
Conceptual Framework for a
Comprehensive Service Management Middleware

Farhana Zulkernine and Patrick Martin

School of Computing, Queen’s University, Kingston, ON, Canada
{farhana, martin}@cs.queensu.ca

Abstract
Web services have greatly leveraged the world of

Business-to-Business (B2B) communication and
promise a lot more through dynamic service
composition. In order to compose Web services into a
business process, it is necessary to find suitable
services, negotiate and establish Service Level
Agreements (SLAs) with the service providers, build a
workflow with the selected services and finally execute
the workflow while monitoring the performance of the
services to verify that the SLAs are satisfied. In this
paper, we propose a conceptual framework for a
Comprehensive Service Management Middleware
(CSMM) to leverage the usability of Web services in
business processes. CSMM has a distributed and
modular architecture suitable for the distributed nature
of Web services and Service Oriented Architecture
(SOA) in general. The novel approach of architecting
the middleware based on Web service technology can
leverage outsourcing of management responsibilities,
and thereby, make the most cost effective use of Web
services.

1. Introduction

Web services are independent software that are

accessible through standard interfaces and provide
specific services over the Internet. There are several
steps for using a Web service in a business process
which can add considerable overhead depending on the
type and usage of services, and the complexity of the
process. The following steps, as depicted in Figure 1,
are common for all service consumers; however, the
complexity of each step may vary.
• Service Selection: Select a service based on some
predefined criteria to complete a business process or
replace a service to recover from failure.
• SLA Negotiation: Negotiate the SLAs based on
customer requirements and service offerings.
• Workflow Orchestration: Design a workflow for a
business process by organizing selected Web services

with properly matched input and output parameters.
• Workflow Execution: Ensure possible error check
points, alternative paths to handle exceptions, and
corrective measures in the workflow, and thereby,
execute it.
• Monitor and Error Report: Monitor the services’
performance to verify compliance with the SLAs and
optionally report QoS information to a specified
knowledgebase to enable quality-based service
selection. Also check for possible failure to allow quick
recovery.

All of the tasks listed above present non-trivial
problems for composite business processes and can
incur significant overhead for both the service providers
and the service consumers. Ideally a consumer should
be able to use a service like a function call and the
additional tasks can be executed by a management
service provider in order to simplify and facilitate the
use of Web services. In the absence of a management
service provider, the service consumers would have to
write and maintain proprietary code for the above
operations. In this paper, we propose a conceptual
framework called the Comprehensive Service
Management Middleware (CSMM), where separate
modules can provide client-side management services
at different steps, thus providing one comprehensive
management service to the service consumer.

The rest of the paper is organized as follows.
Section 2 illustrates the problems involved in each of
the five steps outlined above, namely selecting,

Figure 1. Steps to execute a Web service process

SLA
Negotiation

Workflow
Execution

Monitor &
Error Report

Service Consumer

Workflow
Orchestration

Service
Selection

negotiating, orchestrating, executing, and monitoring
services to substantiate the necessity of a
comprehensive service manager. Section 3 gives an
overview of the CSMM. How the framework can be
used for a composite Web service process is explained
by a scenario in Section 4. Section 5 discusses the
existing solutions and the related work on service
management. A summary and discussion of the future
work concludes the paper in Section 6.

2. Problems in Client-side Service

Management

With the growing popularity of Web services, the

complexity in each step for creating and executing a
Web service process has increased considerably. A
service, as described in the requirement specification,
may need to be divided into smaller tasks so that
matching services can be found. Data conversions and
formatting may be necessary to link outputs from one
service to the inputs of another service. Service
selection criteria can include functional properties, such
as performance, reputation, context, and parameters. An
ontology specification [12] is deemed inevitable to
enable automatic matching of service selection criteria
with the service properties. Context matching [8] [11]
in service selection is gaining popularity in the area of
ubiquitous and pervasive computing.

Negotiation of the Service Level Agreements
(SLAs) is important for business processes, particularly

when there is a service charge. Negotiation is done
based on the service offerings, both functional and non-
functional, such as price, quantity, date, availability of
the service, throughput, response time, delay, and may
include bonus offers. Usually, bilateral bargain type
negotiations [4] [9] are performed for Web services,
which can consume considerable bandwidth and
processing time. The priorities for trade-offs between
different issues of negotiation and the service offerings
may vary depending on the context of the negotiating
parties.

Some of the challenges in building a workflow are
verifying the types and compatibility of the parameters
of the adjacent Web services in the workflow and
linking them properly, establishing check-points at
positions in the workflow where errors can most likely
occur, and setting the recovery path to possibly
continuing the workflow.

Usually the performance of a Web service is
monitored to ensure SLA compliance at both the
service provider’s end [3] and at the consumer’s end.
However, service consumers face a greater challenge in
monitoring composite services due to the chaining of
the function calls and responses, and the network
dependency in measuring some of the functional
attributes such as reliability, response time, and service
delay [6].

Outsourcing of the above management tasks can
reduce the overhead experienced by the consumers and
leverage the use of Web services. Although multiple

Figure 2. Conceptual Framework of the
Comprehensive Service Manager

Possible service call
Data communication
Data external to CSM

 CSMM (WS)

Report
Collector

Error Tracking
and Recovery

CSM
inputs

CSM
outputs

Service Req.
Handler (WS)

Selects services
given service
requirements
specifications

Workflow
Manager (WS)

Builds a workflow
and executes the
given workflow

Negotiation
Broker (WS)

Applies policies
from both the
consumer and
provider to
negotiate SLAs

Performance
Monitor (WS)

Monitors
component
service
performances
given SLAs

KB of negotiation
policies

Service
Req. Spec.

Selected
services

Policies & Sel.
Services

SLAs SLAs &
Workflow

QoS Report Services
& params

Work-
flow

Certified QoS
knowledgebase

(KB)

Reports from
WSs

Negotiation
policies from WSs

Extended UDDI
Ontology-based

service description

partial solutions have been proposed, for coherent and
seamless management of these tasks a coordinated
management framework such as CSMM, is essential.

3. Overview of the Framework

We propose the CSMM as a solution to the

problems of client-side management. It contains several
distributed modules and knowledge repositories as
shown in Figure 2, which together provide complete
management functionality as a Web service.
Implementation of each of the four main modules in
CSMM presents a significant research problem in this
area and will be further expanded as the research
progresses. In this paper, we present our ideas about
how each of these modules can be implemented. The
four main modules in the framework are designed as
independent Web services and can be invoked
separately. We plan to implement these Web service
modules based on the Autonomic Web Service
Environment (AWSE) [18] framework, which provides
autonomic control of the Web service at the provider’s
end. We describe the modules below in further detail.

3.1 Service Requirements Handler (SRH)

Service Requirements Handler finds required

services for the user based on some specified selection
criteria. It accepts specifications describing service
requirements in a formal language and returns a set of
selected services in the order of execution. The
language should be specified based on the XML
(eXtensible Markup Language) [21] and Web service
ontology, which we will refer to as a Service
Requirements Specification Language (SRSL). The
Semantic Web Services group is currently working on
Web Ontology Language for Services (OWL-S) [15],
which supplies Web service providers with a core set of
markup language constructs for describing the

properties and capabilities of Web services in an
unambiguous and computer-interpretable form. For
service discovery, semantic markup information about
service offerings, properties, parameters, and return
values, should be stored in an extended UDDI. A SRSL
based on standards like OWL-S, can match the
semantic service selection criteria against the
information in the extended UDDI. To enable QoS-
based service selection, we propose the use of a
certified QoS knowledgebase that can be built by the
Performance Monitor in CSMM as shown in Figure 2.
In case of an error in a workflow, SRH can find a
replacement service. For complete automation, SRH
communicates directly with the Negotiation Broker.

3.2 Negotiation Broker (NB)

Negotiation Broker takes an ordered list of selected

services and the negotiation policies from all the service
providers and the service consumers. The policies
specify the context of the negotiators, their goals,
constraints, preferred strategies and external factors that
may influence the decision process as shown in the
example in Figure 6. A knowledgebase stores the
negotiation policies, which can be used to derive
improved negotiation strategies and provide assistance
in the case of uncertainties in negotiation issues using
artificial intelligence techniques. Also stored policies
can be retrieved for subsequent negotiations between
the same consumer-provider pair. This module
performs the negotiation locally as a broker service and
returns SLAs to both parties. This can reduce network
traffic, and security issues in negotiation. However, the
negotiating parties have to trust the broker to convey
their goals and policies. We assume that the NB is a
trusted service and WS-Trust [22] can be used as a
guideline for the trust relationship. The module can be
expanded to multiple sub-modules for strategic decision
making, multiple SLA negotiation for composite
processes, and SLA generation. NB can be extended to
perform more general negotiations.

3.3 Workflow Manager (WM)

Workflow Manager takes an ordered list of

selected services with the necessary input parameters
for each of them, and generates a Web Service Business
Process Execution Language (WS-BPEL) [13]
specification of a service orchestration. The workflow
can be returned to the customer to be executed locally
or can be executed by the WM in a manner similar to
the workflow execution engine in BPEL. Orchestration
describes how Web services can interact with each
other at the message level, including the business logic
and execution order of the interactions. These

Figure 3. SOAP message sent to a service

<SOAP-ENV:Body>
<reportLog xmlns = 'urn:ws:reportLogs'>

<receiver>MonitorService</receiver>
</reportLog>

</SOAP-ENV:Body>

<SOAP-ENV:Body>
<reportLog xmlns = 'urn:ws:reportLogs'>

<receiver>MonitorService</receiver>
<service>MyLocationServices</service>
<repTime>1029200613:11:06</repTime>
<report>success</report>
<retval>Niagara Falls</retval>

</reportLog>
</SOAP-ENV:Body>

 Figure 4. SOAP message with reports

interactions may span applications and/or organizations,
and result in a persistent, transactional, multi-step
process model. WM is designed as a Web service. WM
defines the workflow with check-points for exception
handling and monitoring purposes and executes it in a
centralized manner as the BPEL workflow engine,
which allows it to handle the exceptions or re-invoke
services. The output from the last Web service in a
process can go directly to the customer. To achieve
higher reliability, WM can re-invoke a service with
fewer constraints if it does not return a result in the first
place, or design the workflow to generate a set of
alternative results for the customer.

3.4 Performance Monitor (PM)

Performance Monitor takes the SLAs and

workflow specification as input and performs the SLA
compliance checking for the service consumer. If a
service becomes unavailable, it should react after some
threshold period and request the Error Tracking and
Recovery (ETR) sub-module to take a corrective action
based on the workflow definition. For example, the
ETR can request SRH for a service replacement and
then request WM to build a revised workflow with the
replaced service. A Report Collector module collects
performance reports from services for the PM, which in
turn analyses the reports and sends the analyzed data to
the certified statistical QoS knowledgebase to enable
QoS-based service selection.

Our design requires each individual service of a
composite workflow to report back to the monitor. This
could be achieved by the extension of the Simple
Object Access Protocol (SOAP) [20] message structure
to include a “reportLog” as shown in Figures 3 and 4.
The interpreter of SOAP messages at the service
provider’s end will extract this log part from the
message, which specifies where the log report should
be sent. The module invoking a service would initialize
the “receiver” attribute within the “reportLog” to
specify the party that would receive the report. The
SOAP message interpreter would be responsible for
returning a SOAP message to the designated receiver
and specifying the other fields within the “reportLog”
such as, “service” referring to the service name,
“repTime” referring to the time when the service
completed or the reporting time, “report” notifying
“success” or “failure”, and possibly the return values
for the “retval” attribute at the end of the service
execution.

The report can contain minimal information to
limit the network traffic and help trace the process
workflow. It may be sufficient to store the last report
only to reduce storage of state information. This is,
however, a stateful and centralized approach. In a more

stateless and decentralized approach, the logs would
continue to be added to the SOAP message, which
would be passed along the process, and the final Web
service would send it to the originator of the process. In
the latter approach, the risk lies in the report being lost
with the failure of a service, resulting in a longer
timeout period for the originator to detect a failure in
the workflow.

4. Example Scenario of CSMM

We describe the CSMM with an example scenario

of a customer wanting to plan a vacation using Web
services. This will typically require multiple services
such as site selection, travel planning, hotel reservation,
and tourist services, to be chained together in a
composite service process. CSMM can assist the
customer in creating, executing and managing this
composite service. Since service requirements
specification is the key that guides the activity of
CSMM, it should be specified properly. An intelligent
user interface with a knowledgebase of possible
services and service options can facilitate the
specification. SRH finds component services to meet
the specifications and returns the services in the order
of execution either to the customer, if SRH service was
invoked, or to the NB, if the comprehensive service of
CSMM was invoked. Figure 5 shows an example of the
type of information that the service consumer should
convey to the SRH through a SRSL specification.

The NB then collects the policies from both parties
for each service, and places them into the negotiation
knowledgebase. Figure 6 shows an example of a
negotiation policy specification of the “selectLocation”
service provider. It contains the name of the policy
owner as “policymaker”, the “context” of the party
which is considered by the other party during
negotiation, “goal”, “constraints” and negotiation
“strategy”. The constraint specification may include
external factors defined as functions which should be
evaluated by the NB during the negotiation process,
such as the currently available resources. Other

Figure 5. Service requirement specification basics

Location
Selection
Service

Choice of
locations

or
selection
criteria

Travel
Planner
Service

Preferred
dates,

route and
vehicle

type

Accommod
ation

Planner

Type,
length of
stay, food
options,

cost

Vacation Planner Service

Tourism
Service

Day tour
options,
specific
sites to
visit

constraints may specify maximum and minimum values
of different service attributes. A negotiation strategy
may describe conditional prices based on the service
demand and required service attributes. The “tradeoff”
section specifies the incremental rate of the service
price beyond a certain point of desired service property.
In the above example, when the service availability is
>= 90%, a $0.2 price increment incurs for every 1%
increase in service availability. If a negotiation
completes successfully then a set of SLAs are sent back
to both the parties involved. For our example,
negotiation is done for all four services and if a
negotiation fails, no SLAs are returned for it. When a
comprehensive service is expected, the NB requests the
SRH for a replacement service.

Figure 7 shows a very simple and straight forward
workflow of our example vacation planning composite
service process. The arrows indicate information and
control flow and the square boxes show each service in
the process. The WM then builds a workflow with the
selected services in sequence, and parameters that are
obtained from the customer such as different options

and preferences. Some of the parameters are defined by
the outputs of the previous services in the workflow.
Output from the “selectLocation” service is passed as
the input to all other services. Once the location is
selected, that information along with other user
preferences, are sent to the travel service to book travel
media. As the travel plans are made, the dates and
location information are used for the other two services
to arrange for accommodation and plan tours. Since the
latter two are independent of each other, they can be
executed in parallel.

The “reportLog” section (ref. Figure 3 and 4) is
inserted in the message sent to the location selection
service for monitoring purposes. By default, the PM is
designated as the receiver of the reports. However, the
customer can also choose to receive the reports. The
PM should obtain a message from each service in the
workflow as the services return the results. The reports
should contain necessary information to verify
compliance with the SLAs. A missing report indicates a
failure or unavailability on the service’s part and
necessary corrective actions are initiated by the ETR
sub-module. In case of a successful execution, the
location selection service would select a location, the
travel planner service would book or buy tickets for
traveling to that location, the accommodation planner
service would book the hotel and finally, the tourism
service would book tours for the customer.

5. Related Work

To the best of our knowledge, no other work in the

literature addresses the complete client-side service
management problem. Web Service Management Layer
(WSML) [1] is a middleware that lies between the
client application and Web services, and facilitates
development and client-side management of integrated
service applications. The modules in CSMM are
designed as Web services and have a more distributed
architecture. Illner et al. [5] present their work on
policy governed automated management of embedded
service systems using model-based approach. Our work
uses policies only for the NM, and focuses on managing
and executing consumer calls rather than managing
Web service systems. Universal Service Description
Language (USDL) [17] and Web Service Offering
Language (WSOL) [19] are some of the work that are
geared towards more efficient service selection and
management and may contribute to the definition of a
SRSL. Other comparable work in this area includes
specification of QoS ontology for autonomic service
selection using agents as proxies [12], study of the
requirements for context representation for Web
services [11], and processing heterogeneous context
information [8]. Gimpel et al. [4], Comuzzi et al. [2],

Figure 7. Workflow for vacation planning service

Travel Planner

Accommodation Planner Tourism Service

Select Location

<policyMaker>selectLocation</policyMaker>
<context>new service</context>
<goal>get more service contracts</goal>
<constraints>
 <externalFactors>getResourceAvailability()<90%
 </externalFactors>
 <maxAvailability> 99.5%</maxAvailability>
 <minPrice> $0.5/hr/connection</minPrice>
</constraints>
<strategy>
 <condition>
 <if>number of connections <100 or
 servicePeriod>30days or
 customerContext = small customer </if>
 <then><price> $0.5/hr/connection </price>
 <reliability>99%</reliability> </then>
 <else><price> $0.8/hr/connection</price>
 <reliability>98%</reliability> </else>
 </condition>
 <tradeoff><incAvailability>=90%> 1%
 <incPrice>$0.2/hr/connection</incPrice>
 </incAvailability>
 </tradeoff>
</strategy>
Figure 6. Negotiation policy specification for

the “selectLocation” service provider

and Li et al. [9] propose different Web-based
negotiation approaches that are comparable to the
approach of the NB module in CSMM. Sahai et al. [16]
propose a distributed message tracking algorithm and
the Web Services Management Network (WSMN) [9]
for monitoring composite Web service processes. The
message tracking used in the CSMM PM differs from
that in the formatting and processing of the messages.
Other research work that contributes to client-side
management to some extent includes QoS-based service
composition [23].

6. Conclusion

CSMM can relieve the customers from the

overhead of performing the management tasks for
building and executing composite Web services based
workflows. The conceptual architecture of the CSMM
contains four main modules for Web service selection,
workflow definition and execution, SLA negotiation,
and client-side monitoring. The modules are designed
as Web services, which allow individual or
comprehensive use of their services as required by the
consumer, and also extend the usability of the modules
to provide other similar services.

We are working on designing and implementing
CSMM, starting with the negotiation module, for use in
our AWSE framework [18]. As future work, CSMM
modules can be further extended for use in the
paradigm of wireless or pervasive computing and small
industrial devices [7], where clients have limited
processing power. Due to the use of Web service
technology, CSMM can also provide ubiquitous access
to a wide range of service consumers. The individual
service modules in CSMM can be further utilized as
independent services for automated policy based
negotiations, service ratings, and distributed resource
monitoring with WSDM (Web Services Distributed
Management) interfaces [14]. Thus CSMM can
leverage the use of Web services in business processes
and provide modular services for similar tasks to a wide
range of customers.

References

[1] Cibrán, M., Verheecke, B., Suvee, D., Vanderperren, W.,
and Jonckers V. (2004). “Automatic Service Discovery and
Integration using Semantic Descriptions in the Web Services
Management Layer”, Journal of Mathematical modeling in
Physics, Engineering and Cognitive Sciences, v. 11, p.79-89.
[2] Comuzzi, M., and Pernici, B. (2005). “An Architecture
for Flexible Web Service QoS Negotiation”, in Proc. of the
9th IEEE Int. EDOC, Enschede, The Netherlands, p.70-82.
[3] Dan, Davis, Kearney, Keller, King, Kuebler, Ludwig,
Polan, Spreitzer, and Youssef (2004). “Web services on

demand: WSLA-driven automated management”, IBM
Systems Journal, v. 43(1), p.136-158.
[4] Gimpel, H., Ludwig, H., Dan, A., and Kearney, B.
(2003). “PANDA: Specifying Policies for Automated
Negotiations of Service Contracts”. Orlowska, M.,
Weerawarana, S., Papazoglou, M., and Yang, J. (Eds.): LNCS
2910, p. 287–302, Springer-Verlag Berlin Heidelberg.
[5] Illner, S. Pohl, A. Krumm, H. Luck, I. Manka, D.
Stewing, F.-J. (2006). “Policy-based self-management of
industrial service systems”. In Proc. of the 4th Int. Conf. on
INDIN, Singapore, p. 492-497.
[6] Iyengar, A., King, R., Ludwig, H., and Rouvellou, I.
(2003). “Performance and Service Level Considerations for
Distributed Web Applications”, in Proc. of the 7th World
Multi-conference SCI, Orlando, Florida.
[7] Jammes, F. and Smit, H. (2005). "Service-Oriented
Architectures for Devices- the SIRENA View", in Proc. of the
3rd IEEE Int. Conf. on INDIN, p.140-147, Perth, Australia.
[8] Kranenburg, H. van, and Eertink, H. (2005). “Processing
Heterogeneous Context Information”, in Proc. of the IEEE
SAINT-Workshop, p.140-143.
[9] Li, H., Su, S.Y.W., and Lam, H. (2006). “On Automated
e-Busines Negotiations: Goal, Policy, Strategy, and Plans of
Decision and Action.” Journal of Organizational Computing
and Electronic Commerce, v. 13(1), p.1-29.
[10] Machiraju, V., Sahai, A., and van Moorsel, A. (2002).
“Web Services Management Network: An Overlay Network
for Federated Service Management”, HP Technical Report
HPL-2002-234.
[11] Martin, D. (2006). “Putting Web Services in Context”, in
Elec. Notes in Theoretical Comp. Science, v. 146(1), p.3-16.
[12] Maximilien, E. M., and Singh, M. P. (2004). “A
Framework and Ontology for Dynamic Web Services
Selection”, IEEE Internet Computing, v. 8(5), p.84-93.
[13] OASIS WS-BPEL (2006). Available: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel.
[14] OASIS WSDM and MUWS v.1.1 (2006). Available at:
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsdm.
[15] OWL-S 1.2 2006. (http://www.daml.org/services/owl-s/.)
[16] Sahai, A., Machiraju, V., Ouyang, J., and Wurster, K.
(2001). “Message Tracking in SOAP-based Web Services”,
Hewlett Packard. Tech. Rep. HPL-2001-199.
[17] Simon, L., Mallya, A., Bansal, A., Gupta, G., Hite, T. D.
(2005). “A Universal Service Description Language” in Proc.
of the IEEE ICWS, Orlando, Florida, USA.
[18] Tian, W., Zulkernine, F., Zebedee, J., Powley, W., and
Martin, P. (2005). “An Architecture for an Autonomic Web
Services Environment”, in Proc. of WSMDEIS, Miami, Fl.
[19] Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., and Ma,
W. (2005). “Management applications of the Web Service
Offerings Language”, Information Systems, v.30(7),p564-586.
[20] W3C SOAP 1.2 (2004). Part 1: Messaging Framework.
Available at: http://www.w3.org/TR/soap12-part1/.
[21] W3C XML (eXtensible Markup Language). Available at:
http://www.w3.org/XML/.
[22] WS-Trust, 1.0 (2002). Available at:
http://www.verisign.com/wss/WS-Trust.pdf.
[23] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J.,
and Sheng, Q. (2003). “Quality driven Web services
composition”, in Proc. of Int. WWW, Budapest, Hungary.

