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Abstract 

Current database workloads often consist of a mixture of short online transaction 

processing (OLTP) queries and large complex queries such as those typical of online 

analytical processing (OLAP). OLAP queries usually involve multiple joins, arithmetic 

operations, nested sub-queries, and other system or user-defined functions and they 

typically operate on large data sets.   These resource intensive queries can monopolize the 

database system resources and negatively impact the performance of smaller, possibly 

more important, queries.   

In this thesis, we present an approach to managing the execution of large queries 

that involves the decomposition of large queries into an equivalent set of smaller queries 

and then scheduling the smaller queries so that the work is accomplished with less impact 

on other queries. We describe a prototype implementation of our approach for IBM 

DB2™ and present a set of experiments to evaluate the effectiveness of the approach.  
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Chapter 1  

Introduction 

1.1 Motivation 

The database management system (DBMS) has been very successful over the last half-

century history. According to an IDC report made by C. Olofson [1] in 2006, the 

worldwide market for DBMS software was about $15 billion in 2005 alone with an 

estimated 10% growth rate per year. DBMSs and database applications have become a 

core component in most organizations’ computing systems. These systems are becoming 

increasingly complex and the task of management to ensure acceptable performance for 

all applications is very difficult. In recent years, this complexity has approached a point 

where even database administrators (DBAs) and other highly skilled IT professionals are 

unable to comprehend all aspects of a DBMS’s day-to-day performance [29] and manual 

management has become virtually impossible. 

One solution to the growing complexity problem is IBM’s Autonomic Computing 

initiative [29] [31].  An autonomic computing system is one that is self-managed in a way 

reminiscent of the human autonomic nervous system. To be more specific, an autonomic 

DBMS should be self-configuring, self-tuning, self-protecting and self-healing.  One of 

the efforts towards autonomic DBMS involves workload control, that is, controlling the 

type of queries and the intensity of different workloads presented to the DBMS to ensure 

the most efficient use of the system resources. One challenge involved in the 

implementation of workload control is the handling of very large queries that are common 

in data warehousing and online analytical processing (OLAP) systems. These queries are 



2 

 

crucial in answering critical business questions. They usually boast very complicated 

SQL and access a huge amount of data in a database. When executed in a DBMS, they 

tend to consume a large portion of the database resources, often for long periods of time.   

The existence of these queries can dramatically affect overall database performance and 

restrict other workloads requiring access to the DBMS. Our goal is to design a 

mechanism to dynamically control the execution of a large query so as to lessen its 

impact on competing workloads.  

 

1.2 Problem 

In the past several decades, we have experienced an information explosion. According to 

a study conducted by Lyman and Varian [2], there were 5 exabytes (1018 bytes) of “static” 

information (in the form of paper, film, magnetic and optical storage medias) and another 

18 exabytes of “dynamic” information flowing through electronic channels (TV, radio, 

internet, etc) in the year 2002, with the growth factor estimated to be about 30% per year.  

Ninety-two percent of the static information is stored on magnetic media, mostly on hard 

disks. In order to effectively manage such large volumes of information, DBMSs have 

been widely used, thus leading to an astonishing boost in the volume of data that a single 

database must manage.  According to the 2005 report of the “TopTen Program” by the 

Winter Corporation [3], the world’s largest data warehouse in 2005 contained 100,386 

GB of data, and the largest scientific database was 222,835 GB.  

Due to the high degree of competition within the business environment, more and 

more companies are employing data warehousing and OLAP technologies to help the 

knowledge worker” (executive, manager, analyst, etc.) [4] make better and faster 
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decisions. Decision-support queries usually boast very complex forms, including multiple 

joins, nested sub-queries, multi-dimension aggregations, arithmetic operations, and 

system- or user- defined functions.  Moreover, they also operate over huge amounts of 

data.  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

select s_name, 
 count(*) as numwait 
from supplier,  
 lineitem l1,  
 orders, 
 nation 
where s_suppkey = l1.l_suppkey 
 and o_orderkey = l1.l_orderkey 
 and o_orderstatus = ‘F’ 
 and l1.l_receiptdate > l1.l_commitdate 
 and exists ( 
  select * 
  from lineitem l2 
  where l2.l_orderkey = l1.l_orderkey 
   and l2.l_suppkey <> l1.l_suppkey  
 ) 
 and not exists ( 
  select * 
  from lineitem l3 
  where l3.l_orderkey = l1.l_orderkey 
   and l3.l_suppkey <> l1.l_suppkey 
   and l3.l_receiptdate > l3.l_commitdate  
 ) 
 and s_nationkey = n_nationkey 
 and n_name = ‘[NATION]’ 
group by  
 s_name 
order by 
 numwait desc, 
 s_name; 

Figure 1: TPC-H Q21, an example of decision-support queries 

 

Figure 1 shows one query, Query 21, of the TPC-H benchmark [5] which is a 

decision support benchmark developed by Transaction Processing Performance Council. 

Query 21 is one of the suite of business oriented ad-hoc queries specified in the 

benchmark and is used to “identify suppliers, for a given nation, whose product was part 

of a multi-supplier order (with current status of 'F') where they were the only supplier 
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who failed to meet the committed delivery date” [5]. As we can see from Figure 1, this 

query has a complex SQL statement including multiple joins among four different tables, 

three of which are relatively large (lineitem, orders, and suppliers).  It also includes 

nested sub-queries and aggregation. Query 21 is typical of decision support queries. 

When a query like TPC-H Q21 is submitted to a high volume database for 

execution, it tends to consume many of the physical database resources such as CPU, 

buffer pool or disk I/O and/or the logical resources such as system catalogs, locks, etc.  

The query may consume the resources for long periods of time, thus, impacting other, 

possibly more important, queries which may require these resources to complete their 

work in a timely fashion.  

The situation is made worse by the emerging trend of server consolidation and 

service-oriented architecture (SOA). Business entities use server consolidation as an 

important means of cutting unnecessary costs and maximizing return on investment by 

shifting the functionalities of several, under-utilized servers onto one powerful server. 

This trend on database servers means that one single database server must support very 

different workloads simultaneously that were traditionally handled by different database 

servers. One direct consequence of this trend is that the DBMS must now be able to 

handle multiple workloads with diverse characteristics, dynamic resource demands, and 

competing performance objectives.  

Service-oriented management (SOM) is the operational management of service 

delivery within a SOA [6]. The main purpose of SOM is to guarantee a differentiated 

service delivery based on Service Level Objectives (SLOs) and Service Level 

Agreements (SLAs). Within SOM, a system’s behavior is driven by business objectives. 
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progress on that work is achieved. Second, in businesses with 24/7 availability there may 

exist no time at which the large query will not interfere with other work. A more flexible 

approach such as dynamically adjusting the DBMS resources of a running query, which 

allows a query to progress at a reduced rate, is preferable, especially in a differentiated 

service environment. 

Controlling the consumption of DBMS resources by a query (particularly a big 

query) is, however, not a trivial task. Ideally, low-level approaches, such as directly 

assigning CPU cycles or disk I/O bandwidths to a query based on its complexity and/or 

importance, are desirable. In practice, however, these approaches are problematic for two 

reasons. First, running a query against a DBMS involves many different and interrelated 

DBMS components. It is impossible to ensure that a query is treated equally (from the 

viewpoint of resource allocation) across all these components. Secondly, it is difficult to 

determine the appropriate settings for the resource allocations for all the components. 

 

1.3 Research Statement  

The goal of this research is to investigate a high-level approach to controlling the impact 

that the execution of large queries has on the performance of other workload classes in a 

DBMS.  Our approach divides a large query into an equivalent set of smaller queries and 

then schedules the execution of these smaller queries. 

Our work makes two main contributions. The first contribution is an original 

method of breaking up a large query into smaller queries based on its access plan 

structure and the estimated query cost information. The second contribution is a prototype 

implementation called Query Disassembler. Query Disassembler uses the proposed 
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algorithm to break up queries, if necessary, and manages the execution of the queries 

submitted to a DBMS. 

The remainder of the thesis is organized as follows. Chapter 2 describes research 

background and related work. The core part of our work, the decomposition algorithm, is 

discussed in detail in Chapter 3. In Chapter 4 we introduce Query Disassembler, which is 

a prototype implementation of our approach for IBM DB2™. We present a set of 

experiments to evaluate our approach in Chapter 5.  We conclude the thesis in Chapter 6. 
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Chapter 2 

Background and Related Work 

Very complex queries have gained plenty of research attention in online analytical 

processing (OLAP) and data warehousing systems due to the emphasis on increasing 

query throughput and decreasing response time in these systems [4]. On one hand, much 

of the research focuses on minimizing the query completion time, or providing feedback 

more quickly for the large query itself. In Section 2.1 we present some research efforts in 

this area. On the other hand, how to reallocate DBMS resources to meet different quality 

of service (QoS) requirements for a complex workload, ideally in an autonomic way 

based on some pre-defined business objectives and policies, is attracting more and more 

attention.  Section 2.2 describes research efforts in this area. In both sections, we outline 

how our work relates to these previous research efforts. In Section 2.3, we will briefly 

present the general query decomposition technique that is commonly used in the 

distributed database systems and show how our decomposition algorithm is different from 

that technique. 

 

2.1 Improving the Performance of Large Queries 

In recent years, the control of running large queries such as those typical of OLAP and 

data warehousing in a DBMS has become more interactive. The traditional optimization 

techniques which are common in current database systems often fail to meet this new 

requirement because of their inherent “batch mode” characteristics. This means that once 

a large query is submitted to a DBMS, users have no control over its execution and they 
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often wait for a long period of time without any feedback until a precise answer is 

returned. 

In order to overcome this problem, various techniques of providing more timely 

feedback are proposed. Luo et al. [7] and Chaudhuri et al. [8] investigate the possibility of 

providing an online progress indicator (percentage of the task that has completed) for 

long-running large queries. In both approaches, the progress estimator works on the query 

execution plan (QEP) that is chosen by the query optimizer for a given query. They differ 

in their choice of the basic unit of the query execution work. Luo et al. use one page of 

bytes that has been processed along the QEP as one basic unit. Chaudhuri et al. choose 

one “GetNext ()” call by the operators in the QEP as one basic unit. These techniques do 

not shorten the execution time of the large queries themselves, but they can provide users 

continuous feedback on how much of the work has completed. 

Haas et al. [9] propose a join algorithm, called Ripple Joins, for online multi-table 

aggregation queries and Hellerstein et al. [10] investigate how to apply this new algorithm 

in a DBMS to generate results more quickly. The underlying reasoning of their work 

comes from the cognition that since large aggregation queries tend to give a general 

picture of the data set, it is more appealing to provide users estimated online aggregation 

results with a proximity confidence interval to the final result. Their algorithm adopts the 

statistical method of sampling from base relations in order to generate answers more 

quickly. A major advantage to this approach is that it allows users the ability to make a 

tradeoff between the estimation precision and the updating rate. Their approaches do not 

necessarily speed up the query execution itself. There may be some improvement, 

however, by the replacement of a blocking join algorithm like hash join with the non-

blocking ripple join algorithm. Nevertheless, this is not the main objective of their work.  
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If appropriately used, materialized views (MVs) can provide performance 

improvement in query processing time since a (large) portion of the final result is pre-

computed. The difficulty of using this approach, however, lies in how and when to exploit 

the MVs. Goldstein et al. [11] present a fast and scalable view-matching algorithm for 

determining whether part or all of a query can be computed from materialized views. 

They also demonstrate an index structure, called a filter tree, to help speed up the search 

for an appropriate view among the views maintained by a DBMS. This approach is very 

attractive in a situation where system workloads are stable because in these systems we 

are able to create useful MVs,  that is MVs with repeatable usage among different queries 

in advance based on the understanding of the workload characteristics. In contrast, when 

the system’s workloads are diverse and ad hoc, it is impossible to do so, and therefore this 

approach is not effective.  

Kabra et al. [12] examine the possibility of dynamic memory reallocation for 

physical operators within a QEP based on improved estimates of statistics. Most modern 

algorithms for basic relational operators use DBMS statistics to estimate their memory 

requirement which, in turn, determines the algorithms’ performance. In their work, Kabar 

et al. propose a run-time statistics collection technique which can be used to help improve 

the estimation of the database statistics. Their work involves the modification of a QEP 

by inserting “Statistics Collector” operators at several points in the QEP. The collected 

statistics can be used to obtain more accurate estimates for the remainder of the query or, 

if necessary, to create a better QEP for the query.  

All the research efforts presented above mainly focus on increasing the performance 

(or perceived performance) of a large query itself. They do not directly address the 

problem of controlling the execution of large queries. However, the ideas presented 
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provide useful insights into our own research. First, our approach involves the 

decomposition of a large query into an equivalent set of smaller queries.  The 

decomposition algorithm works on the QEP of a query and tries to identify pipelined parts 

within a QEP, just as the techniques used by Luo et al. [7] and Chaudhuri et al. [8]. 

Second, the ultimate goal of our work is not only to improve the performance of other 

queries in the presence of large queries, but we would like to minimize the impact of our 

approach on the large queries as well. The techniques of providing answers more quickly 

or speeding up the large query’s execution as presented by Haas et al. [9], Hellerstein et al. 

[10], Goldstein et al. [11], and Kabra et al. [12] could therefore be helpful in satisfying 

this purpose. 

 

2.2 DBMS Resource Allocation  

The problem of resource allocation within a DBMS is very complicated. The reason is 

rooted in the inherent heterogeneity and multiplicity of the DBMS resources.  A DBMS 

contains not only the common physical resources, like CPU, memory, and disk I/O, but it 

also contains many logical resources such as system catalogs, locks, etc. These resources, 

either physical or logical, are often inter-related and interact with each other, thus further 

complicating the resource allocation problem. 

Traditionally, much of the work that has been done with regards to DBMS resource 

allocation has been implemented through static tuning of database parameters in order to 

optimize system wide performance. In recent years, with the emerging trend of server 

consolidation, the increased complexity of a DBMS and the ongoing emphasis on service-
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oriented management, a more dynamic and goal-oriented approach is attracting more 

research interest. 

Carey et al. [13] investigate the architectural consequences of adding priority to a 

DBMS. They develop a specific priority-based algorithm for managing the key physical 

DBMS resources, especially the disk(s) and the buffer pool(s). Their simulation results 

showed that “the objective of priority scheduling cannot be met by a single priority-based 

scheduler”, which means that no matter whether the bottle neck of a DBMS is the CPU or 

the disk, it is always essential to also use a priority-based replacement algorithm on the 

buffer pool. 

Brown et al. [14] investigate goal-oriented resource management in a DBMS. In 

their work, they propose a feed-back based algorithm, called M&M, which adjusts DBMS 

multi-programming levels (MPL) and memory allocations simultaneously, in an 

automatic way, to achieve a set of per-class response time goals for a multi-class complex 

workload while leaving the largest possible left-over resources for the non-goal, or best-

effort classes.  In their work, they adopt a per-class solution strategy, which means that, in 

a given timeframe, the algorithm is only activated for one class and takes action for that 

specific class in isolation. They use additional heuristics to compensate for the 

insensitivity of their approach to class inter-dependence.  

Niu et al. [15] aim to optimize overall database resource usage by controlling the 

workloads presented to it. In their work, a workload detection process is used to monitor 

the characterization of the current workloads and to predict the future trends of the 

workloads. Based on the classification of the workloads made by the workload detection 

process, the workload control process is invoked to automatically adjust the MPLs 

assigned for each class such that the SLO for each class is satisfied. Unlike the average 
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response time goal used by Brown et al. [14], Niu et al. use Query Velocity, as the goal, 

or SLO, for each workload class. 

Most of the goal-oriented, multiclass-workload research work expresses workload 

goals and the tuning policies in IT friendly ways such as response time or throughput. 

Although this allows the computer system to understand and control the workloads’ 

behavior easily, it makes it more difficult for the decision makers. Boughton et al. [16] 

investigate the possibility of automatically translating high-level business polices into 

low-level system tuning polices using an economic model. The effectiveness of their 

economic model is tested in the context of the buffer pool sizing problem in a DBMS. 

Currently, commercial database systems also provide a certain level support for 

dynamic DBMS resource management. IBM DB2 Query Patroller [17] is a query 

management system that aims to boost overall database system resource utilization. Using 

Query Patroller, queries submitted to a DB2 database are grouped into different 

categories based on their size and the submitters’ identities. Each query class can have its 

own class-level policy (e.g. maximum number of queries allowed for each class). The 

system in general can have a high-level system policy affecting all query classes (e.g. 

maximum workload cost value for the system).  

Teradata’s Priority Scheduler (Teradata PS) [18] introduces the concepts of “user 

group”, “performance group” and “allocation group”. A Teradata DBMS uses “user 

groups” to classify the queries that are submitted by database users. It then establishes a 

user-to-priority connection by setting a valid “performance group” name in the user’s 

record. The performance group is a priority scheduler component that associates users to 

“allocation groups” which, as well as their predefined relative weights, determine the real 
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physical database resource usage such as the frequency of accessing CPU and the relative 

position in the I/O queue.  

Although goal-oriented, multi-class resource allocation is becoming a trend for 

DBMS resource management, most research work and current commercial products treat 

extremely large queries in a static and somewhat “crude” way. A popular approach is to 

adopt some kind of admission control mechanism to preclude large queries out of the 

system in advance and delay their execution until a system off-peak time. Our research 

investigates an approach such that not only do other queries in the system have more 

reasonable resource allocation, but the large queries themselves can be controlled in a 

more flexible and manageable way. The “utility throttling” technique used by Parekh et al. 

[19] for controlling the performance impact that a database administration utility has on 

the system has similar goals to our work but adopts a different approach. Unlike our 

approach which is implemented outside of the database engine and achieves the dynamic 

control over a large query by breaking it into pieces, their approach is implemented 

within the database engine and dynamically forces a resource-demanding utility to go to 

sleep for a while if the predefined workload objectives are not satisfied. 

 

2.3 Query Decomposition in Distributed Database System  

In a typical distributed database system, the data that needs to be accessed by a SQL 

query usually resides on several inter-connected remote sites. In order to process these 

remotely distributed data effectively and efficiently, new query processing techniques are 

required. D. Kossmann [31] presents a high level overview of the state of the art of query 

processing techniques for distributed database and information systems. Architecturally, 
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most of the distributed DBMSs support a basic processing model of “moving query to 

data”, which means that an “administrative” site (the site that receives the query) has to 

break down the query somehow such that each sub-query, after being sent to a remote site, 

only accesses the data that resides on that site. The purpose of decomposition here is 

mainly to reduce the communication cost that is usually the dominant factor of the query 

processing in a distributed environment. The way of the query decomposition in a 

distributed DBMS environment highly depends on how the underlying data is partitioned 

across the different sites. Our current approach of query decomposition, on the other hand, 

only focuses on a centralized environment right now and the decomposition method 

depends solely on the structure and the operator cost distribution of a query’s execution 

plan as suggested by the query compiler. The purpose of our method is also different from 

that used in a distributed system. The intention of our approach is to control the resource 

consumption by a large query so other queries, possibly more important, can get more 

DBMS resources for their own execution. The goal of decomposition in a distributed 

database, however, is to reduce the query processing cost and/or response time for the 

query in consideration. 
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Chapter 3 

Decomposition Algorithm 

The goal of our work is to control the impact that the execution of large queries has on the 

performance of other workload classes. Our approach to decomposing a large query into a 

set of smaller queries is based on two observations. First, at any given time, a smaller 

query will likely hold fewer resources than a large query and so, interferes less with other 

parts of the workload. Second, running a large query as a series of smaller queries means 

that all resources are released between queries in the series and so are available to other 

parts of the workload.  In our approach, we adopt a method similar to query 

decomposition techniques commonly used in distributed database management systems. 

Unlike distributed database systems where queries are re-written to access data from 

multiple sources,  our approach focuses on breaking up a large query into an equivalent 

set of smaller queries in a centralized database environment.  Currently our algorithm 

supports select-only queries, which are typical in an OLAP system. 

 

3.1 Query Execution Plan 

The output of a query optimizer for a declarative query statement is called a Query 

Execution Plan (QEP). The structure of a QEP determines the order of operations for 

query execution. The QEP is typically represented using a tree structure where each node 

represents a physical database operator (e.g. nested loop join, table scan etc). Multiple 

plans may exist for the same query and it is a query optimizer’s top priority to choose an 

optimal plan. To supplement the QEP, most query optimizers produce performance-
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related information such as cost information, predicates, selectivity estimates for each 

predicate and statistics for all objects referenced in the query statement.  

 

Figure 3: A sample QEP 

 

Figure 3 shows an example QEP that we use for illustrative purposes throughout 

this chapter. In this QEP, data from four different database tables (Tables A, B, C, and D) 

are retrieved, filtered, joined, and then aggregated to create the desired final results (See 

Appendix B for further explanation of the common physical operators in a QEP).  We 

note that the plan structure shown in Figure 3 is only a conceptual structure and not an 

actual plan from a query optimizer.  It is used for illustrative purposes only. 
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3.2 Virtual Node, Segment, and CB-Segment 

The operators in a QEP can be classified as either blocking operators or pipelining 

operators. An operator is blocking if it does not produce any output until it has consumed 

at least one of its inputs completely. Pipelining operators produce outputs immediately 

and continuously until all inputs have been processed. The hash join operator (Node 8) in 

Figure 3, for example, is a blocking operator and the filter operators (Nodes 5 and 9) are  

pipelining operators. 

We classify the common physical operators in a QEP as follows: 

 Table Scan, Index Scan, Filter, Column Selection and Nested Loop Join are 

pipelining operators 

 Distinct (or Unique) is a blocking operator 

 Sort, Hash Join and Merge-Sort Join are blocking operators 

 Union, Intersect and Except are blocking operators 

 Aggregation operators are treated as blocking operators although in reality they 

may be pipelining operators depending on the type of aggregate function or 

whether the group-by operator is used. 

A Virtual Node is a conceptual (non-physical) node used as a connector between 

two segments (defined below) in our algorithm.  It establishes a dependency relationship 

(see Section 3.3) between two segments and is implemented as a Table Scan node that 

provides access to a temporary database table. A virtual node is a pipelining operator. 

A Segment is a sub-tree of a QEP such that: (1) the root node of a segment must be 

a blocking node or the return node of the original QEP, (2) a segment can have at most 
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one blocking node, and (3) all non-root nodes within a segment are pipelining nodes, 

including virtual nodes. The definition of segment guarantees that any identified segment 

is a maximum unit that can be executed in a pipelined fashion. 

Table Scan A

Filter

Sort 6

9

12

Virtual Node I Index Scan B

Nested Loop Join Filter

Hash Join

Virtual Node II

4 5

7 Virtual Node III

Column 
Selection

Aggregate
1

2

Segment I

Segment III Segment IV

3

Hash Join

Table Scan C Table Scan D

8

10

Segment II

11

 

Figure 4: Segments and virtual nodes for QEP in Figure 3 

 

Figure 4 shows the segments and virtual nodes for the QEP in Figure 3. In this 

Figure, Virtual Nodes I, II, and III represent Segments I, II, and III respectively. Virtual 

Node I creates a dependency relationship between Segment I and Segment III. Similarly, 

dependency relationships are also established between Segments II and III by Virtual 

Node II and between Segments III and IV by Virtual Node III (see Section 3.3 and 

Section 3.4 for more details on segment dependency as well as the detailed segment 

identification process). 
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A Cost-Based Segment (CB-Segment) is any valid sub-tree of a QEP.  Unlike a 

Segment, there are no constraints placed on a CB-Segment.  A CB-Segment is augmented 

with cost information such as the total cost of the CB-Segment, or the cost percentage of 

the CB-Segment over the total QEP cost.  Cost is expressed in units adopted by a 

particular DBMS.  In DB2, for example, a unit called timeron is used (Appendix C).  In 

our work, a CB-Segment is created through merging or decomposing Segments (and/or 

CB-Segments). In the rest of the thesis, unless explicitly stated, we use the term segment 

to refer to both Segment and CB-Segment. 

 

Figure 5: An example of merging/decomposing segment(s) 

 

Figure 5 shows an example of how the merging/decomposing procedure works. In 

this Figure, segment I and segment II can be merged together to create segment III or 
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segment III can be decomposed to create segment I and segment II. The merging process 

requires that segment I depends on segment II, meaning that segment I has a virtual leaf 

node that represents segment II (see Section 3.3 for segment dependency). When segment 

I and segment II are merged together, the virtual node in segment I is removed and 

segment II is added as a child sub-tree of the virtual node’s parent node (Node 1 in this 

case) at the virtual node’s original position in segment I. The newly created tree becomes 

the merged segment III. If multiple virtual nodes exist in a segment that needs to be 

merged, then each virtual node is replaced by the segment represented by the virtual node. 

This process is explained in Figure 5 in the direction from top to bottom (marked by the 

solid line on the left). Similarly but for the reverse direction (from bottom to top and 

marked by the dotted line on the right), when segment III needs to be decomposed, the 

whole sub-tree in segment III that is represented by segment II needs to be replaced by a 

virtual node and thus creating segment I. During this procedure, a segment dependency 

relationship between segment I and segment II is established (see Section 3.3 for detail). 

 

3.3 Segment Dependency and Schedule 

According to the definitions in Section 3.2, a segment may contain virtual nodes as well 

as other regular operation nodes. In our work, each virtual node within a segment is used 

to represent another segment, which means that the outside segment depends on the 

segment represented by the virtual node. If a segment does not include a virtual node, 

then it is independent. In Figure 4, for example, segments I and II are independent 

segments because they contain no virtual nodes. Segment III includes two virtual nodes, 

virtual nodes I and II, which represent segments I and II, respectively. Therefore, segment 
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III depends on both segments I and II. Similarly, segment IV depends on segment III 

because it contains virtual node III, which represents Segment III. The dependency 

relationships among the segments in Figure 4 are shown in Figure 6. 

 

Figure 6: Dependency relationships for segments in Figure 4 

 

In a QEP, if segment A depends on segment B, then the subpart of the QEP that is 

represented by segment B has to be executed before the subpart represented by segment A 

because it needs the output of segment B in order to produce its own results. If segments 

are independent of each other in a QEP, then they can be executed in any order or in 

parallel.  

In our work, we define the execution order of all the segments in a QEP as the 

Segment Schedule for the QEP. Based on the segment dependency relationships in 

Figure 6, the Segment Schedule for the QEP in Figure 3 can be one of the three cases 

shown in Figure 7 (assuming parallelism is possible).  
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Figure 7: Segment schedule for QEP in Figure 3 

 

3.4 Decomposition Algorithm 

Our decomposition algorithm aims to find a cost-efficient strategy to decompose a QEP. 

The algorithm takes two passes. The first pass identifies all possible segments in a QEP 

by exploring its tree structure. During this pass, a bottom-up scan of the QEP is used to 

search for blocking nodes. Each blocking node forms the root of a segment and its  lower-

level descendents form the subtree.  Once a segment is discovered, the sub-tree that it 

represents in the original QEP is replaced by a virtual node, thus creating a new tree with 

a virtual node as one of its leaves. This search-and-replace procedure continues until all 

nodes in the original QEP are processed and all segments are identified. At the same time, 

by means of the virtual nodes that are created during this pass, the dependency 

relationships among the segments are also defined. A segment having a virtual node as a 

leaf node depends on the segment represented by the virtual node.  

A pseudo code description of the first pass of the decomposition algorithm is shown 

in Figure 8. It includes an iterative procedure called “FindSegments” which is applied to a 



24 

 

query’s QEP. When the iterative process of this procedure is done, all segments in the 

QEP as well as their dependency relationships are identified and stored in two global sets, 

GSegSet and GSegRelSet. 
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FindSegments (QEP) { 
subTreeSet ← create a empty tree set; 
 
FOR each  leaf  node (curLeaf) of QEP 

curPath ← identifies the tree path that curLeaf belongs to in QEP; 
cbaNode ← find its closet blocking ancestor node or the return node along curPath; 
subTree ← create a sub-tree that is rooted at cbaNode and includes all nodes in the 

curPath from cbaNode to curLeaf; 
add subTree  into subTreeSet; 

ENDFOR;  
 

REPEAT 
curSubTree ← get next sub-tree from subTreeSet; 
newSeg ← NULL; 
 
IF the root node of curSubTree has only one input in the original QEP THEN 

newSeg ← create a new segment  that has the same structure as curSubTree; 
ELSE  

matchedSubTrees ←find other sub-trees that have the same root as curSubTree; 
IF matchedSubTrees is not empty THEN 

newSeg ← create a new segment by merging matchedSubTrees with curSubTree 
such that shared nodes only appear once in the segment; 

remove matchedSubTrees from subTreeSet; 
ENDIF; 

ENDIF;    
 
IF newSeg is not NULL THEN 

add newSeg into GSegSet; 
update QEP such that the whole newSeg sub-tree in QEP is replaced by a newly 

created virtual node; 
ENDIF: 
 
remove curSubTree from subTreeSet 

UNTIL subTreeSet is empty; 
 
REPEAT 

call procedure “FindSegments(newQEP)”; 
segRels ← create segment dependency relationships between any two segments that are 

found in two consecutive iterations if they are connected by a virtual node; 
add segRels into GSegRelSet; 

UNTIL all nodes in the original QEP are processed 
} 

Figure 8: Decomposition algorithm – the first pass 
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The first pass of the algorithm creates a set of smaller queries such that pipelined 

operations are never interrupted., It does not, however, take cost information into 

consideration. Therefore, it may generate a “skewed” solution, meaning that some 

resulting segments (sub-queries) may be more costly than others (see Section 3.5 for a 

description of the skew of a solution).  

A “skewed” solution has two major drawbacks which makes it impractical. The first 

drawback is that some of the generated segments may themselves be large, costly queries. 

Case A in Figure 9 shows this situation. In Figure 9, the percentage number beside each 

segment represents the segment’s cost as a percentage of the total QEP. As we can see in 

Case A, segment III covers 97% of the total cost while the other three segments together 

cover the remaining 3%. In this situation, breaking a large query this way will not solve 

our original problem. It is more reasonable to decompose segment III further, if possible.  

segment IV

segment III

segment I segment II

depends on

depends ondepends on

segment IV

segment III

segment I segment II

depends on

depends ondepends on

1%

1% 1%

97%

Case A Case B

50%

3% 2%

45%

 

Figure 9: Examples of skewed solutions 
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The second drawback of a skewed solution lies in the possibility of unnecessary 

execution overhead such as that shown in Case B in Figure 9 . As will be seen in Section 

3.6, our approach of decomposing a large query into multiple smaller queries incurs 

overhead related to the storage of intermediate results. In Case B of Figure 9, segment I 

and segment II each cover a very small portion of the total cost.  If we implement this 

solution, the intermediate results from these two segments are stored in temporary tables, 

thus  introducing additional overhead.  In this situation, it is better to merge both 

segments I and II into segment III.   

In order to overcome the drawbacks, the algorithm needs to be extended such that a 

more cost balanced solution is reached. The second pass of the algorithm aims to 

implement this goal. Figure 10 shows the pseudo code for this pass. 
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ReOrganizeSegments (QEP) { 
call procedure “FindSegments(QEP)” to generate the global segment set “GSegSet” and the 

global segment relationship set “GSegRelSet”; 
 
FOR each segment(curSeg) in GSegSet 

calculate the cost for curSeg based on QEP compiler information; 
ENDFOR; 
 
curSKF ← calculate the “skew factor” for GSegSet; 
validSKFRange ← a pre-defined acceptable SKF range; 

 
REPEAT 

minSeg ← find the smallest segment (having minimum cost) in GSegSet.; 
conSeg ← find the smallest segment that is connected to minSeg in GSegRelSet (either 

depends on or is depended on minSeg); 
newCBSeg ← merge minSeg and conSeg to create a new larger CB-segment; 
update GSegSet  such that minSeg and conSeg are removed and newCBSeg is added; 
update GSegRelSet such that all segment dependency relationships that involve minSeg 

and conSeg are modified correctly to involve newCBSeg instead; 
curSKF ← calculate the “skew factor” for GSegSet; 

UNTIL curSKF is within validSKFRange OR there is only one segment left in GSegSet; 
 
IF there is only one segment left in GSegSet THEN 

notify “Exception Management” module that a cost balanced solution is impossible 
ENDIF; 

} 
Figure 10: Decomposition algorithm – the second pass 
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The pseudo code in Figure 10 defines how a cost-balanced solution is reached by 

merging the segments that are found by the first pass of the algorithm.  It does not 

consider decomposing segments. Using our algorithm, decomposing a large segment 

always interrupts a pipelined operation.  This is usually much less efficient in practice and 

can incur excessive overhead.  For this reason, our algorithm always tries to reach a cost-

balanced solution through merging first. If it is impossible to do so, a message is 

generated to bring a DBA’s attention (or someone else who is running the query 

decomposition). When received the message, this person may ignore it and just think of 

the large query as un-decomposable, or he/she may choose to manually inspect the nodes 

as well as their cost information within each segment to determine whether or not to 

break a segment further to reach a more cost balanced solution by interrupting a pipelined 

operation. The rule of thumb for this manual process is that the smaller segments 

identified should equally share the cost of the original large segment. In our algorithm, an 

administrative parameter is used to control whether human intervention is allowed to 

break segments manually. 

We note that it is not always possible to decompose a large query into a cost-

balanced solution. One common example of this situation is when the cost of a single 

node (not a segment) covers the majority of the total cost because our algorithm does not 

handle the decomposition of a single operator thus making it impossible to decompose 

such a query.   Such a case is shown in Figure 11.  When applying the decomposition 

algorithm to this sample QEP, only one segment is generated because all the operators in 

the QEP are pipelining operators. Among all these operators, the Table Scan A node 

(node 6) alone covers almost all the total QEP cost (95%). In this situation, even with 
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human intervention we cannot find a cost-balanced solution. Moreover, applying the 

decomposition in this case incurs unnecessary execution overhead. Our decomposition 

algorithm detects the existence of such a case and provides appropriate feedback to a 

DBA and/or the query submitter to indicate that the query cannot be decomposed. 

 

Figure 11: An example of a query that cannot be decomposed 

 

3.5 Skew Factor 

The second pass of the decomposition procedure uses the “skew factor” (SKF) of a 

solution extensively to determine a cost-balanced solution. In this section, we will explain 

in detail what a SKF is and how it is calculated. 

Suppose that for a set of segments SEGS = {seg1, seg2… segn}, its related cost set is 

COSTS = {cost1, cost2… costn}, in which cost1 is the cost value for seg1, cost2 is the cost 

value for seg2, and so on. The SKF for SEGS measures how skewed SEGS is in terms of 

COSTS. To put in another way, the SKF value for SEGS measures the variance of 

COSTS. The higher the variance is, the higher the SKF value should be.  
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SKF (SEGS)  = VAR (COSTS)  

= VAR (cost1, cost2… costn) 

= ∑ ሺܿ݅ݐݏ݋ – ሻଶ௡′ݐݏ݋ܿ
௜ୀଵ

ሺ݊ െ 1ሻ൘  

cost’  = MEAN(COSTS) 

  = MEAN (cost1, cost2… costn) 

= ∑ ௡݅ݐݏ݋ܿ
௜ୀଵ ݊ൗ  

Equation 1 defines how the SKF value for SEGS can be calculated. In this equation, 

VAR represents sample variance and cost’ is the average value of COSTS that is 

calculated by equation 2. 

 

 

 

 

  

 

 

 

 

In the equations above, the segment costs can be specified as either absolute values 

(in whatever appropriate unit) or relative values. The relative cost value of a segment in 

SEGS is defined as the percentage of the segment’s absolute cost value over the total 

absolute cost value of all the segments in SEGS. The advantage of using relative cost 

values in Equations 1 and 2 is that it normalizes the calculated SKF value to the range of 

[0, 1]. Without the normalization, there is no way to easily specify a general threshold 

SKF value that can be employed by the second pass of the decomposition algorithm to 

find a cost-balanced solution.  The SKF value calculated using Equations 3.1 and 3.2 

would fluctuate widely depending on the query and how the query is decomposed.  

Equation 1: Skew factor

Equation 2: Average segment cost
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In our approach, the relative costs of segments are employed in calculating the SKF 

value. The default administrative threshold value is set as 0.07, which corresponds to a 

“30% vs. 70%” cost distribution in a 2-segment solution, meaning that a large query can 

be decomposed into 2 smaller segments with one covering 30% of the total cost and 

another covering 70% of the total cost. Any solution whose SKF value is greater than the 

threshold value is considered as a skewed solution by our algorithm and therefore needs 

to be merged (or decomposed) further. 

 

3.6 Executing Segments 

The decomposition algorithm breaks a large QEP into a set of inter-dependent smaller 

segments and can form a segment schedule for the QEP. Following the schedule, the 

execution of the set of generated segments will generate the same result as the original 

large query does (see Section 3.7 for the proof).  

There are two main problems that need to be solved. The first problem is how to 

store the intermediate results of a segment so that dependent segments can make use of 

the results. In our approach, we solve this problem by creating temporary database tables 

to hold the intermediate results. The overhead resulting from this solution includes: 1) the 

cost of creating empty temporary tables, 2) the cost of inserting intermediate results into 

the temporary tables, and 3) the cost of retrieving the stored intermediate results from the 

temporary tables. The overhead could be large, especially in cases where segments are 

created by breaking a pipelined operation. In our approach, this type of overhead is 

unavoidable due to the fact that our approach is implemented outside the database engine. 
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However, techniques that are able to exploit advanced database optimizer information 

could reduce the overhead greatly.  

The second problem relates to how to execute a segment in practice. So far in this 

chapter, a segment is expressed as an operator tree, which can be thought of as a QEP if 

virtual nodes are consider as other regular physical nodes that could appear in a real QEP. 

A segment expressed in this way cannot be executed directly by a database compiler. A 

transformation of the segment from a QEP form to an executable form is necessary. In 

our work, we use an approach similar to the one used by Venkataraman et al. [27] to 

translate a QEP into a declarative SQL statement. 

The basic step of the transformation is to traverse a QEP and translate each operator 

encountered into a part (or several parts) of the resulting SQL statement. For example, a 

filter node in a QEP can be translated into a “where” condition in a SQL statement. When 

all the operators in the QEP are translated, we then assemble all the translated parts 

together in a proper way such that a syntax-correct SQL statement is generated. During 

this process, we need to acquire additional information from the optimizer to complete the 

transformation, e.g. the type of condition used in a filter. In our approach, virtual nodes 

are treated as table scan nodes. The input table for the scan is an intermediate temporary 

table which is used to hold the data produced by the segment (or sub-query) referred to by 

the virtual node.  

The translation procedure is highly vendor-specific because the crucial compiler 

information is different among different database compilers. We therefore postpone the 

detailed discussion of the segment-to-statement procedure until Section 4.5 where the 

translation procedure for DB2 is examined. 
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3.7 Decomposition  Argument 

Proposition: Given a query Q, the decomposition algorithm produces a set of queries {Q1, 

Q2, …, Qn} and a dependency graph G such that if the queries Q1, Q2, …, Qn are executed 

in an order determined by G, then they produce the same result relation as Q. 

Assumption:  

We assume that during the decomposition procedure, all other workloads that could be 

accessing the same tables used by the large query are read only queries. This means that 

the data processed by both the large query (before the decomposition) and its equivalent 

segment schedule (after the decomposition) are the same. Without this assumption, the 

result equivalency of our approach can not be guaranteed. Our proof below is based on 

this assumption.  

Argument:  

Given a QEP for a query Q, we know each edge of the QEP corresponds to a relation that 

is the result of execution of the source nodes of the edge. The decomposition algorithm 

identifies segments that can be executed as the sub-queries Qis and replaces each segment 

with a virtual node by placing the result of its Qi on the edge leaving that node. During 

this process, the algorithm maintains the same operator sequence within each segment as 

that in the original QEP for the query Q. The result of the set of replacements is a 

dependency graph G.  

The original QEP is a tree, so G is a tree with each node of G representing a sub-

query Qi. The execution of the Qis is determined by moving up G from the leaves such 

that a node in G for a query Qj is only executed after its children, if any, have executed. G 

maintains all dependencies in the original QEP so: (1) each Qi will receive the same input 
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as its corresponding segment in the QEP; (2) when all Qis are executed according to G, 

the ordering of the operators encountered is the same as that in Q except some virtual 

nodes along the execution paths which, however, do not change the result because they 

just simply store the intermediate results for previous segments. {Q1, Q2, …, Qn} will 

therefore produce the same result as Q. 
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Chapter 4  

Query Disassembler 

Query Disassembler is a prototype implementation of our approach to query 

decomposition using IBM DB2. It implements the decomposition algorithm and provides 

a framework for managing the decomposition process and scheduling the execution of the 

resulting set of smaller queries.   

 

4.1 The Framework 

Figure 12 shows the Query Disassembler.  Each large query is submitted to Query 

Disassembler before it is executed by the DBMS (step 1). Query Disassembler calls 

DB2’s Explain utility to obtain a (cost-augmented) QEP for the submitted query (steps 2 

and 3). The decomposition algorithm then divides the QEP into multiple segments, if 

possible, while keeping track of dependency relationships among the segments (steps 4 

and 4’). The Segment Translation procedure transforms the resulting segments into 

executable SQL statements (step 5), which are then scheduled for execution by the 

Schedule Generation procedure (step 5’).  The generated SQL statements are submitted to 

the DBMS for execution as per the schedule that is obtained in step 5’ (step 6).  
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Figure 12: Query Disassembler framework 
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If the decomposition algorithm determines that it is impossible to break up the 

submitted large query, for example a single operator within the QEP for the large query 

covers most of the total cost, Query Disassembler notifies an Exception Management 

Module to handle this situation (step 7). The Exception Management Module is not 

currently implemented in our prototype but we envision that it could be implemented 

using an appropriate mechanism such as delaying the execution of the large query to an 

off-peak time in the system. 

 

4.2 Graphical User Interface 

Figure 13 shows the main Graphical User Interface (GUI) for Query Disassembler. The 

left part of the GUI (Part I) lists the explained query instances and query statements that 

are returned by the DB2 Explain utility [22]. Details of DB2 Explain are found in 

Appendix C. Two SQL statements are shown for each explained SQL query.  One is the 

original SQL statement that is submitted by the user, and the other is the optimized SQL 

statement that is suggested by the DB2 compiler as a result of applying the compiler’s 

internal rewriting rules on the original statement. The optimized SQL statement is 

executed more efficiently than the original query. In our work, the optimized SQL 

statement is mainly used for translating segments into their equivalent SQL statement 

counterparts, which will be explained in detail in Section 4.5. 

The right part of the GUI (Part II) shows the QEP for the explained query. This 

QEP shows the estimated operational tree structure and also includes other useful 

performance-related data, such as cost, node predicates, and so on.  The QEP and its 



37 

 

related data are either directly provided by the DB2 Explain utility or calculated from that 

information.  

 

Figure 13: GUI of Query Disassembler 

 

One of the most important pieces of information is the compiler-estimated 

execution-cost value for the entire QEP and each of its internal nodes. The cost is 

measured in a DB2-specific unit, called timeron, [24] and is further divided into sub-costs 

that are directly linked with IO and CPU.   The total cost for the entire QEP is shown at 

the bottom of Part II. 

The cost for each internal node of the QEP is expressed in the following ways. The 

latter three costs are useful in the second pass of our decomposition algorithm to 

determine a more cost-balanced solution. 

  The absolute estimated cost. 

Part I Part II 
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 The node’s cost as a percentage of the cost of the entire QEP. 

 The accumulated cost value up to this node in the QEP. 

 The accumulated cost percentage up to this node in the QEP.  

 

The accumulated cost value up to a node, say Node A, in a QEP refers to the total 

cost of all the nodes in a sub-tree of the QEP rooted by Node A. The accumulated cost 

percentage up to a node in a QEP is the accumulated cost value up to the node in the QEP 

expressed as a percentage of the total cost of the QEP. The accumulated cost value as 

well as the percentage up to a node is shown directly in the GUI on each node beneath the 

node name and the node ID. Each node within the QEP as shown in Figure 13 is given a 

unique integer number for easy reference. 

When we choose to disassemble a QEP from the popup menu, the user is given a 

choice of using the decomposition algorithm to break up the tree automatically (the “By 

Cost” option) or to disassemble the tree manually (the “Manual” option).     The “cost” 

used to decompose the QEP can be the IO-related cost, the CPU-related cost, or the 

combined total cost depending on whether the large query to be decomposed is IO-

intensive, CPU-intensive, or mixed.  

The “By Cost” option utilizes the decomposition algorithm as we discussed in 

Section 3.4 to break up the query automatically by analyzing its QEP structure as well as 

the related cost information. If a cost-balanced solution can be reached, then the GUI 

pops up a window to illustrate how the QEP is decomposed by displaying the breakpoints, 

that is the node numbers above which the QEP is decomposed. A segment schedule 

object (a Java object) is also created. The segment schedule object contains information 

about what segments are decomposed from the large query and their execution order 
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(schedule).  Section 4.3 gives a detailed explanation of this object.  If the tree cannot be 

decomposed, a message to this effect is displayed.   

 The “Manual” option of the Query Disassembler allows a DBA to specify a list of 

breaking points that he/she thinks is appropriate for decomposition. The manual 

disassembly procedure does not employ the decomposition algorithm as explained in 

Chapter 3, but it directly utilizes the specified node numbers to form segments and the 

corresponding execution schedule. Similar to the “By Cost” option, a segment schedule 

object is created after the manual decomposition procedure is done.  

Figure 14 illustrates how the manual disassembly procedure works. The left part of 

Figure 14 shows an example QEP and we suppose that the specified breakpoints are 3 and 

4 (as shown by “X” marks in Figure 14). As shown in the right part of Figure 14, the first 

step of the procedure creates two segments (segment I and segment II) such that each 

segment is equivalent to a sub-tree of the QEP and has one of the breakpoints as its root 

node. In the second step, two virtual nodes are created to replace the two segments in the 

original QEP and form the third segment (segment III) which depends on both segment I 

and segment II.  
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Figure 14: An example of manual disassembly procedure 

 

4.3 Segment Schedule Object 

Figure 15 shows the class diagram for the segment schedule object provided by our 

program.  In this diagram, Schedule is the core component for segment scheduling. It 

includes one Query object that represents the original large query and a set of 

ScheduleUnit objects, each of which stands for a single scheduling unit (for example, a 

single segment) that is managed by the Schedule object. Each ScheduleUnit object has its 

own Query object which represents one small query that is decomposed from the original 

large query. A ScheduleUnit object is also used to create and populate the temporary 

tables that are needed to hold the intermediate results. 
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Figure 15: Segment schedule class diagram 

 

4.4 DB2 specific operators 

Other than the common operators listed in Section 3.2, there are some IBM DB2 specific 

operators, like CMPEXP and EISCAN, that can appear in an IBM DB2 QEP. Our 

algorithm supports some of these operators. The supported DB2 specific operators are 

treated in the same way as the common operators. 

The following heuristics define how the DB2 specific operators are handled by our 

algorithm. This is supplementary to the rules defined in Section 3.2. If the QEP for a large 

query contains unsupported DB2 operators, the query is not considered by our algorithm 

and is simply passed to the Exception Management Module.  

 TQUEUE (for parallelism support), RQUERY/SHIP (for federated system), 

CMPEXP and PIPE (for debug usage) are not supported by our algorithm. 
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 TEMP (storing data in a temporary table), GENROW (generates a table of rows, 

using no input from tables, indexes, or operators) are supported and are treated 

as blocking operators. 

 IXAND (index and), RIDSCN (row ID scan), EISCAN (scans a user defined 

index to produce a reduced stream of rows) are supported and are treated as 

pipelining operators. 

 

4.5 Translating segments in DB2 

Although the DB2 explain utility provides a significant amount of performance-related 

information to aid the segment-translation processes, in many situations a segment 

decomposed from a QEP cannot be directly translated into an SQL statement by 

following the general translation procedure described in Section 3.6. A common situation 

is how to handle the DB2 specific ROWID predicates. A ROWID predicate is a predicate 

that includes ROWID as an operand (ROWID is used by the DB2 compiler to directly 

pinpoint a row rather than to go through the regular search procedure and therefore is 

much more efficient). DB2, however, does not provide facilities to get ROWID in a 

query’s SQL statement. 

In our approach, when we encounter such a situation, we utilize the optimized SQL 

statement that is provided by DB2 Explain as the source to the translation process.  This 

optimized statement is equivalent to the original query statement and consists of multi-

level nested sub-queries. After studying this version of a query we found that it is most 

often amenable to our translation process. Figure 16 shows the optimized form for TPC-H 

Q21. 
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select  q10.$c0 as "s_name",  
 q10.$c1 as "numwait"  
from (  
 select q9.$c0,   
  count(*)  
 from ( 
  select distinct q8.$c0  
  from ( 
   select q7.$c6  
   from  lineitem as q1 right outer join ( 
     select distinct  q3.l_orderkey,  
       q3.l_suppkey,  
       q2.s_name  
     from  supplier as q2,  lineitem as q3,  
      orders as q4,  nation as q5,  
      lineitem as q6  
     where  (q2.s_suppkey = q3.l_suppkey)  
      and (q4.o_orderkey = q3.l_orderkey)  
      and (q4.o_orderstatus = 'F')  
      and (q3.l_commitdate < q3.l_receiptdate)  
      and (q2.s_nationkey = q5.n_nationkey)  
      and (q5.n_name = 'SAUDI ARABIA')  
      and (q6.l_suppkey <> q3.l_suppkey)  
      and (q6.l_orderkey = q4.o_orderkey) 
    ) as q7 on  
     (q1.l_orderkey = q7.$c3)  
     and (q1.l_suppkey <> q7.$c4)  
     and (q1.l_commitdate < q1.l_receiptdate) 
   ) as q8 
  ) as q9  
  group by q9.$c0 
 ) as q10  
order by  
 q10.$c1 desc,  
 q10.$c0; 

Figure 16: DB2 optimized SQL statement for TPC-H Q21 

 

In Section 3.4 we point out that any sub-tree within a query’s QEP can be viewed as 

another QEP that corresponds to a smaller query contained in the original large query. 

Therefore, from the QEP point of view, a query’s structure is also nested in multi-levels. 

The similarity between a query’s QEP and its optimized SQL statement makes the 
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optimized SQL statement an excellent resource for the task of translating segments into 

their corresponding SQL statements. 

 

Figure 17: Example of matching a query’s QEP with its Optimized SQL Statement 

 

Figure 17 shows a simple example of how the matching process works. A rule of 

thumb for this process is to match level by level. We start by matching the highest node in 

a QEP to the outermost sub-query in the optimized SQL statement and continue until the 

lowest possible node in QEP is matched to the innermost sub-query in the optimized SQL 

statement. Although such a matching process works in DB2, we can not guarantee that it 

will work for other DBMSs. 
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Chapter 5  

Experiments 

In this section we describe a set of experiments to evaluate the effectiveness of our 

approach for controlling the execution of a large query. The computer system used is an 

IBM xSeries® 240 machine with dual 1 GHZ CPUs, four PCI/ISA controllers, and 17 

Seagate ST 318436LC SCSI disks. We use IBM DB2 Version 8.2 as the database server. 

 

5.1 Workload 

The workload consists of a set of small read-only queries and one large query, which is 

either the TPC-H Q21 or the TPC-H Q22 query. The small query set consists of eight 

parameterized OLTP-like read-only queries (see Appendix E for detail). Each client 

submits a random stream of these queries. The average response time for these queries is 

typically less than half second. We control the intensity of the workload by varying the 

number of concurrent clients.  

Q21 is an IO-intensive query that accesses five different tables, four of which are 

relatively large in size. Its SQL statement is complex and includes aggregation and sub-

queries. Q22 is a CPU-intensive query that accesses two different tables, including one 

large table. Its SQL statement is less complicated than that of Q21, but, in addition to 

aggregation and sub-queries, it also contains some mathematical operations.  

We examined the QEPs of TPC-H queries 1 through 20 (Q1 – Q20) and found that 

all are highly skewed under the current experimental database configuration so there is no 

way to find a cost-balanced solution.  Within each of the QEPs for this set of queries, 
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there is always a single Table Scan node that covers most of the total QEP cost (at least 

90%). Q21 and Q22, however, are two queries that can be decomposed by the 

decomposition algorithm such that a cost-balanced solution can be reached. When 

running alone in our test-bed environment (no interference from any other query), Q21 

takes about 60 seconds to run and Q22 takes about 30 seconds to run.  

Using our algorithm, Q21 is broken into two smaller queries. The first query 

accounts for approximately 70% of the total cost and the second covers the remaining 

30%. Similarly, Q22 is also decomposed into two smaller queries that account for 60% 

and 40% of the total cost, respectively. Unlike Q21, Q22 is decomposed such that a 

pipelined operation is interrupted. Figure 18 shows the QEP for Q22 and illustrates how it 

is decomposed. We do not show the QEP for Q21 here because it is too large to see 

clearly (Appendix F shows the QEP anyway), but the process of decomposing it and how 

the cost is distributed is similar to that of Q22.  
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Figure 18: QEP of Q22 and its decomposition 

 

In Figure 18, the QEP for Q22 is divided just above node 7 (NLJOIN) marked by an 

X, thus creating two segments – one is the sub-tree rooted at node 7 (segment I) and the 

other is the QEP for Q22 with a virtual node (segment II) replacing the sub-tree rooted at 

node 7. The cost estimates in Figure 18 show that segment I covers almost 60% of the 

total QEP cost for Q22 and segment II takes the remaining 40%. 
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Figure 19: Workload generation class diagram 

 

Figure 19 shows the class diagram of the workload generation in our experiments. 

In our work, the submission of the workload is controlled by a StreamManager object 

which, in turn, contains a set of Stream objects and a QuerySubmitter object. Each Stream 

object has a unique stream ID and represents a single client that submits the OLTP-like 

small queries. The number of Stream objects managed by the StreamManager object 

controls the workload intensity of the small queries. The LargeQuerySubmitter object, a 

sub-object of the QuerySubmitter object, is used to submit a large OLAP query to the 

database without decomposing it. The ScheduleSubmitter object, another sub-object of the 
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QuerySubmitter object, is used to submit a Segment Schedule consisting of the sub-

queries that have been decomposed from the large query using the decomposition 

algorithm. The integer interval parameter of this object controls the length of the pause 

period (in seconds) between submitting consecutive queries in the schedule. 

 

5.2 Experimental Scenarios and Database Configuration 

We conducted experiments to test the effectiveness of our approach under four scenarios 

in which the large OLAP query causes different degrees of contention for resources.  

 In scenario 1, the workloads run in separate database instances on the same 

system and just compete for system resources like CPU and IO.  

 In scenario 2, the workloads run in the same database instance but use separate 

buffer pools, which add contention for general DBMS resources such as system 

catalogs and queues.  

 In scenario 3, the workloads run in the same database instance and use the same 

buffer pool, which adds contention for memory resources.  

 In scenario 4, the workloads access the same tables.  This adds contention for 

the tables and indexes.  

 

Within each case, four types of throughput data for the small query set are 

collected:  

 Type1 – the small query set runs in the database alone. 

 Type2 – the small query set and a large query (before decomposition) run 

simultaneously.  
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 Type3 – the small query set and a segment schedule (composed of the small 

queries that were decomposed from the large query) run simultaneously. 

 Type4 – the small query set and a segment schedule (composed of the small 

queries that were decomposed from the large query) run simultaneously with a 

one minute pause between executing the small queries contained in the 

schedule. This data is used to confirm our observation that running a large 

query as a series of smaller queries will release all resources between queries in 

the series and so they are available to other parts of the workload. 

In each of the 16 experimental cases (4 scenarios, 4 types of data), the workload is 

run 11 times in order to obtain a statistically-sufficient result. Appendix D shows method 

used to calculate the confidence intervals for all experimental cases. Each run lasts for 

600 seconds and is sampled every 20 seconds. Within each run, the small query starts its 

run 60 seconds earlier than that of the large query (or its corresponding query schedule) 

and uses the time as a warm-up period. It runs continuously within each run and its 

throughput is monitored. On the other hand, due to the interference of the small query set, 

the execution time for the large query (or its corresponding query schedule) is 

substantially prolonged and therefore it runs only once per run. The first run is considered 

as a general database warm-up period, especially for the large query, and the results 

collected during this run are therefore excluded for the final analysis. Figures 20 to 27 

show the throughput data for the small query set for the four cases. The analysis of the 

results is discussed in Section 5.3. 

To accommodate the different purposes of the four scenarios, two databases, Db_1 

and Db_2, are used for our experiments. Db_1 has one user table space (Db1Ts_1) and 

Db_2 has two user table spaces (Db2Ts_1 and Db2Ts_2). Within these table spaces, there 
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are four different sets of the standard TPC-H tables (TblSet1 to TblSet4) used in the 

experiments. Table 1 shows the size and the location of these table sets. 

Table Set Size Database Table Space 

TblSet1 100MB Db_1 Db1Ts_1 
TblSet2 100MB Db_2 Db2Ts_1 
TblSet3 100MB Db_2 Db2Ts_2 
TblSet4 2GB Db_2 Db2Ts_2 

Table 1: Table sets configuration 

 

The buffer pool size for each table space is scaled to 2% of the table space size. A 

more detailed description of the buffer pool configuration is provided in Section 5.3. 

Other key database parameters are configured as database default. No indices, other than 

the primary key index, are created on each of the database tables. 

In our experiments, the large query (Q21 or Q22) always accesses the 2GB table set 

(TblSet4) and the small query set may access any table set (TblSet1 – TblSet4) depending 

on the experimental case.  Table 2 shows which table sets are used in the various 

experimental scenarios. 

Experimental Scenarios Table Sets Used 

Scenario 1 TblSet1, TblSet4 
Scenario 2 TblSet2, TblSet4 
Scenario 3 TblSet3, TblSet4 
Scenario 4 TblSet4 

Table 2: Table sets for experimental scenarios 
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5.2.1 Scenario 1:  Separate Databases 

This scenario tests the effectiveness of our approach in a situation where a large query 

competes with other queries for system resources such as CPU and disk I/O but does not 

share database-specific resources such as locks and buffer pool memory. The small query 

set and the large query run in two separate databases (Db_1 and Db_2 respectively). The 

large query accesses large tables in TblSet4 whereas the small query set accesses small 

tables in TblSet1. The size of the corresponding buffer pools is configured such that it is 

proportional to the table space size, which means that the buffer pool size for the table 

space Db2Ts_2 is 20 times as big as that of table space Db1Ts_1. The results of this 

scenario are shown in Figures 20 and 21 when the large query is Q21 and Q22, 

respectively. 

 

 

Figure 20: Scenario 1 – separate databases (Q21) 
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Figure 21: Scenario 1 – separate databases (Q22) 

 

Figures 20 and 21, as well as Figures 22 to 27 that we will see in later sections, all 

confirm that the running a large query in a database has a significant impact on the 

performance of other workloads in the database. It also can be seen that in this scenario, 

our decomposition approach is unsuccessful. The throughput of the small query set is 

even worse when the large is decomposed, whether or not a 1-minute pause is applied. 

This is understandable, however, because in this scenario, the large query and the small 

query set compete only for operating system managed resources like CPU and disk I/O. 

The decomposition of a large query brings extra overhead of CPU and disk I/O usage and 

there is little that can be done by the DBMS to alleviate the performance degradation 

caused by the overhead. 
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5.2.2 Scenario 2:  One Database, Separate Buffer Pools 

Scenario 2 tests the effectiveness of our approach in a situation where a large query 

competes with other queries for both CPU and I/O resources and general DBMS 

resources such as catalogs and queues, but not for buffer pool memory. In this case, both 

the large query and the small query set run in Db_2. The large query accesses large tables 

in TblSet4 whereas the small query set accesses small tables in TblSet2. The buffer pool 

size for table space Db2Ts_2 is the same as in Case 1 and the buffer pool size for table 

space Db2Ts_1 is the same as that for table space Db1Ts_1 in Case 1. The results of this 

case using Q21 as the large query are shown in Figure 22 and the results using Q22 are 

shown in Figure 23. 

 

 

Figure 22: Scenario 2 – one database, separate buffer pools (Q21) 
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Figure 23: Scenario 2 – one database, separate buffer pools (Q22) 
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TblSet4 whereas the small query set accesses small tables in TblSet3. There is a single, 

shared buffer pool and its size is configured to be the total of the buffer pool sizes in Case 

2. The results of this case using Q21 are shown in Figure 24 and Figure 25 shows the 

results for Q22. 

 

 

Figure 24: Scenario 3 – one database, shared buffer pools, different table sets (Q21) 
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Figure 25: Scenario 3 – one database, shared buffer pools, different table sets (Q22) 
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both Type3 and Type4 data have two obvious performance drops along the curves. This 

can be explained by the overhead of writing intermediate temporary tables that is 

introduced by the decomposition approach. The similar trends also exist in other 

scenarios for both Q21 and Q22, although those for Q21 are not obvious.  
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run in Db_2 and access the same large tables in TblSet4. There is only one buffer pool 

involved in this case and its size is configured to be the same as that for Db2Ts_2 in Case 

2. The results of this case using Q21 are shown in Figure 26 and in Figure 27 using Q22. 

Compared with scenario 3, this scenario sees more improvement that is brought by the 

decomposition of the large query. 

 

 

Figure 26: Scenario 4 – one database, shared buffer pools, same table set (Q21) 
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Figure 27: Scenario 4 – one database, shared buffer pools, same table set (Q22) 

 

5.3 Analysis of the Results 

We first observe that, as expected, decomposing the large queries causes significant 

increases in their response time.  Table 3 shows how the response time changes for Q21 

and Q22 respectively before and after they are decomposed.  

Large 
Query 

Experimental 
Scenario 

Normal  
(s) 

Decomposed 
(s) 

Increase 
(%) 

Q21 Scenario 1 162 197 21.6% 
Q21 Scenario 2 157 197 25.5% 
Q21 Scenario 3 155 191 23.2% 
Q21 Scenario 4 172 195 13.4% 

 
Q22 Scenario 1 67 126 88.1% 
Q22 Scenario 2 64 134 109.4% 
Q22 Scenario 3 57 133 133.3% 
Q22 Scenario 4 78 108 38.5% 

Table 3: The change of large query response time 
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As we can see from Table 3, the response time for query Q21, which is an IO-

intensive query, increases an average of 20% over the four cases (162s normal execution 

versus 195s for the decomposed query). The response time for query Q22, which is a 

CPU-intensive query, increases an average of 87% over the four cases (67s normal 

execution, 125s for the decomposed parts). The increased response time of the 

decomposed queries is mainly due to the IO associated with the introduction of temporary 

tables. This additional IO is more significant for the CPU-intensive queries (Q22) than for 

the IO-intensive queries (Q21).  

We also observe that increased contention for resources has a negative impact on 

the throughput of the OLTP-like workload. Tables 4 and 5 show the average throughput 

of the small query set over the “busy” period (different among experiment cases, but all 

between sampling points 3 and 18) within each experimental scenario when the large 

query is Q21 and Q22, respectively.  Looking at the Type 1 column (small queries 

running alone) in both tables, we see that throughput of the small query set decreases 61% 

when the workloads are placed in the same database instance; decreases another 45% 

when the workloads are placed in the same buffer pool, and decreases another 7% when 

the workloads access the same tables. 

Experimental  
Scenario 

Type1 (q/s) Type2 (q/s) Type3 (q/s) Type4 (q/s) 

Scenario 1 30.54 24.92 23.99 24.05 
Scenario 2 11.81 8.80 7.77 7.93 
Scenario 3 6.48 5.96 5.85 5.83 
Scenario 4 6.00 4.15 3.88 3.93 

Table 4: Average throughput (Q21, “busy” period) 
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Experimental  
Scenario 

Type1 (q/s) Type2 (q/s) Type3 (q/s) Type4 (q/s) 

Scenario 1 30.54 28.62 25.80 26.23 
Scenario 2 11.81 10.70 8.95 9.16 
Scenario 3 6.48 6.20 6.19 6.18 
Scenario 4 6.00 4.97 4.66 4.67 

Table 5: Average throughput (Q22, “busy” period) 

 

Tables 4 and 5 also show that the throughput for the small query set is worse when 

the large query is decomposed (Type3 and Type4) than when the large query is not 

decomposed (Type2). This degradation in performance can be explained by the additional 

I/O overhead incurred by our approach to write temporary intermediate database tables.  

The overhead itself depends on how many intermediate results are written and it is 

unavoidable due to the fact that Query Disassembler is implemented outside the DBMS 

engine.   

We see that, in the cases where the large query and the other queries are in one 

database and also share the same buffer pool, our approach works fine. From tables 4 and 

5, we can see that the overall average throughput for the OLTP-like workload is only 

slightly lower when the large query is decomposed than when the large query is not 

decomposed. However, such a minor decease is implemented under a situation that our 

current approach brings an unavoidable big overhead (more on the overhead and the 

possible ways to reduce it are discussed in Section 6.1). Besides, if we only focus on the 

sampling interval between the 4th and the 7th sampling points in Figures 25 and 27 

(assuming that the overhead brought by our approach could be controlled to a minimum 

level), it actually shows that the Type 3 and Type 4 throughputs are higher than the Type 
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2 throughput. This observation verifies that at any given time, a smaller query will likely 

hold fewer resources than a large query.  

We also note that the throughput for Type 4, which includes the 1 minute delay 

between the executions of the decomposed query parts, is better than the case where the 

delay is not introduced. This delay means that by running a large query as a series of 

smaller queries, all resources that are occupied by the large query can be released 

between queries in the series and so are available for other queries and can be used to 

boost their performance for a period of time.   

Our approach does not help in situations like scenario 1 (separate databases) or 

scenario 2 (one database, separate buffer pools). This, however, is expected. Carey et al. 

[13] point out that “whether the system bottleneck is the CPU or the disk, it is essential 

that priority scheduling on the critical resource be used in conjunction with a priority-

based buffer management algorithm”. In scenario 1 and scenario 2, the large query does 

not compete for memory (buffer pool) with other queries. Therefore, our approach will 

not make much difference in these two cases, even when there is no overhead involved.  

The most surprising observation in our experiments comes from decomposing Q21 

(Figures 20, 22, 24, and 26). In these cases, since by our decomposition algorithm, both 

Q21 and Q22 are broken into two smaller units, we expect that when a one-minute pause 

is applied between executing the two smaller units for Q21, the Type 4 curve shape in 

Figures 22, 22, 24, and 26 would be similar to that in Figure 21, 23, 25, and 27 

correspondingly. To put in another way, we expect a throughput increase during this one-

minute period before it decreases again. In Figures 22, 22, 24, and 26, however, the trend 

is not obvious.  
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The reason for this is subtle. In Section 5.1, we mentioned that our decomposition 

algorithm breaks Q21 into two “70% and 30%” smaller parts, and breaks Q22 into two 

“60% and 40%” smaller parts. In our experiments the actual execution for Q22 reflects 

this 60-40 division, but the execution of Q21 does not.  In reality, the first smaller part of 

Q21 consumes most of the total execution time.  How to take advantage of extra database 

compiler information to detect this type of circumstance in advance is slated for future 

work.
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Chapter 6  

Conclusion and Future Work 

In this thesis we present an approach to managing the execution of large complex queries 

in a database and therefore controlling its impact on other smaller, possibly more 

important, queries. A decomposition algorithm that breaks up a large query into a set of 

equivalent smaller queries is discussed in detail. We also describe Query Disassembler, 

which is a prototype implementation of our approach with IBM DB2.  

 

6.1 Conclusions 

Our experiments show that concurrent execution of large resource-intensive queries can 

have significant impact on the performance of other workloads, especially as the points of 

contention between the workloads increase. We conclude that there is a need to be able to 

manage the execution of these large queries in order to control their impact. 

The experiments show that our approach is viable, especially in cases when 

contention among the workloads is high, for example when a large query and other 

workloads run in the same database and share buffer pools. In other cases when the 

competition is low (by “low”, we mean that the workloads do not share buffer pools), our 

approach does not work well. In these cases, the performance degradation that is caused 

by the overhead of our approach dominates and therefore makes our approach 

impracticable.  

In our approach, the major overhead is primarily due to the costs involved in saving 

the intermediate results to connect the decomposed queries. Specifically, these costs 
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include those related with creating, populating, accessing, and destroying the temporary 

tables that are necessary for accommodating the intermediate results. The overhead could 

be large in some cases, especially when a decomposition solution is reached by 

interrupting a pipelined operation. 

Currently, due to the fact that our approach is implemented outside of a database 

engine, we have no choice but to use an expensive way to store the intermediate results, 

which is to submit a “CREATE TABLE” SQL statement followed by an “INSERT” SQL 

statement and a “DROP TABLE” statement.  If we had the ability to save the 

intermediate results from inside a database engine, we could probably design a cheaper 

and faster mechanism to save the intermediate results. A possible solution would be to 

save the ROWID and COLUMNID information of a table instead of storing its real record 

values. There are two main advantages of doing so. First, it can create a much smaller 

intermediate table because the ROWID and COLUMNID information of a table record is 

usually much smaller in size than the real record value. Second, it can also create a much 

faster intermediate table because the DBMS can utilize the ROWID and COLUMNID 

information to pinpoint the needed information directly rather than to go through an 

expensive and slow search process.  

Another big improvement of saving the intermediate results from inside a database 

engine is that it would avoid the overhead that is caused by the DBMS following the 

standard parsing, compiling, and optimizing procedure to execute a submitted SQL 

statement. In our current approach, this type of overhead is inevitable. 

The experiments also show that our approach always causes performance 

degradation for the large query itself and sometimes the reduction can be significant, 

especially when the large query is decomposed in a way that a pipelined operation is 
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interrupted. One reason for the degradation comes from the decomposition processes 

itself and another comes from creating, accessing, and deleting the intermediate tables. 

The first type of degradation is unavoidable in our approach. We could, however, shorten 

the overall delay by utilizing more advanced techniques of saving intermediate tables as 

discussed in previous paragraphs.   

 

6.2 Future Work 

Our work shows the feasibility and potential of the management of the execution of large 

queries in a database to increase workload performance. This suggests a number of 

interesting opportunities of future research. Some of them are the following: 

 Currently in our work, the small query set in our experiment workload contains 

just read-only queries. It is desirable to consider update-queries (e.g. INSERT, 

UPDATE, and DELETE) in the workload. These queries tend to create more 

resource contentions on a database system and may cause data inconsistency 

problems. We would like to examine the feasibility and/or the effectiveness of 

our approach under this situation. 

 One important step of our approach involves translating a decomposed segment 

into an equivalent SQL statement. This step is highly vendor-specific and has 

some limitations that are inherent in our current approach due to the fact that 

our approach is implemented outside a database engine. In future work, we 

would like to investigate a better way to execute the decomposed segments, 

preferably within a database engine so internal query models, such as Query 

Graph Model in DB2, can be directly utilized. 
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 The approach of controlling the execution of a large query in our work is to 

decompose the large query based on this QEP. This approach is static and can 

not handle all types of large queries. It is very attractive to investigate a more 

flexible control mechanism, such as dynamically pausing or throttling query 

execution, so that the large queries that cannot be handled by our current 

algorithm can be processed properly. 

 Our current approach relies solely on the DB2 compiler to provide the 

necessary performance-related information, especially cost, to do the 

decomposition job. From this point of view, our approach is relatively 

independent from the configuration of the underlying computer system because 

the DBMS screens the system configuration change on the approach’s behalf 

(assuming that the DBMS configuration parameters remain the same). 

However, it is very interesting to investigate how our approach can react to the 

change of the system configuration in a more active and reasonable way. For 

example, if more CPUs are added in the system, our decomposition algorithm 

could utilize that information to generate a more parallel segment schedule and 

therefore the performance of our approach could be enhanced by taking 

advantage of the parallelism introduced. 
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Glossary of Acronyms  

CB-Segment  Cost Based Segment 

DBA  Database Administrator 

DBMS  Database Management System 

GUI  Graphical User Interface 

MPL  Multi Programming Level 

MV  Materialized View 

OLAP  Online Analytical Processing 

OLTP  Online Transaction Processing 

QEP  Query Execution Plan 

QoS  Quality of Service 

SKF  Skew Factor 

SLA  Service Level Agreement 

SLO  Service Level Objective 

SOA  Service Oriented Architecture 

SOM  Service Oriented Management 

SQL  Structured Query Language 

TPC-H  Transaction Processing Performance Council Benchmark H 
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Appendix A 

TPC-H Benchmark 

The TPC-H benchmark is a decision support benchmark developed by the Transaction 

Performance Council (TPC). It is used to evaluate the performance of decision support 

systems by virtue of executing a set of complex queries against a standard database 

(containing large volume of data) under controlled conditions in order to give answers to 

real-world business questions. The TPC-H benchmark contains a suite of business 

oriented ad-hoc queries. It is designed such that both the queries and the data reflect broad 

industry-wide relevance and a sufficient degree of ease of implementation. 

A TPC-H database contains eight base tables. The relationships between these 

tables are illustrated in Figure 28. In Figure 28, the arrows point in the direction of one-

to-many relationships between tables. The parentheses following each table name defines 

the prefix of the column names for that table. For example, the real column name for the 

name of a nation should be “N_NAME”. The number below each table name represents 

the cardinality (number of rows) of the table. The SF in front of the number represents the 

scale factor used to obtain a chosen database size. Take SUPPLIERS table as an example, 

a SF value of 5 means that the actual SUPPLIERS table has 50,000 (5 * 10,000) rows 

inside. A TPC-H database with a SF value 1 (the TPC-H tables in the database all have a 

SF value 1) is approximately 1 GB large in size. 
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Figure 28: TPC-H schema [5] 

 

TPC-H defines twenty-two decision support queries (Q1 to Q22). Tables 6 list the 

business questions for which Q21 and Q22 provide answers. For the business questions 

that Q1 to Q20 aim for, please see the official TPC-H specification [5]. 

 

 



75 

 

Query # Business Question Description 

Q21 Suppliers Who Kept Orders Waiting Query: 
This query identifies certain suppliers who were not able to ship required parts in a 
timely manner. 

Q22 Global Sales Opportunity Query: 
The Global Sales Opportunity Query identifies geographies where there are customers 
who may be likely to make a purchase. 

Table 6: TPC-H queries 

 

In TPC-H specification, Q1 to Q22 are all parameterized query templates. In order 

to generate executable decision support queries from these templates, parameter 

substitution by some randomly selected real value is required. The TPC-H specification 

defines the value range for each of the parameters involved and suggests a default value 

for it for the purpose of query validation.  Figure 29 shows the SQL statement template 

for TPC-H Q22. The template for Q21 can be found in Figure 1 in Section 1.2: 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

select cntrycode, 
 count(*) as numcust, 
 sum(c_acctbal) as totacctbal 
from ( 
 select substring(c_phone from 1 for 2) as cntrycode, 
  c_acctbal 
 from customer 
 where substring(c_phone from 1 for 2) in ('[I1]','[I2]',’[I3]','[I4]','[I5]','[I6]','[I7]') 
  and c_acctbal > ( 
   select avg(c_acctbal) 
   from customer 
   where c_acctbal > 0.00 
    and substr (c_phone from 1 for 2) in 
('[I1]','[I2]','[I3]','[I4]','[I5]','[I6]','[I7]') ) 
  and not exists ( 
   select * 
   from orders 
   where o_custkey = c_custkey ) 
 ) as custsale 
group by  cntrycode 
order by  cntrycode;

Figure 29: TPC-H Q22 statement (template) 
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Appendix B 

Common QEP Operators 

Table 7 gives the list of the common physical operators that can appear in a QEP. Simple 

descriptions of what these operators do are also provided. 

Operator Description 

Table Scan 
(TBSCAN) 

A TBSCAN operator retrieves the data of a database table by reading 
all the required data directly from the data pages. 

Index Scan  
(IXSCAN) 

An IXSCAN operator scans an index to produce a reduced stream of 
data.  

Filter  
(FILTER) 

A FILTER operator filters a stream of data based on the criteria 
supplied by the filter predicates. 

Column Selection 
(COLSEL) 

A COLSEL operator selects the data for designated columns from a 
stream of data. 

Nested Loop Join  
(NLJOIN) 

A NLJOIN operator joins two streams of data using the standard nested 
loop join algorithm. 

Distinct/Unique 
(UNIQUE) 

A UNIQUE operator eliminates duplicates from a stream of data. 

Sort  
(SORT) 

A SORT operator sorts a data stream in the order of one or more of its 
columns, optionally eliminating duplicate entries. 

Hash Join  
(HSJOIN) 

A HSJOIN operator joins two streams of data using the standard hash 
join algorithm. 

Merge-Sort Join  
(MSJOIN) 

A MSJOIN operator joins two streams of data using the standard 
merge-sort join algorithm. A merge-sort join is also called a merge 
scan join or a sorted merge join. 

Union 
(UNION) 

A UNION operator concatenates two data streams (having same data 
structure) and retrieves all data from both streams. 

Intersect 
(INTERSECT) 

A INTERSECT operator concatenates two data streams (having same 
data structure) and retrieves the data that are shared by both streams. 

Except 
(EXCEPT) 

A EXCEPT operator concatenates two data streams (having same data 
structure) and retrieves the data from the first data stream that is not 
contained in the second stream. 

Aggregation/Group 
By 
(GRPBY) 

A GRPBY operator groups data by common values of designated 
columns or functions. It is required to produce a group of values, or to 
evaluate set functions. 

Table 7: Common QEP Operators 
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Appendix C 

DB2 Explain Facility 

IBM DB2 provides a facility called SQL Explain to allow a DBA to capture information 

about the access plan that is chosen by the DB2 optimizer [24]. The information captured 

includes: 1) operation sequence to process a query; 2) cost information; 3) predicates and 

selectivity estimates for each predicate; 4) statistics for all objects referenced in the SQL 

statement; and 5) values for the host variables, parameter markers, or special registers. 

The information can help a DBA understand how database tables and indexes are 

accessed for a submitted query and to evaluate the performance tuning strategies. 

DB2 uses a suite of explain tables to store the captured explain data that can be 

accessed using the following methods: 

 Use Visual Explain Tool [22] to view explain-snapshot information. 

 Use the db2exfmt tool to display explain information in preformatted output. 

 Use the db2expln and dynexpln tools to see the access plan information for 

static SQL statements or dynamic SQL statements that contains no parameter 

markers, respectively. 

 Write one’s own queries to access the explain tables. 

 

Table 8 lists the relational tables that are provided by DB2 to store the explain 

information, which is used by our program to build up the QEP as well as its related cost 

information for a large query. 
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Table Name Description 

EXPLAIN_ARGUMENT Contains information about the unique characteristics of each 
individual operator, if any. 

EXPLAIN_INSTANCE The main control table for all Explain information. Each row of 
data in the Explain tables is explicitly linked to one unique row in 
this table. Basic information about the source of the SQL 
statements being explained and environment information is kept in 
this table. 

EXPLAIN_OBJECT Identifies those data objects required by the access plan generated 
to satisfy the SQL statement. 

EXPLAIN_OPERATOR Contains all the operators needed by the SQL compiler to satisfy 
the SQL statement. 

EXPLAIN_PREDICATE Identifies the predicates that are applied by a specific operator. 
EXPLAIN_STATEMENT Contains the text of the SQL statement as it exists for the different 

levels of explain information. The original SQL statement as 
entered by the user is stored in this table with the version used by 
the optimizer to choose an access plan. When an explain snapshot 
is requested, additional explain information is recorded to describe 
the access plan selected by the SQL optimizer. This information is 
stored in the SNAPSHOT column of the 
EXPLAIN_STATEMENT table in the format required by Visual 
Explain. This format is not usable by other applications. 

EXPLAIN_STREAM Represents the input and output data streams between individual 
operators and data objects. The data objects themselves are 
represented in the EXPLAIN_OBJECT table. The operators 
involved in a data stream are represented in the 
EXPLAIN_OPERATOR table. 

Table 8: Relational tables that store explain data [24] 

 

All explain information as stored in the explain tables is organized around the 

concept of an explain instance, which represents one invocation of the explain facility. 

Each explain instance can contain the explain information for multiple SQL statements, 

either static or dynamic. The information stored in the explain tables reflects the 

relationships between operators and objects in the access plan.  

Other than the operation sequence in an access plan, the explain facility also 

captures cost information for each operator. The cost captured for an operator is an 

estimated cumulative cost, from the start of access plan execution up to and including the 

operator that includes: 
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 The total cost (in timerons). 

 The number of page I/Os. 

 The number of CPU instructions. 

 The cost (in timerons) of fetching the first row, including any initial overhead 

required. 

 The communication cost (in frames). 

 

The unit of cost is timeron which is a DB2-specific relative cost unit.  It does not 

directly link to any actual unit of measure, like response time or throughput, but gives a 

relative estimate of the resources required by the database manager. It is determined by 

the optimizer based on internal values such as statistics.  
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Appendix D  

Maximum Error of Estimation in Experimental Results 

In Section 5.3, we describe the experiment cases and the type of data to collect. There are 

4 different experiment scenarios and within each case, there are 4 different data types. In 

this appendix, for simplicity we use S1T1, S1T2, S1T3, S1T4, S2T1, S2T2, S2T3, S2T4, 

S3T1, S3T2, S3T3, S3T4, S4T1, S4T2, S4T3, and S4T4 to name the 16 different types of 

throughput data to be collected, in which S means the experiment scenario and T means 

the data type. The number following S and T means the experiment scenario number and 

the data type number, respectively. 

Equation 3 gives the formula of calculating the maximum error of estimation, 

meaning the maximum possible error between the sample mean and the population mean. 

In this equation, n is the sample number, σ is the standard deviation of the sample and z 

(α/2) is the z-value for a confidence level (1-α) 100%. In our experiment, n is equal to 10 

and we uses 95% as the confidence level, corresponding to a z-value of 1.96. 

 

 

 

Tables 9 and 10 list the calculated E-values for the 16 different types of data when 

the large query is TPC-H Q21, Q22 respectively. It can be seen from these tables that, 

with a confidence level of 95%, the maximum errors for the 16 types of throughput data 

that is collected by our experimental method are all less than 0.4 queries per second, 

corresponding to about less than 2% of the true values in most cases. 

 

Equation 3: Maximum error of estimate
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Data Sample 
MEAN (q/s) 

Sample 
STDEV 

(q/s) 

E-Value  
(95% Conf.) 

(q/s) 

Conf. Interval 
MEAN 

(95% Conf.) 
(q/s) 

S1T1 30.54 0.30 0.18 (30.36, 30.72) 
S1T2 27.58 0.56 0.34 (27.24, 27.92) 
S1T3 27.05 0.47 0.29 (26.76, 27.34) 
S1T4 27.14 0.40 0.25 (26.89, 27.39) 
S2T1 11.81 0.26 0.16 (11.65, 11.97) 
S2T2 10.27 0.30 0.19 (10.08, 10.46) 
S2T3 9.55 0.28 0.17 (9.38, 9.72) 
S2T4 9.82 0.29 0.18 (9.64, 10) 
S3T1 6.48 0.41 0.25 (6.23, 6.73) 
S3T2 6.22 0.36 0.22 (6, 6.44) 
S3T3 6.14 0.33 0.21 (5.93, 6.35) 
S3T4 6.12 0.38 0.24 (5.88, 6.36) 
S4T1 6.00 0.18 0.11 (5.89, 6.11) 
S4T2 5.06 0.13 0.08 (4.98, 5.14) 
S4T3 4.90 0.13 0.08 (4.82, 4.98) 
S4T4 4.92 0.15 0.09 (4.83, 5.01) 

Table 9: E-Value for collected throughput data (Q21) 

 

Data Sample 
MEAN (q/s) 

Sample 
STDEV 

(q/s) 

E-Value  
(95% Conf.) 

(q/s) 

Conf. Interval 
MEAN 

(95% Conf.) 
(q/s) 

S1T1 30.54 0.30 0.18 (30.36, 30.72) 
S1T2 29.55 0.47 0.29 (29.26, 29.84) 
S1T3 28.03 0.60 0.37 (27.66, 28.4) 
S1T4 28.44 0.54 0.34 (28.1, 28.78) 
S2T1 11.81 0.26 0.16 (11.65, 11.97) 
S2T2 11.20 0.18 0.11 (11.09, 11.31) 
S2T3 10.32 0.20 0.12 (10.2, 10.44) 
S2T4 10.48 0.17 0.11 (10.37, 10.59) 
S3T1 6.48 0.41 0.25 (6.23, 6.73) 
S3T2 6.31 0.37 0.23 (6.08, 6.54) 
S3T3 6.30 0.38 0.23 (6.07, 6.53) 
S3T4 6.33 0.37 0.23 (6.1, 6.56) 
S4T1 6.00 0.18 0.11 (5.89, 6.11) 
S4T2 5.45 0.12 0.07 (5.38, 5.52) 
S4T3 5.30 0.12 0.07 (5.23, 5.37) 
S4T4 5.29 0.10 0.06 (5.23, 5.35) 

Table 10: E-Value for collected throughput data (Q22)  
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Appendix E 

Small Query Set 

As part of our experimental workload, we run a small query set consisting of eight queries 

which access the TPC-H tables.  The templates for these queries are shown below. Within 

each template, a question mark (?) represents a parameter that is substituted by a 

randomly selected real value as defined below. 

Query 1: 

Template select count(*) from region 

Param. Values None 

 

Query 2: 

Template select  r.r_name, count(n.n_nationkey) 

from region as r, nation as n  

where  n.n_regionkey = r.r_regionkey and r.r_name = [?] 

group by r.r_name 

Param. Values  {“ AFRICA”, “AMERICA”, “ASIA”, “EUROPE”, “MIDDLEEAST”} 

 

Query 3: 

Template select n.n_name, count(s.s_suppkey)  

from supplier as s, nation as n  

where n.n_nationkey = s.s_nationkey and n.n_name = [?] 

group by n.n_name 

Param. Values  {“ ALGERIA”, “BRAZIL”, “EGYPT”, “IRAN”, “MOROCCO”, “UNITED 
KINGDOM”} 

 

Query 4: 
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Template select c.c_mktsegment, count(c.c_custkey) 

from customer as c, nation as n  

where n.n_nationkey = c.c_nationkey and n_name = [?] and  

 100000 < c.c_custkey and c.c_custkey < 200000  

group by c.c_mktsegment 

Param. Values {“ ALGERIA”, “BRAZIL”, “EGYPT”, “IRAN”, “MOROCCO”, “UNITED 
KINGDOM”} 

 

Query 5: 

Template select p.p_container, count(*)  

from part as p  

where p.p_brand = [?] and  

 100000 < p.p_partkey and p.p_partkey < 200000  

group by p.p_container 

Param. Values {“ Brand#11”, “Brand#22”, “Brand#33”, “Brand#44”, “Brand#55} 

 

Query 6: 

Template select sum(ps.ps_availqty), sum(ps.ps_supplycost)  

from partsupp as ps  

where ps.ps_partkey = [?] 

Param. Values  {1000, 2000, 3000, 4000, 5000, 6000} 

 

Query 7: 

Template select o.o_orderstatus, count(*)  

from orders as o  

where [?] < o.o_orderkey and o.o_orderkey < [?] + 100000 and  

 o.o_orderpriority = '1-URGENT'  

group by o.o_orderstatus 

Param. Values  {100000, 200000, 300000, 400000, 500000, 600000} 
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Query 8: 

Template select l.l_orderkey, count(l.l_linenumber)  

from lineitem as l, orders as o  

where l.l_orderkey = o.o_orderkey and  

 [?] < o.o_orderkey and o.o_orderkey < [?] + 100000 and  

 o.o_orderpriority = '1-URGENT'  

group by l.l_orderkey 

Param. Values  {100000, 200000, 300000, 400000, 500000, 600000} 
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Appendix F 

QEPs of TPC-H Q21 and Q22 from DB2’s Explain Utility 

Figure 30 shows the QEP structure of TPC-H Q22 that is returned by DB2’s Explain 

Utility. This structure is very similar to that as shown in Figure 18 in Section 5.1, which is 

the QEP structure of Q22 that is returned by Query Disaasembler, except that the cost 

presentation in the Query Disassembler’s structure is more versatile (e.g. relative cost, 

accumulative cost, and etc.), which makes it a better candidate for the decomposition 

algorithm. 

Similarly, Figure 31 shows the QEP structure of TPC-H Q21 from DB2’s point of 

view. But unlike the case of Q22, we do not show its Query Disassembler structure in 

Section 5.1 because of its overly big size. 
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Figure 30 : QEP of TPC-H Q22 by DB2 Explain Utility 
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Figure 31 : QEP of TPC-H Q21 by DB2 Explain Utility 

 

 


