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Abstract 
 
The dynamic nature of Service-Oriented 

Architectures challenges traditional systems 

management practices which tend to be static in 

nature.  We propose a goal-oriented, agent-based 

approach to management using autonomic computing.  

In this paper we define a services management model 

that consists of a number of constructs including 

managed resources, agents, events, event streams and 

management goal graphs.  Agents accept new events 

on one or more event streams, and the arrival of an 

event triggers local processing that includes the 

generation of a new event and/or changes to the state 

of the managed system.  Simple agents are combined 

into management goal graphs to carry out complex 

management tasks.  We provide details of an 

implementation of our services management model and 

show how this model could be used in a sample 

management scenario. 

 

1. Introduction 
 

Systems management ensures the correct, efficient 

and secure operation of managed systems and 

applications. The growing popularity of Service-

Oriented Architecture (SOA), which allows 

applications to be constructed of existing services in a 

dynamic manner, encourages a reexamination of the 

suitability of traditional management system 

architectures.  

The managed systems in a SOA environment have 

several unique characteristics, namely the systems are 

composed of independent, distributed services; the 

composition of the services is determined dynamically; 

the services may be from different organizational 

domains; the management goals for a composition may 

be determined when the composition is created, and 

there is a need to reconcile the management of a new 

composition of services with the existing managed 

services and their goals. The management of a SOA 

environment must therefore be both dynamic and 

adaptable. Traditional management systems are 

intended for client-server architectures that are more 

staticin nature than SOAs and so do not naturally 

satisfy these requirements.  

We propose a goal-oriented agent-based approach 

to defining a management system for services. We first 

identify the specific management goals, such as 

enforcing an application’s Service Level Objective 

(SLO), ensuring an overall level of performance for a 

managed resource (or set of managed resources), 

detecting and correcting a problem or ensuring the 

recency of activities such as backups of a managed 

resource.  We then create a management system by 

combining cooperating agents where an agent’s 

behaviour is determined by a user-defined policy that 

is deployed to the agent. The agent approach is 

preferable to the traditional centralized approach to 

management for several reasons [9]: 

 The agent approach is more adaptable to the 

dynamic nature of services. 

 The agent approach is better able to handle 

overloads (both communication and computation). 

 There is no single point of failure in the agent 

approach. 

The main management tasks include monitoring, 

analysis, action planning, action execution and report 

generation. We observe that the first four of these tasks 

correspond with the stages of the MAPE loop proposed 

in the autonomic computing paradigm [10]. We believe 

that autonomic computing is a natural fit to the 

management of services, in general and Web services, 

in particular (for example see our previous work [12]) 

and use the paradigm in the development of our 

approach. We can identify different types of agents for 

each of the above management tasks.  

A framework to support our approach to managing 

services must involve the following three key 

components: 

 A services management model to describe 

management tasks and goals. 

 A method to generate management system 

components from specifications using the model. 
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 An infrastructure to allow the integration of 

management tasks and user interaction with the 

management system. 

In this paper we focus on the services management 

model developed for our framework. The aim of the 

model is twofold. First, the model provides a method 

for describing the autonomic management of a service 

and its components.  In our model these are defined in 

terms of agents, event streams and policies.  Second, 

the specifications produced with the model can serve 

as input to the automatic (or semi-automatic) 

generation of an agent-based implementation to carry 

out the management of the service. 

The remainder of the paper is structured as follows.  

Section 2 discusses relevant work from the literature.  

Section 3 introduces an example scenario that is used 

throughout the paper to illustrate our model.  Section 4 

details the services management model.  In Section 5 

we discuss our implementation of the management 

scenario described in Section 3 and show how the 

model is used to build a management system.  Section 

6 provides the conclusions and suggestions for future 

work. 

 

2.  Related Work 
 

SLA-based service management has been proposed 

by several researchers where different aspects of 

service management have been addressed. Dan et al. 

[5] propose a comprehensive framework for SLA-

based automated management for Web services with a 

resource provisioning scheme to provide different 

levels of service to different customers in terms of 
responsiveness, availability, and throughput. Levy et 

al. [11] propose an architecture and prototype 

implementation of a performance management system 

to provide resource provisioning and load balancing 

with server overload protection for cluster-based Web 

services. Sahai et al. [15] propose a Management 

Service Provider (MSP) model for remote or 

outsourced monitoring and control of E-services on the 

Internet. Sahai et al. [14] also propose an automated 

and distributed SLA monitoring engine for Web 

services using the Web Service Management Network 

(WSMN) Agent. Their approach uses proxy 

components attached to SOAP toolkits at each Web 

service site of a composite process to enable message 

tracking.  

Cohen et al. [4] use the EventScript language to 

solve complex event processing problems. They 

showed that the simple set of primitives is enough to 

solve many event processing tasks. EventScript is a 

reactive process programming language for embedded 

actions.  It uses regular expressions to specify patterns 

of occurrence of the event flows in the event. A stream 

of incoming events is matched to the regular 

expression. Actions embedded within the regular 

expression are executed in response to the pattern 

matching the input events. 

Adi and Etzion [1] introduce the concept of 

situation and situation manager as part of the Active 

Middleware Technology (AMIT) project.  AMIT is 

used as the core technology behind the E-business 

Management Services of IBM Global Services [8].  It 

extends the semantics of Snoop [3] by adding 

additional operators, introducing the lifespan element 

to the situation manager's definition language, and 

enabling the definition of time intervals. 

Our management model uses policies to define the 

behaviour of the system.  One of the major research 

issues is the decomposition of high-level policies into 

low level management policies.  Rubio-Loyola et al. 

[13] use goal-oriented requirements engineering and 

model checking techniques, as a basis for their study of 

policy decomposition.  They aim to translate business 

objectives to configurations on the managed resources.  

We previously developed the Autonomic Web 

Services Environment (AWSE), which is capable of 

self-management to ensure SLA compliance [12]  

AWSE is comprised of many sites, each site consisting 

of a collection of components and resources necessary 

for hosting Web services provided by an organization.  

Individual components, HTTP servers, application 

servers, database servers, and Web service 

applications, each have one or more associated 

autonomic managers. AWSE was implemented using 

the Web Services Distributed Management (WSDM) 

standard [17]. 

 

 

3. Management Example 
 

To illustrate the use of our management model, we 

consider a management scenario for a Web server.  In 

this scenario, the management system watches for, and 

reacts to, system overloads. The metrics that are 

supplied by the Web server include the workload 

intensity (the number of calls per unit time that are 

issued to the Web server) and the rejection rate (that is, 

how many calls are rejected due to lack of resources to 

service the calls).  An increase in the workload 

intensity combined with an increase in the number of 

rejected calls indicates that the Web server is 

overloaded, possibly requiring an adjustment to the 

configuration of the Web server. One solution to 

alleviate overload symptoms such as these is to 

increase the number of threads to service client calls, 

providing that the load that can be serviced by the 
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additional threads will not overload other components 

such as the database system.   

In order to recognize the symptoms of system 

overload, the management system must be able to 

determine that that there has been an increase in 

workload intensity, that there has been an increase in 

the number of rejected calls and that these two 

symptoms are occurring simultaneously.  When an 

overload has been detected, appropriate action must be 

taken.   

  This management example is used to illustrate the 

various constructs and relationships defined in the 

Services Management Model.  

 

 

4. Services Management Model 
 

We view a management system for services as a 

collection of agents that interact through the processing 

and generation of event streams. Each agent performs a 

relatively simple function and all agents follow the 

same general behavior pattern. Agents accept new 

events on one or more event streams and the arrival of 

an event triggers local processing. The results of the 

processing can be the generation of a new event on an 

outgoing event stream and/or changes to the state of 

the managed system or the management system itself. 

These simple agents are combined into what we call 

management goal graphs in order to carry out complex 

management tasks.  The management goal graph for 

the management scenario is shown in Figure 1. 

 

 

 
 

Figure 1:  Management Scenario 

 

Our services management model, which is 

described in detail below, consists of a number of 

constructs including managed resources, agents, 

events, event streams and management goal graphs. 

These constructs are illustrated using the management 

example outlined in Section 3.    

 

 

4.1. Managed Resources 
 

Managed resources are the services and components 

being managed. A managed resource provides a set of 

metrics to describe its state and performance and a set 

of configuration parameters that can be adjusted to 

affect its state and performance. We assume that 

performance metrics are pushed from the managed 

resource to the management system in the form of 

events.  

 

4.2. Events 
 

An event is the occurrence of a situation, or 

incident, within a service or the management system.  

Events may signify a problem such as a threshold 

violation or a deviation from typical behaviour or they 

may simply indicate normal or expected occurrences 

within the system such as the completion of a task. 

We consider two kinds of events in our model; 

concrete and inferred events. Concrete events happen 

in the managed system, thus, outside of the 

management system. These events are relayed into the 

management system via sensors.  Examples of concrete 

events include the arrival of a client, the failure of a 

transaction, or the report of a performance metric such 

as throughput. Inferred events, on the other hand, occur 

in the management system and are logically concluded 

by viewing the current state of the managed system and 

the relevant history of event occurrences. We call this 

relevant history of event occurrences the context of the 

current event. An event is represented in the 

management system by an event instance that contains 

relevant information about the event. 

 
4.2.1. Event type.  An event type describes the 

common properties of a similar set of event instances. 

In other words, it defines a schema of attributes that are 

instantiated at run time when an event of that type 

occurs. An event type E is a tuple <id, attr1, …, attrn> 

where 

id is a unique type name; 

attri (1 ≤ i ≤ n) is a pair <attr-idi, attr-typei> where 

attr-idi is a unique attribute name within the type E 

(that is id.attr-idi is globally unique) and attr-typei is 

one of {integer, string, real, timestamp, URI}. 

 

For example in Figure 1, the event type for the 

events reporting the average request rate from the Web  

Server over a time interval is E = (WSReqRate, 

Web Server

Reject Rate Sensor
Reject Rate increase in 10 

seconds

Reject Rate 
events

Request Rate 
events

Reject  Rate
increase events Thread Effector

Update Number of Threads

Load Sensor
Workload intensity increase + 

reject rate increase 

Workload Intensity 
Sensor

Rate increase by 10%

Intensity increase
events

Problem Analyzer
Actor

Overload
symptom events

Thread 
Modification events

Management Interface
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(startTime, timestamp), (endTime, timestamp), 

(reqRate, real)). 

 
4.2.2. Event instance.  An event instance, as stated 

above, represents the occurrence of an event.  An event 

instance e is a tuple <id, type, stream, timestamp, 

attr-value1, …, attr-valuen> where 

id is a unique identifier; 

type is the event type of the instance e; 

stream is the id of the event stream containing the 

instance e; 

 

timestamp is the time at which the instance was 

created; 

attr-valuei (1 ≤ i ≤ n) is a value for the attribute 

attri associated with the type of the instance. 

For example, an event instance of the WSReqRate 

event type for the time period 1:00 – 1:05 AM (is e = 

(e1, WSReqRate, s1, 1:05, 1:00, 1:05, 62).   This 

indicates that at time 1:05 an event instance was 

created on the event stream s1 indicating that the 

average request rate during the time period 1:00 and 

1:05 was 62 requests per second.  

 

4.2.3. Event context.  It is assumed that a history of 

event instances is kept by the management system. The 
event context of an event instance ei is a description of 

the relevant history for ei.  In addition to the arrival of 

ei at an agent, the context must also be true in order for 

that agent to act. The combination of ei and its context 

is analogous to a pattern in complex event processing 

and matching that pattern causes the agent to act. 

An event context can be specified as a predicate of 

the form 

))((,...,, 21 in econtextccc  

where cj (1 ≤ j ≤ n) is an event instance and 

context(ei) is a conjunction of conditions of the 

following forms: 

Sequence (c1, c2, …, cn): the events cj (1 ≤ j ≤ n) 

exist in the event history and appear in the specific 

order with respect to time. 

Type(cj) = E: the event cj where (1 ≤ j ≤ n) is an 

event instance of event type E. 

Attribute condition:  cj.attrk <op> <operand> 

where attrk is an attribute of the event instance cj, 

<op> is one of {=, >, ≥, <, ≤} and <operand> is a 

value of the type of attrk or an attribute of another 

event instance, say e.attrm, with the same type. 

Window condition: a window in which the context 

events must occur using a time-based condition, i.e. 
WindowFromTime (t, n), where t is a point in time and 

n is the minimal number of events that must occur 

within the window, or an event-based condition, i.e. 

WindowFromLast (E, n), where E is an event type. and 

n is a count of events of type E. 

For example, on the arrival of an event instance e of 

event type WSReqRate the Workload Intensity Sensor 

in Figure 1 looks for an increase of 10% in the request 

rate of the Web Server over the last reported rate. The 

context in this case can be specified as 

 

)).*1.1.(

)Re)((

))1,Re(((

throughputcthroughpute

qRateWScType

qRateWSLastWindowFromc

 

 

4.2.4. Event Stream. An event stream represents the 

flow of events from a source (external or agent) to one 

or more destination agents. All agents subscribed to a 

stream see all the event instances published on the 

stream. An event stream is a tuple M = <id, E, source, 

destinations> where 

id is a unique id for the event stream; 

E is the event type of event instances carried on the 

stream M; 

source is the publisher of events on the stream M (it 

can be an external metric in the case of concrete events 

or an agent in the case of inferred events); 

destinations is a set of agents subscribed to the 

stream M. 

 

4.3. Agents 
 

There are three main types of agents: Sensors, 

Actors and Effectors.  Sensors monitor event streams 

and produce new event streams based on what they 

observe. Actors carry out a management function when 

triggered by the input of an event or by a user. 
Effectors impose changes for the management system 

on the managed resources.   An agent is a tuple A = 

<id, p> where id uniquely identifies an agent, and p is 

a policy. 

The behaviour of an agent is defined by p, its active 

policy, which specifies the input streams, the output 

stream, the event context(s) and, in the case of actors 

and effectors, the management action. A policy is a 

tuple, p = <I, O, pattern, f > where 

 

I = {I1, I2, …, Ip} is the set of p input streams. 

 

O is the output stream. When one of the patterns in 

the set pattern is matched, an inferred event is created 

and placed on O. We assume that effectors do not have 

an output stream. 

 
pattern = {(E1,context1), (E2, context2), …, 

(Ep,contextp)} is a set of p patterns, one for each input 
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stream. For an input stream Ij, when an event instance 

of event type E,j arrives, the context predicate contextj 

is checkedf is a management function that is triggered 

when the pattern in pattern is matched. In the case of a 

sensor node, f is a null function. f will usually produce  

side-effects, in terms of modifications to the managed 

system or to the state of the management system. 

 

 

4.4. Management Goal Graphs 
 

Agents are combined into a management goal 

graph to achieve a specific management goal.  A 

management goal graph is a tuple G = <A, S, R> 

where 

A is set of agents; 

S is a set of event streams; 

R is a set of managed resources. 

Management goal graphs are typically hierarchical 

in nature, with the managed resources at the bottom, 

sensors forming the lower level of the hierarchy, actors 

in the middle tier, and effectors at the top level. The 

sensors monitor and aggregate information from event 

streams that are emitted either by the managed 

resources or by other sensors.  New event streams are 

generated by sensors and are passed either to other 

sensors, or to one or more actors.  The actors use the 

information received from the sensors to make 

management decisions and emit event streams to 

invoke the effectors which imposes the desired change 

to the managed resources.   

An example of a management goal graph for our 

management example is shown in Figure 1. The Web 

server is the managed resource and it has two outgoing 

concrete event streams.  In this example, these streams 

are emitted by a management interface which is 

assumed to be monitoring the performance of the Web 

server.  One stream carries concrete events about the 

rate of requests and the other stream carries concrete 

events about the rate of rejection of requests.  

Several agents, including Sensors, Actors and 

Effectors, are defined in this scenario. The input stream 

for the Workload Intensity Sensor carries the request 

rate events from the Web server.  The pattern defined 

for the Workload Intensity Sensor is 

(RequestRateEvent, “two consecutive events each 

show an increase of 10% in the request rate”).  If the 

pattern is matched, that is, a request rate event arrives 

and it is found that two consecutive events each show 

an increase of 10% in the request rate, then the sensor 

places an intensity increase event 

(WorkloadIntensityEvent) on its outgoing stream.  

The Reject Rate Sensor’s input stream consists of 

reject rate events.   The pattern set for this sensor is 

(RejectRateEvent, “the reject rate has increased within 

the last 10 seconds”).  If the pattern is matched, then 

the sensor places a reject rate increase event 

(RejectRateIncreaseEvent) on its outgoing stream. 

The input for the Load Sensor consists of two input 

streams. The pattern set for this sensor contains two 

elements as follows: (RejectRateIncreaseEvent, “a 

Workload Intensity Increase Event was emitted less 

than one minute ago”), (WorkloadIntensityEvent, “a 

Reject Rate Increase Event was emitted less than one 

minute ago”).  If one of the patterns in the set is 

matched, then it indicates that events from both the 

Reject Rate Sensor and the Workload Intensity Sensor 

have been received.  In this case, the Load sensor 

places an overload symptom event (OverloadEvent) on 

its outgoing stream.  

The Problem Analyzer Actor determines what 

action should be taken as a result of overload symptom 

events that arrive on its input stream.  The pattern for 

the Problem Analyzer Actor is simply the existence of 

the arrival of an OverloadEvent event.  This triggers 

the management function, CheckCapacity(), which 

runs code that analyzes system capacity and determines 

whether or not adding more threads to the server to 

service the increase number of requests will be 

beneficial.  If increasing the number of threads will be 

beneficial, the Problem Analyzer Actor places a 

Thread Modification Event on its outgoing stream for 

the Thread Effector.  The Thread Effector then adjusts 

configuration parameters on the Web Server to 

increase the size of its thread pool. 

 

5. Implementation 
 

A prototype implementation of a management 

system using the services management model has 

shown the viability of this approach for a set of 

scenarios involving the management of Web services 

and components used to support these services.  We 

describe our implementation with reference to the 

scenario described in Section 3.   

An implementation of the services management 

model must provide support for the building and 

deployment of agents, expression for the policies that 

govern their behaviour, storage and query capabilities 

for event histories, as well as event processing and 

message passing.   

Our implementation is based on the OASIS 

standard for Web Services Distributed Management 

(WSDM) [17].  WSDM specifies how the 

manageability of resources is made available to 

management clients by means of Web services.  

WSDM is based on the fact that Web services 

technology provides an open, standard platform on 
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which to base management infrastructure. WSDM 

provides standard communication protocols and 

message passing for the agents used in our model. 

WSDM employs Web Services Notification (WSN) 

[18] to support the publish/subscribe pattern of 

message exchange.  Using this mechanism, event 

notifications are published by a WSDM entity to a 

“topic” and those entities wishing to receive events 

subscribe to relevant topics.  A topic is simply a way to 

organize and categorize items of interest for 

subscription.   

We assume that each managed resource employs a 

WSDM management endpoint through which the 

management system can obtain performance metrics 

and adjust configuration parameters.  This management 

endpoint corresponds to the “Management Interface” 

shown in Figure 1.  The metrics provided by each 

managed resource are obtained through the WSDM 

management endpoint via notifications that are 

published periodically by the endpoint to appropriate 

topics.  A sensor is defined for each metric produced 

by a managed resource and this sensor subscribes to 

the topic defined by the WSDM endpoint for the metric 

of interest. 

In our sample scenario, the concrete events from the  

managed resource are provided by the Management 

Interface, which publishes on two topics, namely the 

RejectRateTopic and the WLIntensityTopic.  The 

reject rate metrics are published to the RejectRateTopic 

and are consumed by the Reject Rate Sensor.  The 

throughput metrics are published to the 

WLIntensityTopic and are consumed by the Workload 

Intensity Sensor.   

 

 

Figure 2:  Agent Architecture 

All agents are constructed in an identical fashion 

following the architecture shown in Figure 2.  Each 

agent is implemented as a WSDM entity which enables 

the agents to communicate using standard protocols 

and, in particular, provides publish/subscribe 

messaging capabilities.  The defining feature of an 

agent is the policy that specifies its behaviour.  The 

policy contains the set of input streams, the output 

stream, a set of patterns, and for an actor, a 

management function that is triggered when the 

specified pattern is matched.  The input streams are 

implemented by the topics to which the agent 

subscribes.  The output stream is implemented by a 

topic to which the agent publishes event notifications.  

Thus, for our example, the input stream is the topic to 

which the Workload Intensity Sensor subscribes, 

namely WLIntensityTopic, and the output stream for 

the Workload Intensity Sensor is the topic to which it 

publishes, namely WLIncreaseTopic.  Events 

published to WLIncreaseTopic are inferred events in 

our model. 

Incoming event instances are gathered by the 

agent’s Events Collector and saved in the original 

XML format in a repository, which is implemented by 

a DB2 database that is unique to each sensor.  The 

events repository represents the events history and is 

used for the event context of an event instance.   

Insertion of a new event in the repository triggers 
the Events Analyzer which evaluates the new event 

against the set of patterns specified in the policy.  The 

pattern consists of the event type and a context.  The 

context in our implementation is specified using 

XQuery, a standard language for querying XML data. 

The XQuery returns a set of “matches” if the pattern 

has been matched.  A null set is returned if no matches 

are found, thus indicating that the pattern has not been 

matched.  If the pattern is matched, an event 

notification is generated by the Events Generator and 

published to the appropriate topic, notifying 

subscribers of the event.   

In our scenario, for example, the pattern for the 

Reject Rate Sensor looks for increases in the reject rate 

over the past 10 seconds whenever a RREvent is 

received.  The pattern specified for this sensor would 

be as follows: 

(RREvent,  
xquery declare namespace muws1="http://docs.oasis-

open.org/wsdm/muws1-2.xsd";declare namespace 

muws2="http://docs.oasis-open.org/wsdm/muws2-2.xsd" 

; for $a in db2-

fn:xmlcolumn('RR.EVENT')/muws1:ManagementEvent, 

$b in db2-

fn:xmlcolumn('RR.EVENT')/muws1:ManagementEvent  

where xs:dateTime(fn:string($b/@ReportTime)) > 

xs:dateTime(fn:string($a/@ReportTime)) and 

xs:dateTime(fn:string($b/@ReportTime)) &lt; 

xs:dateTime(fn:string($a/@ReportTime)) + 

xdt:dayTimeDuration("PT10S") and 

Events 
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Events 
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Event 
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Agent
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Agent Policy
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fn:number($b/muws2:Situation/muws2:Message) > 

fn:number($a/muws2:Situation/muws2:Message)  return 

&lt;x&gt;{$a/muws1:EventId/text()}, 

{$b/muws1:EventId/text()}&lt;/x&gt;) 

 

Actors contain a management function as part of 

their policy.  The management functions are 

implemented as stored procedures and are called using 

the XQuery specified in the pattern portion of the 

policy.  A stored procedure is an external subroutine 

(usually written in Java or C) that is available to 

database applications, in our case, through the XQuery. 

The stored procedure is used to consolidate, 

compartmentalize, and externalize the logic for the 

actors.  Stored procedures may involve SQL 

statements, but they are not limited to database 

functionality.  For instance, in our sample scenario, the 

management function for the Problem Analyzer Actor 

evaluates the potential benefit of adding additional 

threads to service Web server requests.  Adding 

additional threads means that more clients are 

contending for the same hardware resources, thus, not 

necessarily improving performance.  The function that 

is implemented for the Problem Analyzer Actor 

predicts overall system performance using different 

system configurations and determines whether or not 

additional threads will be beneficial.  If so, a message 

is placed on the actor’s outgoing stream.  

Effectors impose change for the management 

system.  Effectors are implemented using the same 

architecture as sensors and actors and are implemented 

as WSDM endpoints.  Although they have an input 

stream and a pattern, the context is often null (that is, it 

is enough that an event instance is received to trigger 

the effector’s action).  The action of an effector is the 

communication with the management endpoint for the 

managed resource.  The effector usually makes a call 

to adjust one or more configuration parameters or to 

take some management action on the managed 

resource via the management capabilities provided by 

the resource.  One effector is created for each 

manageability capability of the managed resource, that 

is, each management function provided by a managed 

resource.   For example, to change the number of 

threads of the Web server in our example, the effector 

would call the “SetNumThreads” operation defined by 

the WSDM endpoint for the Web server. 

A graphical tool to define, view and modify 

management goal graphs is shown in Figure 3.  This 

tool allows users to define agents, patterns and 

management functions, as well as defining the 

communications paths of the agents.  Figure 3 shows 

the management goal graph for our sample 

management scenario.   The graph is depicted in the 

left pane.  The user may click on an agent’s icon to 

view details about the agent (shown in the rightmost 

panes) or to modify the agent’s details, including its 

policy, or to delete the agent. 

New agents can be defined using the “Add Sensor” 

wizard shown in Figure 4.  The first tab of the labeled 

“Sensor” provides fields to define the name of the 

agent and to specify the location of the agent.  In our 

implementation agents are defined as WSDM entities, 

thus, the location is expressed as a URI.   

 

 
 

Figure 3:  Management Goal Graph Tool 

 

Figure 4:  XQuery Definition in Design Mode 

 

Using the tabs labeled “Topics Consumed” and 

“Topics Produced” the user specifies the input and 

output streams of the agent.  Input streams are chosen 

from the list of topics generated by existing agents, 

thus forming connections between agents. 
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Figure 5:  XQuery Source 

 

The tool also reduces the complexity of writing 

XQuery requests by providing a template for the 

creation of several frequently used query types.    

Figure 4 shows the XQuery tab in “Design” mode.  

The pattern defined in this case identifies increases in 

the reported value of 10%. Figure 5 shows the 

automatically generated XQuery.   

Our implementation uses a number of tools 

including Eclipse TPTP [7], Apache Muse [2] and 

IBM DB2 [6]. 

 

6. Conclusions and Future Work 
The growing popularity of Service-Oriented 

Architecture (SOA), which allows applications to be 

constructed of existing services in a dynamic manner, 

introduces new challenges to systems management and 

requires a reexamination of traditional management 

architectures. We are developing a new framework for 

services management that will consist of three key 

components, namely a services management model, a 

method to generate management system components 

from model specifications and an infrastructure to 

allow the integration of management tasks and user 

interaction with the management system. 

In this paper we describe a new services 

management model.  The model provides a method for 

describing the autonomic management of a service and 

its components in terms of agents, event streams and 

policies. Individual agents are combined into a network 

of cooperating agents in the form of a management 

goal graph. We show the viability of the model with an 

approach to implementing the model specifications 

based on Web Service Distributed Management.  We 

find that the constructs in the model map well to the 

capabilities of WSDM. We plan to investigate to what 

degree this approach can be automated in the future. 

The construction and integration of management 

goal graphs will be the primary activities in this 

approach to managing services. The sources of a goal 

graph will always be sensors accepting concrete events 

from a managed resource. The sinks will be effectors 

applying changes to configuration parameters. A key 

question is, given a management goal, how do we 

construct the graph? One possible approach would be 

to borrow from event trees and graphs [1][3] in the 

work on event algebras. The context description for the 

final goal condition is expressed, and from this, a graph 

is formed by making every operator in the statement a 

node in the graph. When we create a new management 

goal graph we must determine how it integrates with 

existing graphs. Two graphs may share nodes so these 

become the integration points. Nodes from both graphs 

can subscribe to the event stream published by the 

common node. The graph produced by the integration 

of the management goal graphs is the management 

system graph. 

We will consider a number of other issues in the 

future. We want to provide a method for the formal 

definition and verification of the management function 

introduced in Section 4.3. We plan to map our model 

to policy-based management [16] components. This 

requires using an efficient representation language for 

the policies defined in the agents, and specifying the 

types of policies that our model can handle. We also 

will consider the problem of policy conflicts when we 

attempt to integrate management goal graphs.  
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