

SQL Query Disassembler

An Approach to Managing the Execution of Large SQL Queries

by

Yabin Meng

A thesis submitted to the

School of Computing

in conformity with the requirements for the

degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

September, 2007

Copyright © Yabin Meng, 2007

ii

Abstract

Current database workloads often consist of a mixture of short online transaction

processing (OLTP) queries and large complex queries such as those typical of online

analytical processing (OLAP). OLAP queries usually involve multiple joins, arithmetic

operations, nested sub-queries, and other system or user-defined functions and they

typically operate on large data sets. These resource intensive queries can monopolize the

database system resources and negatively impact the performance of smaller, possibly

more important, queries.

In this thesis, we present an approach to managing the execution of large queries

that involves the decomposition of large queries into an equivalent set of smaller queries

and then scheduling the smaller queries so that the work is accomplished with less impact

on other queries. We describe a prototype implementation of our approach for IBM

DB2™ and present a set of experiments to evaluate the effectiveness of the approach.

iii

Acknowledgments

I would like to extend my sincerest gratitude to my supervisor, Professor Patrick Martin,

for his great guidance and help over the years that I have pursued my education and

research at Queen’s University.

I would also like to thank Wendy Powley for her support. She has always been a

wonderful source of advice and suggestions. Without her great work, I could not finish

my thesis so smoothly.

I would like to give my gratitude to the School of Computing at Queen’s University

for their support. I would also like to acknowledge IBM Canada Ltd., NSERC, and

CITO for the gracious financial support they have provided.

I would like to thank my lab mates and fellow students for their encouragement,

support, and kindness.

Finally I would like to thank my family for their love and understanding. Their

support is always the key in my journey.

iv

Table of Contents

Abstract ... ii

Acknowledgments.. iii

Table of Contents ... iv

List of Tables .. vii

List of Figures .. viii

List of Equations ... x

Chapter 1: Introduction ... 1

1.1 Motivation ... 1

1.2 Problem ... 2

1.3 Research Statement ... 6

Chapter 2: Background and Related Work ... 8

2.1 Improving the Performance of Large Queries .. 8

2.2 DBMS Resource Allocation ... 11

2.3 Query Decomposition in Distributed Database System .. 14

Chapter 3: Decomposition Algorithm ... 16

3.1 Query Execution Plan ... 16

3.2 Virtual Node, Segment, and CB-Segment .. 18

3.3 Segment Dependency and Schedule ... 21

3.4 Decomposition Algorithm .. 23

v

3.5 Skew Factor .. 28

3.6 Executing Segments .. 30

3.7 Decomposition Argument .. 32

Chapter 4: Query Disassembler .. 34

4.1 The Framework ... 34

4.2 Graphical User Interface ... 36

4.3 Segment Schedule Object ... 40

4.4 DB2 specific operators .. 41

4.5 Translating segments in DB2 .. 42

Chapter 5: Experiments... 45

5.1 Workload... 45

5.2 Experimental Scenarios and Database Configuration ... 49

5.2.1 Scenario 1: Separate Databases .. 52

5.2.2 Scenario 2: One Database, Separate Buffer Pools .. 54

5.2.3 Scenario 3: One Database, Shared Buffer Pool, Different Table Sets 55

5.2.4 Scenario 4: One Database, Shared Buffer Pool, Same Table Set 57

5.3 Analysis of the Results .. 59

Chapter 6: Conclusion and Future Work .. 64

6.1 Conclusions ... 64

6.2 Future Work .. 66

vi

References ... 68

Glossary of Acronyms .. 72

Appendix A: TPC-H Benchmark .. 73

Appendix B: Common QEP Operators ... 76

Appendix C: DB2 Explain Facility ... 77

Appendix D: Maximum Error of Estimation in Experimental Results 80

Appendix E: Small Query Set ... 82

Appendix F: QEPs of TPC-H Q21 and Q22 from DB2’s Explain Utility 85

vii

List of Tables

Table 1: Table sets configuration .. 51

Table 2: Table sets for experimental scenarios ... 51

Table 3: The change of large query response time ... 59

Table 4: Average throughput (Q21, “busy” period) ... 60

Table 5: Average throughput (Q22, “busy” period) ... 61

Table 6: TPC-H queries .. 75

Table 7: Common QEP Operators .. 76

Table 8: Relational tables that store explain data [24] .. 78

Table 9: E-Value for collected throughput data (Q21) ... 81

Table 10: E-Value for collected throughput data (Q22) ... 81

viii

List of Figures

Figure 1: TPC-H Q21, an example of decision-support queries ... 3

Figure 2: Performance degradation due to running a complex query 5

Figure 3: A sample QEP ... 17

Figure 4: Segments and virtual nodes for QEP in Figure 3 .. 19

Figure 5: An example of merging/decomposing segment(s) .. 20

Figure 6: Dependency relationships for segments in Figure 4 ... 22

Figure 7: Segment schedule for QEP in Figure 3 ... 23

Figure 8: Decomposition algorithm – the first pass .. 24

Figure 9: Examples of skewed solutions .. 25

Figure 10: Decomposition algorithm – the second pass ... 26

Figure 11: An example of a query that cannot be decomposed .. 28

Figure 12: Query Disassembler framework .. 35

Figure 13: GUI of Query Disassembler .. 37

Figure 14: An example of manual disassembly procedure ... 40

Figure 15: Segment schedule class diagram ... 41

Figure 16: DB2 optimized SQL statement for TPC-H Q21 ... 43

Figure 17: Example of matching a query’s QEP with its Optimized SQL Statement 44

Figure 18: QEP of Q22 and its decomposition ... 47

Figure 19: Workload generation class diagram .. 48

Figure 20: Scenario 1 – separate databases (Q21) .. 52

Figure 21: Scenario 1 – separate databases (Q22) .. 53

Figure 22: Scenario 2 – one database, separate buffer pools (Q21) 54

ix

Figure 23: Scenario 2 – one database, separate buffer pools (Q22) 55

Figure 24: Scenario 3 – one database, shared buffer pools, different table sets (Q21) 56

Figure 25: Scenario 3 – one database, shared buffer pools, different table sets (Q22) 57

Figure 26: Scenario 4 – one database, shared buffer pools, same table set (Q21) 58

Figure 27: Scenario 4 – one database, shared buffer pools, same table set (Q22) 59

Figure 28: TPC-H schema [5] ... 74

Figure 29: TPC-H Q22 statement (template) .. 75

Figure 30 : QEP of TPC-H Q22 by DB2 Explain Utility ... 86

Figure 31 : QEP of TPC-H Q21 by DB2 Explain Utility ... 87

x

List of Equations

Equation 1: Skew factor .. 29

Equation 2: Average segment cost .. 29

Equation 3: Maximum error of estimate ... 80

1

Chapter 1

Introduction

1.1 Motivation

The database management system (DBMS) has been very successful over the last half-

century history. According to an IDC report made by C. Olofson [1] in 2006, the

worldwide market for DBMS software was about $15 billion in 2005 alone with an

estimated 10% growth rate per year. DBMSs and database applications have become a

core component in most organizations’ computing systems. These systems are becoming

increasingly complex and the task of management to ensure acceptable performance for

all applications is very difficult. In recent years, this complexity has approached a point

where even database administrators (DBAs) and other highly skilled IT professionals are

unable to comprehend all aspects of a DBMS’s day-to-day performance [29] and manual

management has become virtually impossible.

One solution to the growing complexity problem is IBM’s Autonomic Computing

initiative [29] [31]. An autonomic computing system is one that is self-managed in a way

reminiscent of the human autonomic nervous system. To be more specific, an autonomic

DBMS should be self-configuring, self-tuning, self-protecting and self-healing. One of

the efforts towards autonomic DBMS involves workload control, that is, controlling the

type of queries and the intensity of different workloads presented to the DBMS to ensure

the most efficient use of the system resources. One challenge involved in the

implementation of workload control is the handling of very large queries that are common

in data warehousing and online analytical processing (OLAP) systems. These queries are

2

crucial in answering critical business questions. They usually boast very complicated

SQL and access a huge amount of data in a database. When executed in a DBMS, they

tend to consume a large portion of the database resources, often for long periods of time.

The existence of these queries can dramatically affect overall database performance and

restrict other workloads requiring access to the DBMS. Our goal is to design a

mechanism to dynamically control the execution of a large query so as to lessen its

impact on competing workloads.

1.2 Problem

In the past several decades, we have experienced an information explosion. According to

a study conducted by Lyman and Varian [2], there were 5 exabytes (1018 bytes) of “static”

information (in the form of paper, film, magnetic and optical storage medias) and another

18 exabytes of “dynamic” information flowing through electronic channels (TV, radio,

internet, etc) in the year 2002, with the growth factor estimated to be about 30% per year.

Ninety-two percent of the static information is stored on magnetic media, mostly on hard

disks. In order to effectively manage such large volumes of information, DBMSs have

been widely used, thus leading to an astonishing boost in the volume of data that a single

database must manage. According to the 2005 report of the “TopTen Program” by the

Winter Corporation [3], the world’s largest data warehouse in 2005 contained 100,386

GB of data, and the largest scientific database was 222,835 GB.

Due to the high degree of competition within the business environment, more and

more companies are employing data warehousing and OLAP technologies to help the

knowledge worker” (executive, manager, analyst, etc.) [4] make better and faster

3

decisions. Decision-support queries usually boast very complex forms, including multiple

joins, nested sub-queries, multi-dimension aggregations, arithmetic operations, and

system- or user- defined functions. Moreover, they also operate over huge amounts of

data.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
20
21
22
23
24
25
26
27
28
29
30
31

select s_name,
 count(*) as numwait
from supplier,
 lineitem l1,
 orders,
 nation
where s_suppkey = l1.l_suppkey
 and o_orderkey = l1.l_orderkey
 and o_orderstatus = ‘F’
 and l1.l_receiptdate > l1.l_commitdate
 and exists (
 select *
 from lineitem l2
 where l2.l_orderkey = l1.l_orderkey
 and l2.l_suppkey <> l1.l_suppkey
)
 and not exists (
 select *
 from lineitem l3
 where l3.l_orderkey = l1.l_orderkey
 and l3.l_suppkey <> l1.l_suppkey
 and l3.l_receiptdate > l3.l_commitdate
)
 and s_nationkey = n_nationkey
 and n_name = ‘[NATION]’
group by
 s_name
order by
 numwait desc,
 s_name;

Figure 1: TPC-H Q21, an example of decision-support queries

Figure 1 shows one query, Query 21, of the TPC-H benchmark [5] which is a

decision support benchmark developed by Transaction Processing Performance Council.

Query 21 is one of the suite of business oriented ad-hoc queries specified in the

benchmark and is used to “identify suppliers, for a given nation, whose product was part

of a multi-supplier order (with current status of 'F') where they were the only supplier

4

who failed to meet the committed delivery date” [5]. As we can see from Figure 1, this

query has a complex SQL statement including multiple joins among four different tables,

three of which are relatively large (lineitem, orders, and suppliers). It also includes

nested sub-queries and aggregation. Query 21 is typical of decision support queries.

When a query like TPC-H Q21 is submitted to a high volume database for

execution, it tends to consume many of the physical database resources such as CPU,

buffer pool or disk I/O and/or the logical resources such as system catalogs, locks, etc.

The query may consume the resources for long periods of time, thus, impacting other,

possibly more important, queries which may require these resources to complete their

work in a timely fashion.

The situation is made worse by the emerging trend of server consolidation and

service-oriented architecture (SOA). Business entities use server consolidation as an

important means of cutting unnecessary costs and maximizing return on investment by

shifting the functionalities of several, under-utilized servers onto one powerful server.

This trend on database servers means that one single database server must support very

different workloads simultaneously that were traditionally handled by different database

servers. One direct consequence of this trend is that the DBMS must now be able to

handle multiple workloads with diverse characteristics, dynamic resource demands, and

competing performance objectives.

Service-oriented management (SOM) is the operational management of service

delivery within a SOA [6]. The main purpose of SOM is to guarantee a differentiated

service delivery based on Service Level Objectives (SLOs) and Service Level

Agreements (SLAs). Within SOM, a system’s behavior is driven by business objectives.

In order to

resource all

Figur

of small re

Q21) in a D

600 second

simultaneou

can be see

sampling po

queries dro

A co

queries as

This appro

o realize thi

locations fo

Figure 2

re 2 shows a

ead-only OL

DBMS. Th

ds and samp

usly. Chapt

en from Fig

oint and end

ps dramatic

ommon app

they enter

oach has 2

is goal, a D

or the querie

: Performanc

an example

LTP-like qu

e throughpu

pled every

ter 5 provid

gure 2 that

ding at the

cally to less

proach to m

the system

disadvanta

5

DBMS mus

es that are su

ce degradatio

e of the perf

ueries due t

ut of the sm

20 seconds

des an expla

t when the

13th samplin

than 50% o

managing la

and then t

ages. First,

5

t have the

ubmitted to

on due to run

formance de

to the inter

mall queries

s, with and

anation of t

large quer

ng point), th

of the origin

arge querie

to delay the

the large

ability to d

o it.

nning a compl

egradation e

rference of

s in the sys

d without th

the experim

ry is runni

he average t

nal throughp

es within a

e submissio

query is si

dynamically

lex query

experienced

a large que

stem are mo

he large qu

mental confi

ng (starting

throughput

put.

DBMS is

on of the lar

imply delay

y control its

d by a series

ery (TPC-H

onitored for

ery running

figuration. I

g at the 3rd

of the smal

to classify

rge queries

yed and no

s

s

H

r

g

t

d

l

y

s.

o

6

progress on that work is achieved. Second, in businesses with 24/7 availability there may

exist no time at which the large query will not interfere with other work. A more flexible

approach such as dynamically adjusting the DBMS resources of a running query, which

allows a query to progress at a reduced rate, is preferable, especially in a differentiated

service environment.

Controlling the consumption of DBMS resources by a query (particularly a big

query) is, however, not a trivial task. Ideally, low-level approaches, such as directly

assigning CPU cycles or disk I/O bandwidths to a query based on its complexity and/or

importance, are desirable. In practice, however, these approaches are problematic for two

reasons. First, running a query against a DBMS involves many different and interrelated

DBMS components. It is impossible to ensure that a query is treated equally (from the

viewpoint of resource allocation) across all these components. Secondly, it is difficult to

determine the appropriate settings for the resource allocations for all the components.

1.3 Research Statement

The goal of this research is to investigate a high-level approach to controlling the impact

that the execution of large queries has on the performance of other workload classes in a

DBMS. Our approach divides a large query into an equivalent set of smaller queries and

then schedules the execution of these smaller queries.

Our work makes two main contributions. The first contribution is an original

method of breaking up a large query into smaller queries based on its access plan

structure and the estimated query cost information. The second contribution is a prototype

implementation called Query Disassembler. Query Disassembler uses the proposed

7

algorithm to break up queries, if necessary, and manages the execution of the queries

submitted to a DBMS.

The remainder of the thesis is organized as follows. Chapter 2 describes research

background and related work. The core part of our work, the decomposition algorithm, is

discussed in detail in Chapter 3. In Chapter 4 we introduce Query Disassembler, which is

a prototype implementation of our approach for IBM DB2™. We present a set of

experiments to evaluate our approach in Chapter 5. We conclude the thesis in Chapter 6.

8

Chapter 2

Background and Related Work

Very complex queries have gained plenty of research attention in online analytical

processing (OLAP) and data warehousing systems due to the emphasis on increasing

query throughput and decreasing response time in these systems [4]. On one hand, much

of the research focuses on minimizing the query completion time, or providing feedback

more quickly for the large query itself. In Section 2.1 we present some research efforts in

this area. On the other hand, how to reallocate DBMS resources to meet different quality

of service (QoS) requirements for a complex workload, ideally in an autonomic way

based on some pre-defined business objectives and policies, is attracting more and more

attention. Section 2.2 describes research efforts in this area. In both sections, we outline

how our work relates to these previous research efforts. In Section 2.3, we will briefly

present the general query decomposition technique that is commonly used in the

distributed database systems and show how our decomposition algorithm is different from

that technique.

2.1 Improving the Performance of Large Queries

In recent years, the control of running large queries such as those typical of OLAP and

data warehousing in a DBMS has become more interactive. The traditional optimization

techniques which are common in current database systems often fail to meet this new

requirement because of their inherent “batch mode” characteristics. This means that once

a large query is submitted to a DBMS, users have no control over its execution and they

9

often wait for a long period of time without any feedback until a precise answer is

returned.

In order to overcome this problem, various techniques of providing more timely

feedback are proposed. Luo et al. [7] and Chaudhuri et al. [8] investigate the possibility of

providing an online progress indicator (percentage of the task that has completed) for

long-running large queries. In both approaches, the progress estimator works on the query

execution plan (QEP) that is chosen by the query optimizer for a given query. They differ

in their choice of the basic unit of the query execution work. Luo et al. use one page of

bytes that has been processed along the QEP as one basic unit. Chaudhuri et al. choose

one “GetNext ()” call by the operators in the QEP as one basic unit. These techniques do

not shorten the execution time of the large queries themselves, but they can provide users

continuous feedback on how much of the work has completed.

Haas et al. [9] propose a join algorithm, called Ripple Joins, for online multi-table

aggregation queries and Hellerstein et al. [10] investigate how to apply this new algorithm

in a DBMS to generate results more quickly. The underlying reasoning of their work

comes from the cognition that since large aggregation queries tend to give a general

picture of the data set, it is more appealing to provide users estimated online aggregation

results with a proximity confidence interval to the final result. Their algorithm adopts the

statistical method of sampling from base relations in order to generate answers more

quickly. A major advantage to this approach is that it allows users the ability to make a

tradeoff between the estimation precision and the updating rate. Their approaches do not

necessarily speed up the query execution itself. There may be some improvement,

however, by the replacement of a blocking join algorithm like hash join with the non-

blocking ripple join algorithm. Nevertheless, this is not the main objective of their work.

10

If appropriately used, materialized views (MVs) can provide performance

improvement in query processing time since a (large) portion of the final result is pre-

computed. The difficulty of using this approach, however, lies in how and when to exploit

the MVs. Goldstein et al. [11] present a fast and scalable view-matching algorithm for

determining whether part or all of a query can be computed from materialized views.

They also demonstrate an index structure, called a filter tree, to help speed up the search

for an appropriate view among the views maintained by a DBMS. This approach is very

attractive in a situation where system workloads are stable because in these systems we

are able to create useful MVs, that is MVs with repeatable usage among different queries

in advance based on the understanding of the workload characteristics. In contrast, when

the system’s workloads are diverse and ad hoc, it is impossible to do so, and therefore this

approach is not effective.

Kabra et al. [12] examine the possibility of dynamic memory reallocation for

physical operators within a QEP based on improved estimates of statistics. Most modern

algorithms for basic relational operators use DBMS statistics to estimate their memory

requirement which, in turn, determines the algorithms’ performance. In their work, Kabar

et al. propose a run-time statistics collection technique which can be used to help improve

the estimation of the database statistics. Their work involves the modification of a QEP

by inserting “Statistics Collector” operators at several points in the QEP. The collected

statistics can be used to obtain more accurate estimates for the remainder of the query or,

if necessary, to create a better QEP for the query.

All the research efforts presented above mainly focus on increasing the performance

(or perceived performance) of a large query itself. They do not directly address the

problem of controlling the execution of large queries. However, the ideas presented

11

provide useful insights into our own research. First, our approach involves the

decomposition of a large query into an equivalent set of smaller queries. The

decomposition algorithm works on the QEP of a query and tries to identify pipelined parts

within a QEP, just as the techniques used by Luo et al. [7] and Chaudhuri et al. [8].

Second, the ultimate goal of our work is not only to improve the performance of other

queries in the presence of large queries, but we would like to minimize the impact of our

approach on the large queries as well. The techniques of providing answers more quickly

or speeding up the large query’s execution as presented by Haas et al. [9], Hellerstein et al.

[10], Goldstein et al. [11], and Kabra et al. [12] could therefore be helpful in satisfying

this purpose.

2.2 DBMS Resource Allocation

The problem of resource allocation within a DBMS is very complicated. The reason is

rooted in the inherent heterogeneity and multiplicity of the DBMS resources. A DBMS

contains not only the common physical resources, like CPU, memory, and disk I/O, but it

also contains many logical resources such as system catalogs, locks, etc. These resources,

either physical or logical, are often inter-related and interact with each other, thus further

complicating the resource allocation problem.

Traditionally, much of the work that has been done with regards to DBMS resource

allocation has been implemented through static tuning of database parameters in order to

optimize system wide performance. In recent years, with the emerging trend of server

consolidation, the increased complexity of a DBMS and the ongoing emphasis on service-

12

oriented management, a more dynamic and goal-oriented approach is attracting more

research interest.

Carey et al. [13] investigate the architectural consequences of adding priority to a

DBMS. They develop a specific priority-based algorithm for managing the key physical

DBMS resources, especially the disk(s) and the buffer pool(s). Their simulation results

showed that “the objective of priority scheduling cannot be met by a single priority-based

scheduler”, which means that no matter whether the bottle neck of a DBMS is the CPU or

the disk, it is always essential to also use a priority-based replacement algorithm on the

buffer pool.

Brown et al. [14] investigate goal-oriented resource management in a DBMS. In

their work, they propose a feed-back based algorithm, called M&M, which adjusts DBMS

multi-programming levels (MPL) and memory allocations simultaneously, in an

automatic way, to achieve a set of per-class response time goals for a multi-class complex

workload while leaving the largest possible left-over resources for the non-goal, or best-

effort classes. In their work, they adopt a per-class solution strategy, which means that, in

a given timeframe, the algorithm is only activated for one class and takes action for that

specific class in isolation. They use additional heuristics to compensate for the

insensitivity of their approach to class inter-dependence.

Niu et al. [15] aim to optimize overall database resource usage by controlling the

workloads presented to it. In their work, a workload detection process is used to monitor

the characterization of the current workloads and to predict the future trends of the

workloads. Based on the classification of the workloads made by the workload detection

process, the workload control process is invoked to automatically adjust the MPLs

assigned for each class such that the SLO for each class is satisfied. Unlike the average

13

response time goal used by Brown et al. [14], Niu et al. use Query Velocity, as the goal,

or SLO, for each workload class.

Most of the goal-oriented, multiclass-workload research work expresses workload

goals and the tuning policies in IT friendly ways such as response time or throughput.

Although this allows the computer system to understand and control the workloads’

behavior easily, it makes it more difficult for the decision makers. Boughton et al. [16]

investigate the possibility of automatically translating high-level business polices into

low-level system tuning polices using an economic model. The effectiveness of their

economic model is tested in the context of the buffer pool sizing problem in a DBMS.

Currently, commercial database systems also provide a certain level support for

dynamic DBMS resource management. IBM DB2 Query Patroller [17] is a query

management system that aims to boost overall database system resource utilization. Using

Query Patroller, queries submitted to a DB2 database are grouped into different

categories based on their size and the submitters’ identities. Each query class can have its

own class-level policy (e.g. maximum number of queries allowed for each class). The

system in general can have a high-level system policy affecting all query classes (e.g.

maximum workload cost value for the system).

Teradata’s Priority Scheduler (Teradata PS) [18] introduces the concepts of “user

group”, “performance group” and “allocation group”. A Teradata DBMS uses “user

groups” to classify the queries that are submitted by database users. It then establishes a

user-to-priority connection by setting a valid “performance group” name in the user’s

record. The performance group is a priority scheduler component that associates users to

“allocation groups” which, as well as their predefined relative weights, determine the real

14

physical database resource usage such as the frequency of accessing CPU and the relative

position in the I/O queue.

Although goal-oriented, multi-class resource allocation is becoming a trend for

DBMS resource management, most research work and current commercial products treat

extremely large queries in a static and somewhat “crude” way. A popular approach is to

adopt some kind of admission control mechanism to preclude large queries out of the

system in advance and delay their execution until a system off-peak time. Our research

investigates an approach such that not only do other queries in the system have more

reasonable resource allocation, but the large queries themselves can be controlled in a

more flexible and manageable way. The “utility throttling” technique used by Parekh et al.

[19] for controlling the performance impact that a database administration utility has on

the system has similar goals to our work but adopts a different approach. Unlike our

approach which is implemented outside of the database engine and achieves the dynamic

control over a large query by breaking it into pieces, their approach is implemented

within the database engine and dynamically forces a resource-demanding utility to go to

sleep for a while if the predefined workload objectives are not satisfied.

2.3 Query Decomposition in Distributed Database System

In a typical distributed database system, the data that needs to be accessed by a SQL

query usually resides on several inter-connected remote sites. In order to process these

remotely distributed data effectively and efficiently, new query processing techniques are

required. D. Kossmann [31] presents a high level overview of the state of the art of query

processing techniques for distributed database and information systems. Architecturally,

15

most of the distributed DBMSs support a basic processing model of “moving query to

data”, which means that an “administrative” site (the site that receives the query) has to

break down the query somehow such that each sub-query, after being sent to a remote site,

only accesses the data that resides on that site. The purpose of decomposition here is

mainly to reduce the communication cost that is usually the dominant factor of the query

processing in a distributed environment. The way of the query decomposition in a

distributed DBMS environment highly depends on how the underlying data is partitioned

across the different sites. Our current approach of query decomposition, on the other hand,

only focuses on a centralized environment right now and the decomposition method

depends solely on the structure and the operator cost distribution of a query’s execution

plan as suggested by the query compiler. The purpose of our method is also different from

that used in a distributed system. The intention of our approach is to control the resource

consumption by a large query so other queries, possibly more important, can get more

DBMS resources for their own execution. The goal of decomposition in a distributed

database, however, is to reduce the query processing cost and/or response time for the

query in consideration.

16

Chapter 3

Decomposition Algorithm

The goal of our work is to control the impact that the execution of large queries has on the

performance of other workload classes. Our approach to decomposing a large query into a

set of smaller queries is based on two observations. First, at any given time, a smaller

query will likely hold fewer resources than a large query and so, interferes less with other

parts of the workload. Second, running a large query as a series of smaller queries means

that all resources are released between queries in the series and so are available to other

parts of the workload. In our approach, we adopt a method similar to query

decomposition techniques commonly used in distributed database management systems.

Unlike distributed database systems where queries are re-written to access data from

multiple sources, our approach focuses on breaking up a large query into an equivalent

set of smaller queries in a centralized database environment. Currently our algorithm

supports select-only queries, which are typical in an OLAP system.

3.1 Query Execution Plan

The output of a query optimizer for a declarative query statement is called a Query

Execution Plan (QEP). The structure of a QEP determines the order of operations for

query execution. The QEP is typically represented using a tree structure where each node

represents a physical database operator (e.g. nested loop join, table scan etc). Multiple

plans may exist for the same query and it is a query optimizer’s top priority to choose an

optimal plan. To supplement the QEP, most query optimizers produce performance-

17

related information such as cost information, predicates, selectivity estimates for each

predicate and statistics for all objects referenced in the query statement.

Figure 3: A sample QEP

Figure 3 shows an example QEP that we use for illustrative purposes throughout

this chapter. In this QEP, data from four different database tables (Tables A, B, C, and D)

are retrieved, filtered, joined, and then aggregated to create the desired final results (See

Appendix B for further explanation of the common physical operators in a QEP). We

note that the plan structure shown in Figure 3 is only a conceptual structure and not an

actual plan from a query optimizer. It is used for illustrative purposes only.

18

3.2 Virtual Node, Segment, and CB-Segment

The operators in a QEP can be classified as either blocking operators or pipelining

operators. An operator is blocking if it does not produce any output until it has consumed

at least one of its inputs completely. Pipelining operators produce outputs immediately

and continuously until all inputs have been processed. The hash join operator (Node 8) in

Figure 3, for example, is a blocking operator and the filter operators (Nodes 5 and 9) are

pipelining operators.

We classify the common physical operators in a QEP as follows:

 Table Scan, Index Scan, Filter, Column Selection and Nested Loop Join are

pipelining operators

 Distinct (or Unique) is a blocking operator

 Sort, Hash Join and Merge-Sort Join are blocking operators

 Union, Intersect and Except are blocking operators

 Aggregation operators are treated as blocking operators although in reality they

may be pipelining operators depending on the type of aggregate function or

whether the group-by operator is used.

A Virtual Node is a conceptual (non-physical) node used as a connector between

two segments (defined below) in our algorithm. It establishes a dependency relationship

(see Section 3.3) between two segments and is implemented as a Table Scan node that

provides access to a temporary database table. A virtual node is a pipelining operator.

A Segment is a sub-tree of a QEP such that: (1) the root node of a segment must be

a blocking node or the return node of the original QEP, (2) a segment can have at most

19

one blocking node, and (3) all non-root nodes within a segment are pipelining nodes,

including virtual nodes. The definition of segment guarantees that any identified segment

is a maximum unit that can be executed in a pipelined fashion.

Table Scan A

Filter

Sort 6

9

12

Virtual Node I Index Scan B

Nested Loop Join Filter

Hash Join

Virtual Node II

4 5

7 Virtual Node III

Column
Selection

Aggregate
1

2

Segment I

Segment III Segment IV

3

Hash Join

Table Scan C Table Scan D

8

10

Segment II

11

Figure 4: Segments and virtual nodes for QEP in Figure 3

Figure 4 shows the segments and virtual nodes for the QEP in Figure 3. In this

Figure, Virtual Nodes I, II, and III represent Segments I, II, and III respectively. Virtual

Node I creates a dependency relationship between Segment I and Segment III. Similarly,

dependency relationships are also established between Segments II and III by Virtual

Node II and between Segments III and IV by Virtual Node III (see Section 3.3 and

Section 3.4 for more details on segment dependency as well as the detailed segment

identification process).

20

A Cost-Based Segment (CB-Segment) is any valid sub-tree of a QEP. Unlike a

Segment, there are no constraints placed on a CB-Segment. A CB-Segment is augmented

with cost information such as the total cost of the CB-Segment, or the cost percentage of

the CB-Segment over the total QEP cost. Cost is expressed in units adopted by a

particular DBMS. In DB2, for example, a unit called timeron is used (Appendix C). In

our work, a CB-Segment is created through merging or decomposing Segments (and/or

CB-Segments). In the rest of the thesis, unless explicitly stated, we use the term segment

to refer to both Segment and CB-Segment.

Figure 5: An example of merging/decomposing segment(s)

Figure 5 shows an example of how the merging/decomposing procedure works. In

this Figure, segment I and segment II can be merged together to create segment III or

21

segment III can be decomposed to create segment I and segment II. The merging process

requires that segment I depends on segment II, meaning that segment I has a virtual leaf

node that represents segment II (see Section 3.3 for segment dependency). When segment

I and segment II are merged together, the virtual node in segment I is removed and

segment II is added as a child sub-tree of the virtual node’s parent node (Node 1 in this

case) at the virtual node’s original position in segment I. The newly created tree becomes

the merged segment III. If multiple virtual nodes exist in a segment that needs to be

merged, then each virtual node is replaced by the segment represented by the virtual node.

This process is explained in Figure 5 in the direction from top to bottom (marked by the

solid line on the left). Similarly but for the reverse direction (from bottom to top and

marked by the dotted line on the right), when segment III needs to be decomposed, the

whole sub-tree in segment III that is represented by segment II needs to be replaced by a

virtual node and thus creating segment I. During this procedure, a segment dependency

relationship between segment I and segment II is established (see Section 3.3 for detail).

3.3 Segment Dependency and Schedule

According to the definitions in Section 3.2, a segment may contain virtual nodes as well

as other regular operation nodes. In our work, each virtual node within a segment is used

to represent another segment, which means that the outside segment depends on the

segment represented by the virtual node. If a segment does not include a virtual node,

then it is independent. In Figure 4, for example, segments I and II are independent

segments because they contain no virtual nodes. Segment III includes two virtual nodes,

virtual nodes I and II, which represent segments I and II, respectively. Therefore, segment

22

III depends on both segments I and II. Similarly, segment IV depends on segment III

because it contains virtual node III, which represents Segment III. The dependency

relationships among the segments in Figure 4 are shown in Figure 6.

Figure 6: Dependency relationships for segments in Figure 4

In a QEP, if segment A depends on segment B, then the subpart of the QEP that is

represented by segment B has to be executed before the subpart represented by segment A

because it needs the output of segment B in order to produce its own results. If segments

are independent of each other in a QEP, then they can be executed in any order or in

parallel.

In our work, we define the execution order of all the segments in a QEP as the

Segment Schedule for the QEP. Based on the segment dependency relationships in

Figure 6, the Segment Schedule for the QEP in Figure 3 can be one of the three cases

shown in Figure 7 (assuming parallelism is possible).

23

Figure 7: Segment schedule for QEP in Figure 3

3.4 Decomposition Algorithm

Our decomposition algorithm aims to find a cost-efficient strategy to decompose a QEP.

The algorithm takes two passes. The first pass identifies all possible segments in a QEP

by exploring its tree structure. During this pass, a bottom-up scan of the QEP is used to

search for blocking nodes. Each blocking node forms the root of a segment and its lower-

level descendents form the subtree. Once a segment is discovered, the sub-tree that it

represents in the original QEP is replaced by a virtual node, thus creating a new tree with

a virtual node as one of its leaves. This search-and-replace procedure continues until all

nodes in the original QEP are processed and all segments are identified. At the same time,

by means of the virtual nodes that are created during this pass, the dependency

relationships among the segments are also defined. A segment having a virtual node as a

leaf node depends on the segment represented by the virtual node.

A pseudo code description of the first pass of the decomposition algorithm is shown

in Figure 8. It includes an iterative procedure called “FindSegments” which is applied to a

24

query’s QEP. When the iterative process of this procedure is done, all segments in the

QEP as well as their dependency relationships are identified and stored in two global sets,

GSegSet and GSegRelSet.

1
2

3
4
5
6

7
8

9
10
11

12
13
14
15
16
17

18
19
20

21
22
23

24

25
26

27
28
29

30
31
32

FindSegments (QEP) {
subTreeSet ← create a empty tree set;

FOR each leaf node (curLeaf) of QEP

curPath ← identifies the tree path that curLeaf belongs to in QEP;
cbaNode ← find its closet blocking ancestor node or the return node along curPath;
subTree ← create a sub-tree that is rooted at cbaNode and includes all nodes in the

curPath from cbaNode to curLeaf;
add subTree into subTreeSet;

ENDFOR;

REPEAT
curSubTree ← get next sub-tree from subTreeSet;
newSeg ← NULL;

IF the root node of curSubTree has only one input in the original QEP THEN

newSeg ← create a new segment that has the same structure as curSubTree;
ELSE

matchedSubTrees ←find other sub-trees that have the same root as curSubTree;
IF matchedSubTrees is not empty THEN

newSeg ← create a new segment by merging matchedSubTrees with curSubTree
such that shared nodes only appear once in the segment;

remove matchedSubTrees from subTreeSet;
ENDIF;

ENDIF;

IF newSeg is not NULL THEN

add newSeg into GSegSet;
update QEP such that the whole newSeg sub-tree in QEP is replaced by a newly

created virtual node;
ENDIF:

remove curSubTree from subTreeSet

UNTIL subTreeSet is empty;

REPEAT

call procedure “FindSegments(newQEP)”;
segRels ← create segment dependency relationships between any two segments that are

found in two consecutive iterations if they are connected by a virtual node;
add segRels into GSegRelSet;

UNTIL all nodes in the original QEP are processed
}

Figure 8: Decomposition algorithm – the first pass

25

The first pass of the algorithm creates a set of smaller queries such that pipelined

operations are never interrupted., It does not, however, take cost information into

consideration. Therefore, it may generate a “skewed” solution, meaning that some

resulting segments (sub-queries) may be more costly than others (see Section 3.5 for a

description of the skew of a solution).

A “skewed” solution has two major drawbacks which makes it impractical. The first

drawback is that some of the generated segments may themselves be large, costly queries.

Case A in Figure 9 shows this situation. In Figure 9, the percentage number beside each

segment represents the segment’s cost as a percentage of the total QEP. As we can see in

Case A, segment III covers 97% of the total cost while the other three segments together

cover the remaining 3%. In this situation, breaking a large query this way will not solve

our original problem. It is more reasonable to decompose segment III further, if possible.

segment IV

segment III

segment I segment II

depends on

depends ondepends on

segment IV

segment III

segment I segment II

depends on

depends ondepends on

1%

1% 1%

97%

Case A Case B

50%

3% 2%

45%

Figure 9: Examples of skewed solutions

26

The second drawback of a skewed solution lies in the possibility of unnecessary

execution overhead such as that shown in Case B in Figure 9 . As will be seen in Section

3.6, our approach of decomposing a large query into multiple smaller queries incurs

overhead related to the storage of intermediate results. In Case B of Figure 9, segment I

and segment II each cover a very small portion of the total cost. If we implement this

solution, the intermediate results from these two segments are stored in temporary tables,

thus introducing additional overhead. In this situation, it is better to merge both

segments I and II into segment III.

In order to overcome the drawbacks, the algorithm needs to be extended such that a

more cost balanced solution is reached. The second pass of the algorithm aims to

implement this goal. Figure 10 shows the pseudo code for this pass.

1
2

3
4
5

6
7

8
9
10

11
12
13

14
15

16
17
18
19

ReOrganizeSegments (QEP) {
call procedure “FindSegments(QEP)” to generate the global segment set “GSegSet” and the

global segment relationship set “GSegRelSet”;

FOR each segment(curSeg) in GSegSet

calculate the cost for curSeg based on QEP compiler information;
ENDFOR;

curSKF ← calculate the “skew factor” for GSegSet;
validSKFRange ← a pre-defined acceptable SKF range;

REPEAT

minSeg ← find the smallest segment (having minimum cost) in GSegSet.;
conSeg ← find the smallest segment that is connected to minSeg in GSegRelSet (either

depends on or is depended on minSeg);
newCBSeg ← merge minSeg and conSeg to create a new larger CB-segment;
update GSegSet such that minSeg and conSeg are removed and newCBSeg is added;
update GSegRelSet such that all segment dependency relationships that involve minSeg

and conSeg are modified correctly to involve newCBSeg instead;
curSKF ← calculate the “skew factor” for GSegSet;

UNTIL curSKF is within validSKFRange OR there is only one segment left in GSegSet;

IF there is only one segment left in GSegSet THEN

notify “Exception Management” module that a cost balanced solution is impossible
ENDIF;

}
Figure 10: Decomposition algorithm – the second pass

27

The pseudo code in Figure 10 defines how a cost-balanced solution is reached by

merging the segments that are found by the first pass of the algorithm. It does not

consider decomposing segments. Using our algorithm, decomposing a large segment

always interrupts a pipelined operation. This is usually much less efficient in practice and

can incur excessive overhead. For this reason, our algorithm always tries to reach a cost-

balanced solution through merging first. If it is impossible to do so, a message is

generated to bring a DBA’s attention (or someone else who is running the query

decomposition). When received the message, this person may ignore it and just think of

the large query as un-decomposable, or he/she may choose to manually inspect the nodes

as well as their cost information within each segment to determine whether or not to

break a segment further to reach a more cost balanced solution by interrupting a pipelined

operation. The rule of thumb for this manual process is that the smaller segments

identified should equally share the cost of the original large segment. In our algorithm, an

administrative parameter is used to control whether human intervention is allowed to

break segments manually.

We note that it is not always possible to decompose a large query into a cost-

balanced solution. One common example of this situation is when the cost of a single

node (not a segment) covers the majority of the total cost because our algorithm does not

handle the decomposition of a single operator thus making it impossible to decompose

such a query. Such a case is shown in Figure 11. When applying the decomposition

algorithm to this sample QEP, only one segment is generated because all the operators in

the QEP are pipelining operators. Among all these operators, the Table Scan A node

(node 6) alone covers almost all the total QEP cost (95%). In this situation, even with

28

human intervention we cannot find a cost-balanced solution. Moreover, applying the

decomposition in this case incurs unnecessary execution overhead. Our decomposition

algorithm detects the existence of such a case and provides appropriate feedback to a

DBA and/or the query submitter to indicate that the query cannot be decomposed.

Figure 11: An example of a query that cannot be decomposed

3.5 Skew Factor

The second pass of the decomposition procedure uses the “skew factor” (SKF) of a

solution extensively to determine a cost-balanced solution. In this section, we will explain

in detail what a SKF is and how it is calculated.

Suppose that for a set of segments SEGS = {seg1, seg2… segn}, its related cost set is

COSTS = {cost1, cost2… costn}, in which cost1 is the cost value for seg1, cost2 is the cost

value for seg2, and so on. The SKF for SEGS measures how skewed SEGS is in terms of

COSTS. To put in another way, the SKF value for SEGS measures the variance of

COSTS. The higher the variance is, the higher the SKF value should be.

29

SKF (SEGS) = VAR (COSTS)

= VAR (cost1, cost2… costn)

= ∑ ሺܿ݅ݐݏ – ሻଶ′ݐݏܿ
ୀଵ

ሺ݊ െ 1ሻ൘

cost’ = MEAN(COSTS)

 = MEAN (cost1, cost2… costn)

= ∑ ݅ݐݏܿ
ୀଵ ݊ൗ

Equation 1 defines how the SKF value for SEGS can be calculated. In this equation,

VAR represents sample variance and cost’ is the average value of COSTS that is

calculated by equation 2.

In the equations above, the segment costs can be specified as either absolute values

(in whatever appropriate unit) or relative values. The relative cost value of a segment in

SEGS is defined as the percentage of the segment’s absolute cost value over the total

absolute cost value of all the segments in SEGS. The advantage of using relative cost

values in Equations 1 and 2 is that it normalizes the calculated SKF value to the range of

[0, 1]. Without the normalization, there is no way to easily specify a general threshold

SKF value that can be employed by the second pass of the decomposition algorithm to

find a cost-balanced solution. The SKF value calculated using Equations 3.1 and 3.2

would fluctuate widely depending on the query and how the query is decomposed.

Equation 1: Skew factor

Equation 2: Average segment cost

30

In our approach, the relative costs of segments are employed in calculating the SKF

value. The default administrative threshold value is set as 0.07, which corresponds to a

“30% vs. 70%” cost distribution in a 2-segment solution, meaning that a large query can

be decomposed into 2 smaller segments with one covering 30% of the total cost and

another covering 70% of the total cost. Any solution whose SKF value is greater than the

threshold value is considered as a skewed solution by our algorithm and therefore needs

to be merged (or decomposed) further.

3.6 Executing Segments

The decomposition algorithm breaks a large QEP into a set of inter-dependent smaller

segments and can form a segment schedule for the QEP. Following the schedule, the

execution of the set of generated segments will generate the same result as the original

large query does (see Section 3.7 for the proof).

There are two main problems that need to be solved. The first problem is how to

store the intermediate results of a segment so that dependent segments can make use of

the results. In our approach, we solve this problem by creating temporary database tables

to hold the intermediate results. The overhead resulting from this solution includes: 1) the

cost of creating empty temporary tables, 2) the cost of inserting intermediate results into

the temporary tables, and 3) the cost of retrieving the stored intermediate results from the

temporary tables. The overhead could be large, especially in cases where segments are

created by breaking a pipelined operation. In our approach, this type of overhead is

unavoidable due to the fact that our approach is implemented outside the database engine.

31

However, techniques that are able to exploit advanced database optimizer information

could reduce the overhead greatly.

The second problem relates to how to execute a segment in practice. So far in this

chapter, a segment is expressed as an operator tree, which can be thought of as a QEP if

virtual nodes are consider as other regular physical nodes that could appear in a real QEP.

A segment expressed in this way cannot be executed directly by a database compiler. A

transformation of the segment from a QEP form to an executable form is necessary. In

our work, we use an approach similar to the one used by Venkataraman et al. [27] to

translate a QEP into a declarative SQL statement.

The basic step of the transformation is to traverse a QEP and translate each operator

encountered into a part (or several parts) of the resulting SQL statement. For example, a

filter node in a QEP can be translated into a “where” condition in a SQL statement. When

all the operators in the QEP are translated, we then assemble all the translated parts

together in a proper way such that a syntax-correct SQL statement is generated. During

this process, we need to acquire additional information from the optimizer to complete the

transformation, e.g. the type of condition used in a filter. In our approach, virtual nodes

are treated as table scan nodes. The input table for the scan is an intermediate temporary

table which is used to hold the data produced by the segment (or sub-query) referred to by

the virtual node.

The translation procedure is highly vendor-specific because the crucial compiler

information is different among different database compilers. We therefore postpone the

detailed discussion of the segment-to-statement procedure until Section 4.5 where the

translation procedure for DB2 is examined.

32

3.7 Decomposition Argument

Proposition: Given a query Q, the decomposition algorithm produces a set of queries {Q1,

Q2, …, Qn} and a dependency graph G such that if the queries Q1, Q2, …, Qn are executed

in an order determined by G, then they produce the same result relation as Q.

Assumption:

We assume that during the decomposition procedure, all other workloads that could be

accessing the same tables used by the large query are read only queries. This means that

the data processed by both the large query (before the decomposition) and its equivalent

segment schedule (after the decomposition) are the same. Without this assumption, the

result equivalency of our approach can not be guaranteed. Our proof below is based on

this assumption.

Argument:

Given a QEP for a query Q, we know each edge of the QEP corresponds to a relation that

is the result of execution of the source nodes of the edge. The decomposition algorithm

identifies segments that can be executed as the sub-queries Qis and replaces each segment

with a virtual node by placing the result of its Qi on the edge leaving that node. During

this process, the algorithm maintains the same operator sequence within each segment as

that in the original QEP for the query Q. The result of the set of replacements is a

dependency graph G.

The original QEP is a tree, so G is a tree with each node of G representing a sub-

query Qi. The execution of the Qis is determined by moving up G from the leaves such

that a node in G for a query Qj is only executed after its children, if any, have executed. G

maintains all dependencies in the original QEP so: (1) each Qi will receive the same input

33

as its corresponding segment in the QEP; (2) when all Qis are executed according to G,

the ordering of the operators encountered is the same as that in Q except some virtual

nodes along the execution paths which, however, do not change the result because they

just simply store the intermediate results for previous segments. {Q1, Q2, …, Qn} will

therefore produce the same result as Q.

34

Chapter 4

Query Disassembler

Query Disassembler is a prototype implementation of our approach to query

decomposition using IBM DB2. It implements the decomposition algorithm and provides

a framework for managing the decomposition process and scheduling the execution of the

resulting set of smaller queries.

4.1 The Framework

Figure 12 shows the Query Disassembler. Each large query is submitted to Query

Disassembler before it is executed by the DBMS (step 1). Query Disassembler calls

DB2’s Explain utility to obtain a (cost-augmented) QEP for the submitted query (steps 2

and 3). The decomposition algorithm then divides the QEP into multiple segments, if

possible, while keeping track of dependency relationships among the segments (steps 4

and 4’). The Segment Translation procedure transforms the resulting segments into

executable SQL statements (step 5), which are then scheduled for execution by the

Schedule Generation procedure (step 5’). The generated SQL statements are submitted to

the DBMS for execution as per the schedule that is obtained in step 5’ (step 6).

35

Figure 12: Query Disassembler framework

36

If the decomposition algorithm determines that it is impossible to break up the

submitted large query, for example a single operator within the QEP for the large query

covers most of the total cost, Query Disassembler notifies an Exception Management

Module to handle this situation (step 7). The Exception Management Module is not

currently implemented in our prototype but we envision that it could be implemented

using an appropriate mechanism such as delaying the execution of the large query to an

off-peak time in the system.

4.2 Graphical User Interface

Figure 13 shows the main Graphical User Interface (GUI) for Query Disassembler. The

left part of the GUI (Part I) lists the explained query instances and query statements that

are returned by the DB2 Explain utility [22]. Details of DB2 Explain are found in

Appendix C. Two SQL statements are shown for each explained SQL query. One is the

original SQL statement that is submitted by the user, and the other is the optimized SQL

statement that is suggested by the DB2 compiler as a result of applying the compiler’s

internal rewriting rules on the original statement. The optimized SQL statement is

executed more efficiently than the original query. In our work, the optimized SQL

statement is mainly used for translating segments into their equivalent SQL statement

counterparts, which will be explained in detail in Section 4.5.

The right part of the GUI (Part II) shows the QEP for the explained query. This

QEP shows the estimated operational tree structure and also includes other useful

performance-related data, such as cost, node predicates, and so on. The QEP and its

37

related data are either directly provided by the DB2 Explain utility or calculated from that

information.

Figure 13: GUI of Query Disassembler

One of the most important pieces of information is the compiler-estimated

execution-cost value for the entire QEP and each of its internal nodes. The cost is

measured in a DB2-specific unit, called timeron, [24] and is further divided into sub-costs

that are directly linked with IO and CPU. The total cost for the entire QEP is shown at

the bottom of Part II.

The cost for each internal node of the QEP is expressed in the following ways. The

latter three costs are useful in the second pass of our decomposition algorithm to

determine a more cost-balanced solution.

 The absolute estimated cost.

Part I Part II

38

 The node’s cost as a percentage of the cost of the entire QEP.

 The accumulated cost value up to this node in the QEP.

 The accumulated cost percentage up to this node in the QEP.

The accumulated cost value up to a node, say Node A, in a QEP refers to the total

cost of all the nodes in a sub-tree of the QEP rooted by Node A. The accumulated cost

percentage up to a node in a QEP is the accumulated cost value up to the node in the QEP

expressed as a percentage of the total cost of the QEP. The accumulated cost value as

well as the percentage up to a node is shown directly in the GUI on each node beneath the

node name and the node ID. Each node within the QEP as shown in Figure 13 is given a

unique integer number for easy reference.

When we choose to disassemble a QEP from the popup menu, the user is given a

choice of using the decomposition algorithm to break up the tree automatically (the “By

Cost” option) or to disassemble the tree manually (the “Manual” option). The “cost”

used to decompose the QEP can be the IO-related cost, the CPU-related cost, or the

combined total cost depending on whether the large query to be decomposed is IO-

intensive, CPU-intensive, or mixed.

The “By Cost” option utilizes the decomposition algorithm as we discussed in

Section 3.4 to break up the query automatically by analyzing its QEP structure as well as

the related cost information. If a cost-balanced solution can be reached, then the GUI

pops up a window to illustrate how the QEP is decomposed by displaying the breakpoints,

that is the node numbers above which the QEP is decomposed. A segment schedule

object (a Java object) is also created. The segment schedule object contains information

about what segments are decomposed from the large query and their execution order

39

(schedule). Section 4.3 gives a detailed explanation of this object. If the tree cannot be

decomposed, a message to this effect is displayed.

 The “Manual” option of the Query Disassembler allows a DBA to specify a list of

breaking points that he/she thinks is appropriate for decomposition. The manual

disassembly procedure does not employ the decomposition algorithm as explained in

Chapter 3, but it directly utilizes the specified node numbers to form segments and the

corresponding execution schedule. Similar to the “By Cost” option, a segment schedule

object is created after the manual decomposition procedure is done.

Figure 14 illustrates how the manual disassembly procedure works. The left part of

Figure 14 shows an example QEP and we suppose that the specified breakpoints are 3 and

4 (as shown by “X” marks in Figure 14). As shown in the right part of Figure 14, the first

step of the procedure creates two segments (segment I and segment II) such that each

segment is equivalent to a sub-tree of the QEP and has one of the breakpoints as its root

node. In the second step, two virtual nodes are created to replace the two segments in the

original QEP and form the third segment (segment III) which depends on both segment I

and segment II.

40

Figure 14: An example of manual disassembly procedure

4.3 Segment Schedule Object

Figure 15 shows the class diagram for the segment schedule object provided by our

program. In this diagram, Schedule is the core component for segment scheduling. It

includes one Query object that represents the original large query and a set of

ScheduleUnit objects, each of which stands for a single scheduling unit (for example, a

single segment) that is managed by the Schedule object. Each ScheduleUnit object has its

own Query object which represents one small query that is decomposed from the original

large query. A ScheduleUnit object is also used to create and populate the temporary

tables that are needed to hold the intermediate results.

41

Figure 15: Segment schedule class diagram

4.4 DB2 specific operators

Other than the common operators listed in Section 3.2, there are some IBM DB2 specific

operators, like CMPEXP and EISCAN, that can appear in an IBM DB2 QEP. Our

algorithm supports some of these operators. The supported DB2 specific operators are

treated in the same way as the common operators.

The following heuristics define how the DB2 specific operators are handled by our

algorithm. This is supplementary to the rules defined in Section 3.2. If the QEP for a large

query contains unsupported DB2 operators, the query is not considered by our algorithm

and is simply passed to the Exception Management Module.

 TQUEUE (for parallelism support), RQUERY/SHIP (for federated system),

CMPEXP and PIPE (for debug usage) are not supported by our algorithm.

42

 TEMP (storing data in a temporary table), GENROW (generates a table of rows,

using no input from tables, indexes, or operators) are supported and are treated

as blocking operators.

 IXAND (index and), RIDSCN (row ID scan), EISCAN (scans a user defined

index to produce a reduced stream of rows) are supported and are treated as

pipelining operators.

4.5 Translating segments in DB2

Although the DB2 explain utility provides a significant amount of performance-related

information to aid the segment-translation processes, in many situations a segment

decomposed from a QEP cannot be directly translated into an SQL statement by

following the general translation procedure described in Section 3.6. A common situation

is how to handle the DB2 specific ROWID predicates. A ROWID predicate is a predicate

that includes ROWID as an operand (ROWID is used by the DB2 compiler to directly

pinpoint a row rather than to go through the regular search procedure and therefore is

much more efficient). DB2, however, does not provide facilities to get ROWID in a

query’s SQL statement.

In our approach, when we encounter such a situation, we utilize the optimized SQL

statement that is provided by DB2 Explain as the source to the translation process. This

optimized statement is equivalent to the original query statement and consists of multi-

level nested sub-queries. After studying this version of a query we found that it is most

often amenable to our translation process. Figure 16 shows the optimized form for TPC-H

Q21.

43

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

select q10.$c0 as "s_name",
 q10.$c1 as "numwait"
from (
 select q9.$c0,
 count(*)
 from (
 select distinct q8.$c0
 from (
 select q7.$c6
 from lineitem as q1 right outer join (
 select distinct q3.l_orderkey,
 q3.l_suppkey,
 q2.s_name
 from supplier as q2, lineitem as q3,
 orders as q4, nation as q5,
 lineitem as q6
 where (q2.s_suppkey = q3.l_suppkey)
 and (q4.o_orderkey = q3.l_orderkey)
 and (q4.o_orderstatus = 'F')
 and (q3.l_commitdate < q3.l_receiptdate)
 and (q2.s_nationkey = q5.n_nationkey)
 and (q5.n_name = 'SAUDI ARABIA')
 and (q6.l_suppkey <> q3.l_suppkey)
 and (q6.l_orderkey = q4.o_orderkey)
) as q7 on
 (q1.l_orderkey = q7.$c3)
 and (q1.l_suppkey <> q7.$c4)
 and (q1.l_commitdate < q1.l_receiptdate)
) as q8
) as q9
 group by q9.$c0
) as q10
order by
 q10.$c1 desc,
 q10.$c0;

Figure 16: DB2 optimized SQL statement for TPC-H Q21

In Section 3.4 we point out that any sub-tree within a query’s QEP can be viewed as

another QEP that corresponds to a smaller query contained in the original large query.

Therefore, from the QEP point of view, a query’s structure is also nested in multi-levels.

The similarity between a query’s QEP and its optimized SQL statement makes the

44

optimized SQL statement an excellent resource for the task of translating segments into

their corresponding SQL statements.

Figure 17: Example of matching a query’s QEP with its Optimized SQL Statement

Figure 17 shows a simple example of how the matching process works. A rule of

thumb for this process is to match level by level. We start by matching the highest node in

a QEP to the outermost sub-query in the optimized SQL statement and continue until the

lowest possible node in QEP is matched to the innermost sub-query in the optimized SQL

statement. Although such a matching process works in DB2, we can not guarantee that it

will work for other DBMSs.

45

Chapter 5

Experiments

In this section we describe a set of experiments to evaluate the effectiveness of our

approach for controlling the execution of a large query. The computer system used is an

IBM xSeries® 240 machine with dual 1 GHZ CPUs, four PCI/ISA controllers, and 17

Seagate ST 318436LC SCSI disks. We use IBM DB2 Version 8.2 as the database server.

5.1 Workload

The workload consists of a set of small read-only queries and one large query, which is

either the TPC-H Q21 or the TPC-H Q22 query. The small query set consists of eight

parameterized OLTP-like read-only queries (see Appendix E for detail). Each client

submits a random stream of these queries. The average response time for these queries is

typically less than half second. We control the intensity of the workload by varying the

number of concurrent clients.

Q21 is an IO-intensive query that accesses five different tables, four of which are

relatively large in size. Its SQL statement is complex and includes aggregation and sub-

queries. Q22 is a CPU-intensive query that accesses two different tables, including one

large table. Its SQL statement is less complicated than that of Q21, but, in addition to

aggregation and sub-queries, it also contains some mathematical operations.

We examined the QEPs of TPC-H queries 1 through 20 (Q1 – Q20) and found that

all are highly skewed under the current experimental database configuration so there is no

way to find a cost-balanced solution. Within each of the QEPs for this set of queries,

46

there is always a single Table Scan node that covers most of the total QEP cost (at least

90%). Q21 and Q22, however, are two queries that can be decomposed by the

decomposition algorithm such that a cost-balanced solution can be reached. When

running alone in our test-bed environment (no interference from any other query), Q21

takes about 60 seconds to run and Q22 takes about 30 seconds to run.

Using our algorithm, Q21 is broken into two smaller queries. The first query

accounts for approximately 70% of the total cost and the second covers the remaining

30%. Similarly, Q22 is also decomposed into two smaller queries that account for 60%

and 40% of the total cost, respectively. Unlike Q21, Q22 is decomposed such that a

pipelined operation is interrupted. Figure 18 shows the QEP for Q22 and illustrates how it

is decomposed. We do not show the QEP for Q21 here because it is too large to see

clearly (Appendix F shows the QEP anyway), but the process of decomposing it and how

the cost is distributed is similar to that of Q22.

47

Figure 18: QEP of Q22 and its decomposition

In Figure 18, the QEP for Q22 is divided just above node 7 (NLJOIN) marked by an

X, thus creating two segments – one is the sub-tree rooted at node 7 (segment I) and the

other is the QEP for Q22 with a virtual node (segment II) replacing the sub-tree rooted at

node 7. The cost estimates in Figure 18 show that segment I covers almost 60% of the

total QEP cost for Q22 and segment II takes the remaining 40%.

48

Figure 19: Workload generation class diagram

Figure 19 shows the class diagram of the workload generation in our experiments.

In our work, the submission of the workload is controlled by a StreamManager object

which, in turn, contains a set of Stream objects and a QuerySubmitter object. Each Stream

object has a unique stream ID and represents a single client that submits the OLTP-like

small queries. The number of Stream objects managed by the StreamManager object

controls the workload intensity of the small queries. The LargeQuerySubmitter object, a

sub-object of the QuerySubmitter object, is used to submit a large OLAP query to the

database without decomposing it. The ScheduleSubmitter object, another sub-object of the

49

QuerySubmitter object, is used to submit a Segment Schedule consisting of the sub-

queries that have been decomposed from the large query using the decomposition

algorithm. The integer interval parameter of this object controls the length of the pause

period (in seconds) between submitting consecutive queries in the schedule.

5.2 Experimental Scenarios and Database Configuration

We conducted experiments to test the effectiveness of our approach under four scenarios

in which the large OLAP query causes different degrees of contention for resources.

 In scenario 1, the workloads run in separate database instances on the same

system and just compete for system resources like CPU and IO.

 In scenario 2, the workloads run in the same database instance but use separate

buffer pools, which add contention for general DBMS resources such as system

catalogs and queues.

 In scenario 3, the workloads run in the same database instance and use the same

buffer pool, which adds contention for memory resources.

 In scenario 4, the workloads access the same tables. This adds contention for

the tables and indexes.

Within each case, four types of throughput data for the small query set are

collected:

 Type1 – the small query set runs in the database alone.

 Type2 – the small query set and a large query (before decomposition) run

simultaneously.

50

 Type3 – the small query set and a segment schedule (composed of the small

queries that were decomposed from the large query) run simultaneously.

 Type4 – the small query set and a segment schedule (composed of the small

queries that were decomposed from the large query) run simultaneously with a

one minute pause between executing the small queries contained in the

schedule. This data is used to confirm our observation that running a large

query as a series of smaller queries will release all resources between queries in

the series and so they are available to other parts of the workload.

In each of the 16 experimental cases (4 scenarios, 4 types of data), the workload is

run 11 times in order to obtain a statistically-sufficient result. Appendix D shows method

used to calculate the confidence intervals for all experimental cases. Each run lasts for

600 seconds and is sampled every 20 seconds. Within each run, the small query starts its

run 60 seconds earlier than that of the large query (or its corresponding query schedule)

and uses the time as a warm-up period. It runs continuously within each run and its

throughput is monitored. On the other hand, due to the interference of the small query set,

the execution time for the large query (or its corresponding query schedule) is

substantially prolonged and therefore it runs only once per run. The first run is considered

as a general database warm-up period, especially for the large query, and the results

collected during this run are therefore excluded for the final analysis. Figures 20 to 27

show the throughput data for the small query set for the four cases. The analysis of the

results is discussed in Section 5.3.

To accommodate the different purposes of the four scenarios, two databases, Db_1

and Db_2, are used for our experiments. Db_1 has one user table space (Db1Ts_1) and

Db_2 has two user table spaces (Db2Ts_1 and Db2Ts_2). Within these table spaces, there

51

are four different sets of the standard TPC-H tables (TblSet1 to TblSet4) used in the

experiments. Table 1 shows the size and the location of these table sets.

Table Set Size Database Table Space

TblSet1 100MB Db_1 Db1Ts_1
TblSet2 100MB Db_2 Db2Ts_1
TblSet3 100MB Db_2 Db2Ts_2
TblSet4 2GB Db_2 Db2Ts_2

Table 1: Table sets configuration

The buffer pool size for each table space is scaled to 2% of the table space size. A

more detailed description of the buffer pool configuration is provided in Section 5.3.

Other key database parameters are configured as database default. No indices, other than

the primary key index, are created on each of the database tables.

In our experiments, the large query (Q21 or Q22) always accesses the 2GB table set

(TblSet4) and the small query set may access any table set (TblSet1 – TblSet4) depending

on the experimental case. Table 2 shows which table sets are used in the various

experimental scenarios.

Experimental Scenarios Table Sets Used

Scenario 1 TblSet1, TblSet4
Scenario 2 TblSet2, TblSet4
Scenario 3 TblSet3, TblSet4
Scenario 4 TblSet4

Table 2: Table sets for experimental scenarios

52

5.2.1 Scenario 1: Separate Databases

This scenario tests the effectiveness of our approach in a situation where a large query

competes with other queries for system resources such as CPU and disk I/O but does not

share database-specific resources such as locks and buffer pool memory. The small query

set and the large query run in two separate databases (Db_1 and Db_2 respectively). The

large query accesses large tables in TblSet4 whereas the small query set accesses small

tables in TblSet1. The size of the corresponding buffer pools is configured such that it is

proportional to the table space size, which means that the buffer pool size for the table

space Db2Ts_2 is 20 times as big as that of table space Db1Ts_1. The results of this

scenario are shown in Figures 20 and 21 when the large query is Q21 and Q22,

respectively.

Figure 20: Scenario 1 – separate databases (Q21)

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Th
ro
ug
hp

ut
 (q

/s
)

Sample # (20s interval)

Scenario 1 ‐ Q21

Type1: Small Query Set Only

Type2: With Large Query(No
Decomposition)

Type3: With Large
Query(Decomposed, No Pause)

Type4: With Large
Query(Decomposed, 1‐minute
Pause)

53

Figure 21: Scenario 1 – separate databases (Q22)

Figures 20 and 21, as well as Figures 22 to 27 that we will see in later sections, all

confirm that the running a large query in a database has a significant impact on the

performance of other workloads in the database. It also can be seen that in this scenario,

our decomposition approach is unsuccessful. The throughput of the small query set is

even worse when the large is decomposed, whether or not a 1-minute pause is applied.

This is understandable, however, because in this scenario, the large query and the small

query set compete only for operating system managed resources like CPU and disk I/O.

The decomposition of a large query brings extra overhead of CPU and disk I/O usage and

there is little that can be done by the DBMS to alleviate the performance degradation

caused by the overhead.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Th
ro
ug
hp

ut
 (q

/s
)

Sample # (20s interval)

Scenario 1 ‐ Q22

Type1: Small Query Set Only

Type2: With Large Query(No
Decomposition)

Type3: With Large
Query(Decomposed, No Pause)

Type4: With Large
Query(Decomposed, 1‐minute
Pause)

54

5.2.2 Scenario 2: One Database, Separate Buffer Pools

Scenario 2 tests the effectiveness of our approach in a situation where a large query

competes with other queries for both CPU and I/O resources and general DBMS

resources such as catalogs and queues, but not for buffer pool memory. In this case, both

the large query and the small query set run in Db_2. The large query accesses large tables

in TblSet4 whereas the small query set accesses small tables in TblSet2. The buffer pool

size for table space Db2Ts_2 is the same as in Case 1 and the buffer pool size for table

space Db2Ts_1 is the same as that for table space Db1Ts_1 in Case 1. The results of this

case using Q21 as the large query are shown in Figure 22 and the results using Q22 are

shown in Figure 23.

Figure 22: Scenario 2 – one database, separate buffer pools (Q21)

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Th
ro
ug
hp

ut
 (q

/s
)

Sample # (20s interval)

Scenario 2 ‐ Q21

Type1: Small Query Set Only

Type2: With Large Query(No
Decomposition)

Type3: With Large
Query(Decomposed, No Pause)

Type4: With Large
Query(Decomposed, 1‐minute
Pause)

55

Figure 23: Scenario 2 – one database, separate buffer pools (Q22)

Compared with scenario 1, the four types of throughput data for the small query set

in this scenario are all worse due to the added competition. Other than this point, however,

the trends of how the throughput data change before and after decomposing the large

query are similar to those in scenario 1. The decomposition approach still does not work

well in this scenario.

5.2.3 Scenario 3: One Database, Shared Buffer Pool, Different Table Sets

Scenario 3 reflects the situation where a large query competes with other queries for all

physical database resources, namely CPU, disk I/O and memory. In this case, however,

there is no lock contention as the queries are accessing different sets of tables. Both the

large query and the small query set run in Db_2. The large query accesses large tables in

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Th
ro
ug
hp

ut
 (q

/s
)

Sample # (20s interval)

Scenario 2 ‐ Q22

Type1: Small Query Set Only

Type2: With Large Query(No
Decomposition)

Type3: With Large
Query(Decomposed, No Pause)

Type4: With Large
Query(Decomposed, 1‐minute
Pause)

56

TblSet4 whereas the small query set accesses small tables in TblSet3. There is a single,

shared buffer pool and its size is configured to be the total of the buffer pool sizes in Case

2. The results of this case using Q21 are shown in Figure 24 and Figure 25 shows the

results for Q22.

Figure 24: Scenario 3 – one database, shared buffer pools, different table sets (Q21)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

Th
ro
ug

hp
ut
 (q

/s
)

Sample # (20s interval)

Scenario 3 ‐ Q21

Type1: Small Query Set Only

Type2: With Large Query(No
Decomposition)

Type3: With Large
Query(Decomposed, No Pause)

Type4: With Large
Query(Decomposed, 1‐minute
Pause)

57

Figure 25: Scenario 3 – one database, shared buffer pools, different table sets (Q22)

Compared with scenarios 5.2.2 and 5.2.3, this scenario sees some improvement as a

result of the decomposition of the large query, especially for the period between the 3rd

sampling point to the 7th sampling point with TPC-H 22 as the large query. In Figure 25,

both Type3 and Type4 data have two obvious performance drops along the curves. This

can be explained by the overhead of writing intermediate temporary tables that is

introduced by the decomposition approach. The similar trends also exist in other

scenarios for both Q21 and Q22, although those for Q21 are not obvious.

5.2.4 Scenario 4: One Database, Shared Buffer Pool, Same Table Set

Scenario 4 reflects the situation where a large query competes with other queries for all

physical database resources including locks. Both the large query and the small query set

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

Th
ro
ug
hp

ut
 (q

/s
)

Sample # (20s interval)

Scenario 3 ‐ Q22

Type1: Small Query Set Only

Type2: With Large Query(No
Decomposition)

Type3: With Large
Query(Decomposed, No Pause)

Type4: With Large
Query(Decomposed, 1‐minute
Pause)

58

run in Db_2 and access the same large tables in TblSet4. There is only one buffer pool

involved in this case and its size is configured to be the same as that for Db2Ts_2 in Case

2. The results of this case using Q21 are shown in Figure 26 and in Figure 27 using Q22.

Compared with scenario 3, this scenario sees more improvement that is brought by the

decomposition of the large query.

Figure 26: Scenario 4 – one database, shared buffer pools, same table set (Q21)

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

Th
ro
ug
hp

ut
 (q

/s
)

Sample # (20s interval)

Scenario 4 ‐ Q21

Type1: Small Query Set Only

Type2: With Large Query(No
Decomposition)

Type3: With Large
Query(Decomposed, No Pause)

Type4: With Large
Query(Decomposed, 1‐minute
Pause)

59

Figure 27: Scenario 4 – one database, shared buffer pools, same table set (Q22)

5.3 Analysis of the Results

We first observe that, as expected, decomposing the large queries causes significant

increases in their response time. Table 3 shows how the response time changes for Q21

and Q22 respectively before and after they are decomposed.

Large
Query

Experimental
Scenario

Normal
(s)

Decomposed
(s)

Increase
(%)

Q21 Scenario 1 162 197 21.6%
Q21 Scenario 2 157 197 25.5%
Q21 Scenario 3 155 191 23.2%
Q21 Scenario 4 172 195 13.4%

Q22 Scenario 1 67 126 88.1%
Q22 Scenario 2 64 134 109.4%
Q22 Scenario 3 57 133 133.3%
Q22 Scenario 4 78 108 38.5%

Table 3: The change of large query response time

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

Th
ro
ug
hp

ut
 (q

/s
)

Sample # (20s interval)

Scenario 4 ‐ Q22

Type1: Small Query Set Only

Type2: With Large Query(No
Decomposition)

Type3: With Large
Query(Decomposed, No Pause)

Type4: With Large
Query(Decomposed, 1‐minute
Pause)

60

As we can see from Table 3, the response time for query Q21, which is an IO-

intensive query, increases an average of 20% over the four cases (162s normal execution

versus 195s for the decomposed query). The response time for query Q22, which is a

CPU-intensive query, increases an average of 87% over the four cases (67s normal

execution, 125s for the decomposed parts). The increased response time of the

decomposed queries is mainly due to the IO associated with the introduction of temporary

tables. This additional IO is more significant for the CPU-intensive queries (Q22) than for

the IO-intensive queries (Q21).

We also observe that increased contention for resources has a negative impact on

the throughput of the OLTP-like workload. Tables 4 and 5 show the average throughput

of the small query set over the “busy” period (different among experiment cases, but all

between sampling points 3 and 18) within each experimental scenario when the large

query is Q21 and Q22, respectively. Looking at the Type 1 column (small queries

running alone) in both tables, we see that throughput of the small query set decreases 61%

when the workloads are placed in the same database instance; decreases another 45%

when the workloads are placed in the same buffer pool, and decreases another 7% when

the workloads access the same tables.

Experimental
Scenario

Type1 (q/s) Type2 (q/s) Type3 (q/s) Type4 (q/s)

Scenario 1 30.54 24.92 23.99 24.05
Scenario 2 11.81 8.80 7.77 7.93
Scenario 3 6.48 5.96 5.85 5.83
Scenario 4 6.00 4.15 3.88 3.93

Table 4: Average throughput (Q21, “busy” period)

61

Experimental
Scenario

Type1 (q/s) Type2 (q/s) Type3 (q/s) Type4 (q/s)

Scenario 1 30.54 28.62 25.80 26.23
Scenario 2 11.81 10.70 8.95 9.16
Scenario 3 6.48 6.20 6.19 6.18
Scenario 4 6.00 4.97 4.66 4.67

Table 5: Average throughput (Q22, “busy” period)

Tables 4 and 5 also show that the throughput for the small query set is worse when

the large query is decomposed (Type3 and Type4) than when the large query is not

decomposed (Type2). This degradation in performance can be explained by the additional

I/O overhead incurred by our approach to write temporary intermediate database tables.

The overhead itself depends on how many intermediate results are written and it is

unavoidable due to the fact that Query Disassembler is implemented outside the DBMS

engine.

We see that, in the cases where the large query and the other queries are in one

database and also share the same buffer pool, our approach works fine. From tables 4 and

5, we can see that the overall average throughput for the OLTP-like workload is only

slightly lower when the large query is decomposed than when the large query is not

decomposed. However, such a minor decease is implemented under a situation that our

current approach brings an unavoidable big overhead (more on the overhead and the

possible ways to reduce it are discussed in Section 6.1). Besides, if we only focus on the

sampling interval between the 4th and the 7th sampling points in Figures 25 and 27

(assuming that the overhead brought by our approach could be controlled to a minimum

level), it actually shows that the Type 3 and Type 4 throughputs are higher than the Type

62

2 throughput. This observation verifies that at any given time, a smaller query will likely

hold fewer resources than a large query.

We also note that the throughput for Type 4, which includes the 1 minute delay

between the executions of the decomposed query parts, is better than the case where the

delay is not introduced. This delay means that by running a large query as a series of

smaller queries, all resources that are occupied by the large query can be released

between queries in the series and so are available for other queries and can be used to

boost their performance for a period of time.

Our approach does not help in situations like scenario 1 (separate databases) or

scenario 2 (one database, separate buffer pools). This, however, is expected. Carey et al.

[13] point out that “whether the system bottleneck is the CPU or the disk, it is essential

that priority scheduling on the critical resource be used in conjunction with a priority-

based buffer management algorithm”. In scenario 1 and scenario 2, the large query does

not compete for memory (buffer pool) with other queries. Therefore, our approach will

not make much difference in these two cases, even when there is no overhead involved.

The most surprising observation in our experiments comes from decomposing Q21

(Figures 20, 22, 24, and 26). In these cases, since by our decomposition algorithm, both

Q21 and Q22 are broken into two smaller units, we expect that when a one-minute pause

is applied between executing the two smaller units for Q21, the Type 4 curve shape in

Figures 22, 22, 24, and 26 would be similar to that in Figure 21, 23, 25, and 27

correspondingly. To put in another way, we expect a throughput increase during this one-

minute period before it decreases again. In Figures 22, 22, 24, and 26, however, the trend

is not obvious.

63

The reason for this is subtle. In Section 5.1, we mentioned that our decomposition

algorithm breaks Q21 into two “70% and 30%” smaller parts, and breaks Q22 into two

“60% and 40%” smaller parts. In our experiments the actual execution for Q22 reflects

this 60-40 division, but the execution of Q21 does not. In reality, the first smaller part of

Q21 consumes most of the total execution time. How to take advantage of extra database

compiler information to detect this type of circumstance in advance is slated for future

work.

64

Chapter 6

Conclusion and Future Work

In this thesis we present an approach to managing the execution of large complex queries

in a database and therefore controlling its impact on other smaller, possibly more

important, queries. A decomposition algorithm that breaks up a large query into a set of

equivalent smaller queries is discussed in detail. We also describe Query Disassembler,

which is a prototype implementation of our approach with IBM DB2.

6.1 Conclusions

Our experiments show that concurrent execution of large resource-intensive queries can

have significant impact on the performance of other workloads, especially as the points of

contention between the workloads increase. We conclude that there is a need to be able to

manage the execution of these large queries in order to control their impact.

The experiments show that our approach is viable, especially in cases when

contention among the workloads is high, for example when a large query and other

workloads run in the same database and share buffer pools. In other cases when the

competition is low (by “low”, we mean that the workloads do not share buffer pools), our

approach does not work well. In these cases, the performance degradation that is caused

by the overhead of our approach dominates and therefore makes our approach

impracticable.

In our approach, the major overhead is primarily due to the costs involved in saving

the intermediate results to connect the decomposed queries. Specifically, these costs

65

include those related with creating, populating, accessing, and destroying the temporary

tables that are necessary for accommodating the intermediate results. The overhead could

be large in some cases, especially when a decomposition solution is reached by

interrupting a pipelined operation.

Currently, due to the fact that our approach is implemented outside of a database

engine, we have no choice but to use an expensive way to store the intermediate results,

which is to submit a “CREATE TABLE” SQL statement followed by an “INSERT” SQL

statement and a “DROP TABLE” statement. If we had the ability to save the

intermediate results from inside a database engine, we could probably design a cheaper

and faster mechanism to save the intermediate results. A possible solution would be to

save the ROWID and COLUMNID information of a table instead of storing its real record

values. There are two main advantages of doing so. First, it can create a much smaller

intermediate table because the ROWID and COLUMNID information of a table record is

usually much smaller in size than the real record value. Second, it can also create a much

faster intermediate table because the DBMS can utilize the ROWID and COLUMNID

information to pinpoint the needed information directly rather than to go through an

expensive and slow search process.

Another big improvement of saving the intermediate results from inside a database

engine is that it would avoid the overhead that is caused by the DBMS following the

standard parsing, compiling, and optimizing procedure to execute a submitted SQL

statement. In our current approach, this type of overhead is inevitable.

The experiments also show that our approach always causes performance

degradation for the large query itself and sometimes the reduction can be significant,

especially when the large query is decomposed in a way that a pipelined operation is

66

interrupted. One reason for the degradation comes from the decomposition processes

itself and another comes from creating, accessing, and deleting the intermediate tables.

The first type of degradation is unavoidable in our approach. We could, however, shorten

the overall delay by utilizing more advanced techniques of saving intermediate tables as

discussed in previous paragraphs.

6.2 Future Work

Our work shows the feasibility and potential of the management of the execution of large

queries in a database to increase workload performance. This suggests a number of

interesting opportunities of future research. Some of them are the following:

 Currently in our work, the small query set in our experiment workload contains

just read-only queries. It is desirable to consider update-queries (e.g. INSERT,

UPDATE, and DELETE) in the workload. These queries tend to create more

resource contentions on a database system and may cause data inconsistency

problems. We would like to examine the feasibility and/or the effectiveness of

our approach under this situation.

 One important step of our approach involves translating a decomposed segment

into an equivalent SQL statement. This step is highly vendor-specific and has

some limitations that are inherent in our current approach due to the fact that

our approach is implemented outside a database engine. In future work, we

would like to investigate a better way to execute the decomposed segments,

preferably within a database engine so internal query models, such as Query

Graph Model in DB2, can be directly utilized.

67

 The approach of controlling the execution of a large query in our work is to

decompose the large query based on this QEP. This approach is static and can

not handle all types of large queries. It is very attractive to investigate a more

flexible control mechanism, such as dynamically pausing or throttling query

execution, so that the large queries that cannot be handled by our current

algorithm can be processed properly.

 Our current approach relies solely on the DB2 compiler to provide the

necessary performance-related information, especially cost, to do the

decomposition job. From this point of view, our approach is relatively

independent from the configuration of the underlying computer system because

the DBMS screens the system configuration change on the approach’s behalf

(assuming that the DBMS configuration parameters remain the same).

However, it is very interesting to investigate how our approach can react to the

change of the system configuration in a more active and reasonable way. For

example, if more CPUs are added in the system, our decomposition algorithm

could utilize that information to generate a more parallel segment schedule and

therefore the performance of our approach could be enhanced by taking

advantage of the parallelism introduced.

68

References

 [1] IDC Competitive Analysis: Worldwide RDBMS 2005 Vendor Shares:

Preliminary Results for the Top 5 Vendors Show Continued Growth,

http://www.oracle.com/corporate/analyst/reports/infrastructure/dbms/idc-201692.pdf.

[2] P. Lyman, H. R. Varian. How Much Information 2003?

http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/.

[3] Winter Corporation 2005 TopTen Award Winners, 2005,

http://www.wintercorp.com/VLDB/2005_TopTen_Survey/TopTenWinners_2005.asp.

[4] S. Chaudhuri, U. Dayal. An Overview of Data Warehousing and OLAP

Technology, ACM SIGMOD Record 26(1), March 1997, pp. 65- 74.

[5] Transaction Processing Performance Council. http://www.tpc.org.

[6] J. Bloomberg. Why service-oriented management?

http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci929186,00.html.

[7] G. Luo, J. F. Naughton, C. J. Ellmann, M. W. Watzke. Toward a Progress

Indicator for Database Queries, Proc. of the 2004 ACM SIGMOD Int. Conf. on

Management of Data, Paris, France, June 2004, pp. 791 – 802.

[8] S. Chaudhuri, V. Narasayya, R. Ramamurthy. Estimating Progress of Execution

for SQL Queries, Proc. of the 1996 ACM SIGMOD Int. Conf. on Management of Data,

Paris, France, June 2004, pp. 803 -814.

[9] P. J. Haas, J. M. Hellerstein. Ripple Joins for Online Aggregation, Proc. of the

1999 ACM SIGMOD Int. Conf. on Management of Data, Philadelphia, U.S.A, June 1999,

pp. 287 – 298.

69

[10] J. M. Hellerstein, P. J. Hass, H. J. Wang. Online Aggregation, Proc. of the 1997

ACM SIGMOD Int. Conf. on Management of Data, Tucson, U.S.A, June 1997, pp. 171 –

182.

[11] J. Goldstein, P. Larson, Optimizing Queries Using Materialized Views: A

Practical, Scalable Solution, Proc. of the 2001 ACM SIGMOD Int. Conf. on Management

of Data, Santa Barbara, USA, June 2000, pp. 331 -342.

 [12] N. Kabra, D. J. DeWitt. Efficient Mid-Query Re-Optimization of Sub-Optimal

Query Execution Plans, Proc. of the 1998 ACM SIGMOD Int. Conf. on Management of

Data, Seattle, USA, June 1998, pp. 106 -117.

[13] M. J. Carey, R. Jauhari, M. Linvy. Priority in DBMS resource scheduling, Proc. of

the 15th Int. Conf. on Very Large Data Bases, Amsterdam, The Netherlands, August 1989,

pp. 397 – 410.

[14] K. P. Brown, M. Mehta, M. J. Carey, M. Livny. Towards Automated Performance

Tuning for Complex Workloads, Proc. of the 20th Int. Conf. on Very Large Data Bases,

Santiago, Chile, September 1994, pp. 72 – 84.

[15] B. Niu, P. Martin, W. Powley, R. Horman, P. Bird. Workload Adaptation in

Autonomic DBMSs, Proc. of the 2006 Conf. of the Centre for Advanced Studies on

Collaborative Research, Toronto, Canada, October 2006, Article No. 13.

[16] H. Boughton, P. Martin, W. Powley, and R. Horman. Workload Class Importance

Policy in Autonomic Database Management Systems, Seventh IEEE Int. Workshop on

Policies for Distributed Systems and Networks, London, Canada, June 2006, pp. 13-22.

[17] IBM DB2 Query Patroller Guide: Installation, Administration, and Usage, IBM

online documentation,

ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/db2dwe81.pdf

70

[18] C. Ballinger, Introduction to Teradata Priority Scheduler, July 2006,

http://www.teradata.com/library/pdf/eb3092.pdf.

[19] S. Parekh, K. Rose, J. Hellerstein, S. Lightstone, M. Hurras, V. Chang, Managing

the Performance Impact of Administrative Utilities, IBM Research Report RC22864,

August 2003.

[20] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, M. Urata, Answering

Complex SQL Queries Using Automatic Summary Tables, Proc. of the 2000 ACM

SIGMOD Int. Conf. on Management of Data, Dallas, USA, June 2000, pp. 105 -116.

[21] P. Martin, W. Powley, H. Y. Li, K. Romanufa, Managing Database Server

Performance to Meet QoS Requirements in Electronic Systems, Int. Journal on Digital

Libraries 3(4), pp. 316-324.

[22] IBM DB2 Visual Explain Tutorial, IBM online documentation,

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/nlv/db2tvb80.pdf

[23] IBM DB2 SQL Reference Volume 1, IBM online documentation,

ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/ko_KR/db2s1k81.pdf.

[24] IBM DB2 Administration Guide: Performance, IBM online documentation,

ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/ja_JP/db2d3j81.pdf.

[25] R. Ramakrishnan, J. Gehrke, Database Management Systems (3rd Edition),

McGraw-Hill Companies, Inc. 2003.

[26] S. Venkataraman, T. Zhang. Heterogeneous Database Query Optimization in DB2

Universal DataJoiner, Proc. of the 24th Int. Conf. on Very Large Data Bases, New York

City, USA, August 1998, pp. 685 – 689.

71

[27] H. Pirahesh, J. Hellerstein, W. Hasan. Extensible Rule-based Query Rewrite

Optimization in Starburst, Proc. of the 1992 ACM SIGMOD Int. Conf. on Management of

Data, San Diego, USA, June 1992, pp. 39 – 48.

[28] L. Haas, J. Freytag, G. Lohman, H. Pirahesh. Extensible Query Processing in

Starburst, Proc. of the 1989 ACM SIGMOD Int. Conf. on Management of Data, Portland,

USA, June 1989, pp. 377 – 388.

[29] J.O. Kephart, D.M. Chess. The Vision of Autonomic Computing, IEEE Computers,

36(1), 2003, pp. 41 – 52.

[30] “The Problem” – Autonomic Computing Overview (2005),

 http://www.research.ibm.com/autonomic/overview/problem.html.

[31] “Autonomic computing and IBM” (2002),

http://www-03.ibm.com/autonomic/pdfs/AC_BrochureFinal.pdf.

[32] D. Kossamann. The State of the Art in Distributed Query Processing, ACM

Computing Surveys (CSUR) 32(4), 2000, pp 422 – 469.

[33] L. Liu, C. Pu, K. Richine, Distributed Query Scheduling Service: An Architecture

and Its Implementation, International Journal of Cooperative Information Systems (IJCIS)

7(2&3), 1999, pp 123 – 166.

72

Glossary of Acronyms

CB-Segment Cost Based Segment

DBA Database Administrator

DBMS Database Management System

GUI Graphical User Interface

MPL Multi Programming Level

MV Materialized View

OLAP Online Analytical Processing

OLTP Online Transaction Processing

QEP Query Execution Plan

QoS Quality of Service

SKF Skew Factor

SLA Service Level Agreement

SLO Service Level Objective

SOA Service Oriented Architecture

SOM Service Oriented Management

SQL Structured Query Language

TPC-H Transaction Processing Performance Council Benchmark H

73

Appendix A

TPC-H Benchmark

The TPC-H benchmark is a decision support benchmark developed by the Transaction

Performance Council (TPC). It is used to evaluate the performance of decision support

systems by virtue of executing a set of complex queries against a standard database

(containing large volume of data) under controlled conditions in order to give answers to

real-world business questions. The TPC-H benchmark contains a suite of business

oriented ad-hoc queries. It is designed such that both the queries and the data reflect broad

industry-wide relevance and a sufficient degree of ease of implementation.

A TPC-H database contains eight base tables. The relationships between these

tables are illustrated in Figure 28. In Figure 28, the arrows point in the direction of one-

to-many relationships between tables. The parentheses following each table name defines

the prefix of the column names for that table. For example, the real column name for the

name of a nation should be “N_NAME”. The number below each table name represents

the cardinality (number of rows) of the table. The SF in front of the number represents the

scale factor used to obtain a chosen database size. Take SUPPLIERS table as an example,

a SF value of 5 means that the actual SUPPLIERS table has 50,000 (5 * 10,000) rows

inside. A TPC-H database with a SF value 1 (the TPC-H tables in the database all have a

SF value 1) is approximately 1 GB large in size.

74

Figure 28: TPC-H schema [5]

TPC-H defines twenty-two decision support queries (Q1 to Q22). Tables 6 list the

business questions for which Q21 and Q22 provide answers. For the business questions

that Q1 to Q20 aim for, please see the official TPC-H specification [5].

75

Query # Business Question Description

Q21 Suppliers Who Kept Orders Waiting Query:
This query identifies certain suppliers who were not able to ship required parts in a
timely manner.

Q22 Global Sales Opportunity Query:
The Global Sales Opportunity Query identifies geographies where there are customers
who may be likely to make a purchase.

Table 6: TPC-H queries

In TPC-H specification, Q1 to Q22 are all parameterized query templates. In order

to generate executable decision support queries from these templates, parameter

substitution by some randomly selected real value is required. The TPC-H specification

defines the value range for each of the parameters involved and suggests a default value

for it for the purpose of query validation. Figure 29 shows the SQL statement template

for TPC-H Q22. The template for Q21 can be found in Figure 1 in Section 1.2:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

select cntrycode,
 count(*) as numcust,
 sum(c_acctbal) as totacctbal
from (
 select substring(c_phone from 1 for 2) as cntrycode,
 c_acctbal
 from customer
 where substring(c_phone from 1 for 2) in ('[I1]','[I2]',’[I3]','[I4]','[I5]','[I6]','[I7]')
 and c_acctbal > (
 select avg(c_acctbal)
 from customer
 where c_acctbal > 0.00
 and substr (c_phone from 1 for 2) in
('[I1]','[I2]','[I3]','[I4]','[I5]','[I6]','[I7]'))
 and not exists (
 select *
 from orders
 where o_custkey = c_custkey)
) as custsale
group by cntrycode
order by cntrycode;

Figure 29: TPC-H Q22 statement (template)

76

Appendix B

Common QEP Operators

Table 7 gives the list of the common physical operators that can appear in a QEP. Simple

descriptions of what these operators do are also provided.

Operator Description

Table Scan
(TBSCAN)

A TBSCAN operator retrieves the data of a database table by reading
all the required data directly from the data pages.

Index Scan
(IXSCAN)

An IXSCAN operator scans an index to produce a reduced stream of
data.

Filter
(FILTER)

A FILTER operator filters a stream of data based on the criteria
supplied by the filter predicates.

Column Selection
(COLSEL)

A COLSEL operator selects the data for designated columns from a
stream of data.

Nested Loop Join
(NLJOIN)

A NLJOIN operator joins two streams of data using the standard nested
loop join algorithm.

Distinct/Unique
(UNIQUE)

A UNIQUE operator eliminates duplicates from a stream of data.

Sort
(SORT)

A SORT operator sorts a data stream in the order of one or more of its
columns, optionally eliminating duplicate entries.

Hash Join
(HSJOIN)

A HSJOIN operator joins two streams of data using the standard hash
join algorithm.

Merge-Sort Join
(MSJOIN)

A MSJOIN operator joins two streams of data using the standard
merge-sort join algorithm. A merge-sort join is also called a merge
scan join or a sorted merge join.

Union
(UNION)

A UNION operator concatenates two data streams (having same data
structure) and retrieves all data from both streams.

Intersect
(INTERSECT)

A INTERSECT operator concatenates two data streams (having same
data structure) and retrieves the data that are shared by both streams.

Except
(EXCEPT)

A EXCEPT operator concatenates two data streams (having same data
structure) and retrieves the data from the first data stream that is not
contained in the second stream.

Aggregation/Group
By
(GRPBY)

A GRPBY operator groups data by common values of designated
columns or functions. It is required to produce a group of values, or to
evaluate set functions.

Table 7: Common QEP Operators

77

Appendix C

DB2 Explain Facility

IBM DB2 provides a facility called SQL Explain to allow a DBA to capture information

about the access plan that is chosen by the DB2 optimizer [24]. The information captured

includes: 1) operation sequence to process a query; 2) cost information; 3) predicates and

selectivity estimates for each predicate; 4) statistics for all objects referenced in the SQL

statement; and 5) values for the host variables, parameter markers, or special registers.

The information can help a DBA understand how database tables and indexes are

accessed for a submitted query and to evaluate the performance tuning strategies.

DB2 uses a suite of explain tables to store the captured explain data that can be

accessed using the following methods:

 Use Visual Explain Tool [22] to view explain-snapshot information.

 Use the db2exfmt tool to display explain information in preformatted output.

 Use the db2expln and dynexpln tools to see the access plan information for

static SQL statements or dynamic SQL statements that contains no parameter

markers, respectively.

 Write one’s own queries to access the explain tables.

Table 8 lists the relational tables that are provided by DB2 to store the explain

information, which is used by our program to build up the QEP as well as its related cost

information for a large query.

78

Table Name Description

EXPLAIN_ARGUMENT Contains information about the unique characteristics of each
individual operator, if any.

EXPLAIN_INSTANCE The main control table for all Explain information. Each row of
data in the Explain tables is explicitly linked to one unique row in
this table. Basic information about the source of the SQL
statements being explained and environment information is kept in
this table.

EXPLAIN_OBJECT Identifies those data objects required by the access plan generated
to satisfy the SQL statement.

EXPLAIN_OPERATOR Contains all the operators needed by the SQL compiler to satisfy
the SQL statement.

EXPLAIN_PREDICATE Identifies the predicates that are applied by a specific operator.
EXPLAIN_STATEMENT Contains the text of the SQL statement as it exists for the different

levels of explain information. The original SQL statement as
entered by the user is stored in this table with the version used by
the optimizer to choose an access plan. When an explain snapshot
is requested, additional explain information is recorded to describe
the access plan selected by the SQL optimizer. This information is
stored in the SNAPSHOT column of the
EXPLAIN_STATEMENT table in the format required by Visual
Explain. This format is not usable by other applications.

EXPLAIN_STREAM Represents the input and output data streams between individual
operators and data objects. The data objects themselves are
represented in the EXPLAIN_OBJECT table. The operators
involved in a data stream are represented in the
EXPLAIN_OPERATOR table.

Table 8: Relational tables that store explain data [24]

All explain information as stored in the explain tables is organized around the

concept of an explain instance, which represents one invocation of the explain facility.

Each explain instance can contain the explain information for multiple SQL statements,

either static or dynamic. The information stored in the explain tables reflects the

relationships between operators and objects in the access plan.

Other than the operation sequence in an access plan, the explain facility also

captures cost information for each operator. The cost captured for an operator is an

estimated cumulative cost, from the start of access plan execution up to and including the

operator that includes:

79

 The total cost (in timerons).

 The number of page I/Os.

 The number of CPU instructions.

 The cost (in timerons) of fetching the first row, including any initial overhead

required.

 The communication cost (in frames).

The unit of cost is timeron which is a DB2-specific relative cost unit. It does not

directly link to any actual unit of measure, like response time or throughput, but gives a

relative estimate of the resources required by the database manager. It is determined by

the optimizer based on internal values such as statistics.

80

ܧ ൌ 2ሻ/ߙሺݖ כ ݊√/ߪ

Appendix D

Maximum Error of Estimation in Experimental Results

In Section 5.3, we describe the experiment cases and the type of data to collect. There are

4 different experiment scenarios and within each case, there are 4 different data types. In

this appendix, for simplicity we use S1T1, S1T2, S1T3, S1T4, S2T1, S2T2, S2T3, S2T4,

S3T1, S3T2, S3T3, S3T4, S4T1, S4T2, S4T3, and S4T4 to name the 16 different types of

throughput data to be collected, in which S means the experiment scenario and T means

the data type. The number following S and T means the experiment scenario number and

the data type number, respectively.

Equation 3 gives the formula of calculating the maximum error of estimation,

meaning the maximum possible error between the sample mean and the population mean.

In this equation, n is the sample number, σ is the standard deviation of the sample and z

(α/2) is the z-value for a confidence level (1-α) 100%. In our experiment, n is equal to 10

and we uses 95% as the confidence level, corresponding to a z-value of 1.96.

Tables 9 and 10 list the calculated E-values for the 16 different types of data when

the large query is TPC-H Q21, Q22 respectively. It can be seen from these tables that,

with a confidence level of 95%, the maximum errors for the 16 types of throughput data

that is collected by our experimental method are all less than 0.4 queries per second,

corresponding to about less than 2% of the true values in most cases.

Equation 3: Maximum error of estimate

81

Data Sample
MEAN (q/s)

Sample
STDEV

(q/s)

E-Value
(95% Conf.)

(q/s)

Conf. Interval
MEAN

(95% Conf.)
(q/s)

S1T1 30.54 0.30 0.18 (30.36, 30.72)
S1T2 27.58 0.56 0.34 (27.24, 27.92)
S1T3 27.05 0.47 0.29 (26.76, 27.34)
S1T4 27.14 0.40 0.25 (26.89, 27.39)
S2T1 11.81 0.26 0.16 (11.65, 11.97)
S2T2 10.27 0.30 0.19 (10.08, 10.46)
S2T3 9.55 0.28 0.17 (9.38, 9.72)
S2T4 9.82 0.29 0.18 (9.64, 10)
S3T1 6.48 0.41 0.25 (6.23, 6.73)
S3T2 6.22 0.36 0.22 (6, 6.44)
S3T3 6.14 0.33 0.21 (5.93, 6.35)
S3T4 6.12 0.38 0.24 (5.88, 6.36)
S4T1 6.00 0.18 0.11 (5.89, 6.11)
S4T2 5.06 0.13 0.08 (4.98, 5.14)
S4T3 4.90 0.13 0.08 (4.82, 4.98)
S4T4 4.92 0.15 0.09 (4.83, 5.01)

Table 9: E-Value for collected throughput data (Q21)

Data Sample
MEAN (q/s)

Sample
STDEV

(q/s)

E-Value
(95% Conf.)

(q/s)

Conf. Interval
MEAN

(95% Conf.)
(q/s)

S1T1 30.54 0.30 0.18 (30.36, 30.72)
S1T2 29.55 0.47 0.29 (29.26, 29.84)
S1T3 28.03 0.60 0.37 (27.66, 28.4)
S1T4 28.44 0.54 0.34 (28.1, 28.78)
S2T1 11.81 0.26 0.16 (11.65, 11.97)
S2T2 11.20 0.18 0.11 (11.09, 11.31)
S2T3 10.32 0.20 0.12 (10.2, 10.44)
S2T4 10.48 0.17 0.11 (10.37, 10.59)
S3T1 6.48 0.41 0.25 (6.23, 6.73)
S3T2 6.31 0.37 0.23 (6.08, 6.54)
S3T3 6.30 0.38 0.23 (6.07, 6.53)
S3T4 6.33 0.37 0.23 (6.1, 6.56)
S4T1 6.00 0.18 0.11 (5.89, 6.11)
S4T2 5.45 0.12 0.07 (5.38, 5.52)
S4T3 5.30 0.12 0.07 (5.23, 5.37)
S4T4 5.29 0.10 0.06 (5.23, 5.35)

Table 10: E-Value for collected throughput data (Q22)

82

Appendix E

Small Query Set

As part of our experimental workload, we run a small query set consisting of eight queries

which access the TPC-H tables. The templates for these queries are shown below. Within

each template, a question mark (?) represents a parameter that is substituted by a

randomly selected real value as defined below.

Query 1:

Template select count(*) from region

Param. Values None

Query 2:

Template select r.r_name, count(n.n_nationkey)

from region as r, nation as n

where n.n_regionkey = r.r_regionkey and r.r_name = [?]

group by r.r_name

Param. Values {“ AFRICA”, “AMERICA”, “ASIA”, “EUROPE”, “MIDDLEEAST”}

Query 3:

Template select n.n_name, count(s.s_suppkey)

from supplier as s, nation as n

where n.n_nationkey = s.s_nationkey and n.n_name = [?]

group by n.n_name

Param. Values {“ ALGERIA”, “BRAZIL”, “EGYPT”, “IRAN”, “MOROCCO”, “UNITED
KINGDOM”}

Query 4:

83

Template select c.c_mktsegment, count(c.c_custkey)

from customer as c, nation as n

where n.n_nationkey = c.c_nationkey and n_name = [?] and

 100000 < c.c_custkey and c.c_custkey < 200000

group by c.c_mktsegment

Param. Values {“ ALGERIA”, “BRAZIL”, “EGYPT”, “IRAN”, “MOROCCO”, “UNITED
KINGDOM”}

Query 5:

Template select p.p_container, count(*)

from part as p

where p.p_brand = [?] and

 100000 < p.p_partkey and p.p_partkey < 200000

group by p.p_container

Param. Values {“ Brand#11”, “Brand#22”, “Brand#33”, “Brand#44”, “Brand#55}

Query 6:

Template select sum(ps.ps_availqty), sum(ps.ps_supplycost)

from partsupp as ps

where ps.ps_partkey = [?]

Param. Values {1000, 2000, 3000, 4000, 5000, 6000}

Query 7:

Template select o.o_orderstatus, count(*)

from orders as o

where [?] < o.o_orderkey and o.o_orderkey < [?] + 100000 and

 o.o_orderpriority = '1-URGENT'

group by o.o_orderstatus

Param. Values {100000, 200000, 300000, 400000, 500000, 600000}

84

Query 8:

Template select l.l_orderkey, count(l.l_linenumber)

from lineitem as l, orders as o

where l.l_orderkey = o.o_orderkey and

 [?] < o.o_orderkey and o.o_orderkey < [?] + 100000 and

 o.o_orderpriority = '1-URGENT'

group by l.l_orderkey

Param. Values {100000, 200000, 300000, 400000, 500000, 600000}

85

Appendix F

QEPs of TPC-H Q21 and Q22 from DB2’s Explain Utility

Figure 30 shows the QEP structure of TPC-H Q22 that is returned by DB2’s Explain

Utility. This structure is very similar to that as shown in Figure 18 in Section 5.1, which is

the QEP structure of Q22 that is returned by Query Disaasembler, except that the cost

presentation in the Query Disassembler’s structure is more versatile (e.g. relative cost,

accumulative cost, and etc.), which makes it a better candidate for the decomposition

algorithm.

Similarly, Figure 31 shows the QEP structure of TPC-H Q21 from DB2’s point of

view. But unlike the case of Q22, we do not show its Query Disassembler structure in

Section 5.1 because of its overly big size.

86

Figure 30 : QEP of TPC-H Q22 by DB2 Explain Utility

87

Figure 31 : QEP of TPC-H Q21 by DB2 Explain Utility

