
The WSDM of Autonomic Computing: Experiences in Implementing
Autonomic Web Services

P. Martin1, W. Powley1, K. Wilson2, W. Tian1, T. Xu1 and J. Zebedee1

1School of Computing

Queen’s University
Kingston, ON

{martin, wendy, tian, ziqiang,
zebedee}@cs.queensu.ca

2CA Inc
Sugar Hill, New Hampshire

Kirk.Wilson@ca.com

Abstract

There is a strong relationship between proposed
frameworks for autonomic computing, such as the IBM
Blueprint for Autonomic Computing, and the Web
Services Distributed Management (WSDM) standard
proposed by OASIS. We examine this relationship
through a description of our efforts to implement an
autonomic Web service using WSDM. The example
autonomic Web service is based on our Autonomic
Web Service Environment (AWSE) framework. We
explain how WSDM is used to implement the AWSE
components and evaluate the results of the exercise.
We present the lessons we learned in carrying out the
implementation effort and draw general conclusions
concerning the relationship between autonomic
computing and WSDM.

1. Introduction

Advances in software technologies and practices
have enabled developers to create larger, more
complex applications to meet the ever increasing user
demands. In today’s computing environments, these
applications are required to integrate seamlessly across
heterogeneous platforms and to interact with other
complex applications. The unpredictability of how the
applications will behave and interact in a widespread,
integrated environment poses great difficulties for
system testers and managers.

Autonomic computing proposes a solution to
software management problems by shifting the
responsibility for software management from the
human administrator to the software system itself. It is
expected that autonomic computing will result in
significant improvements in terms of system
management, and many initiatives have begun to

incorporate autonomic capabilities into software
components. For autonomic computing to be
successful, however, vendors must agree upon a
common standards-based approach [3].

The Web Services Distributed Management
(WSDM) standard [12] is a common management
centric interface for a Web services-based
environment. It has been identified as an important
milestone for autonomic computing for several reasons
[4]: WSDM has broad industry support; WSDM
provides a necessary management interface to a key
technology, and WSDM allows system management
platforms to exploit the features of service-oriented
computing.

We believe that an important next step towards the
realization of the autonomic computing vision is a
practical investigation of the suitability of standards
like WSDM for implementing that vision. This paper
presents the results of such an investigation in which
we re-implemented a prototype system called
Autonomic Web Services Environment (AWSE) [15] to
be compliant with the WSDM standard. The main
contributions of the paper are, therefore, a description
of our experiences and a summary of the lessons
learned in performing the reimplementation.

The remainder of the paper is structured as follows.
Section 2 provides background material on autonomic
computing and WSDM. Section 3 outlines AWSE and
Section 4 describes how WSDM was used to re-
implement our AWSE prototype. Section 5 examines
our experiences in using WSDM to implement an
autonomic computing system and Section 6
summarizes the paper.

 - 1 -

2. Background
WSDM

Web Services Distributed Management (WSDM),
from the Organization for the Advancement of
Structured Information Standards (OASIS), specifies
how the manageability of resources is made available
to management clients by means of Web services.
WSDM is based on the fact that Web services
technology provides an open, standard platform on
which to base management infrastructure. WSDM,
which is built on top of the OASIS WS-
ResourceFramework [6] and WS-Notification [8]
family of standards, provides a general specification
for management using Web services, referred to as
MUWS [10], and a specific application of MUWS to
the management of Web services, referred to as
MOWS [11]. MUWS defines how any resource can
use Web services technologies to expose a
manageability interface. MOWS addresses how a Web
service as a resource can be managed by means of
MUWS. In this paper, we focus on the use of MUWS
to manage components other than the Web services in
a Web services environment. The implementation of
MOWS to manage the Web services is left to future
work.

WSDM is based on a model-independent
conception of Web service management of IT sources.
Under WSDM, it does not matter how individual
resources are modeled, as long as they expose their
manageability capabilities in a standard way. The
WSDM standard describes a set of manageability
capabilities that may be exposed by resources. Each
such capability is a specific set of properties,
operations, and events. For example, the
manageability capability of Operational Status, which
is used to monitor the health of a resource, is defined
by an OperationalStatus property, whose values are
enumerated in the specification (available, partially
available, unavailable or unknown), as well as by an
event type by which managers are alerted to
operational status changes of the resource. A resource
that implements the Operational Status manageability
capability announces itself as exposing the
OperationalStatus property as defined in WSDM and
(optionally) any related events. Other WSDM
manageability capabilities suitable for autonomic
computing include Metrics (for interfacing metric and
statistical data), Configuration (by which resources
expose configurable properties and managers can set
those properties), and Relationships (by which
resources expose their relationships to other
resources).

Autonomic Computing
The Autonomic Computing initiative, spawned in

2001 by IBM, is a proposed solution to the growing
complexity of managing large computing systems [2].
The vision is to enable complex networked systems to
manage themselves without direct human intervention.

An autonomic computing system manages itself in
accordance with high level business objectives, as well
as policies and rules specified by human
administrators. Autonomic computing systems are
self-configuring, self-healing, self-optimizing and self-
protecting.

An autonomic manager provides the management
capabilities of a resource, or a set of resources, called
managed elements [3] A managed element may be
any type of resource, hardware (eg. storage units,
servers) or software (eg. DBMS, custom application),
that is observable and controllable.

An autonomic manager implements one or more
intelligent control loops to perform self-management
tasks. The feedback loop consists of four components,
namely Monitor, Analyze, Plan and Execute, which are
sometimes referred to as the MAPE loop. Sensors
provide mechanisms to collect information about the
current state of an element. Effectors are mechanisms
that change the state or configuration of an element.
Central to all of the MAPE functions is knowledge
about the system such as performance data reflecting
past, present and expected performance, system
topology, negotiated Service Level Agreements
(SLAs), and policies and/or rules governing system
behaviour.

Autonomic managers rarely operate in isolation;
they cooperate with other managers to maintain overall
system performance, thus requiring communication
between autonomic managers. If external management
capabilities are required for a component, management
interfaces to the autonomic manager must be exposed.

3. AWSE

AWSE is an Autonomic Web Services Environment,
which is capable of self-management to ensure Service
Level Agreement (SLA) compliance [15]. AWSE is
comprised of many sites, each site consisting of a
collection of components and resources necessary for
hosting Web services provided by an organization.
Individual components, HTTP servers, application
servers, database servers, and Web service
applications, each have one or more associated
autonomic managers.

The original AWSE framework consists of a
hierarchy of autonomic managers to facilitate overall
system management. The higher level managers query

 - 2 -

lower level managers to acquire current and past
performance statistics, consolidate the data from
various sources, and use pre-defined policies and
SLAs to assist in system-wide management. At the
highest level, a site manager, also an autonomic
manager, monitors the overall performance of the site
and provides service provisioning and management of
the components, if necessary, to ensure overall system
performance. Autonomic managers, therefore, must be
able to communicate to share information.

The initial AWSE prototype was a single site
consisting of an HTTP server, an application server
and a database management system (DBMS) backend
server. The deployed Web service retrieves data from
the DBMS. The HTTP server and the application
server reside on a single machine with the DBMS on a
separate machine. The site manager may reside on
any node. The structure of the prototype is shown in
Figure 1.

We implemented a single overall manager for each
component that oversees a specific resource of that
component. For example, the autonomic manager for
the DBMS controls the DBMS buffer pools and the
autonomic manager for the Web service controls the
size of the pool of database connections used by the
Web service. The autonomic managers implement the
standard MAPE loop using a reflective database-
oriented framework as described in detail elsewhere
[14].

A reflective system maintains a model of self-
representation and changes to the self-representation
are automatically reflected in the underlying system.
In our case, the self-representation embodies the

current configuration settings for the managed element,
which control the performance of the element.

The rich capabilities of a Database Management
System (DBMS) are used for data storage, creation of
a knowledge base, and for controlled execution of the
logic flow in the system. The system knowledge base
includes system topology, performance metrics,
component-based and system wide policies, and the
expectations, or system goals. Knowledge used by the
MAPE loop is stored in a set of database tables that
can be accessed internally by the autonomic element,
or externally by other autonomic managers via
standard interfaces. DBMS techniques such as triggers
and stored procedures are used to implement the logic
flow of the autonomic manager.

Although an autonomic component may appear to
be performing well in isolation, it may not be
functioning efficiently in an integrated environment
with respect to overall system objectives. An
autonomic environment requires control at the system
level to achieve system-wide goals. System level
control is implemented by the AWSE site manager.

The site manager requires information about the
individual components and the nodes on which they
reside to make appropriate decisions regarding
resource provisioning or load balancing. A single
Management Web service provides access to the
information about components residing on a site. This
Web service provides two management interfaces; the
Performance Interface and the Goal Interface.

DBMS

Management
Web Service

Performance Interface {
putPerfData()

getCurrentData()
getMetaData()

}

Goal Interface {
setGoal()
getGoal()

getMetaData()
}

Site
Manager

Site
Manager

Web Service

HTTP Server

Performance
Data

(dbms)

Goals
Policies

Self_Representation

Analyzer_Result

Performance
Data

(web service)

Knowledge
Repository

Performance
Data
(http

server)

DBMS

Management
Web Service

Performance Interface {
putPerfData()

getCurrentData()
getMetaData()

}

Goal Interface {
setGoal()
getGoal()

getMetaData()
}

Site
Manager

Site
Manager

Web Service

HTTP Server

Performance
Data

(dbms)

Goals
Policies

Self_Representation

Analyzer_Result

Performance
Data

(web service)

Knowledge
Repository

Performance
Data
(http

server)
Performance

Data
(dbms)

Goals
Policies

Self_Representation

Analyzer_Result

Performance
Data

(web service)

Knowledge
Repository

Performance
Data
(http

server)

Figure 1: Original AWSE Architecture

 - 3 -

The Performance Interface exposes methods to

retrieve, query and update performance data for a
given component. Meta-data methods allow the
discovery of the type of data that is stored for each
component. The Goal Interface provides methods to
query and establish the goals for an autonomic
element, thus allowing external management of a
component. Meta-data methods promote the discovery
of associated goals.

4. WSDM Augmentation

We used Apache MUSE Version 1.0 [1] to facilitate
the reimplementation of AWSE to meet the WSDM
(MUWS) standard. The main focus of WSDM is the
manageable resource, which is a resource that exposes
its manageability in a standard conformant way. In our
AWSE implementation, a manageable resource is a
component such as the DBMS, the HTTP server, or a
Web service. We therefore had to replace the single
management Web service used in AWSE with multiple
management Web services, one for each component.

Management information for each manageable
resource is accessible through a Web service endpoint,
or an Endpoint-reference (EPR), as defined in the WS-
Addressing standard [13]. The EPR provides a
location for the site manager, or other components, to
communicate with the manageable resource by means
of SOAP messages.

Manageable resources in WSDM are described
using XML in a resource properties document [7].
This document specifies the resource properties that
support the manageability capabilities exposed by the
managed resource. In AWSE, the self-representation
of the system, that is, the current configuration settings
for the managed resource, maps directly to the resource
properties in WSDM. The component performance
goal is also specified as a resource property. MUSE
automatically generates the WSDM pre-defined
capabilities, whereas component specific
manageability capabilities are specified by the
developer.

AWSE assumes that individual component
performance data is exposed to other components,
including the site manager. WSDM provides support
for defining performance data using the concept of a
Metrics capability. The Metrics capability supports
metric information relevant to the performance and
operation of the resource and allows the specification
of metrics associated with each resource. Metrics
properties are specified in the resource properties
document. For a complex component such as a
DBMS, there may be several thousand metrics

requiring specification. The metrics capability of
WSDM allows specification of the data type and
collection interval.

The implementation of the management Web
service provides access to the management information
for the manageable resource. WSDM specifies a
standard manageability interface that allows access to
the properties of the manageable resource, and
provides external management of the resource. This
interface is similar to, and directly replaced, the initial
AWSE Management interface as shown in Figure 1.
For our prototype implementation of AWSE, the
specification of the getResourceProperty() and the
setResourceProperty() methods were sufficient for our
prototype autonomic managers. Replacing AWSE’s
common management interface with the WSDM
interface for each component required additional
programming and increased the amount of required
code.

Using MUSE, the developer must implement the
back-end code for the Web service methods to do the
retrieval or update of the resource property value(s).
As this functionality was already implemented in the
original AWSE prototype, it was transferred relatively
easily to the WSDM version.

Besides querying and configuring resources, using
WSDM, the site manager can “subscribe” to receive
event notifications when certain changes occur to a
resource. Once subscribed, if the value of a property
exposed by this capability changes, a notification is
sent to the subscriber. In our AWSE implementation,
we allow each manageability capability to have an
associated WS-Notifications topic, which means that
the site manager (or, in fact, any interested component)
can subscribe to events regarding this capability by
means of this topic. This mechanism allows the site
manager to be kept informed of modifications in the
system environment and, if necessary, to react
accordingly.

The notification mechanism relies on the
specifications within the WS-BaseNotification
standard [9] and requires that both parties be able to
exchange SOAP messages. This requirement meant
that the original AWSE site manager, which was
implemented as a simple control-panel type interface,
had to be re-implemented as a Web service to allow it
to subscribe to, and receive notifications from, a
component. In addition, in order to generate
notification events, it was necessary to re-route the
internal call to insert new performance data into the
knowledge base through the management web service
interface.

 - 4 -

5. Evaluation and Discussion

We first evaluate the resulting AWSE-WSDM
prototype with respect to three criteria: WSDM’s
implications for the architecture of the management
system, WSDM’s support for the MAPE loop, and the
amount of complexity introduced by compliance with
WSDM. We then discuss the lessons learned in this
exercise.
Impact on the System Architecture

An industry-touted advantage of standards is that
their interfaces are “implementation independent.”
This claim, however, is only partially true. Interfaces
carry implicit constraints regarding their possible
implementation architectures. For example, WSDM is
designed for a distributed architecture. This
“paradigm” application architecture had a significant
impact on the AWSE architecture. AWSE originally
provided a single Web service access to all
components residing on a site. This architecture could
not be maintained under the WSDM implementation.
We were required to provide separate implementations
of the WSDM interface for each component of the
system, thereby producing a distributed architecture.

A more subtle impact occurs with respect to our
original database-oriented approach. The
implementation of notifications forced several
architecture and programming changes. In particular,
because the MAPE logic was implemented in the
database component configuration changes were
initiated by updating the component’s self-
representation in the knowledge base. This update then
triggered the actual change to the component. The
WSDM interface must be made aware of this change in
order to generate a notification. Thus, the call to
update the data in the self-representation table had to
be re-routed through the WSDM Management Web
service.

We see that the paradigmatic architecture on which
the WSDM interface specification is based implicitly
involves an encapsulated representation of the resource
within the resource itself and that the MAPE logic
must reside in the manager. The original AWSE
database structures must be moved into the software
for the best match to the WSDM specification,
although such architectural considerations are never
specified in the WSDM standard.
Support for MAPE Loop

Considering WSDM’s support for the MAPE loop,
we found WSDM particularly useful for the
interactions among autonomic managers. In our current
implementation, WSDM does not, for the most part,
affect the internal communication among parts of an

autonomic element, or their internal logic flow
(although this may change in future work as well).

WSDM provides standard methods for discovering
the management interface presented by a management
client, which is needed if Web services are to be
composed dynamically. We use the management
capabilities feature of WSDM to describe the reflective
self-representation of a managed element and to
expose it to other managers. We found that the WSDM
metrics are a convenient way to represent the
performance data available from a manager. We also
found that the notifications available with WSDM
enhance the interactions among managers in AWSE.

It is interesting to note the different role WSDM
plays in our reimplementation of AWSE compared to
the proposal by Kreger and Studwell [4]. They outline
the use of WSDM to provide a manageability interface
for a managed element to an autonomic manager. Our
work, on the other hand, focused on using WSDM as it
pertains to interfaces between managers. The
autonomic manager in AWSE presents a manageability
interface to allow interaction with other managers. It is
expected that in moving to the next generation of
AWSE architecture (as described above), we will
employ a WSDM interface layer between the managed
element (resource) and the autonomous manager.
Amount of Complexity

Considering the the amount of complexity
introduced by compliance with WSDM, we found that
making our autonomic managers WSDM compliant by
using Apache MUSE [1] increased their size
significantly. For example, the number of lines of Java
code in the implementation of our DBMS autonomic
manager was almost doubled. We expect the
complexity of both the architecture and the code to
increase in the next generation of AWSE.

Our conversion effort, which is described in Section
4, involves five steps. The first step is the creation of
WSDL and XSD documents to describe the WSDM
Web service and the properties of the managed
resource. The second step is stub generation for the
Web service using Apache MUSE. The third step is the
modification of the stubs to work with our specific
resource. The fourth step is the creation of a Backend
object to directly manage the resource. The fifth step is
the creation of Callback objects to connect each
resource property in the WSDM Web service to the
Backend object. The approximate numbers of new
lines of Java code associated with each of the steps for
our DBMS autonomic manager are shown in Table 1.
We note that approximately one third of the new lines
of code required for WSDM, namely the Java stubs,
were generated automatically by Apache MUSE and
that these stubs required only a small amount of

 - 5 -

modification. We also note that, of the remaining
roughly 1200 lines of written Java code, only 38% was
actually original code. The rest of the written code was
taken from provided templates or replicated in multiple
locations. We also note that the amount of additional
Java code required for WSDM depends upon the
number of resource properties being managed and on
the number of notification topics used. The DBMS
autonomic manager, for example, has ten resource
properties and nine custom notification topics.

Step 1: WSDM and XSD
documents

270 lines (written)

Step 2: Java stubs 680 lines (generated)
Step 3: Stub modifications 80 lines (written)
Step 4: Backend object 350 lines (written)
Step 5: Callback objects 500 lines (written)

Table 1: Additional lines of code for DBMS

autonomic manager

We can also consider the additional complexity

involved in WSDM compliance in terms of the number
of communication levels involved in processing a
client request. In our original version of AWSE, a
client request involved four levels of communication.
A request is sent from the Web service client to the
Apache Tomcat Web container. Tomcat passes the
request to Apache Axis, which in turn invokes a
method from our Manager Web Service. The Manager
Web Service then passes the request to the managed
resource for processing. Replies in turn travel back
through the four levels.

In the case of our AWSE-WSDM version, a request
travels through six levels of communication. A request
is sent from a Web service client to the Apache
Tomcat web container. Tomcat hands it off to Apache
MUSE, which deconstructs the SOAP message and
routes the request to the Manager Service through the
appropriate Java method call. The Manager Service
communicates with the managed resource along a path
through the Callback objects and the Backend object.
The Backend object is responsible for communicating
directly with the managed resource. Replies in turn
travel back through the six layers before reaching the
client.

We conducted experiments to measure the
performance, in terms of requests per minute, of our
AWSE-WSDM implementation compared with the
original AWSE implementation. The two versions
were run with the same workload for fifteen minutes
and the overall performance, in terms of requests per
minute was calculated. The workload was an online

transaction processing workload that involved short
query and update requests. The experimental setup
consisted of two identical machines (P4 2.8GHZ CPU
and 1 GB of RAM) with the database server on one
machine and the remaining components plus the
workload generator on the other machine.

We saw that the performance of AWSE-WSDM
was 7% lower than that of the original version. We
believe that the decrease in performance is due
primarily to the increased load placed on the
application server component of ASWE-WSDM. As
explained above, in order to provide notifications, we
had to change the structure from the original version
such that calls to insert new performance data or to
implement changes to the component’s configuration
are now routed through the WSDM manager. These
calls are internal in the original version of AWSE. We
did not see any evidence of a significant performance
decrease due directly to the extra communication
levels imposed by WSDM.
Lessons Learned

Our experiences in converting AWSE to be
WSDM-compliant taught us a number of lessons. First,
WSDM’s standard interface supported our
expectations for autonomic computing. The interface
allows for easier expansion, which in turn supports
scalability. The interface also facilitates dynamic
adaptation since it allows an element to discover, and
then interact with, previously unknown components.

Second, there is a steep learning curve in order to
adopt WSDM, as in learning any new architecture.
There are several aspects to WSDM (MOWS and
MUWS) and WSDM, in turn, is based on other
standards such as WS-Addressing, WS-Notification,
and WS-RF. All of the WSDM standards continue to
evolve, and we found this added to the difficulty in
learning the technology. We also found that this meant
that the tools were often behind the standards, and did
not support some of the recent features.

Third, WSDM provides a more effective method of
communication among components than previously
used in AWSE, which employed basic request-
response interactions. WSDM also supports the use of
subscriptions and notifications. This is well-suited to
the interactions between sensors and managers.

Fourth, perhaps the most significant lesson that was
learned was coming to appreciate the “paradigmatic”
architecture implicit in the WSDM specification.
WSDM supports a distributed management
architecture. The database-oriented approach used in
AWSE is, in retrospect, not a good match to WSDM
since the logic flow is modeled using DBMS facilities.
We therefore had to make a number of adjustments to
AWSE to make it fit with WSDM and these

 - 6 -

adjustments impacted performance. A more loosely-
coupled approach, based on distributed actors, is a
more natural fit to WSDM. We plan to investigate this
kind of approach in the future.

Fifth, along with the distributed management
architecture, we see that WSDM can support different
models of control. AWSE supports only a hierarchical
model of control where there is a strict hierarchy of
managers with the site manager at the root. Our
WSDM version of AWSE supports this hierarchical
model of control. WSDM can also, however, be used
to provide a peer-to-peer model of control where all
managers are at the same level and cooperate to arrive
at a common management decision.

6. Summary

The success of the autonomic computing paradigm
hinges upon the adoption of common standards for the
development and deployment of autonomic computing
systems. The Web Services Distributed Management
(WSDM) standard from OASIS appears to be a
standard that is closely linked with much of the
functionality envisioned for autonomic computing
systems. Practical investigations of the suitability of
standards like WSDM for implementing autonomic
computing systems are therefore needed to enhance
progress in the area. In this paper, we describe our
experiences using WSDM to implement a prototype
Autonomic Web Service Environment (AWSE).

The use of WSDM added significantly to the
amount of code involved in the implementation of our
autonomic managers. The majority of this code,
however, was either generated by the tools we used, or
was code that was replicated in multiple locations. The
amount of original code required to accommodate
WSDM was not large, nor was it difficult to produce.

Processing client requests involved an additional
two levels of communication among components in
AWSE-WSDM than in our original implementation.
We do not believe that this extra communication
significantly increased the system overhead. We found,
however, that compliance with WSDM did force us to
adopt more indirect logic in some places, which did
cause more system overhead.

We also observe that, while standards such as
WSDM are meant to be “implementation-
independent”, they involve implicit assumptions and
constraints that dictate aspects of their
implementations. In the current implementation, we
adapted AWSE in several places where it did not mesh
well with this implicit model. Future work will
investigate further re-architecting of AWSE to

conform to the implicit implementation constraints of
the WSDM standard.

7. References
[1] Apache MUSE http://ws.apache.org/muse/.
[2] Ganek, A.G., Corbi, T.A.: The Dawning of the

Autonomic Computing Era, IBM System Journal,
V(42), N(1), (2003).

[3] IBM, “An Architectural Blueprint for Autonomic
Computing”, June 2005, http://www-
03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper
_4th.pdf.

[4] Kreger, H. and Studwell. T. “Autonomic Computing and
Web Services Distributed Management”, June 2005,
http://www-
128.ibm.com/developerworks/autonomic/library/ac-
architect/.

[5] OASIS, http://www.oasis-open.org
[6] OASIS, “WS-ResourceFramework”. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrf.
[7] OASIS, “Web Services Resource Properties 1.2 (WS-

ResourceProperties)”, http://docs.oasis-
open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-
os.pdf.

[8] OASIS, “WS-Notification” http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsn.

[9] OASIS, “Web Services Base Notification 1.2 (WS-
BaseNotification)”, http://docs.oasis-open.org/wsn/wsn-
ws_base_notification-1.3-spec-cs-01.pdf.

[10] OASIS, “Web Services Distributed Management:
Management using Web Services (MUWS 1.1) Part 1”,
http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-
os.pdf; and “Web Services Distributed Management:
Management using Web Services (MUWS 1.1) Part 2”,
http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-
os.pdf.

[11] OASIS, “Web Services Distributed Management:
Management of Web Services (WSDM-MOWS) 1.1”,
http://docs.oasis-open.org/wsdm/wsdm-mows-1.1-spec-
os.pdf.

[12] OASIS “An Introduction to WSDM”, February,
2006, http://www.oasis-
open.org/committees/download.php/16998/wsdm-1.0-
intro-primer-cd-01.doc.

[13] OASIS, “Web services Addressing (WS-
Addressing)”, http://www.w3.org/TR/ws-addr-core.

[14] Powley, W., & Martin, P., "A Reflective Database-
Oriented Framework for Autonomic Managers". In
Proceedings of International Conference on Autonomic
Systems (ICAS’06), San Jose, CA, USA, July 16-19,
2006.

[15] Tian, W., Zulkernine, F., Zebedee, J., Powley, W.
and Martin, P. “An Architecture for an Autonomic Web
Services Environment”. Proceedings of the Joint
Workshop on Web Services and Model-Driven Enterprise
Information Systems WSMDEIS (ICEIS 2005), May 2005,
Miami, Fl. pp. 54-66.

 - 7 -

http://ws.apache.org/muse/
http://www-128.ibm.com/developerworks/autonomic/library/ac-architect/
http://www-128.ibm.com/developerworks/autonomic/library/ac-architect/
http://www-128.ibm.com/developerworks/autonomic/library/ac-architect/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-os.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-os.pdf
http://docs.oasis-open.org/wsdm/wsdm-mows-1.1-spec-os.pdf
http://docs.oasis-open.org/wsdm/wsdm-mows-1.1-spec-os.pdf
http://www.oasis-open.org/committees/download.php/16998/wsdm-1.0-intro-primer-cd-01.doc
http://www.oasis-open.org/committees/download.php/16998/wsdm-1.0-intro-primer-cd-01.doc
http://www.oasis-open.org/committees/download.php/16998/wsdm-1.0-intro-primer-cd-01.doc

	1. Introduction
	2. Background
	WSDM
	Autonomic Computing
	3. AWSE
	4. WSDM Augmentation
	
	5. Evaluation and Discussion
	Impact on the System Architecture
	Support for MAPE Loop
	Amount of Complexity
	Lessons Learned

	6. Summary
	7. References

