
 1

A Model for Dynamic and Adaptable Services Management

Patrick Martin, Wendy Powley, Imad

Abdallah, Jun Li, Andrew Brown

Queen’s University, Kingston ON

{martin, wendy, imad, junli}@cs.queensu.ca

Kirk Wilson, Chris Craddock

CA Labs, CA Inc

Kirk.Wilson@ca.com

Abstract

The dynamic nature of Service-Oriented

Architectures challenges traditional systems

management practices which tend to be static in

nature. We propose a goal-oriented, agent-based

approach to management using autonomic computing.

In this paper we define a services management model

that consists of a number of constructs including

managed resources, agents, events, event streams and

management goal graphs. Agents accept new events

on one or more event streams, and the arrival of an

event triggers local processing that includes the

generation of a new event and/or changes to the state

of the managed system. Simple agents are combined

into management goal graphs to carry out complex

management tasks. We provide details of an

implementation of our services management model and

show how this model could be used in a sample

management scenario.

1. Introduction

Systems management ensures the correct, efficient

and secure operation of managed systems and

applications. The growing popularity of Service-

Oriented Architecture (SOA), which allows

applications to be constructed of existing services in a

dynamic manner, encourages a reexamination of the

suitability of traditional management system

architectures.

The managed systems in a SOA environment have

several unique characteristics, namely the systems are

composed of independent, distributed services; the

composition of the services is determined dynamically;

the services may be from different organizational

domains; the management goals for a composition may

be determined when the composition is created, and

there is a need to reconcile the management of a new

composition of services with the existing managed

services and their goals. The management of a SOA

environment must therefore be both dynamic and

adaptable. Traditional management systems are

intended for client-server architectures that are more

staticin nature than SOAs and so do not naturally

satisfy these requirements.

We propose a goal-oriented agent-based approach

to defining a management system for services. We first

identify the specific management goals, such as

enforcing an application’s Service Level Objective

(SLO), ensuring an overall level of performance for a

managed resource (or set of managed resources),

detecting and correcting a problem or ensuring the

recency of activities such as backups of a managed

resource. We then create a management system by

combining cooperating agents where an agent’s

behaviour is determined by a user-defined policy that

is deployed to the agent. The agent approach is

preferable to the traditional centralized approach to

management for several reasons [9]:

 The agent approach is more adaptable to the

dynamic nature of services.

 The agent approach is better able to handle

overloads (both communication and computation).

 There is no single point of failure in the agent

approach.

The main management tasks include monitoring,

analysis, action planning, action execution and report

generation. We observe that the first four of these tasks

correspond with the stages of the MAPE loop proposed

in the autonomic computing paradigm [10]. We believe

that autonomic computing is a natural fit to the

management of services, in general and Web services,

in particular (for example see our previous work [12])

and use the paradigm in the development of our

approach. We can identify different types of agents for

each of the above management tasks.

A framework to support our approach to managing

services must involve the following three key

components:

 A services management model to describe

management tasks and goals.

 A method to generate management system

components from specifications using the model.

 2

 An infrastructure to allow the integration of

management tasks and user interaction with the

management system.

In this paper we focus on the services management

model developed for our framework. The aim of the

model is twofold. First, the model provides a method

for describing the autonomic management of a service

and its components. In our model these are defined in

terms of agents, event streams and policies. Second,

the specifications produced with the model can serve

as input to the automatic (or semi-automatic)

generation of an agent-based implementation to carry

out the management of the service.

The remainder of the paper is structured as follows.

Section 2 discusses relevant work from the literature.

Section 3 introduces an example scenario that is used

throughout the paper to illustrate our model. Section 4

details the services management model. In Section 5

we discuss our implementation of the management

scenario described in Section 3 and show how the

model is used to build a management system. Section

6 provides the conclusions and suggestions for future

work.

2. Related Work

SLA-based service management has been proposed

by several researchers where different aspects of

service management have been addressed. Dan et al.

[5] propose a comprehensive framework for SLA-

based automated management for Web services with a

resource provisioning scheme to provide different

levels of service to different customers in terms of
responsiveness, availability, and throughput. Levy et

al. [11] propose an architecture and prototype

implementation of a performance management system

to provide resource provisioning and load balancing

with server overload protection for cluster-based Web

services. Sahai et al. [15] propose a Management

Service Provider (MSP) model for remote or

outsourced monitoring and control of E-services on the

Internet. Sahai et al. [14] also propose an automated

and distributed SLA monitoring engine for Web

services using the Web Service Management Network

(WSMN) Agent. Their approach uses proxy

components attached to SOAP toolkits at each Web

service site of a composite process to enable message

tracking.

Cohen et al. [4] use the EventScript language to

solve complex event processing problems. They

showed that the simple set of primitives is enough to

solve many event processing tasks. EventScript is a

reactive process programming language for embedded

actions. It uses regular expressions to specify patterns

of occurrence of the event flows in the event. A stream

of incoming events is matched to the regular

expression. Actions embedded within the regular

expression are executed in response to the pattern

matching the input events.

Adi and Etzion [1] introduce the concept of

situation and situation manager as part of the Active

Middleware Technology (AMIT) project. AMIT is

used as the core technology behind the E-business

Management Services of IBM Global Services [8]. It

extends the semantics of Snoop [3] by adding

additional operators, introducing the lifespan element

to the situation manager's definition language, and

enabling the definition of time intervals.

Our management model uses policies to define the

behaviour of the system. One of the major research

issues is the decomposition of high-level policies into

low level management policies. Rubio-Loyola et al.

[13] use goal-oriented requirements engineering and

model checking techniques, as a basis for their study of

policy decomposition. They aim to translate business

objectives to configurations on the managed resources.

We previously developed the Autonomic Web

Services Environment (AWSE), which is capable of

self-management to ensure SLA compliance [12]

AWSE is comprised of many sites, each site consisting

of a collection of components and resources necessary

for hosting Web services provided by an organization.

Individual components, HTTP servers, application

servers, database servers, and Web service

applications, each have one or more associated

autonomic managers. AWSE was implemented using

the Web Services Distributed Management (WSDM)

standard [17].

3. Management Example

To illustrate the use of our management model, we

consider a management scenario for a Web server. In

this scenario, the management system watches for, and

reacts to, system overloads. The metrics that are

supplied by the Web server include the workload

intensity (the number of calls per unit time that are

issued to the Web server) and the rejection rate (that is,

how many calls are rejected due to lack of resources to

service the calls). An increase in the workload

intensity combined with an increase in the number of

rejected calls indicates that the Web server is

overloaded, possibly requiring an adjustment to the

configuration of the Web server. One solution to

alleviate overload symptoms such as these is to

increase the number of threads to service client calls,

providing that the load that can be serviced by the

 3

additional threads will not overload other components

such as the database system.

In order to recognize the symptoms of system

overload, the management system must be able to

determine that that there has been an increase in

workload intensity, that there has been an increase in

the number of rejected calls and that these two

symptoms are occurring simultaneously. When an

overload has been detected, appropriate action must be

taken.

 This management example is used to illustrate the

various constructs and relationships defined in the

Services Management Model.

4. Services Management Model

We view a management system for services as a

collection of agents that interact through the processing

and generation of event streams. Each agent performs a

relatively simple function and all agents follow the

same general behavior pattern. Agents accept new

events on one or more event streams and the arrival of

an event triggers local processing. The results of the

processing can be the generation of a new event on an

outgoing event stream and/or changes to the state of

the managed system or the management system itself.

These simple agents are combined into what we call

management goal graphs in order to carry out complex

management tasks. The management goal graph for

the management scenario is shown in Figure 1.

Figure 1: Management Scenario

Our services management model, which is

described in detail below, consists of a number of

constructs including managed resources, agents,

events, event streams and management goal graphs.

These constructs are illustrated using the management

example outlined in Section 3.

4.1. Managed Resources

Managed resources are the services and components

being managed. A managed resource provides a set of

metrics to describe its state and performance and a set

of configuration parameters that can be adjusted to

affect its state and performance. We assume that

performance metrics are pushed from the managed

resource to the management system in the form of

events.

4.2. Events

An event is the occurrence of a situation, or

incident, within a service or the management system.

Events may signify a problem such as a threshold

violation or a deviation from typical behaviour or they

may simply indicate normal or expected occurrences

within the system such as the completion of a task.

We consider two kinds of events in our model;

concrete and inferred events. Concrete events happen

in the managed system, thus, outside of the

management system. These events are relayed into the

management system via sensors. Examples of concrete

events include the arrival of a client, the failure of a

transaction, or the report of a performance metric such

as throughput. Inferred events, on the other hand, occur

in the management system and are logically concluded

by viewing the current state of the managed system and

the relevant history of event occurrences. We call this

relevant history of event occurrences the context of the

current event. An event is represented in the

management system by an event instance that contains

relevant information about the event.

4.2.1. Event type. An event type describes the

common properties of a similar set of event instances.

In other words, it defines a schema of attributes that are

instantiated at run time when an event of that type

occurs. An event type E is a tuple <id, attr1, …, attrn>

where

id is a unique type name;

attri (1 ≤ i ≤ n) is a pair <attr-idi, attr-typei> where

attr-idi is a unique attribute name within the type E

(that is id.attr-idi is globally unique) and attr-typei is

one of {integer, string, real, timestamp, URI}.

For example in Figure 1, the event type for the

events reporting the average request rate from the Web

Server over a time interval is E = (WSReqRate,

Web Server

Reject Rate Sensor
Reject Rate increase in 10

seconds

Reject Rate
events

Request Rate
events

Reject Rate
increase events Thread Effector

Update Number of Threads

Load Sensor
Workload intensity increase +

reject rate increase

Workload Intensity
Sensor

Rate increase by 10%

Intensity increase
events

Problem Analyzer
Actor

Overload
symptom events

Thread
Modification events

Management Interface

 4

(startTime, timestamp), (endTime, timestamp),

(reqRate, real)).

4.2.2. Event instance. An event instance, as stated

above, represents the occurrence of an event. An event

instance e is a tuple <id, type, stream, timestamp,

attr-value1, …, attr-valuen> where

id is a unique identifier;

type is the event type of the instance e;

stream is the id of the event stream containing the

instance e;

timestamp is the time at which the instance was

created;

attr-valuei (1 ≤ i ≤ n) is a value for the attribute

attri associated with the type of the instance.

For example, an event instance of the WSReqRate

event type for the time period 1:00 – 1:05 AM (is e =

(e1, WSReqRate, s1, 1:05, 1:00, 1:05, 62). This

indicates that at time 1:05 an event instance was

created on the event stream s1 indicating that the

average request rate during the time period 1:00 and

1:05 was 62 requests per second.

4.2.3. Event context. It is assumed that a history of

event instances is kept by the management system. The
event context of an event instance ei is a description of

the relevant history for ei. In addition to the arrival of

ei at an agent, the context must also be true in order for

that agent to act. The combination of ei and its context

is analogous to a pattern in complex event processing

and matching that pattern causes the agent to act.

An event context can be specified as a predicate of

the form

))((,...,, 21 in econtextccc

where cj (1 ≤ j ≤ n) is an event instance and

context(ei) is a conjunction of conditions of the

following forms:

Sequence (c1, c2, …, cn): the events cj (1 ≤ j ≤ n)

exist in the event history and appear in the specific

order with respect to time.

Type(cj) = E: the event cj where (1 ≤ j ≤ n) is an

event instance of event type E.

Attribute condition: cj.attrk <op> <operand>

where attrk is an attribute of the event instance cj,

<op> is one of {=, >, ≥, <, ≤} and <operand> is a

value of the type of attrk or an attribute of another

event instance, say e.attrm, with the same type.

Window condition: a window in which the context

events must occur using a time-based condition, i.e.
WindowFromTime (t, n), where t is a point in time and

n is the minimal number of events that must occur

within the window, or an event-based condition, i.e.

WindowFromLast (E, n), where E is an event type. and

n is a count of events of type E.

For example, on the arrival of an event instance e of

event type WSReqRate the Workload Intensity Sensor

in Figure 1 looks for an increase of 10% in the request

rate of the Web Server over the last reported rate. The

context in this case can be specified as

)).*1.1.(

)Re)((

))1,Re(((

throughputcthroughpute

qRateWScType

qRateWSLastWindowFromc

4.2.4. Event Stream. An event stream represents the

flow of events from a source (external or agent) to one

or more destination agents. All agents subscribed to a

stream see all the event instances published on the

stream. An event stream is a tuple M = <id, E, source,

destinations> where

id is a unique id for the event stream;

E is the event type of event instances carried on the

stream M;

source is the publisher of events on the stream M (it

can be an external metric in the case of concrete events

or an agent in the case of inferred events);

destinations is a set of agents subscribed to the

stream M.

4.3. Agents

There are three main types of agents: Sensors,

Actors and Effectors. Sensors monitor event streams

and produce new event streams based on what they

observe. Actors carry out a management function when

triggered by the input of an event or by a user.
Effectors impose changes for the management system

on the managed resources. An agent is a tuple A =

<id, p> where id uniquely identifies an agent, and p is

a policy.

The behaviour of an agent is defined by p, its active

policy, which specifies the input streams, the output

stream, the event context(s) and, in the case of actors

and effectors, the management action. A policy is a

tuple, p = <I, O, pattern, f > where

I = {I1, I2, …, Ip} is the set of p input streams.

O is the output stream. When one of the patterns in

the set pattern is matched, an inferred event is created

and placed on O. We assume that effectors do not have

an output stream.

pattern = {(E1,context1), (E2, context2), …,

(Ep,contextp)} is a set of p patterns, one for each input

 5

stream. For an input stream Ij, when an event instance

of event type E,j arrives, the context predicate contextj

is checkedf is a management function that is triggered

when the pattern in pattern is matched. In the case of a

sensor node, f is a null function. f will usually produce

side-effects, in terms of modifications to the managed

system or to the state of the management system.

4.4. Management Goal Graphs

Agents are combined into a management goal

graph to achieve a specific management goal. A

management goal graph is a tuple G = <A, S, R>

where

A is set of agents;

S is a set of event streams;

R is a set of managed resources.

Management goal graphs are typically hierarchical

in nature, with the managed resources at the bottom,

sensors forming the lower level of the hierarchy, actors

in the middle tier, and effectors at the top level. The

sensors monitor and aggregate information from event

streams that are emitted either by the managed

resources or by other sensors. New event streams are

generated by sensors and are passed either to other

sensors, or to one or more actors. The actors use the

information received from the sensors to make

management decisions and emit event streams to

invoke the effectors which imposes the desired change

to the managed resources.

An example of a management goal graph for our

management example is shown in Figure 1. The Web

server is the managed resource and it has two outgoing

concrete event streams. In this example, these streams

are emitted by a management interface which is

assumed to be monitoring the performance of the Web

server. One stream carries concrete events about the

rate of requests and the other stream carries concrete

events about the rate of rejection of requests.

Several agents, including Sensors, Actors and

Effectors, are defined in this scenario. The input stream

for the Workload Intensity Sensor carries the request

rate events from the Web server. The pattern defined

for the Workload Intensity Sensor is

(RequestRateEvent, “two consecutive events each

show an increase of 10% in the request rate”). If the

pattern is matched, that is, a request rate event arrives

and it is found that two consecutive events each show

an increase of 10% in the request rate, then the sensor

places an intensity increase event

(WorkloadIntensityEvent) on its outgoing stream.

The Reject Rate Sensor’s input stream consists of

reject rate events. The pattern set for this sensor is

(RejectRateEvent, “the reject rate has increased within

the last 10 seconds”). If the pattern is matched, then

the sensor places a reject rate increase event

(RejectRateIncreaseEvent) on its outgoing stream.

The input for the Load Sensor consists of two input

streams. The pattern set for this sensor contains two

elements as follows: (RejectRateIncreaseEvent, “a

Workload Intensity Increase Event was emitted less

than one minute ago”), (WorkloadIntensityEvent, “a

Reject Rate Increase Event was emitted less than one

minute ago”). If one of the patterns in the set is

matched, then it indicates that events from both the

Reject Rate Sensor and the Workload Intensity Sensor

have been received. In this case, the Load sensor

places an overload symptom event (OverloadEvent) on

its outgoing stream.

The Problem Analyzer Actor determines what

action should be taken as a result of overload symptom

events that arrive on its input stream. The pattern for

the Problem Analyzer Actor is simply the existence of

the arrival of an OverloadEvent event. This triggers

the management function, CheckCapacity(), which

runs code that analyzes system capacity and determines

whether or not adding more threads to the server to

service the increase number of requests will be

beneficial. If increasing the number of threads will be

beneficial, the Problem Analyzer Actor places a

Thread Modification Event on its outgoing stream for

the Thread Effector. The Thread Effector then adjusts

configuration parameters on the Web Server to

increase the size of its thread pool.

5. Implementation

A prototype implementation of a management

system using the services management model has

shown the viability of this approach for a set of

scenarios involving the management of Web services

and components used to support these services. We

describe our implementation with reference to the

scenario described in Section 3.

An implementation of the services management

model must provide support for the building and

deployment of agents, expression for the policies that

govern their behaviour, storage and query capabilities

for event histories, as well as event processing and

message passing.

Our implementation is based on the OASIS

standard for Web Services Distributed Management

(WSDM) [17]. WSDM specifies how the

manageability of resources is made available to

management clients by means of Web services.

WSDM is based on the fact that Web services

technology provides an open, standard platform on

 6

which to base management infrastructure. WSDM

provides standard communication protocols and

message passing for the agents used in our model.

WSDM employs Web Services Notification (WSN)

[18] to support the publish/subscribe pattern of

message exchange. Using this mechanism, event

notifications are published by a WSDM entity to a

“topic” and those entities wishing to receive events

subscribe to relevant topics. A topic is simply a way to

organize and categorize items of interest for

subscription.

We assume that each managed resource employs a

WSDM management endpoint through which the

management system can obtain performance metrics

and adjust configuration parameters. This management

endpoint corresponds to the “Management Interface”

shown in Figure 1. The metrics provided by each

managed resource are obtained through the WSDM

management endpoint via notifications that are

published periodically by the endpoint to appropriate

topics. A sensor is defined for each metric produced

by a managed resource and this sensor subscribes to

the topic defined by the WSDM endpoint for the metric

of interest.

In our sample scenario, the concrete events from the

managed resource are provided by the Management

Interface, which publishes on two topics, namely the

RejectRateTopic and the WLIntensityTopic. The

reject rate metrics are published to the RejectRateTopic

and are consumed by the Reject Rate Sensor. The

throughput metrics are published to the

WLIntensityTopic and are consumed by the Workload

Intensity Sensor.

Figure 2: Agent Architecture

All agents are constructed in an identical fashion

following the architecture shown in Figure 2. Each

agent is implemented as a WSDM entity which enables

the agents to communicate using standard protocols

and, in particular, provides publish/subscribe

messaging capabilities. The defining feature of an

agent is the policy that specifies its behaviour. The

policy contains the set of input streams, the output

stream, a set of patterns, and for an actor, a

management function that is triggered when the

specified pattern is matched. The input streams are

implemented by the topics to which the agent

subscribes. The output stream is implemented by a

topic to which the agent publishes event notifications.

Thus, for our example, the input stream is the topic to

which the Workload Intensity Sensor subscribes,

namely WLIntensityTopic, and the output stream for

the Workload Intensity Sensor is the topic to which it

publishes, namely WLIncreaseTopic. Events

published to WLIncreaseTopic are inferred events in

our model.

Incoming event instances are gathered by the

agent’s Events Collector and saved in the original

XML format in a repository, which is implemented by

a DB2 database that is unique to each sensor. The

events repository represents the events history and is

used for the event context of an event instance.

Insertion of a new event in the repository triggers
the Events Analyzer which evaluates the new event

against the set of patterns specified in the policy. The

pattern consists of the event type and a context. The

context in our implementation is specified using

XQuery, a standard language for querying XML data.

The XQuery returns a set of “matches” if the pattern

has been matched. A null set is returned if no matches

are found, thus indicating that the pattern has not been

matched. If the pattern is matched, an event

notification is generated by the Events Generator and

published to the appropriate topic, notifying

subscribers of the event.

In our scenario, for example, the pattern for the

Reject Rate Sensor looks for increases in the reject rate

over the past 10 seconds whenever a RREvent is

received. The pattern specified for this sensor would

be as follows:

(RREvent,
xquery declare namespace muws1="http://docs.oasis-

open.org/wsdm/muws1-2.xsd";declare namespace

muws2="http://docs.oasis-open.org/wsdm/muws2-2.xsd"

; for $a in db2-

fn:xmlcolumn('RR.EVENT')/muws1:ManagementEvent,

$b in db2-

fn:xmlcolumn('RR.EVENT')/muws1:ManagementEvent

where xs:dateTime(fn:string($b/@ReportTime)) >

xs:dateTime(fn:string($a/@ReportTime)) and

xs:dateTime(fn:string($b/@ReportTime)) <

xs:dateTime(fn:string($a/@ReportTime)) +

xdt:dayTimeDuration("PT10S") and

Events

Collector

Events

Analyzer

Event

Generator
Events

Repository

Agent

Agent

Agent Policy

Defines event patterns for

generating complex events

Agent

Input Event Stream

Output Event
Stream

Events

Collector

Events

Analyzer

Event

Generator
Events

Repository

Agent

Agent

Agent Policy

Defines event patterns for

generating complex events

Agent

Input Event Stream

Output Event
Stream

 7

fn:number($b/muws2:Situation/muws2:Message) >

fn:number($a/muws2:Situation/muws2:Message) return

<x>{$a/muws1:EventId/text()},

{$b/muws1:EventId/text()}</x>)

Actors contain a management function as part of

their policy. The management functions are

implemented as stored procedures and are called using

the XQuery specified in the pattern portion of the

policy. A stored procedure is an external subroutine

(usually written in Java or C) that is available to

database applications, in our case, through the XQuery.

The stored procedure is used to consolidate,

compartmentalize, and externalize the logic for the

actors. Stored procedures may involve SQL

statements, but they are not limited to database

functionality. For instance, in our sample scenario, the

management function for the Problem Analyzer Actor

evaluates the potential benefit of adding additional

threads to service Web server requests. Adding

additional threads means that more clients are

contending for the same hardware resources, thus, not

necessarily improving performance. The function that

is implemented for the Problem Analyzer Actor

predicts overall system performance using different

system configurations and determines whether or not

additional threads will be beneficial. If so, a message

is placed on the actor’s outgoing stream.

Effectors impose change for the management

system. Effectors are implemented using the same

architecture as sensors and actors and are implemented

as WSDM endpoints. Although they have an input

stream and a pattern, the context is often null (that is, it

is enough that an event instance is received to trigger

the effector’s action). The action of an effector is the

communication with the management endpoint for the

managed resource. The effector usually makes a call

to adjust one or more configuration parameters or to

take some management action on the managed

resource via the management capabilities provided by

the resource. One effector is created for each

manageability capability of the managed resource, that

is, each management function provided by a managed

resource. For example, to change the number of

threads of the Web server in our example, the effector

would call the “SetNumThreads” operation defined by

the WSDM endpoint for the Web server.

A graphical tool to define, view and modify

management goal graphs is shown in Figure 3. This

tool allows users to define agents, patterns and

management functions, as well as defining the

communications paths of the agents. Figure 3 shows

the management goal graph for our sample

management scenario. The graph is depicted in the

left pane. The user may click on an agent’s icon to

view details about the agent (shown in the rightmost

panes) or to modify the agent’s details, including its

policy, or to delete the agent.

New agents can be defined using the “Add Sensor”

wizard shown in Figure 4. The first tab of the labeled

“Sensor” provides fields to define the name of the

agent and to specify the location of the agent. In our

implementation agents are defined as WSDM entities,

thus, the location is expressed as a URI.

Figure 3: Management Goal Graph Tool

Figure 4: XQuery Definition in Design Mode

Using the tabs labeled “Topics Consumed” and

“Topics Produced” the user specifies the input and

output streams of the agent. Input streams are chosen

from the list of topics generated by existing agents,

thus forming connections between agents.

 8

Figure 5: XQuery Source

The tool also reduces the complexity of writing

XQuery requests by providing a template for the

creation of several frequently used query types.

Figure 4 shows the XQuery tab in “Design” mode.

The pattern defined in this case identifies increases in

the reported value of 10%. Figure 5 shows the

automatically generated XQuery.

Our implementation uses a number of tools

including Eclipse TPTP [7], Apache Muse [2] and

IBM DB2 [6].

6. Conclusions and Future Work
The growing popularity of Service-Oriented

Architecture (SOA), which allows applications to be

constructed of existing services in a dynamic manner,

introduces new challenges to systems management and

requires a reexamination of traditional management

architectures. We are developing a new framework for

services management that will consist of three key

components, namely a services management model, a

method to generate management system components

from model specifications and an infrastructure to

allow the integration of management tasks and user

interaction with the management system.

In this paper we describe a new services

management model. The model provides a method for

describing the autonomic management of a service and

its components in terms of agents, event streams and

policies. Individual agents are combined into a network

of cooperating agents in the form of a management

goal graph. We show the viability of the model with an

approach to implementing the model specifications

based on Web Service Distributed Management. We

find that the constructs in the model map well to the

capabilities of WSDM. We plan to investigate to what

degree this approach can be automated in the future.

The construction and integration of management

goal graphs will be the primary activities in this

approach to managing services. The sources of a goal

graph will always be sensors accepting concrete events

from a managed resource. The sinks will be effectors

applying changes to configuration parameters. A key

question is, given a management goal, how do we

construct the graph? One possible approach would be

to borrow from event trees and graphs [1][3] in the

work on event algebras. The context description for the

final goal condition is expressed, and from this, a graph

is formed by making every operator in the statement a

node in the graph. When we create a new management

goal graph we must determine how it integrates with

existing graphs. Two graphs may share nodes so these

become the integration points. Nodes from both graphs

can subscribe to the event stream published by the

common node. The graph produced by the integration

of the management goal graphs is the management

system graph.

We will consider a number of other issues in the

future. We want to provide a method for the formal

definition and verification of the management function

introduced in Section 4.3. We plan to map our model

to policy-based management [16] components. This

requires using an efficient representation language for

the policies defined in the agents, and specifying the

types of policies that our model can handle. We also

will consider the problem of policy conflicts when we

attempt to integrate management goal graphs.

7. References

[1] Adi, A. and O. Etzion, “Amit - The Situation Manager”.

The VLDB Journal, 2004. 13(2): p. 177-203.

[2] Apache Muse. 2007, Apache Software Foundation,;

April 25 2008; http://ws.apache.org/muse.

[3] S. Chakravarthy and D. Mishra. “Snoop: An Expressive

Event Specification Language for Active Databases”, Data

and Knowledge Engineering 14(1), 1994, pp. 1 – 26.

[4] Cohen, N.H. and K.T. Kalleberg, “EventScript: An

Event-Processing Language Based on Regular Expressions

with Actions”, Proceedings of the 2008 ACM SIGPLAN-

SIGBED Conference on Languages, Compilers, and Tools

for Embedded Systems. 2008, ACM: Tucson, AZ, USA.

 9

[5] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D.

Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef:

“Web Services on Demand: WSLA-driven Automated

Management”. IBM Systems Journal, Vol.43(1), pp. 136–158

(2004).

[6] DB2 9. 2007, IBM; July 2 2008, http://www-

306.ibm.com/software/data/db2/9/.

[7] Eclipse TPTP. 2008, The Eclipse Foundation; July 2

2008, http://www.eclipse.org/tptp/.

[8] IBM. E-business Management Services. Available from:

http://www-935.ibm.com/services/us/igs/.

[9] H. Kelash, H. Faheem and M. Amoon. “A Multiagent

System for Distributed Systems Management”, Proceedings

of World Academy of Science, Engineering and Technology

Volume 11, February 2006, 91 – 96.

[10] J. Kephart and D. Chess. “The Vision of Autonomic

Computing”, IEEE Computer, 36(1), 2003, 41 – 52.

[11] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A.

Tantawi, and A. Youssef: “Performance Management for

Cluster-Based Web Services”, In Proc. of IFIP/IEEE Int.

Symposium on Integrated Network Management (IM’03),

Colorado Springs, USA, pp. 247-261 (2003).

[12] P. Martin, W. Powley, W. Tian, K. Wilson, J. Zebedee

and Z. Xu. “The WSDM of Autonomic Computing:

Experiences in Implementing Autonomic Web Services”.

Proc of ICSE Workshops SEAMS ’07 (International

Workshop on Software Engineering for Adaptive and Self-

Managing Systems), Minneapolis MN, May 2007, pp. 9 -16.

[13] Rubio-Loyola, J. Serrat, J. Charalambides, M. Flegkas,

P. Pavlou, G. and Lafuente, A.L., "Using Linear Temporal

Model Checking for Goal-Oriented Policy Refinement

Frameworks," Policies for Distributed Systems and

Networks, 2005. Sixth IEEE International Workshop , pp.

181-190, 6-8 June 2005.

[14] A. Sahai, V. Machiraju, M. Sayal, A. Van Moorsel, and

F. Casati: “Automated SLA Monitoring for Web Services”,

In Proc. of the IFIP/IEEE Int. Workshop on Distributed

Systems: Operations and Management (DSOM’02),

Montreal, Canada. LNCS, Springer, Vol. 2506, pp. 28-41

(2002).

[15] A. Sahai, V. Machiraju, and K. Wurster: “Monitoring

and Controlling Internet Based Services”, In Proc. of IEEE

Workshop on Internet Applications (WIAPP), San Jose, CA

(2001).

[16] D. Verma, Simplifying network administration

using policy-based management. IEEE Network, 16(2):

p. 20-26, 2002.

[17] WSDM v1.1. 2008, Organization for the Advancement

of Structured Information Standards; May 18 2008,

http://www.oasis-open.org/specs/index.php#wsdmv1.1.

[18] WS Notification. 2004, Organization for the

Advancement of Structured Information Standards; July 2

2008; http://www.oasis-open.org/specs/index.php#wsnv1.3.

