in a
given period. Moreover, the rekey process has the Poisson
property in the sense that the observed arrival rate at any point
in time is independent of both present and future arrival rates.

For simplicity, we describe the mathematical model un-
derlying our SPKM framework as though it were for a single
class Ui, in the hierarchy. In reality, however, resource allo-
cations are made for each of the classes in the hierarchy. We
assume that rekey requests arrive independently at a rate λ
and denote:

• Wc: The cth predefined monitoring period (time win-
dow) for rekey requests arriving from Ui, such that
0 ≤ c ≤ I − 1 and I is the maximum number of time
windows

• λci : The arrival rate of rekey requests from group Ui

during Wc

• λmaxi
: The maximum arrival rate of rekey requests for

group Ui that the key server has anticipated handling
during Wc

• mi: Total number of rekey requests that originate from
group Ui during Wc

• pci
: The probability prediction that the key server will

not be able to satisfy all the rekey requests that will ar-
rive during the next monitoring period Wc+1 (i.e. to
determine whether the current numbers of keys and data
copies will satisfy an arrival rate of at least λci

during
Wc+1)

The sensor captures rekey requests transmitted to U0 over
a preset period Wc and transmits this information (number of
rekey requests and size of the monitoring period Wc) to the
monitor. At the end of the period Wc, the monitor computes
the sum of the rekey requests received as well as the arrival
rate λci

. The arrival rate is computed with the formula:

λci =
mi

Wc
(1)

where the arrival rate is measured in terms of number of re-
quests per second. The monitor compares the value of λci

to
a preset value λmaxi

that is located in the knowledge base.
The preset maximum values and the size of Wc are set by the
SA on the basis of empirical observations. If λci

> λmaxi
, a

message is transmitted to the analyzer indicating that the pre-
vious λmaxi has been exceeded, and λmaxi is reset to λci .

The analyzer computes pci
by computing the probability

mass function of the Poisson variable mi. The reason for us-
ing this formula is that it forms a part of the properties of the
Poisson model that facilitate making predictions on the basis
of very little information, and serves as a simple prediction
tool. The probability prediction pci is computed using the
formula [12]:

pci =
µmi

i

mi!
∗ e−µi (2)

where
µi = λmaxi

∗Wc+1 (3)

is a prediction of the number of rekey requests that are ex-
pected during Wc+1 and e is the base of the natural logarithm.

The analyzer decides on whether to increase or decrease
the resources (number of keys and encrypted backup repli-
cas), by comparing pci

to a preset probability prediction
value, ε. If pci

= ε, the value is discarded. Otherwise, if
pci

< ε the analyzer calls the planner with an instruction
to decrease the resources, and if pci > ε the planner is called
with an instruction to increase the resources. This is to ensure
that an optimal number of resources is always maintained so
that the costs of updating the backup copies do not outweigh
the benefits of adaptive KM.

On reception of the value of pci and instructions regarding
how the resources should be adjusted, the planner proceeds to
compute a degree of availability. The degree of availability
αi allows the planner to decide on how to adjust the number
of resources to keep the cost of running the system within
acceptable limits. Availability, is defined as the fraction of
Wc+1 that the key server is in a position to satisfy any rekey
request it receives. In order to determine αi, we need to know
the state of the key server. We consider that the key server can
be in one of two states: the normal state or the idle state.

• Normal State: This is the state in which the key server
performs two kinds of activities: key distribution or key
generation. Let TR be the total time that the system
spends rekeying (generating and distributing keys) dur-
ing the window Wc+1.

• Idle State: This is the state in which all the required
keys have been generated and the key server has rele-
gated the tasks of encryption and checkpointing to the
data server [14, 21, 22]. Let TE be the total encryp-
tion time during the window Wc+1 and TC be the total
checkpointing time.

Our method of computing αi is inspired by the approach
proposed by Jalote [14]. Jalote expresses αi as a probability
function of the overhead producing activities in a system. We
extend this concept to our SPKM framework and express the
availability of DKi

as follows:

αi = 1− Oi

Wc+1
(4)

where Oi is the overhead generated during rekeying, encrypt-
ing and maintaining update consistency on the backup copies
at the class Ui. Since rekeying, encryption, and checkpoint-
ing all contribute to the overhead, we compute Oi with the
formula:

Oi = E(TR) + E(TE) + E(TC) (5)

where E(TR) is the expected rekey time (i.e. the expected
time required to generate and distribute a key to satisfy a
rekey request), E(TE) is the expected encryption time, and
E(TC) is the expected checkpointing time. Our framework
does not handle requests that are not completed during Wc+1,
so we will assume that all rekey requests that arrive during the
time window Wc+1 are completed before the end of Wc+1,
otherwise they are processed during the next time window
Wc+2.

In order to compute the total rekey time during Wc+1, we
need to determine the fraction of Wc+1 during which the key
server is going to be generating and distributing keys. If the
key server is unable to satisfy all the requests it receives dur-
ing Wc+1, the key server will be in a state of key generation
and/or distribution during pci

∗ Wc+1 time. Therefore, the
theoretical estimate E(TR) of the expected rekey time can be
computed using the formula:

E(TR) = pci
∗Wc+1 (6)

Rekeying implies re-encrypting data therefore the encryp-
tion time is conditioned by the number of rekey requests
that will occur during Wc+1 and the number of backup data
copies (replicas) that need to be encrypted/re-encrypted. We
denote Ni as the number of replicas and keys that will need
to be maintained at class Ui to satisfy µi rekey requests in
Wc+1 and compute E(TE) with the formula:

E(TE) = pci ∗Wc+1 ∗Ni (7)

We note that the theoretical estimate of the total time dur-
ing which the system would not be in a state of rekeying
during Wc+1 (i.e. E(TE) + E(TC)) can be expressed as
[(1− pci

) ∗Wc+1 ∗Ni]. Since we know E(TE) from equa-
tion (7), we can compute E(TC) using the following formula:

E(TC) = [(1− pci) ∗Wc+1 ∗Ni]− E(TE)
= (1− 2pci) ∗Wc+1 ∗Ni (8)

Standard KM schemes are not supported by replication,
so the overhead is given by: O = E(TR) + E(TE) in which
case αi = 1 − (2 ∗ pci

). On the other hand in our proposed
SPKM framework, overhead is calculated using equation (5).
By substituting equations (6),(7) and (8) into equation (4), we
can re-express availability as follows:

αi = |1− (Ni + pci − pciNi)| (9)

The growth of the number of replicas/keys is controlled with
a heuristic that bounds the availability degree by 1, and pos-
itive values of availability are ensured by expressing the re-
sults of equation (9) as absolute values.

If a rekey request arrives when there is no existing backup
copy available to satisfy it, then the SPKM scheme reverts to
generating a new key, reencrypting the primary copy with the
new key and distributing the new key to the users that are left
in the group. So in the worst case, the cost of rekeying reverts
to the cost of KM in a standard scheme.

3.3. An Example

We use an example of a simple read-intensive scenario to
explain how our framework operates. In this case, suppose
that the observations of the key server during the initial mon-
itoring period W1 result in a prediction that one rekey request
is going to arrive from U2 during a future monitoring period
Wx. In order to handle the rekey request, the analysis from
the FBCL at the key server determines that one backup key
and replica needs to be generated in anticipation of this re-
quest. As shown in Figure 5 the key server creates a new
backup key K2, for the group U2, and transmits this key to
the data server where it is kept in a secret registry. On re-
ception of the new backup key KB and instructions to repli-
cate DK2 , the data server proceeds to create a new copy of
DK2 that it reencrypts with KB . In order to maintain copy
consistency, updates on DK2 are checkpointed onto DKB

by

periodically replicating DK2 and reencrypting it with KB to
obtain an updated version of DKB

.
As shown in Figure 6, when the key server receives a de-

parture request during Wx it proceeds to destroy the primary
copy and assign K2 the value of KB . The primary is replaced

Figure 5. Initial Replacement Scenario with no
Update Requests

with the next backup copy in line (in this case DK2 ← DKB
)

and the new key K2 ← KB is broadcast to the users remain-
ing in the group. Finally the key server creates a new backup

Figure 6. Scenario in which u21 departs

key, KB , that it transmits to the data server and as before the
data server creates a new backup copy DKB

in anticipation
of future requests.

4. Prototype and Performance Evaluation

This section presents the prototype implementation of our
proposed framework and experimental results evaluating its
performance with respect to a basic key management (BKM)
scheme that is not supported by the paradigm of autonomic
computing. We implemented the prototype as though the
access control hierarchy were comprised of only one single

class. This simplifies the evaluation process since handling
several nodes in the hierarchy requires a scheduling algo-
rithm that determines a priority for satisfying requests in a
way that minimizes the overall cost of replication and rekey-
ing. A single node still allows us to evaluate the impact of
autonomic control on KM.

We evaluate the performance and scalability of the SPKM
framework proposed in this paper with a set of experiments
conducted on an IBM Pentium IV computer with an In-
tel 3.00GHz processor and 1GB of RAM. Our evaluation is
conducted on a write-intensive file to simulate a scenario in
which re-encryption for data security is necessary. Therefore,
we do not compare our approach with the lazy re-encryption
technique which, as we mentioned before, is better suited to
read-intensive scenarios. Our performance evaluation uses
the following metrics - the response time, cost of message
communications (update costs), percentage of requests satis-
fied, cost of replication, and the size of the window of vulner-
ability. The experiments are not exhaustive, but give an intu-
ition about the general performance of the schemes. Results
for each case are obtained from averages over 10 runs, with
random numbers of rekey requests expressed as proportions
of a user group with a maximum of 100 members and files
(primary and backup copies of shared data) of size≈ 32MB.

4.1. Prototype Description

Our prototype is built on the Microsoft Windows XP plat-
form using the Java 2 Standard Development Kit and Eclipse
[27, 28]. The prototype is designed in the form of a chat sys-
tem using socket programming and a client-server model. In
the access control class, the clients play the role of users and
the server that of the key and data server, supplying both keys
and allowing access to data. In out prototype, the server
generates Triple DES (Data Encryption Standard) encryp-
tion/decryption keys and keeps an encrypted log file of the
group’s communications.

The clients (users) communicate via the server and all
communications are saved into a log file. Access to the log
file is granted only if a user holds the correct group key. Once
the server is initialized it waits until it receives a connec-
tion request at which point it checks to ensure that it has a
free socket. If this is the case, it spawns a thread that al-
lows the client to connect to it. The server then displays the
current group key on the client’s message board as well as the
communications that have occurred since the client joined the
group. A client disconnects from the group by transmitting a
‘BYE’ message to the server. On reception of the ‘BYE’ mes-
sage, the server closes its connection to the user from whom
the message was emitted and broadcasts a message, indicat-
ing the departure event as well as the updated group key, to
the other group members.

The prototype starts off the adaptive model by using the
initial connection and disconnection requests to collect data
empirically. This data is stored in a file that serves as the
knowledge base for the server and the server uses this data to

start running the FBCL that performs adaptive KM.

4.2. Experiments

In the first experiment we evaluate the comparative re-
sponse times per request of the BKM and SPKM schemes
with respect to the rekey request arrival rate. Response time
is the time the server takes to generate a new key, re-encrypt
the data and transmit the key to the users left in the group.
The size of the monitoring window is set statically to a value
of 60 seconds. The sum of rekey requests is computed by
adding the number of requests that arrive during the monitor-
ing period and computing the arrival rate using equation (1).
The experiment was repeated 10 times for each case with an
average interval of 2 to 5 seconds between each request, and
the results averaged and plotted in Figure 7. The error bound
for each point plotted is ±4 seconds in the BKM scheme and
±1 seconds in the SPKM scheme. The response time in the

Figure 7. Average Request Satisfaction Time

BKM scheme grows linearly with an increasing arrival rate
of rekey requests. By contrast, in the SPKM scheme, little or
no additional time is required to handle an increasing arrival
rate. This is an indication that the response time in the BKM
scheme is affected by an increased arrival rate of rekey re-
quests due to the fact that the server is interrupted every time
a rekey request occurs. Each interruption requires restarting
the key generation and re-encryption process so, in cases of
high rekey request arrival rates, the server takes longer, on
average, to respond to a rekey request. By contrast, in the
SPKM scheme, since the key server replicates the primary
copy of the file and creates supporting keys, on average, re-
sponse time is equivalent to the time it takes to transmit the
new key. Moreover, the SPKM scheme further minimizes its
key replacement costs by adaptively adjusting the number of
replicas in response to the arrival rate of rekey requests.

Our second experiment evaluates the size of the window
of vulnerability created in both the BKM and SPKM schemes
during rekeying. The window of vulnerability is a sum of the
time it takes a user to commuicate a departure request to the
server and the response time. We ran each experiment 10

times, each time over a 60 second time window and the re-
sults were averaged and plotted in Figure 8. The error bound
for each of the plotted bars is±0.5 seconds. We noted that the

Figure 8. Variation in Vulnerability Window
Size with Respect to Request Arrival Rate

size of the vulnerability window in the BKM scheme grows
linearly with an increasing arrival rate of rekey requests. By
contrast, in the SPKM scheme, little or no additional time is
required to handle an increasing number of rekey requests.
This supports the result we obtained in the first experiment
where an accumulation of rekey requests in the basic scheme
results in a longer average response time per request. We note
also that the SPKM scheme not only overcomes the draw-
back of delayed response times in the BKM scheme but also
makes for better security by reducing the size of the window
of vulnerability between rekey requests.

Finally, we discuss the processing cost incurred by the
server. We noted that for an average rekey request arrival rate
of 0.256 requests/second the SPKM scheme uses an average
of four replicas against one in the BKM scheme. The aver-
age time spent updating the replicas is 0.17 seconds in the
BKM scheme as opposed 6.6 seconds in the SPKM scheme.
However, the SPKM scheme makes up for its shortcomings
on the replication and update side by satisfying an average
of 52.27% of the requests during the 60 second montoring
interval while the basic scheme only satisfies 20.96%. In
fact in our experiments when the arrival rate was 0.5 re-
quests/second during the 60 second monitoring interval, the
basic scheme satisfied less than 1% of the requests it received
while the adaptive scheme initially, (i.e. before adjusting to
the new rate) satisfied 12.67% of the requests. Table 1 sum-
marizes the results.

5. Conclusions

In the preceding sections we outlined some of the reasons
behind the hesitancy to adopt the autonomic computing para-
digm into security frameworks. For reasons pertaining to cost
and credibility, business owners prefer to have control over
their security mechanisms. Our aim therefore, was to argue

Table 1. KM Schemes: Comparison
BKM SPKM

Replication 1 4
Update Costs (seconds) 0.17 6.6

% Requests Satisfied 20.96 52.27

that self-protecting approaches can enhance the performance
of standard KM schemes without necessarily changing their
underlying specifications and make the job of the SA easier.

We considered the problem that arises in shared data sce-
narios where access is controlled with a CKM scheme. In
these scenarios, several users hold a secret key that is used to
encrypt commonly accessible data. When group membership
changes, data security is maintained by updating the shared
group key and transmitting the updated key to the users re-
maining in the group. Hence, KM is expensive when changes
occur frequently and involve large amounts of data.

In order to address this problem we proposed a simple but
effective SPKM framework based on the autonomic comput-
ing paradigm. The framework enhances the capabilities of
a standard CKM scheme with a combination of a stochastic
model and replication. The stochastic model determines an
acceptable degree of replication to maintain based on an ob-
served arrival rate and the potential impact of checkpointing
on the overall performance of the system. Backup replicas
and keys are generated to preemptively handle situations of
high demand making for better performance than in standard
schemes. The SA now only has to preset required parameters
and let the system run, without having to be present to man-
ually handle every change. Experimental results show that,
in comparison to the BKM approach, the SPKM approach
reduces the vulnerability window and response time while
increasing data availability.

Regarding the security of the scheme, if we assume that a
key generated using the Triple DES (Data Encryption Stan-
dard) scheme is secure then it is safe to say that both the BKM
and SPKM schemes are secure in the sense that the SPKM
scheme only enhances the performance of the BKM scheme
by adding in data replication. Checkpointing on backup repli-
cas is secured by ensuring that updates are accepted only
from the primary replica. Rekeying results in a destruction
of the primary replica associated with the updated key and
the selection of a new primary copy by the server. Poten-
tial applications of this model, outside the realm of security,
include replication for fault tolerance and performance ad-
justments to meet quality of service demands in Web-based
environments.

Future work will involve further implementation and ex-
perimentation throughout the entire hierarchy aimed at eval-
uating the performance of the SPKM approach against the
BKM approach. Other challenges include finding other sta-
tistical distributions that are more effective than the Poisson
model in modeling rekey arrival rates, and finding a good

way to define adequate monitoring thresholds. We also need
to find a better prediction model for computing arrival rates.
An example would be to compute a moving average as op-
posed to using the maximum arrival rate. Issues of copy con-
sistency can also arise in situations where there is a high vol-
ume of communications between users (frequent updates on
the primary copy) and rekey requests occur within very short
intervals of each other.

References

[1] S. G. Akl and P. D. Taylor. Cryptographic solution to a prob-
lem of access control in a hierarchy. ACM Transactions on
Computer Systems, 1(3):239–248, August 1983.

[2] M. Atallah, K. Frikken, and M. Blanton. Dynamic and effi-
cient key management for access hierarchies. In Proceedings,
ACM Conference on Computer and Communications Secu-
rity, pages 190–202, 2005.

[3] G. Ateniese, A. De Santis, A. Ferrara, and B. Masucci.
Provably-secure time-bound hierarchical key assignment
schemes. In Proceedings of 13th ACM Conference on Com-
puter and Communications Security (CCS’06), pages 288–
297, 2006.

[4] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved
proxy re-encryption schemes with applications to secure dis-
tributed storage. ACM Transactions on Information and Sys-
tem Security (TISSEC), 9(1):1–30, February 2006.

[5] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols
and atomic and atomic proxy cryptography. In Proceedings of
Eurocrypt ’98, 1403:127–144, 1998.

[6] D. Chess, C. Palmer, and S. White. Security in an autonomic
computing environment. IBM Systems Journal, 42(1):107–
118, 2003.

[7] H.-Y. Chien. Efficient time-bound hierarchical key assign-
ment scheme. In Proceedings. IEEE Transactions on Knowl-
edge and Data Engineering, 16(10):1301–1304, 2004.

[8] J. Crampton. Cryptographically-enforced hierarchical access
control with multiple keys. In Proceedings of 12th Nordic
Workshop on Secure IT Systems (NordSec 2007), pages 49–
60, 2007.

[9] J. Crampton, K. Martin, and P. Wild. On key assignment for
hierarchical access control. In Proceedings, 19th IEEE Work-
shop on Computer Security Foundations, S. Servolo Island,
Italy, pages 98–111, 2006.

[10] M. Das, A. Saxena, V. Gulati, and D. Phutak. Hierarchical key
management scheme using polynomial interpolation. SIGOPS
Oper. Syst. Rev., 39(1):40–47, 2005.

[11] A. De Santis, A. Ferrara and B. Masucci. New constructions
for provably-secure time-bound hierarchical key assignment
schemes. In Proceedings of 12th ACM Symposium on Access
Control Models and Technologies (SACMAT’07), pages 133–
138, 2007.

[12] M. H. DeGroot and M. J. Schervish. Probability and Statis-
tics. Addison Wesley, Third Ed., New York, 2002.

[13] R. Hassen, A. Bouabaallah, H. Bettahar, and Y. Challal. Key
management for content access control in a hierarchy. Com-
puter Networks, 1(51):3197–3219, 2007.

[14] P. Jalote. Fault Tolerance in Distributed Systems. Pearson
Education: Prentice Hall, NJ, 1998.

[15] S. Johnston, R. Sterritt, E. Hanna, and P. O’Hagan. Reflex au-
tonomicity in an agent-based security system:: The autonomic
access control system. In Proceedings, 4th IEEE International
Workshop on Engineering of Autonomic and Autonomous Sys-
tems (EaSe’07), pages 68–78, 2007.

[16] A. Kayem, S. Akl, and P. Martin. On replacing cryptographic
keys in hierarchical key management schemes. Journal of
Computer Security, 16(3):289–309, 2008.

[17] A. Kayem, P. Martin, and S. Akl. Heuristics for improving
cryptographic key assignment in a hierarchy. In Proceedings,
3rd IEEE Int’l Symposium on Scecurity in Networks and Dis-
tributed Systems, pages 531–536, 2007.

[18] J. Kephart. Research challenges of autonomic computing. In
Proceedings of 27th International Conference on Software en-
gineering, St. Louis, MO, USA, pages 15–22, 2005.

[19] J. Kephart and D. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

[20] S. J. Mackinnon, P. D. Taylor, H. Meijer, and S. G. Akl. An
optimal algorithm for assigning cryptographic keys to control
access in a hierarchy. IEEE Transactions on Computers, c-
34(9):797–802, September 1985.

[21] M. Mat Deris, J. Abawaly, and A. Mamat. An efficient repli-
cated data access approach for large-scale distributed systems.
Future Generation Computer Systems, (In Press.) 2007.

[22] M. Mat Deris, J. Abawaly, and A. Mamat. Rwar: A re-
silient window-consistent asynchronous replication protocol.
In Proc. 2nd Int’l Conf. on Availability, Reliability and Secu-
rity, pages 499–505, 10-13 April 2007.

[23] A. Moreno, D. Sanchez, and D. Isern. Security measures in
a medical multi-agent system. Frontiers in Artificial Intelli-
gence and Applications, 100:244–255, 2003.

[24] N. Post. Credit card information stolen from winners.
http://www.canada.com/nationalpost/story.html, Jan. 2007.

[25] I. Ray and N. Narasimhamurthi. A cryptographic solution
to implement access control in a hierarchy and more. In Pro-
ceedings. 7th ACM Symposium on Access Control Models and
Technologies, Monterey, CA, pages 65–73, 2002.

[26] V. Shen, T. Chen, and F. Lai. A novel key management scheme
based on discrete logarithms and polynomial interpolations.
Computers and Security, 21(2):164–171, 2002.

[27] E. Software. Eclipse. http://www.eclipse.org/, Jan. 2008.
[28] TechRepublic. Java (sun),http://software.techrepublic.com./.

Sept. 2007.
[29] S.-Y. Wang and C.-S. Laih. Merging: An efficient solution

for time-bound hierarchical key assignment scheme. IEEE
Transactions on Dependable and Secure Computing, 3(1):91–
100, 2006.

[30] C. Yang and C. Li. Access control in a hierarchy using one-
way functions. Elsevier: Computers and Security, 23:659–
644, 2004.

[31] X. Yi. Security of chien’s efficient time-bound hierarchical
key assignment scheme. IEEE Transactions on Knowledge
and Data Engineering, 17(9):1298–1299, September 2005.

[32] X. Yi and Y. Ye. Security of tzeng’s time-bound key assign-
ment scheme for access control in a hierarchy. IEEE Transac-
tions on Knowledge and Data Engineering, 15(4):1054–1055,
January 2003.

[33] S. Zhong. A practical key management scheme for access
control in a user hierarchy. Computers and Security, pages
750–759, 2002.

