
Architecture for an Autonomic Web Services Environment 

Wenhu Tian, Farhana Zulkernine, Jared Zebedee, Wendy Powley, Pat Martin 
School of Computing, 

Queen’s University, Kingston, ON Canada  
{ tian, farhana, zebedee, wendy, martin }@cs.queensu.ca  

 

Abstract. The growing complexity of Web service platforms and their dynamically varying workloads 
make manually managing their performance a tough and time consuming task. Autonomic computing 
systems, that is, systems that are self-configuring and self-managing, have emerged as a promising 
approach to dealing with this increasing complexity. In this paper we propose an architecture of an 
autonomic Web service environment based on reflective programming techniques, where components 
at a Web service hosting site tunes themselves and collaborate to provide a self-managed and self-
optimized system.    

1. Introduction 

Web services are self-contained and self-describing software components that can be accessed over the 
Internet. They are now well accepted in Enterprise Application Integration (EAI) [19] and Business to 
Business Integration (B2Bi) [4]. Performance plays a crucial role in promoting the acceptance and 
widespread usage of Web services. Poor performance (e.g. long response time) means the loss of customers 
and revenue [14]. In the presence of a Service Level Agreement (SLA), failing to meet performance 
objectives could result in serious financial penalties for the service providers. As a result, Web service 
performance is of utmost importance, and recently has gained a considerable amount of attention [3, 15, 
18].  

A Web service is a Web-accessible program that is described in a WSDL (Web Service Description 
Language) [17] document. Web services are published or discovered via a UDDI (Universal Description, 
Discovery and Integration) [16] registry. SOAP (Simple Object Access Protocol) [13] is the most common 
message passing protocol used to communicate with Web services.  

A Web service hosting site typically consists of many individual components such as HTTP servers, 
application servers, Web service applications, and supporting software such as database management 
systems. If any component is not properly configured or tuned, the overall performance of the Web service 
suffers. For example, if the application server is not configured with enough working threads, the system 
can perform poorly when the workload surges. Typically components such as HTTP servers, application 
servers or database servers are manually configured, and manually tuned. To dynamically adjust in an ever-
changing environment, these tasks must be automated.  

Unacceptable Web service performance results from both networking and server-side issues [10]. Most 
often the cause is congested applications and data servers at the service provider’s site as these servers are 
poorly configured and tuned. Expert administrators, knowledgeable in areas such as workload 
identification, system modeling, capacity planning, and system tuning, are required to ensure high 
performance in a Web service environment. However, these administrators face increasingly more difficult 
challenges brought by the growing functionalities and complexities of Web service systems, which stems 
from several sources: 

 
• Increased emphasis on Quality of Services  

Web services are beginning to provide Quality of Service features. They must guarantee their service 
level in order that the overall business process goals can be successfully achieved.  

 
• Advances in functionality, connectivity, availability and heterogeneity 

Advanced functions such as logging, security, compression, caching, and so on are an integral part of 
Web service systems. Efficient management and use of these functionalities require a high level of 



expertise. Additionally, Web services are incorporating many existing heterogeneous applications such 
as JavaBeans, database systems, CORBA-based applications, or Message Queuing software, which 
further complicate performance tuning. 

 
• Workload diversity and variability 

Dynamic business environments that incorporate Web services bring a broad diversity of workloads in 
terms of type and intensity. Web service systems must be capable of handling the varying workloads. 

 
• Multi-tier architecture 

A typical Web service architecture is multi-tiered. Each tier is a sub-system, which requires different 
tuning expertise. The dependencies among these tiers are also factors to consider when tuning individual 
sub-systems. 

 
• Service dependency 

A Web service that integrates with external services becomes dependent upon them. Poor performance 
of an external service can have a negative impact on the Web service.  
 
Autonomic Computing [7] has emerged as a solution for dealing with the increasing complexity of 

managing and tuning computing environments. Computing systems that feature the following four 
characteristics are referred to as Autonomic Systems: 

 
• Self-configuring - Define themselves on-the fly to adapt to a dynamically changing environment.  
• Self-healing - Identify and fix the failed components without introducing apparent disruption. 
• Self-optimizing - Achieve optimal performance by self-monitoring and self-tuning resources. 
• Self-protecting - Protect themselves from attacks by managing user access, detecting intrusions and 

providing recovery capabilities. 
 
In this paper we propose an architecture for an autonomic Web services environment. We consider each 

component in the proposed architecture as self-managing and thereby present a hierarchical layout of 
autonomic managers that constitute a self-configuring and self-optimizing autonomic Web service system. 
The remainder of the paper is structured as follows. Section 2 discusses related approaches to Web service 
management. Our proposed autonomic architecture is presented in Section 3, and a detailed scenario to 
illustrate how the architecture works is provided in Section 4. Section 5 summarizes and concludes the 
paper. 

2. Related Work 

Architectural approaches based on SLA-driven Web services have been proposed by Dan et al. [5] and 
Levy et al. [9]. Dan’s framework includes components for the support of an SLA throughout its entire life-
cycle as well as SLA-driven management of services. Levy et al uses a queuing model to predict response 
times for different resource allocations. In their model, the management system is transparent and allocates 
server resources dynamically to maximize the expected value of a given cluster utility function.  Both of 
these approaches focus on service provisioning. We focus on autonomic management rather than the 
provisioning aspects. 

Farrell and Kreger [6] propose a number of principles for the management of Web services including the 
separation of the management interface from the business interface, pushing core metric collection down to 
the Web services infrastructure. They use intermediate Web services that act as event collectors and 
managers.  We incorporate these ideas and expand upon them in our approach.    

The insufficient reliability and lack of autonomic features in current Web services architectures is 
presented by Birman et al in [2]. He proposes some extensions to the current Web services framework in 
the form of more robust monitoring and reliable messaging to achieve higher availability. 



3.  Autonomic Web Services Architecture 

A Web services environment typically consists of a collection of components including HTTP servers, 
application servers, database servers, and Web service applications. In our proposed architecture, as shown 
in Figure 1, we consider each component to be autonomic, that is, self-aware and capable of self-
configuration to maintain a specified level of performance.  System-wide management of the Web services 
environment is facilitated by a hierarchy of Autonomic Managers that query other managers at the lower 
level to acquire current and past performance statistics, consolidate the data from various sources, and use 
pre-defined policies and SLAs to assist in system-wide tuning. 

 
 

 
 

Fig. 1.  Autonomic Web Services Architecture 

At the lowest level in our architectural hierarchy are the Autonomic Elements. We refer to an autonomic 
element as a component augmented with self-managing capabilities.  An autonomic element is capable of 
monitoring the performance of its component, or managed element, (such as a DBMS or an HTTP server), 
analyzing its performance and, if required, proposing and implementing a plan for reconfiguration of the 
managed element.  Autonomic elements form the building blocks of our architecture and are described in 
more detail in Section 3.1. 

We refer to a Site as a collection of components and resources necessary for hosting a Web service 
system provided by an organization. A Web services hosting site typically consists of HTTP servers, 
application servers, SOAP Engines, and Web services.  Web services are basically Web accessible 
interfaces or applications that can connect to other backend applications such as legacy systems, or 
database management systems. Most often these backend components are located on separate servers that 
are connected by a Local Area Network (LAN).  A site can therefore span multiple servers. A site manager 
oversees the overall performance of the site and provides service provisioning for the components 
associated with the site.   

An Application, as shown in Figure 1, is a special purpose client program that uses one or more Web 
services, possibly from different sites. An investor application, for example, that allows users to look up 
stock prices may use Web services from several different companies.  A site’s SLA Negotiator negotiates 
SLA agreements between the applications and the Web services hosted by the site. Once SLA agreements 
are made, the site must manage its resources to ensure the agreed level of performance.   

There are two levels of management in our approach; the component level and the site level. The 
component is responsible for managing its own performance to meet goals specified by the site manager.  
The site manager monitors for SLA compliance, sets component goals, and provides resource provisioning 
when necessary. 

Application   Application  

Site A 

SLA 
Negotiation 

        Site D Site C Site B Site E 



3.1 Autonomic Elements 

An autonomic element can be viewed as a feedback control loop as shown in Figure 2 [8], controlled by an 
Autonomic Manager.  The autonomic manager oversees the monitoring of the component (the Managed 
Element), and by analyzing the collected statistics in light of known policies and goals, it determines 
whether or not the component performance is adequate. If necessary, a plan for reconfiguration is generated 
and executed.  

  
 

Managed element 

Monitor 

Analyze Plan 

Execute 
Knowledge 

Autonomic manager 

Management Interface 

 

Fig. 2.  Autonomic Element 

One approach to building autonomic elements is based on the principles of reflective programming [11]. 
A reflective system is one that can inspect and adapt its internal behaviour in response to changing 
conditions. Typically a reflective system maintains a model of self-representation, and changes to the self-
representation are automatically reflected in the underlying system.  

An example of an autonomic database management system (DBMS) based on reflective programming 
techniques, was presented by Martin et al [12]. In this system, the self-representation of the system 
embodies the current configuration settings and the statistics that are collected regarding the system 
performance.  This information is stored as a set of database relations that can be queried and updated. A 
monitoring tool periodically takes snapshots of the DBMS performance and stores the collected data in a 
data warehouse.  When a new set of performance data is inserted into the data warehouse, a database 
trigger is fired that calls a diagnosis function. The diagnosis function compares current and past 
performance data to determine whether or not a change in configuration is warranted based on a preset 
desired performance setting. If one or more configuration parameters should be altered, a change is made to 
the self-representation which in turn triggers a change to the underlying DBMS configuration parameters. 

We use this notion of reflection to implement Web components as autonomic elements. In our 
architecture, all components such as the HTTP server, the application server, the Web services and 
supporting applications as well as the site manager are instances of autonomic elements.  Each component 
has an autonomic manager as shown in Figure 2, augmented with a reflective Management Interface.  This 
interface is used by higher level managers to set performance goals as per Service Level Agreements 
(SLAs) for the managed element and to obtain current performance statistics for the component. As in the 
example of the autonomic DBMS, a monitoring tool periodically monitors the system performance and the 
analyzer compares the current and past performance to determine whether a configuration change is 
necessary to achieve the desired goal. Following the principles of reflective systems, each autonomic 
element maintains a self-representation which embodies the component’s current goal settings and its 
current performance statistics. Updates made to the self-representation trigger changes to the actual system. 
If deemed necessary by the analyzer, changes are made to the self-representation to reconfigure the 
component.  

In our proposed architecture, to ensure interoperability between autonomic elements, a common 
management interface is specified for all elements to provide access to the self-representation. Each 
autonomic element monitors itself to assess its general health and the performance data is stored as part of 



the component’s self-representation. This data can be accessed using the methods provided by the 
management interface. Historical data may be used for performance analysis and prediction.   

The standard Web services environment already provides the tools required to define, publish, discover, 
and to use APIs across platforms. These tools and methods are exploited in our proposed architecture for 
communication between elements. To implement the reflective interface, we view each component as a 
Web service where the self-representation is accessed via Web service operations for each element. Two 
management interfaces are defined for each autonomic element; the Performance Interface and the Goal 
Interface. The Performance Interface exposes methods to retrieve, query and update performance data.  
Each element exposes the same set of methods, but the actual data each provides varies.  Meta-data 
methods allow the discovery of the type of data that is stored for each element 

 

 
The Goal Interface provides methods to query and establish the goals for an autonomic element.  Meta-

data methods promote the discovery of associated goals and additional methods allow the retrieval of 
current goals.  Goals for individual components can be set only by their associated site manager.  Goals for 
a site manager are set by the site's SLA Negotiator component. 

Component-level performance interfaces are accessed only by their associated site manager.  A site 
manager uses the performance interface to asses the current health of each of its components and uses the 
component’s goal interface to set individual goals for each component. 

Management interfaces are defined and published using WSDL and a private management UDDI 
registry as suggested by Farrell and Kreger [6]. The self-representation can be stored using any storage 
format (database, log files etc) as these details are made transparent by the use of a Web service interface.   
Figure 3 shows the interface specification of the management interfaces common to all autonomic 
elements.  The WSDL specification for the setGoal()  method is given in the Appendix as an example. 

Each autonomic element implements a monitoring component to asses the health of its managed 
element.  Monitoring incurs a certain degree of overhead, so monitoring processes must be lightweight and 
invoked as infrequently as possible.  Multiple levels of monitoring allow more information to be collected 
depending on the amount of detail that is desired. In some cases, it may be desirable to drill down, 
collecting more detailed information to assist in problem determination. At times of stable, acceptable 
performance, it may suffice to collect data less frequently.    

Current HTTP servers and application servers provide rich interfaces for monitoring tools to extract 
performance statistics and running status. A variety of monitor tools are available on the market to visualize 
and analyze collected statistics, and if necessary, to fire warnings when the pre-set thresholds are violated 
[20, 1].  DBMSs are rich in monitoring tools and APIs for gathering information.  Monitors can be 
switched on or off at will, and different levels of monitoring can be specified.  Monitoring individual Web 
services presents more of a challenge as each Web service application is unique. Generic monitors can be 

 
public interface Goal{ 
 // retrieves a list of goals that can be set for the component  

public Vector getMetaData();  
 // retrieves the current goal for the component  

 public Double getGoal (String goalType);  
 // set a goal for the component 

public Boolean setGoal(String goalType, Double value) 
} 
 
public interface Performance{ 
 // retrieves a list of goals that can be set for the component  
 public Vector getMetaData();  
 // retrieves the most recent performance data 

 public Vector getCurrentData();  
 // returns a specified portion of the most recent performance data 

 public Vector getData(Vector params);  
} 

Fig. 3. Management Interface Specifications 



developed that provide basic information such as response time for the Web service, number of requests per 
time unit, or average queue length.  

3.2  Site Management 

A site is a collection of Web service components and resources provided by an organization that offers 
one or more Web services. The components comprising a site are shown in Figure 4. A site may be 
distributed across many physical nodes.  Multiple instances of a component may reside on the same site 
and resources are provisioned as required. 

 

Query/Signal 

 

 

HTTP Server 

                                      Application  
                                     Server SOAP Engine 

WS1 

   DB  Legacy 

XML 

Objects 

JDBC Wrapper SOAP 

 HTTP Server 
Goal 

Interface 
Performance 

Interface 

Application Server 
Goal 

Interface 
Performance 

Interface 

Set 

WS2 WS3  
Web service 

Goal 
Interface 

Performance 
Interface 

DB Server 
Goal 

Interface 
Performance 

Interface 

Ext.WS 

SLA Negotiator 

Site Manager 

 
Site Manager 

Goal 
Interface 

Performance 
Interface 

 
 

Fig. 4. Autonomic Web Services Site 

 Applications that wish to use the Web services offered by a site negotiate a SLA with the site’s SLA 
Negotiator.  Details of an automated approach to SLA negotiation is presented by Dan et al in [5], and is 
beyond the scope of this paper.  We assume that different SLAs can be specified for each Web service or, if 
a finer level of granularity is required, SLAs can be set on a per-operation level.  The site’s SLA Negotiator 
translates these high level specifications into performance goals such as response time or average 
throughput for each Web service or operation. The SLA Negotiator component sets the goals for the site 
using the site’s management interface.    

Each site employs a Site Manager that oversees the general performance of the components comprising 
the site.  The site manager itself is implemented as an autonomic element with its own autonomic manager.   
Conceptually, the site manager is the autonomic manager of all the components within the scope of the site.  
The site manager collects the performance statistics of each component by querying the management 
interfaces of the individual components.  This information, along with the policies and goals defined for the 
site, is used to determine whether or not the performance of the site is adequate.  If the site is in violation of 
one or more of the SLA agreements, an action plan is generated and executed.  An action plan may involve 
the generation and setting of new goals for particular components, or it may involve a modification in the 
provisioning of resources.  

The site manager is implemented as a Web service that exposes the site’s performance interface that can 
be accessed by other site managers or external components.  This interface can be used by applications for 



error tracking, Web service selection, or by modules handling external SLA compliance monitoring.  The 
performance data for a site provides summary data indicating the overall performance of the associated 
components.   

The site manager is responsible for monitoring the overall performance of the Web services offered by 
the site.  The site manager retrieves the performance data via the components’  performance interfaces.  The 
information required by the component for self-management may differ from that required for overall 
system management by managers at the site level. For instance, a DBMS focuses on low level resources 
such as I/O and CPU usage to maximize performance. To optimize site performance, and to monitor SLA 
compliance, the site manger requires higher level statistics such as throughput or transaction response 
times.  This information is available through the components management interface. 

4. Scenario 

Functionality of the different components presented in the architecture of autonomic Web services system 
can be better explained using a common example like the Stock Quote composite Web service system 
shown in Fig. 5.  In this system, a customer uses an Investor application to find out the details about 
multiple stocks. The Investor application invokes a Stock Broker (SB) Web service by sending a register 
message containing a list of stock IDs. The Stock Broker sends accept or reject message to the Investor in 
response.  In case of accept, the Stock Broker sends the stock IDs received from the customer, one by one 
to the Research Department (RD) Web service. The RD finds the necessary information and sends a report 
directly to the Investor application. When the Investor receives information about all the stocks, it sends an 
acknowledgement message to the Stock Broker service. The Stock Broker service then submits the bill to 
the Investor and notifies the Research Department about the end of the job. The messages interchanged in 
this system are presented in Figure 5. 

 

 

Fig. 5. Stock Broker Web Service System 

 
The Stock Broker and Research Department Web services are located at two different sites. Each of 

these sites is managed by a site manager. The site manager receives the SLA from the SLA negotiator and 
monitors the performance of the different components at the site to provide an overall performance in 
compliance with the SLA.  For the Stock Broker service system, the site manager monitors the 
performances of the HTTP server, application server, and other components at the site including the Stock 
Broker service.  

If the SLA between the Investor and the Stock Broker site is in violation, the Stock Broker’s site 
manager retrieves the performance data of all the individual components associated with this site, analyzes 
them, and sets new goals for the necessary components in order to avoid violation of the SLA. For 
example, if the maximum response time specified in the SLA is five seconds, and the observed response 
time is close to, or beyond this threshold, the site manager tries to set new goals for specific components to 

Investor 
(Application) 

Stock Broker 
(SB) 

(Web service) 

Research Department 
(RD) 

(Web service) 
 

register, ack, cancel 

accept, reject, bill 

request, terminate report 



reduce the response time to five seconds or less.  If the perceived bottleneck is the HTTP server, the site 
manager uses the HTTP server’s goal interface to set a new goal for this component. 

Each component in the autonomic Web service system is associated with its own autonomic manager. 
When new performance goals are set, the specific components attempt to reconfigure themselves using 
their own autonomic managers.  In our example, the HTTP server’s autonomic manager may increase the 
number of threads to improve its response time.   

At the highest level, the client Investor application sets the SLA for the Stock Broker service through the 
SLA negotiator before invoking the service.  The SLA negotiator conveys the same to the Stock Broker’s 
site manager and also to the linked services, in this case the Research Department. When all the linked 
services agree to the SLA, the Investor application can invoke the Stock Broker service. Both the 
application and the site manager monitor the service performance to ensure SLA compliance. For linked 
services, the site manager of the calling service does the monitoring while the SLA negotiator plays the role 
of the application in doing the SLA negotiation with the linked services. 

5. Summary 

Performance plays a crucial role in the eventual acceptance and widespread adoption of the Web services 
model of application deployment. Web service performance, however, is difficult to manage because of the 
complexity of the components and their interactions, and the variability in demand and the environment. In 
this paper, we propose autonomic computing as a solution to the problems in managing Web service 
performance. We describe an architecture for an autonomic Web services environment where each 
component is fully autonomic and equipped to cooperate in a managed environment. Each component 
provides a management interface that exposes a self-representation consisting of performance statistics and 
goal information. Our architecture uses standard Web service tools and protocols; interface definitions 
specified using WSDL and communication using SOAP over HTTP. Site level managers oversee the 
overall performance of the components and ensure SLA compliance.  
     We see that progress must be made in several areas before an autonomic Web services architecture, such 
as the one described in this paper, can be deployed. First, Web service components are currently not, for the 
most part, autonomic. In fact, in many cases, components require a complete shut-down and restart before 
configuration changes take effect, thus causing an interruption of service. Dynamic reconfiguration support 
is necessary for components to fit into an autonomic environment. As part of our research we are 
modifying open source Web based components, such as the Apache HTTP server, to enable dynamic 
configuration. Second, autonomic systems will require extensive monitoring, analysis and diagnosis. Most 
Web components currently provide sophisticated support to accomplish these tasks, however, ensuring that 
these processes do not burden the system with excessive overhead costs will be a challenge.  Third, an 
architecture like the one proposed here relies on the specification of SLAs, goals and policies to determine 
acceptable performance. Users require a specification language in which these high level SLAs and policies 
can be expressed and SLAs must be translated into observable measures to be used as goals for each 
component. We plan to use the WSLA language [5] as the starting point and investigate how goals for 
individual components can be specified and derived from Web service SLAs. 

References 

1. Apache Server Monitor, http://demo.freshwater.com/SiteScope/docs/ApacheServerMon.htm. 
2. Birman, K., van Renesse, R., and Vogels, W.: Adding High Availability and Autonomic Behavior to 

Web Services, 26th International Conference on Software Engineering (ICSE'04), May 2004, 
Edinburgh, Scotland, United Kingdom. 

3. Chiu, K., Web Services Performance: A Survey of Issues and Solutions, 7th World Multiconference on 
Systemics, Cybernetics and Informatics (SCI 2003), Orlando, USA, July, (2003). 

4. Fletcher, P., Waterhouse, M. (Eds).: Web Services Business Strategies and Architectures, Expert Press, 
(2002).  



5. Dan, A., Davis, D., Kearney, R., Keller, A., King, R ., Kuebler, D., Ludwig, H., Polan, M., Spreitzer, 
M. and Youssef, A.: Web Services on Demand:  WSLA-driven automated management.  IBM Systems 
Journal, 43(1), (2004) 136 – 158. 

6. J. A. Farrell, H. Kreger, Web Services Management Approaches.  IBM Systems Journal, 41(2), (2002). 
7. Ganek, A.G., Corbi, T.A.: The Dawning of the Autonomic Computing Era, IBM System Journal, 

V(42), N(1), (2003). 
8. Kephart, J.O., Chess, D.M.:  The Vision of Autonomic Computing.  Computer, 36(1), (2003), 41-50. 
9. Levy, R.,  Nagarajarao, J., Pacifici, G., Spreitzer, M., Tantawi, A.N., Youssef, A.:  Performance 

Management for Cluster Based Web Services, IFIP/IEEE 8th International Symposium on Integrated 
Network Management (IM 2003), (2003), 247-261. 

10. Loosley, C., Gimarc, R.L., Spellmann, A.C.: E-Commerce Response Time: a Reference Model, 
Keynote Systems Inc., (2000). 

11. Maes, P., Computational Reflection, The Knowledge Engineering Review, pp. 1-19, (1988). 
12. Martin, P., Powley, W., Benoit, D.. Using Reflection to Introduce Self-Tuning Technology into 

DBMSs.  Proceedings of IDEAS’04, Coimbra, Portugal, July 2004. 
13. SOAP Version 1.2 Part 1: Messaging Framework, June 2004, http://www.w3.org/TR/soap12-part1/. 
14. The Impact of Web Performance on E-Retail Success, Akamai Technologies, Feb. 1, (2004), 

http://www.akamai.com/en/resources/pdf/whitepapers/Akamai_eRetail_Success_Whitepaper.pdf. 
15. Tian, M., Voigt, T., Naumowicz, T., Ritter, H., and Schiller, J.: Performance Impact of Web Services 

on Internet Servers, International Conference on Parallel and Distributed Computing and Systems 
(PDCS 2003), Marina Del Rey, USA, (Nov. 2003). 

16. UDDI Version 3.0.1, UDDI Spec Technical Committee Specification, (Oct. 2003), 
http://uddi.org/pubs/uddi_v3.htm. 

17. Web Services Description Language (WSDL) 1.1, (Mar. 2001), http://www.w3.org/TR/wsdl. 
18. Weikum, G.: Self-tuning E-services: from Wishful Thinking to Viable Engineering, High Performance 

Transaction Systems Workshop Submissions, (Oct. 2001). 
19. Wong, S.: Web services: The Next Evolution of Application Integration,  

http://www.eaiindustry.org/docs/WebServicesTheNextEvolutionofApplicationIntegration.pdf. 
20. WebSphere Application Server Monitor, 

http://demo.freshwater.com/SiteScope/docs/WebSphereMon.htm. 
 

Appendix:  WSDL Sample 

The following shows the WSDL generated for the setGoal routine which is part of the Performance 
management interface. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions targetNamespace="http://DefaultNamespace" 
xmlns="http://schemas.xmlsoap.org/wsdl/" 
xmlns:apachesoap="http://xml.apache.org/xml-soap" 
xmlns:impl="http://DefaultNamespace" 
xmlns:intf="http://DefaultNamespace" 
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
   <wsdl:message name="setGoalResponse"> 
 
      <wsdl:part name="setGoalReturn" type="xsd:boolean"/> 
   </wsdl:message> 
   <wsdl:message name="setGoalRequest"> 
      <wsdl:part name="in0" type="xsd:string"/> 
      <wsdl:part name="in1" type="xsd:double"/> 



   </wsdl:message> 
   <wsdl:portType name="Config"> 
      <wsdl:operation name="setGoal" parameterOrder="in0 in1"> 
         <wsdl:input message="impl:setGoalRequest" 
name="setGoalRequest"/> 
         <wsdl:output message="impl:setGoalResponse" 
name="setGoalResponse"/> 
      </wsdl:operation> 
   </wsdl:portType> 
   <wsdl:binding name="ConfigSoapBinding" type="impl:Config"> 
      <wsdlsoap:binding style="rpc" 
transport="http://schemas.xmlsoap.org/soap/http"/> 
      <wsdl:operation name="setGoal"> 
         <wsdlsoap:operation soapAction=""/> 
         <wsdl:input name="setGoalRequest"> 
            <wsdlsoap:body 
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
namespace="http://DefaultNamespace" use="encoded"/> 
         </wsdl:input> 
         <wsdl:output name="setGoalResponse"> 
            <wsdlsoap:body 
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
namespace="http://DefaultNamespace" use="encoded"/> 
         </wsdl:output> 
      </wsdl:operation> 
   </wsdl:binding> 
   <wsdl:service name="ConfigService"> 
      <wsdl:port binding="impl:ConfigSoapBinding" name="Config"> 
         <wsdlsoap:address 
location="http://webs2/axis/services/Config"/> 
      </wsdl:port> 
   </wsdl:service> 
</wsdl:definitions> 

 


