
Autonomic Workload Execution Control Using 
Throttling 

Wendy Powley#1, Patrick Martin#2, Mingyi Zhang#3, Paul Bird*4, Keith McDonald*5 
#School of Computing, Queen’s University 

Kingston, ON Canada 
1wendy@cs.queensu.ca  
2martin@cs.queensu.ca  
3myzhang@cs.queensu.ca 

*IBM Labs 
 Toronto, ON Canada 
4pbird@ca.ibm.com 

5kmcdonal@ca.ibm.com 

 
 
Abstract— Database Management Systems (DBMSs) are often 

required to simultaneously process multiple diverse workloads 
while enforcing business policies that govern workload 
performance. Workload control mechanisms such as admission 
control, query scheduling, and workload execution control serve 
to ensure that such policies are enforced and that individual 
workload goals are met.   Query throttling can be used as a 
workload execution control method whereby problematic queries 
are slowed down, thus freeing resources to allow the more 
important work to complete more rapidly.  In a self-managed 
system, a controller would be used to determine the appropriate 
level of throttling necessary to allow the important workload to 
meet is goals.  The throttling would be increased or decreased 
depending upon the current system performance.  In this paper, 
we explore two techniques to maintain an appropriate level of 
query throttling.  The first technique uses a simple controller 
based on a diminishing step function to determine the amount of 
throttling. The second technique adopts a control theory 
approach that uses a black-box modelling technique to model the 
system and to determine the appropriate throttle value given 
current performance.  We present a set of experiments that 
illustrate the effectiveness of each controller, then propose and 
evaluate a hybrid controller that combines the two techniques. 

I. INTRODUCTION 
Today’s practice of consolidating workloads with vastly 

different resource requirements on a single database server 
poses significant management difficulties.  Competing 
workloads running on a Database Management System 
(DBMS) may include sub-second transactional queries that 
require minimal resources as well as complex, long-running 
analytical business intelligence queries that consume 
considerable system resources.  Workloads competing for 
resources will often conflict, thus having a detrimental effect 
on performance.  The goal of the DBMS is to ensure that all 
business objectives for all workloads are satisfied.   

Business objectives specify rules for system behaviour.  For 
example, transactional workloads originating at an e-
commerce site typically must have a fast response time to 
satisfy customers and will take priority over other work, such 

as a request for a quarterly sales report.  The system must be 
able to manage and control the concurrent workloads such that 
priority is given to the more important workload.  

Workload management tools and techniques are used to 
ensure that business objectives are met.  When a priori 
knowledge of the workload characteristics exists, conflicts 
between workloads can be minimized by admission control 
and/or scheduling that takes place prior to workload execution.   
When workload characteristics are not known in advance, or, 
in cases where the actual behaviour of the query deviates 
significantly from the expected, it may be necessary to take 
corrective action during execution, which is known as 
workload execution control. 

Workload execution control in today’s database 
management systems generally involves halting the problem 
workload and rescheduling it to run at another time.  Query 
suspension ([9], [10]) has been proposed as an alternative to 
the halt and restart method.   Query throttling [1] is another 
alternative where problematic queries are not halted, but 
instead are slowed down. The throttled query consumes fewer 
resources, which means that more resources can be allocated 
to other, more important, workloads.  Our previous work 
showed that query throttling is a viable method for workload 
execution control [1].  We evaluated the effectiveness of the 
throttling technique by manually adjusting the throttling under 
a variety of circumstances.    

We envision the throttling mechanism as a component of an 
autonomic, or self-managing, DBMS in which the system 
recognizes problematic queries, determines what type of 
control is most appropriate under the given circumstances, and 
takes the corrective action.  In the case of throttling, taking 
corrective action involves determining the appropriate amount 
of throttling needed to allow the system goals to be met and to 
adjust the throttling level as necessary while continuously 
monitoring system performance.  In this paper we focus on the 
control aspects of the throttling approach, that is, the design 
and implementation of a feedback control loop whereby the 
system is continuously monitored and dynamic adjustments 

978-1-4244-6521-7/10/$26.00 © 2010 IEEE ICDE Workshops 201075



are made to the throttling levels to ensure that system policies 
are enforced. 

The main contribution of the paper is the control 
mechanism that is used to govern the amount of throttling.  
We implement two types of controllers and compare their 
effectiveness.  The first controller is a simple controller that 
uses a diminishing step function to determine the amount of 
throttling.    The second controller uses a black-box model 
from control theory to represent the system and to determine 
the appropriate throttle value given current system 
performance.  We evaluate the two types of controllers 
separately, and then propose and evaluate a hybrid approach 
that combines the two techniques. 

The paper is structured as follows.  Section II provides the 
background and related work from the literature.  We discuss 
query throttling as a workload control technique in Section III.  
The two types of controllers are presented in Section IV.  In 
Section V we discuss our implementation of the throttling 
technique and the feedback control loop within PostgreSQL 
V8.1.4.  In Section VI a set of experiments are presented that 
illustrate the use of each controller as well as a hybrid 
controller.  Conclusions and future work are presented in 
Section VII. 

II. BACKGROUND 
 
Workload control techniques have been implemented in 

several commercial DBMS products including the DB2® 
Workload Manager and Query Patroller products from IBM® 
[3], Oracle Database Resource Manager [4], SQL Server 
Resource Governor [5] from Microsoft®, and Teradata Active 
System Management [6].   These systems control the 
workload presented to a DBMS by using predefined rules 
based on thresholds of the workload such as multi-
programming levels, number of users, and estimated query 
costs.   These workload control mechanisms use admission 
control and scheduling to exert control on the workload prior 
to query execution.    Our focus is on workload execution 
control, which exerts control on running queries.    

Workload execution control for long-running queries has 
been studied by Chaudhuri et al. [10] and Chandramouli et al. 
[9].   Each of these papers outlines a suspend/resume approach 
where a problematic query is suspended during execution and 
processing is resumed at a later date.   The two approaches 
differ in how they store the results of the work done up to the 
point of suspension.  In our throttling approach, the query is 
slowed, not suspended, and storing of intermediate results is 
unnecessary.  Krompass et al. [2] provide a comprehensive 
overview and evaluation of workload control mechanisms for 
long-running queries. 

Our throttling approach is based on work by Parekh et al. [7] 
who apply a throttling technique to limit the impact of on-line 
database utilities on user work.  In their approach, a self-
imposed sleep is used to slow down, or throttle, the utility by 
a configurable amount.  The system monitors the performance 
and reacts according to high-level policies to decide when to 
throttle the utilities and to determine the appropriate amount 

of throttling.    The authors hypothesize a linear relationship 
between the amount of throttling and system performance and 
use a Proportional-Integral controller [8] to control the amount 
of throttling. 

We extend the work of Parekh et al. to the throttling of 
database queries, thus imposing workload execution control 
on workloads that are interfering with more important work in 
the system.  This paper focuses not on the throttling technique 
[1], but on the controller used to automatically determine the 
amount of throttling necessary to allow the important 
workload to meet its goals. We consider two types of 
controllers: a simple controller based on a step function, and a 
controller based on control theory.  Control theory has been 
suggested as a foundation for building self-managing systems 
[11], particularly self-managing database management 
systems [12]. 

III.  QUERY THROTTLING 
 
Query throttling is a DBMS workload execution control 

method that slows query execution to free up resources for 
other work running concurrently in the system.  Throttled 
queries continue to execute, albeit at a slower pace.   
Throttling has been shown to be an effective workload 
execution control mechanism, especially when the potential 
for lock contention is low [1].    

In the current work, we use a constant throttle approach, 
which means that the query is slowed using very short (.01 
second) pauses throughout query execution.  Pauses are 
implemented as self-imposed sleeps that occur at constant 
intervals during query execution.   We express the amount of 
throttling as a percentage increase in response time.  For 
example, if a query can be executed in 10 seconds when run 
without competition in the system, throttling by 10% will 
delay the query’s run time by 1 second.  This is implemented 
by instituting 100 pauses, each of .01 second duration at 
constant intervals during the query.  A throttle of 100%  
means that the 10-second query is slowed by 10 seconds 
(requiring 1000 pauses), making its total execution time  20 
seconds. 

We implemented query throttling in PostgreSQL [14] using 
its interrupt checker routine, which runs with low overhead, 
and is called repeatedly throughout the execution of each 
query. Throttling is enforced using the nanosleep(nanoseconds) 
function called from within the interrupt checker routine.  A 
counter local to each back-end is incremented each time the 
interrupt handler is called, providing a mechanism by which to 
govern the amount, timing, and length of the throttling. 

 

IV. AUTONOMIC CONTROL MECHANISMS 
 
An autonomic system is typically implemented using a 

feedback control loop consisting of 4 components: a Monitor 
that continuously monitors the system performance; an 
Analyzer that compares system performance with desired 
performance; a Planner that decides what type of corrective 

76



action to take, and an Effector that implements the corrective 
action.  An autonomic system responds to high-level 
directives and hides the low-level management details.   We 
construct an autonomic control mechanism that responds to 
performance goals for an important workload set by the DBA 
by controlling the level of throttling of an interfering 
workload.  In this paper, we assume the important workload is 
OLTP and so the high-level goals are expressed in terms of 
the throughput of the workload.  

For the purpose of this paper, we assume that we have the 
means to monitor workload performance.  This information is 
available to the Analyzer, which compares current 
performance to the performance goal.  The boundary of 
acceptable performance is denoted by ε.  The Analyzer 
considers a goal to be achieved if the performance is within 
+/- ε  of the goal.  If current performance falls outside the 
acceptable limits, the Planner is called to determine the 
appropriate amount of throttling that should be applied.    

A control mechanism is required by the Planner to 
determine how much throttling is required in order to meet the 
system objectives.  Depending on the current state of the 
system, throttling may be initiated, terminated, increased, or 
decreased by the controller.   The aim is to throttle a sufficient 
amount that maintains the performance of the important 
workload at the goal level.  We have implemented two types 
of controllers to govern the level of throttling; a simple 
controller and a black-box model controller.  The details of 
each are provided in the following sections. 

A. Simple Controller 
The simple controller is based on a diminishing step 

function that determines the amount by which the throttling 
should be increased or decreased.  Throttling is initiated when 
the important workload fails to meet its goals as a result of a 
competing workload.   Over time, the amount of throttling is 
adjusted: increased when the goal is violated and decreased 
when the goal is exceeded.  The controller is used within a 
feedback control loop where performance is observed, 
compared with the goals, and adjusted.  The controller is 
called to adjust the throttling when the current performance is 
outside an acceptable range.  At each subsequent step, or loop 
in the feedback cycle, the distance, D, between the goal and 
the current performance is calculated as: 

     D = abs(100 – (100 * Pc / Pg) 
where Pc is the current performance and Pg is the target 
performance, or goal.  If D is less than δ, a defined threshold 
percentage, the amount of throttling is increased or decreased 
by  

Δ = thmax/2 n-1  
where n is the step number and thmax is the maximum amount 
of adjustment that can be made in any one step.  If D is greater 
than δ, then Δ = thmax, that is, the amount of throttling is 
increased or decreased by the maximum allowable amount, 
and the step number, n, is set to 0. With the diminishing step 
function, the change in the level of throttling decreases as the 
actual performance converges on the goal to avoid thrashing. 
 

B. Black-box Model Controller 
We model the DBMS used in our experiments with a black-

box model. The model predicts the appropriate amount of 
throttling to apply to dynamically remove the impact of the 
competing workload and to maintain the goals set for the 
important workload.  The control input of the target system, 
u(k), is the amount of throttling imposed on the less important 
workloads and the measured output, y(k), is the throughput of 
the important workload running on the DBMS. The 
disturbance, d, is the system’s mixed workload, which 
consists of all workloads (both important and competing 
workloads) running on the system. The mix rate of the 
workloads is unpredictable and changes over time. 

We consider a first-order model to build a general 
controller and employ a linear difference equation to describe 
the relationship between the control inputs and the measured 
outputs.  The linear difference equation is defined as: 

    
where is the predicted throughput in the (k+1)st time 
unit,  is the measured throughput in the k-th time unit and 

is the amount of throttling for the target system in the k-
th time unit.  We experimentally determine the model 
parameters, a and b by using least-square regression. 

Since the mix rate of the different workloads running on the 
DBMS changes over time, we cannot efficiently model every 
possible mix of workloads. We therefore assume the worst 
case of the workload mix is known in advance, and we assume 
it to contain a high ratio of less important to important 
workloads, and then we build the model for this worst-case 
scenario.  Our model determines the throttle level by 
predicting the throughput that will be achieved when the 
throttling is applied.  Since we know that a workload with less 
competition will perform better than our worst-case scenario 
with the same amount of throttling, we conclude that, for 
lighter-mix workloads, our model will tend to overshoot the 
goals rather than miss them.  The model parameters, a and b, 
are 0.77 and 1.0, respectively, for our specific experimental 
environment, detailed in Section 6.  The control inputs are in 
the range [0, 250] percent throttling. 

 
Fig. 1  Black-box model validation 

 
Figure 1 shows a validation of the model. It shows the 

predicted and actual throughput values over a series of 
samples for the important workload in our experiments. In 

Actual
Projected

7000
7500
8000
8500
9000
9500

10000
10500

1 3 5 7 9 1113151719212325

Th
ro

ug
hp

ut
 (T

ra
ns

./
Se

c.
)

k-th Time Unit

77



assessing the model’s quality, we determined that the R2 value 
is 0.99. 

V. IMPLEMENTATION 
 
We have implemented a prototype control system in 

PostgreSQL (Version 8.1.4) as shown in Figure 2.  We 
assume that each workload is handled by a separate 
PostgreSQL back-end process. In Figure 2, the back-end 
shown in the right is executing the important (unthrottled) 
workload.  The back-end on the left is executing the 
interfering (throttled) workload.  Each PostgreSQL back-end 
stores important information in shared memory that can be 
accessed by other PostgreSQL processes.  We extend this 
structure for each back-end to include information relevant to 
throttling.   

 
Fig. 2  Control architecture 

 
Workload performance is monitored and stored by a 

monitoring mechanism (not shown).  This information is 
accessible by the Autonomic Control Manager (ACM) process, 
a child process of the PostgreSQL postmaster, the main 
PostgreSQL process.  The ACM, once initialized, enters an 
infinite loop and periodically checks the current performance 
of the important workload to determine whether or not the 
goals for the workload are being met.  If the goals are being 
met, no action is taken.   However, if the goals are missed or 
exceeded, the controller calculates a new throttle value.  This 
value is stored in the PostgreSQL shared memory structure for 
the throttled back-end.  

VI. EXPERIMENTS/VALIDATION 
 

Our experimental objective was to examine the 
effectiveness of the two controllers in maintaining the goals 
set for the important workload.   Effectiveness is measured by 
whether or not the goals for the important workload are 
achieved and the number of adjustments required to the 
amount of throttling before the goal is reached. 

Our experiments were run on an Intel® Core dual 2.66 MHz 
processor with 4 GB of memory running Linux® 64-bit 
CentOS 5 and a modified version of PostgreSQL Version 
8.1.4.   Two identical databases, test_db1 and test_db2, each 

approximately 1.5 GB in size, were built using the pgbench 
tool which is included with the PostgreSQL distribution.  All 
data resides on a single disk. 

Two workloads were used for the experiments.   The 
pgbench workload was used for the “OLTP” workload, which 
we consider to be the important, or high priority, workload.  
Ten clients issued random pgbench select-only queries (no 
updates) against test_db1.  The average throughput for this 
workload running alone under the default PostgreSQL 8.1.4 
configuration on our test-bed environment was approximately 
11,000 transactions per second (tps). 

The “OLAP” workload, which is the interfering workload 
to be throttled, continuously issued a single query that 
consisted of an aggregation (count(*)) of the Cartesian 
product of the ACCOUNTS table (10,000,000 tuples) and the 
BRANCHES table (100 tuples).   The query was issued 
against the test_db2 database. This query runs alone on the 
system in approximately 3 seconds. 

In each experiment, the two workloads were run 
simultaneously.  Each run consisted of 5 million pgbench 
queries with the throughput measured and recorded for each 
block of 1500 queries.   The OLAP queries were continuously 
run with the actual number of OLAP queries varying 
depending upon the amount of throttling applied. 

As a baseline measure we examine the performance of each 
workload when it is run alone (without contention) and when 
the workloads are run simultaneously, thus competing for 
resources.  With contention, the throughput of the OLTP 
workload drops from 11000 tps to approximately 7000 tps and 
the response time of the OLAP workload doubles from 3 
seconds to 6 seconds. The goal of the throttling is to improve 
the performance of the OLTP workload when there is 
competition for resources. 

A. Simple Controller 
The simple controller was used to control the throttling of 

the OLAP workload while the OLTP workload ran for a 
period of approximately 12 minutes (5 million queries).  We 
report average performance over each minute.  A value of 10 
was used for thmax,and 5 percent for our performance threshold 
(δ) because these values were shown, through experimentation, 
to result in the least amount of performance oscillation.  The 
monitor checked performance every 15 seconds and the 
throttling was adjusted if the goal was missed twice in 
succession.   

Two different goals were set for the OLTP workload, 
namely 8000 tps and 9000 tps.  The simple controller was 
used to determine the appropriate amount to throttle the 
OLAP workload in order to allow the OLTP workload to meet 
its goals.  As we see by the results shown in Figure 3, the 
performance of the OLTP workload steadily increased until 
the goal was reached, and then levelled off, maintaining the 
performance during the run.  Although not shown, the OLAP 
workload performed as expected, slowing down as throttling 
was applied. 

 

Goal Met?

Autonomic Control
Manager Process

Throughput
yes

no

Controller

Postgresql
Backend

Workload Throttled

Postgresql
Backend
Workload

Unthrottled

Postgresql
Shared
Memory

Throughput

Throttle percentage

78



 
Fig. 3  OLTP performance; Simple controller throttling OLAP workload 

 

 
Fig. 4  Throttle adjustments using simple controller 

 
Figure 4 shows the adjustments made to the throttling 

during the duration of the run.  In the case of the 8000 tps goal, 
the throttling was increased to 20 percent, at which point the 
goal was achieved.  In the following minute of the run, 
however, the performance fell for a period of time, causing a 
further adjustment to 25 percent.  The performance remained 
within 5 percent of the goal (δ) so, although the performance 
exceeded the goal, it was within the allowable range; thus no 
further adjustments were made to the throttling.   In this case, 
the goal was reached with only two adjustment steps. 

In the second case where the goal was 9000 tps, the goal 
was reached in approximately 4 minutes, once the throttling 
level reached 55 percent.   Six adjustments were necessary to 
reach the goal.  After this point, several more minor 
adjustments are made to maintain level performance. 

B. Black-box Model Controller 
Figure 5 shows the performance of the OLTP workload 

when the black-box model controller was used to throttle the 
OLAP workload.   In the case of the 8000 tps goal, the black-
box model controller throttled the OLAP workload by 30 
percent, and for the 9000 tps goal, the throttling was set at 150 
percent.  The controller made only one adjustment to the 
throttle value in each case. 

The results show that goals were successfully and rapidly 
met, but in both cases, the actual performance exceeded the 
goal.  The over-performance of the model was expected since 

the model is built under the “worst-case” workload mix, 
where the percentage of OLAP work is higher relative to the 
percentage of the important workload than our test scenario.  
 
 

 
Fig. 5  OLTP performance; Black-box model controller used to throttle OLAP 

workload 
 

C. Hybrid Controller 
The black-box model controller suggests a throttle value 

such that the important workload is guaranteed to meet its 
goals.  However, as shown in the experiments, this value often 
results in over-performance: although the goals of the 
important workload are being met, the less important work is 
penalized more than necessary.  We therefore consider a 
hybrid controller that consists of a combination of the two 
control approaches in which the black-box model controller is 
used to initially set the throttle value and the simple controller 
is used to fine-tune performance.     

The results are shown in Figure 6.  In each case, the actual 
performance exceeded the goal when the throttle value was 
initially set by the black-box model controller.  The 
adjustments made by the simple controller lessened the 
amount of throttling gradually until the performance more 
closely matched the goal.  The adjustments made to the 
throttle amounts are shown in Figure 7.  In this case, goals 
were met (although exceeded) in one step.  Further 
adjustments were made by the simple controller to converge 
on the actual goal. 

 
Fig. 6  OLTP performance;  Hybrid controller used to throttle the OLAP 

workload 
 

Goal = 8000

Goal = 9000

7000

7500

8000

8500

9000

9500

10000

1 2 3 4 5 6 7 8 9 10 11 12

O
LT

P 
Th

ro
ug

hp
ut

 (T
PS

)

Time (minutes)

Goal = 8000

Goal = 9000

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13

Th
ro

tt
le

 P
er

ce
nt

ag
e

Throttle Adjustment

Goal = 8000

Goal = 9000

7000

7500

8000

8500

9000

9500

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O
LT

P 
Th

ro
ug

hp
ut

 (T
PS

)

Time (minutes)

Goal = 8000

Goal = 9000

7000
7500
8000
8500
9000
9500

10000

1 2 3 4 5 6 7 8 9 101112131415

O
LT

P 
Th

ro
ug

hp
ut

 (T
PS

)

Time (minutes)

79



 
Fig. 7  Throttle adjustments using hybrid controller 

VII. CONCLUSIONS AND FUTURE WORK 
Workload execution control is necessary when work has 

been submitted to the system but is found to interfere 
detrimentally with other work currently executing.   One 
solution commonly used is to pre-empt the problematic 
workload and resubmit it at a later date. However, this often 
results in long delays, especially with today’s busy servers.  
Instead of the kill/restart method, we have shown that 
throttling can be used to slow the problematic workload and to 
free resources for more important work, thus allowing this 
work to maintain its performance goals.  In this paper, we 
illustrate the use of different types of controllers to control the 
level of throttling required. Experimental results suggest that a 
hybrid controller, consisting of both our simple step function 
controller and a black-box model controller, is a good choice 
for throttle control. 

A simple controller is effective in reaching and maintaining 
a suitable level of performance, but the adjustment time to 
reach an appropriate throttle level is significant.  The black-
box model controller is able to predict an initial level of 
performance that is close to, but that typically exceeds, the 
goal.   Combined, the two approaches are able to quickly meet 
the goals of the important workload, and then gradually adjust 
so that the less important workload continues at the fastest 
pace possible, while still maintaining the goal of the important 
workload.  

The main drawback of the black-box model is the 
complexity of building the model.  For the purpose of this 
work, we assume that a worst-case scenario is known and 
built the model based on this scenario.  However, if workloads 
are highly varied, changing frequently and unpredictably, it 
may be impossible to generate an accurate model.  In that case, 
the model must be adjusted or, in the worse case, completely 
regenerated to suit the new workload.  If the types of 
workload processed by the system are known, different 
models can be developed and the appropriate model used 
when a workload shift is detected.   As future work, we plan 
to investigate how the black-box model may be updated 
dynamically, perhaps collecting and using real-time data to 
generate new equations.   

To date, we have assumed that the workload to be throttled 
is known.  In a production system, however, many workloads 
may be executing simultaneously and the autonomic system 

will need to determine which workload(s) to throttle.  We plan 
to investigate possible key identifiers, such high CPU or high 
memory usage, that may indicate workloads that are possible 
candidates for throttling. 

TRADEMARK 
IBM, the IBM logo, and ibm.com are trademarks or registered 

trademarks of International Business Machines Corp., registered in 
many jurisdictions worldwide. Intel is a trademark or registered 
trademark of Intel Corporation or its subsidiaries in the United 
States and other countries. Microsoft, Windows, Windows NT, 
and the Windows logo are trademarks of Microsoft 
Corporation in the United States, other countries, or both.  
Other product and service names might be trademarks of IBM or 
other companies. A current list of IBM trademarks is available on the 
Web at “Copyright and trademark information” at 
www.ibm.com/legal/copytrade.shtml. 

REFERENCES 
[1] W. Powley, P. Martin and P. Bird, “DBMS workload control using 

throttling:  Experimental insights”, in Proceedings of CASCON 2008, 
2008, pp. 1-13. 

[2] S. Krompass, H. Kuno, J.L. Wiener, K. Wilkinson, U. Dayal and A. 
Kemper, “Managing long-running queries”, in Proceedings of EDBT, 
2009, pp. 132-143. 

[3] W.-J. Chen, B. Comeau, T. Ichikawa, S.S. Kumar, M. Miskimen, H.T. 
Morgan, L. Pay and T. Vaattanen. (2008)  Workload manager for 
Linux, Unix, and Windows.  [Online].  Available: 
http://www.redbooks.ibm.com/redbooks/pdfs/sg247524.pdf. 

[4] (2008). Oracle Database Resource Manager.  [Online]. Available: 
http://download.oracle.com/docs/cd/B28359_01/server.111/b28310/dbr
m011.htm. 

[5] Microsoft Corp. (2008). Managing SQL server workloads with 
resource governor. [Online].  Available:  
http://msdn.microsoft.com/en-us/library/bb933866.aspx. 

[6] Teradata dynamic workload manager user guide, Release 13.0.0.0 
(B035-2513-088A), 2008. 

[7] S. Parekh, K. Rose, J. Hellerstein, S. Lightstone, M. Huras and V. 
Chang, “Managing the performance impact of administrative utilities”, 
in Self Managing Distributed Systems, Springer Berlin, Heidelberg, 
February 19, 2004, pp. 130-142. 

[8] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of 
Dynamic Systems, 3rd ed. Reading, MA, USA:  Addison-Wesley, 1998. 

[9] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang, “Query suspend 
and resume,” in Proceedings of the ACM SIGMOD International 
Conference on Management of Data, 2007, pp. 557-568. 

[10] S. Chaudhuri, R. Kaushik, R. Ramamurthy, and A. Pol,  “Stop-and–
restart style execution for long running decision support queries,” in  
Proceedings of the 33rd International Conference on Very Large 
Databases (VLDB), 2007, pp. 735-745. 

[11] Y. Diao, J.L. Hellerstein, G. Kaiser, S. Parekh, and D. Phung, “Self-
managing systems:  A control theory foundation”, IEEE Journal on 
Selected Areas in Communications, v23(12), pp. 2213-2222, Dec 2005.  

[12] S.S. Lightstone, M. Surendra,  D. Yixin, S.  Parekh,  J.L. Hellerstein,  
K. Rose,  A.J.  Storm,  and C. Garcia-Arellano, “Control theory: A 
foundational technique for self managing databases”, IEEE 23rd 
International Conference on Data Engineering (ICDE) Workshop, 
2007,  pp.395 – 403. 

[13] J.L. Hellerstein, Y. Diao, S. Parekh, and D.M. Tilbury, Feedback 
Control of Computing Systems, IEEE Press, Wiley-Interscience, John 
Wiley & Sons, Inc, 2004. 

[14] (2009) Postgresql [Online]. Available: http://www.postgresql.  

Goal = 8000

Goal = 9000

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21

Th
ro

tt
le

 P
er

ce
nt

ag
e

Throttle Adjustment 

80


	Welcome Page
	Hub Page
	Workshop List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	No Other Manuscripts by the Authors
	------------------------------



