
Noname manuscript No.
(will be inserted by the editor)

An Approach to Clone Detection in Sequence Diagrams and
Its Application to Security Analysis

Manar H. Alalfi · Elizabeth P. Antony ·
James R. Cordy

Received: date / Accepted: date

Abstract Duplication in software systems is an important issue in software qual-
ity assurance. While many methods for software clone detection in source code and
structural models have been described in the literature, little has been done on sim-
ilarity in the dynamic behaviour of interactive systems. In this paper we present an
approach to identifying near-miss interaction clones in reverse-engineered UML se-
quence diagrams. Our goal is to identify patterns of interaction (“conversations”)
that can be used to characterize and abstract the run-time behaviour of web appli-
cations and other interactive systems. In order to leverage existing robust near-miss
code clone technology, our approach is text-based, working on the level of XMI, the
standard interchange serialization for UML. Clone detection in UML behavioural
models, such as sequence diagrams, presents a number of challenges - first, it is not
clear how to break a continuous stream of interaction between lifelines (represent-
ing the objects or actors in the system) into meaningful conversational units. Second,
unlike programming languages, the XMI text representation for UML is highly non-
local, using attributes to reference related elements in the model file remotely. In this
work we use a set of contextualizing source transformations on the XMI text repre-
sentation to localize related elements, exposing the hidden hierarchical structure of
the model and allowing us to granularize behavioural interactions into conversational
units. Then we adapt NICAD, a robust near-miss code clone detection tool, to help us
identify conversational clones in reverse-engineered behavioural models. These con-
versational clones are then analyzed to find worrisome interactions that may indicate
security access violations.

Keywords Model Clone detection, Model based security analysis

M. H. Alalfi, E. P. Antony, J. R. Cordy
School of Computing, Queen’s University, Kingston, Ontario, Canada
E-mail: {alalfi, antony, cordy}@cs.queensu.ca

2 M. H. Alalfi, E. P. Antony, J. R. Cordy

1 Introduction

UML behavioural models, such as sequence diagrams, can be used to represent the
complex dynamic interactions of interactive systems such as web applications. Using
lifelines to represent concurrent processes such as the user, the browser, the server, the
back-end database and the various threads within them, sequence diagrams document
behaviour as sequences of interactions between the lifelines using events, messages,
and other communications. Sequence diagrams can be used in forward engineering to
specify intended behaviour, or in reverse engineering to observe and document actual
behaviour. In our previous work [2, 3], the run-time behaviour of web applications
was reverse engineered to UML Sequence Diagrams (SDs) that describe the entire
history of interactions in a web application session. Using an automated test harness
based on WATIR [32] to exercise the application in various different roles, behaviour
of the application for users in those roles was documented and the behaviour was
compared to the behaviour of other roles. Given the complexity of production inter-
active web applications, reverse engineered sequence diagrams are often very large,
and hence difficult to analyze by hand. In particular, the identification of repeated
sequences of behaviour (conversations) between components is simply impractical to
do manually.

This paper is an extended version of an early results short paper presented at
the International Working Conference on Reverse Engineering, WCRE 2013 [7], in
which we proposed an automated approach to analyzing UML sequence diagrams
to identify repeated patterns of similar interactions using the NICAD near-miss code
clone detector [10]. In order to leverage robust near-miss code clone technology, our
approach is text-based, working on the level of XMI, the standard interchange seri-
alization for UML. Unlike programming languages, the XMI text representation for
UML is highly non-local, using attributes to reference information in the model file
remotely. In this work, we use a set of contextualizing source transformations on
the XMI text representation to reveal the hidden hierarchical structure of the model
and granularize behavioural interactions into conversational units. Clone detection is
then applied to a contextualized text representation of the models that compares self-
contained hierarchical text descriptions of interaction sequences using source trans-
formations of the XMI interchange representation of the UML behavioural model.

Clone detection in behavioural models has many applications. For example, it can
be used to identify repeated similar behaviours with the aim of model re-factoring, or
to identify instances of similar conversations so that bug fixes, updates and changes
can be applied consistently, and thus enhancing the quality of the resulting software
systems. In this paper, we leveraged cross-clone detection (identifying similar be-
haviours across different models) in a case study using clone detection to find worri-
some conversational patterns that may indicate security access violations.

Code clone detection has been used to identify malware in software systems, as
in the work of Karademir et al. to find embedded Javascript malware in Acrobat files
[14] , and Farhadi at al.’s system to find malware assembly code clones in disassem-
bled application binaries [12] . However, as code obfuscation methods become more
and more sophisticated, it is increasingly difficult to detect security issues in mobile
and other interactive systems using code analysis techniques alone.

Clone Detection in Sequence Diagrams 3

On the other hand, however the code is obfuscated, in order to achieve their goals
the behaviour of these malware variants necessarily remains similar, and thus by
studying similarity of behaviour we can uncover threats that may not be able to be
detected using code analysis. More generally, similarity of behaviour can often ex-
pose the relationship between different code implementations of any process aimed
at achieving the same or similar results. Thus the ability to detect similar behaviour
patterns, rather than simply similar code patterns, is increasingly important.

This paper makes the following three contributions:

1. A detailed description of a new approach for identifying near miss clones in be-
havioural models with a focus on UML sequence diagrams (SDs). Our method
is is the first scalable approach to identifying model clones in large reverse-
engineered sequence diagrams.

2. A precise definition of model clones in sequence diagrams, based on the concept
of encapsulated interaction sequences (“conversations”).

3. An automated process for the identification and encapsulation of interaction se-
quences as self-contained conversational units, which are then used as the units of
comparison for model clone detection. We evaluate our clone detection approach
on a number of reverse engineered SD models of various sizes.

4. A case study demonstrating the utility of behavioural clone detection, by using
cross-clone detection between reverse-engineered SD models representing inter-
action sequences of different user roles o identify potential security access viola-
tions in an open source web application (phpBB).

The rest of this paper is organized as follows. We begin with background informa-
tion in Section 2, where we introduce the elements of basic UML sequence diagram
models in the XML-based metadata interchange format (XMI) representation. We
also introduce terminology that is used throughout the paper. In Section 3 we intro-
duce our approach to identifying conversational clones in basic SD models. Using a
running example, we provide details of the identification, contextualization and ex-
traction process that yields self-contained conversational units, and motivate the need
for normalization to remove irrelevant differences before comparison. In Section 4
we discuss the results of clone detection on the extracted conversations of reverse-
engineered SD models, along with a brief analysis of the results. Then, we presents
an example of the application of SD model cross-clone detection to identifying se-
curity access violations in reverse-engineered SDs of web applications run in various
roles. Finally, Section 6 concludes and outlines opportunities for future work.

2 Background

UML sequence diagrams (SDs) are 2-dimensional graphical models used to represent
the interaction between various objects or actors in a system, encoding the order in
which events and message interactions between the actors occur. They are mainly
used to model the behaviour of web applications and other interactive applications
where the sequencing of interactions over time needs to be specified.

4 M. H. Alalfi, E. P. Antony, J. R. Cordy

Lifelines	

Behaviour	
Execu3on	

Specifica3ons	
(BES)	

Message	
Occurrence	
Specifica3ons	

(MOS)	

Execu3on	
Occurrence	
Specifica3ons	

(EOS)	

Fig. 1 Elements of a Basic Sequence Diagram

Figure 1 shows an example highlighting the main elements in a basic sequence di-
agram. Sequence diagram model-clone detection entails discovering similar or identi-
cal sequences of behavioural interaction ("conversations"). Unlike source code, which
is represented as linear text, models are typically represented visually, as box-and-
arrow diagrams. Model clones can thus be thought of as similar patterns of these
diagrams. Figure 2 shows an example of an SD model clone, in this case a repeated
conversation between two lifelines.

2.1 Clones in Sequence Diagrams

We define clones in SDs to mean repeated patterns of similar or identical interaction
elements that form complete conversations. A conversation is defined as a sequence
of message interactions between two or more lifelines over a specific period of time
(i.e., in the span of a BES). In this paper, we are primarily interested in identifying
repeated conversations, and we define SD clones from this perspective. Code clones
[22] and model clones [6] have been classified into types 1, 2, and 3, according to the
level of similarity they exhibit. For SD clones, we extend these definitions as follows:

1. Type 1 (exact): Conversations with identical interaction elements except for vari-
ations in visual presentation, layout and formatting. For instance, sequence di-
agram "message" elements with identical "name", "receiveEvent", "sendEvent"
and "messageSort" attributes, but possibly different presentation fonts, sizes, phys-
ical coordinates, or colors.

2. Type 2 (renamed): Conversations that may differ in the names of elements at-
tributes values , as well as variations in visual presentation, layout and format-

Clone Detection in Sequence Diagrams 5

Conversa)on	
Clones	

	 	 Fig. 2 Example of SD conversation clones

ting. For instance, two lifeline elements covered by a similar set of conversation
messages but possibly different "name" or "xmi:id" attributes as well as differ-
ent presentation fonts, sizes, physical coordinates, or colors. Such lifelines are
considered Type2 clones as long as those lifelines are covered by similar set of
messages in a specific conversation.

3. Type 3 (near miss): Conversations that have small differences such as additions,
deletions, or modifications of interaction elements, in addition to differences in
the names of elements attribute values, and variations in visual presentation, lay-
out and formatting. For instance, two conversations are considered Type 3 clones
if the order or number of messages in the conversation is slightly different, in
addition to the differences allowed by Types 1 and 2. The amout of difference
allowed can be varied according to a configurable threshold.

3 Approach to Clone Detection

Behavioural model clone detection presents a number of challenges - first, it is not
clear how to break a continuous stream of interaction between lifelines (represent-

6 M. H. Alalfi, E. P. Antony, J. R. Cordy

Sequence	 Diagram
as	 XMI	 text

Iden5fica5on	 &
Consolida5on

(TXL)

Normaliza5on	 &
	 Extrac5on

(TXL)

15

Process

Contextualiza5on
(TXL)

Clone	 Detec5on
&	 Analysis
(NiCad)

Conversa5on	
Clones

Consolidated
Conversa5ons

Contextualized
Conversa5ons

Extracted	
Conversa5ons

Fig. 3 The steps of our approach to SD model clone detection

ing the objects or actors in the system) into meaningful conversational units. Second,
unlike programming languages, the XMI text representation for UML is highly non-
local, using attributes to reference related elements in the model file remotely. In this
work we use a set of contextualizing source transformations on the XMI text repre-
sentation to localize related elements, exposing the hidden hierarchical structure of
the model and allowing us to granularize behavioural interactions into conversational
units. Then we adapt NICAD, a robust near-miss code clone detection tool, to help us
identify conversational clones in reverse-engineered behavioural models. These con-
versational clones are then analyzed to find worrisome interactions that may indicate
security access violations.

To address the above challenges, our approach to SD model clone detection con-
sists of four main stages (Figure 3). In the first stage, Identification and Consolidation,
sequences of behavioural interactions in the XMI sequence diagram serialization are
identified and consolidated into conversations, revealing the hierarchical conversation
structure of the model in the textual SD representation.

In the second stage, Contextualization, the consolidated conversations are made
independent of their context, by replacing XMI references to other parts of the model
by inlining of the parts referred to. Following this transformation, the consolidated
conversations in the XMI textual representation are self-contained, including all of
the interaction elements that form the conversation.

In the third stage, Normalization and Extraction, the self-contained XMI repre-
sentations of the conversations are extracted for comparison, normalized to remove
irrelevant formatting and layout elements, and renamed to remove irrelevant naming
differences in the XMI textual representation to make the process of clone identifica-
tion more accurate.

Clone Detection in Sequence Diagrams 7

<packagedElement xmi:type="uml:Collaboration" xmi:id="_fhwvcGGTEeO5r4_cb_qIFw" name="Collaboration1">
<ownedBehavior xmi:type="uml:Interaction" xmi:id="INT1Id" name="Interaction1">

<ownedConnector xmi:type="uml:Connector" xmi:id="OC1Id">
<end xmi:type="uml:ConnectorEnd" xmi:id="OCE1Id" role="PROPL2Id"/>
<end xmi:type="uml:ConnectorEnd" xmi:id="OCE2Id" role="PROPL1Id"/>

</ownedConnector>
< lifeline xmi:type="uml:Lifeline " xmi:id="L1Id" name="l1" represents="PROPL1Id" coveredBy="MOS1Id MOS4Id"/>
< lifeline xmi:type="uml:Lifeline " xmi:id="L2Id" name="l2" represents="PROPL2Id"

coveredBy="MOS2Id BES1Id MOS3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS1Id" covered="L1Id" event="SOE1Id"

message="Msg1Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS2Id" covered="L2Id" event="ROE1Id"

message="Msg1Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES1Id" covered="L2Id" start="MOS2Id"

finish="MOS3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS3Id" covered="L2Id" event="SOE1Id"

message="Msg1ReplyId"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS4Id" covered="L1Id" event="ROE1Id"

message="Msg1ReplyId"/>
<message xmi:type="uml:Message" xmi:id="Msg1Id" name="Msg1" receiveEvent="MOS2Id" sendEvent="MOS1Id"

connector="OC1Id"/>
<message xmi:type="uml:Message" xmi:id="Msg1ReplyId" name="Msg1" messageSort="reply" receiveEvent="MOS4Id"

sendEvent="MOS3Id" connector="OC1Id"/>
</ownedBehavior>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPL1Id" name="l1" type="CLSSL1Id"/>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPL2Id" name="l2" type="CLSSL12d"/>

</packagedElement>
<packagedElement xmi:type="uml:Class" xmi:id="CLSSL1Id" name="L1"/>
<packagedElement xmi:type="uml:Class" xmi:id="CLSSL12d" name="L2">

<ownedOperation xmi:type="uml:Operation" xmi:id="OOCLSS2Id" name="Msg1"/>
</packagedElement>
<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SOE1Id" name="SendOperationEvent1"

operation="OOCLSS2Id"/>
<packagedElement xmi:type="uml:ReceiveOperationEvent" xmi:id="ROE1Id" name="ReceiveOperationEvent1"

operation="OOCLSS2Id"/>

Fig. 4 An example showing the various elements of the XMI representation of a SD

Conversations are represented by BehaviorExecutionSpecification elements (green), associated with life-
lines (purple), and consisting of messages, events and operations (red). Relationships between elements
in the XMI textual representation are represented both implicitly, by sequential adjacency, and explicitly,
using attributes referencing other elements.

The first three stages use TXL [9] source transformations to transform the textual
SD representation and extract self-contained conversational units. The final stage,
Clone Detection and Analysis, uses NICAD [10], a standard code clone detector,
to automatically identify cloned conversations in the large set of contextualized and
normalized conversational units. In the following subsections, we elaborate each of
these stages in more detail.

3.1 Identification and Consolidation

The flat structure of the XMI sequence diagram representation (Figure 4), offers little
locality - fragments and elements of conversations are spread across the XMI text, us-
ing attributes and textual ordering to reference and implicitly group related elements.

Behaviour Execution Specifications (BESs), for example, (e.g., green highlight
in Figure 4), reference the lifeline they are part of using the covered attribute, and to
the sequence of messages and events comprising their associated conversation using
the start and finish attributes. These attributes reference the first and last elements of
the sequence that forms the conversation, implicitly including the elements textually

8 M. H. Alalfi, E. P. Antony, J. R. Cordy

between them, and these included elements in turn refer to their parts using attributes
in similar fashion.

In order to make this scattered representation of conversations amenable to com-
parison, we need to recursively gather the referenced and related elements of BES
conversations together and organize them into an explicit hierarchical representation
of the interaction structures they represent. This restructuring or the transformation
process consists of two main steps: identifying and consolidating conversational units
into a hierarchy, and then contextualizing these units to be independent of their sur-
roundings, as shown in Figure 3.

3.1.1 Identification: Defining a level of granularity

Identifying cloned behavioural interactions in a large scale reverse-engineered SDs
poses significant issues of scale. For that reason, we have adapted a highly scalable
code clone detector, NICAD [10], to work on behavioural models. NICAD has previ-
ously been used in detecting clones in programming languages such as C, C#, Java,
Python and other programming languages, and more recently has been extended and
specialized to finding model clones, as part of the Simone model clone detector [6].

NICAD is designed to find code clones of a given granularity, such as functions,
blocks, or statements. It begins by enumerating all of the instances of the desired
units in the code, and then comparing them pairwise for near-miss similarity within a
defined difference threshold. In Simone, the units of model comparison are Simulink
subsystems, which compare roughly to functions or classes in traditional program-
ming languages.

Unlike Simulink models, the XMI serialization of UML sequence diagrams does
not have an explicit nested structure. Rather, it is a flat sequence of individual ele-
ments linked by attributes as described above. Thus one of the main challenges in
using NICAD to analyze sequence diagrams for clones is understanding how to re-
verse engineer the hidden nested structural representation of interaction conversations
from the flat representation of the original XMI SD serialization.

The second major challenge is simply the identification of an appropriate level of
granularity for comparison. In SD conversations, individual messages are very small,
and would yield a huge number of clones that would not be useful or relevant for most
applications. On the other hand, comparing the interactions of entire lifelines would
likely reveal very few clones, and would miss clones of many interesting shorter in-
teractions. Thus we decided to break lifelines into grouped sequences of interactions
with other lifelines, based on the SD Behavioural Execution Specification (BES) el-
ements of the lifeline. We call these grouped sequences conversations, since they
encapsulate complete sequences of related interactions initiated by one lifeline with
others.

Figure 5 shows an example interaction, with Message Occurrence Specification
(MOS) and Behavioral Execution Specification (BES) elements labelled with the
XMI Ids of their XMI textual representation. The XMI Id is a unique identifier as-
signed to each element of the SD in its XMI textual form. (In the Figure, XMI Ids
have been renamed to simpler identifiers to aid understanding of the example.) In
the example of Figure 5, there are three labelled BES fragments, BES1Id, BES2Id

Clone Detection in Sequence Diagrams 9

BES1Id	

MOS1Id	

BES3Id	

MOS2Id	

MOS3Id	

BES2Id	

Fig. 5 An example SD fragment, showing the BES and MOS elements with their corresponding Ids from
the XMI representation

and BES3Id, corresponding to the three BES elements of the XMI representation,
shown in Figure 6. In the XMI representation, the start and finish attributes of the
BES elements indicate by reference the beginning and ending elements of the BES’s
conversation in the flat XMI representation, and the covered attribute identifies the
corresponding lifelines. It should also be noted that conversations are often nested -
in the example of Figure 5, the conversations identified by BES2Id and BES3Id are
part of the main conversation identified by BES1Id.

3.1.2 Consolidation - Creating a conversational unit

For each BES element identified in the XMI representation, we create a conversa-
tion container unit identified by <BES>...</BES> tags. The consolidation step draws
the messages and execution occurrences that are part of the each BES into the corre-
sponding BES conversation units. That is, we gather and nest all of the conversational
elements of the BES into the container. The start and finish attributes of each BES
specify the elements in the flat representation that begin and end the BES’s conversa-
tion.

Because message, behaviour and event occurrences have a general sequential or-
dering in the XMI representation, this step primarily involves moving the elements
adjacent to the BES element inside the new <BES >...</BES > container. Elements
immediately before the BES element, beginning with the one referenced by its start
element, represent the message(s) that initiate the conversation. Elements following
the BES element, beginning with the one immediately adjacent and ending with the
one specified by its finish attribute, represent the messages, executions and subconver-
sations that are part of the conversation. Recursively consolidating BES conversation
units yields an explicit hierarchy of conversations such as the one shown in Figure 8.

10 M. H. Alalfi, E. P. Antony, J. R. Cordy

. . .
<packagedElement xmi:type="uml:Collaboration" xmi:id="Collaboration1Id" name="Collaboration1">

<ownedBehavior xmi:type="uml:Interaction" xmi:id="INT1Id" name="Interaction1">
<ownedConnector xmi:type="uml:Connector" xmi:id="OC3Id">

<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End1Id" role="PROPl2Id"/>
<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End2Id" role="PROPl3Id"/>

</ownedConnector>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl1Id" name="l1" represents="PROPl1Id" coveredBy="MOS1Id"/>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl2Id" name="l2" represents="PROPl2Id" coveredBy="MOS2Id BES1Id

EOS3Id MOS3Id MOS4Id BES2Id EOS1Id MOS5Id"/>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl3Id" name="l3" represents="PROPl3Id" coveredBy="MOS6Id BES3Id

EOS2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS1Id" covered="LFLNl1Id" event="SOE1Id"

message="MSG1Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS2Id" covered="LFLNl2Id" event="ROE1Id"

message="MSG1Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES1Id" covered="LFLNl2Id" start= "MOS2Id"

finish="EOS3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS3Id" covered="LFLNl2Id" event="SOE2Id"

message="MSG2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS4Id" covered="LFLNl2Id" event="ROE2Id"

message="MSG2Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES2Id" covered="LFLNl2Id" start="MOS4Id"

finish="EOS1Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS1Id" covered="LFLNl2Id" event="EE1Id"

execution="BES2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS5Id" covered="LFLNl2Id" event="SOE3Id"

message="MSG3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS6Id" covered="LFLNl3Id" event="ROE3Id"

message="MSG3Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES3Id" covered="LFLNl3Id" start="MOS6Id"

finish="EOS2Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS2Id" covered="LFLNl3Id" event="EE1Id"

execution="BES3Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS3Id" covered="LFLNl2Id" event="EE1Id"

execution="BES1Id"/>
<message xmi:type="uml:Message" xmi:id="MSG1Id" name="Msg1" messageSort="asynchCall" receiveEvent="MOS2Id"

sendEvent="MOS1Id" connector="OC1Id"/>
<message xmi:type="uml:Message" xmi:id="MSG2Id" name="Msg2" messageSort="asynchCall" receiveEvent="MOS4Id"

sendEvent="MOS3Id" connector="OC2Id"/>
<message xmi:type="uml:Message" xmi:id="MSG3Id" name="Msg3" messageSort="asynchCall" receiveEvent="MOS6Id"

sendEvent="MOS5Id" connector="OC3Id"/>
</ownedBehavior>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl2Id" name="l2" type="CLSSL2Id"/>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl3Id" name="l3" type="CLSSL3Id"/>

</packagedElement>
. . .

Fig. 6 Step I: Identification of BES fragments in the XMI representation

Identified BES fragments are shown in green. The beginning and ending elements referred to by the first
BES conversation are shown in red, and its invoking MOS is shown in purple.

Identification, consolidation and contextualization are implemented as structural
transformations of the XMI textual representation using the TXL [9] source transfor-
mation system. Beginning with a general grammar for parsing the XMI representa-
tion of UML sequence diagrams, a set of structural transformation rules is created to
identify, consolidate and contextualize BES specifications into self-contained hierar-
chical units. Figure 7 shows an example TXL rule to consolidate the conversational
elements of each BES up to the element identified by its finish attribute’s value, Fin-
ishId, in the XMI serialization. The result of consolidating the three example BES
conversations identified in Figure 6 is shown in Figure 8.

Clone Detection in Sequence Diagrams 11

rule restructBES
replace [xmi_element*]

<fragment ’xmi:type="uml:BehaviorExecutionSpecification" ’xmi:id=BESId [attvalue] ’covered=LifelineId [attvalue]
’ start=StartId [attvalue] ’ finish =FinishId [attvalue] />

MoreElements [xmi_element*]

deconstruct * MoreElements
< Element [id] ’xmi:type=Type [attvalue] ’xmi:id=FinishId Attributes [tag_attribute *] />
RemainingElements [xmi_element*]

construct FinishFrag [xmi_element]
< Element ’xmi:type=Type ’xmi:id=FinishId Attributes />

construct MessagesOfBES [xmi_element*]
_ [addElements FinishId MoreElements]

by
<BES ’start=StartId ’ finish =FinishId>

<fragment ’xmi:type="uml:BehaviorExecutionSpecification" ’xmi:id=BESId ’covered= LifelineId ’ start= StartId
’ finish = FinishId >

MessagesOfBES [. FinishFrag]
</fragment>

</BES>
RemainingElements

end rule

Fig. 7 TXL rule to consolidate BES conversations

3.1.3 Contextualization - Making units whole

As shown in Figure 8, consolidated BES conversations consist of embedded BESs,
Message Occurrence Specifications (MOSs) and Execution Occurrence Specifica-
tions (EOSs) describing the conversation’s interactions with other lifelines. Similar
to BESs themselves, these elements use XML attributes to refer to other elements
such as messages, types and lifelines that describe their meaning.

Figure 9 illustrates how the attributes of each MOS and the EOS in consolidated
BES conversations refer to other elements in the XMI representation. The attributes
of these elements in turn reference other elements, and so on, as illustrated in Figure
10.

Contextualization draws in the elements of the context that are referenced by
the BES elements that are directly part of the conversation. That is, it brings all the
elements involved – the lifelines, properties, events and messages – into the contex-
tualized BES unit. The result is a complete self-contained description of each conver-
sation, independent of its surroundings.

To contextualize a consolidated BES, each Message Occurrence Specification
(MOS) and Event Occurrence Specification (EOS) fragment in the BES is converted
to a container tag, and the elements referred to by the attributes of the fragment are in-
lined into the container. In this way, the BES becomes an independent self-contained
unit with no dependence on its context. For example, MOS fragments have covered,
event and message attributes, as shown in Figure 10. These attributes represent the
lifeline, event and message of the Message Occurrence Specification.

Contextualization proceeds recursively. Thus to inline the covered attribute of the
second MOS in the third embedded BES example of Figure 9, the <lifeline> element
with id LFNI2Id, referred to by the attribute, is located and copied into the container
tag of the MOS. From the inlined <lifeline> element, the <ownedAttribute> element

12 M. H. Alalfi, E. P. Antony, J. R. Cordy

. . .
<packagedElement xmi:type="uml:Collaboration" xmi:id="Collaboration1Id" name="Collaboration1">

<ownedBehavior xmi:type="uml:Interaction" xmi:id="INT1Id" name="Interaction1">
<ownedConnector xmi:type="uml:Connector" xmi:id="OC3Id">

<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End1Id" role="PROPl2Id"/>
<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End2Id" role="PROPl3Id"/>

</ownedConnector>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl1Id" name="l1" represents="PROPl1Id" coveredBy="MOS1Id"/>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl2Id" name="l2" represents="PROPl2Id" coveredBy="MOS2Id BES1Id

EOS3Id MOS3Id MOS4Id BES2Id EOS1Id MOS5Id"/>
< lifeline xmi:type="uml:Lifeline " xmi:id="LFLNl3Id" name="l3" represents="PROPl3Id" coveredBy="MOS6Id BES3Id

EOS2Id"/>
<BES>

<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES1Id" covered="LFLNl2Id"
start="MOS2Id" finish="EOS3Id"/>

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS1Id" covered="LFLNl1Id" event="SOE1Id"
message="MSG1Id"/>

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS2Id" covered="LFLNl2Id" event="ROE1Id"
message="MSG1Id"/>

<BES>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES2Id" covered="LFLNl2Id" start="MOS4Id"

finish="EOS1Id">
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS3Id" covered="LFLNl2Id" event="SOE2Id

" message="MSG2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS4Id" covered="LFLNl2Id" event="ROE2Id

" message="MSG2Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS1Id" covered="LFLNl2Id" event="EE1Id"

execution="BES2Id"/>
</fragment>

</BES>
<BES>

<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES3Id" covered="LFLNl3Id" start="MOS6Id"
finish="EOS2Id"/>

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS5Id" covered="LFLNl2Id" event="SOE3Id
" message="MSG3Id"/>

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS6Id" covered="LFLNl3Id" event="ROE3Id
" message="MSG3Id"/>

<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS2Id" covered="LFLNl3Id" event="EE1Id"
execution="BES3Id"/>

</fragment>
</BES>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS3Id" covered="LFLNl2Id" event="EE1Id"

execution="BES1Id"/>
</fragment>

</BES>
<message xmi:type="uml:Message" xmi:id="MSG1Id" name="Msg1" messageSort="asynchCall" receiveEvent="MOS2Id"

sendEvent="MOS1Id" connector="OC1Id"/>
<message xmi:type="uml:Message" xmi:id="MSG2Id" name="Msg2" messageSort="asynchCall" receiveEvent="MOS4Id"

sendEvent="MOS3Id" connector="OC2Id"/>
<message xmi:type="uml:Message" xmi:id="MSG3Id" name="Msg3" messageSort="asynchCall" receiveEvent="MOS6Id"

sendEvent="MOS5Id" connector="OC3Id"/>
</ownedBehavior>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl1Id" name="l1" type="CLSSL1Id"/>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl2Id" name="l2" type="CLSSL2Id"/>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl3Id" name="l3" type="CLSSL3Id"/>

</packagedElement>
. . .

Fig. 8 Step 2: Consolidation of BES elements

The sequence of messages and other elements comprising each BES conversation have been consolidated
into new BES conversation elements. For example, all the elements between the starting and ending ele-
ments (red) of the first BES conversation (BES1Id), as well as its invoking MOS element (purple) have
been moved inside its new BES wrapper, and similarly for the embedded BES elements BES2Id and
BES3Id, recursively.

with xmi:id=“PROPl2Id”, referred to by the lifeline’s represents attribute, is then
inlined to include the property/object of the class that the lifeline covers. Similarly,
the elements referenced by the event attribute are inlined recursively until there are
no more elements left.

Clone Detection in Sequence Diagrams 13

Fig. 9 Elements referenced by the attributes of elements in the XMI text of a BES (adapted from [7])

Fig. 10 Elements indirectly referenced by attributes of the elements in the XMI text of a BES (adapted
from [7])

For the event attribute of the MOS, which specifies whether the message occur-
rence is a send or receive event, we inline the corresponding <packagedElement>
with xmi:id=“SOE3Id” and, from its operation attribute, the corresponding <owned-
Operation> element is then inlined. Finally, the message attribute of the MOS refer-
ences the corresponding <message> element. The <message> element, in turn inlines
the sending and receiving MOS of the message with the sendEvent receiveEvent at-

14 M. H. Alalfi, E. P. Antony, J. R. Cordy

Fig. 11 A fully contextualized BES conversation unit (adapted from [7])

tributes, and the <ownedConnector> element referenced by the connector attribute,
which represents the end points of the message where they connect to the lifelines.

Similarly each MOS and EOS fragment in the consolidated BES is converted
to a container tag and contextualized by recursively inlining the elements referred
to by its attributes in a similar fashion, yielding a completely contextualized BES
conversation, as shown in Figure 11.

Inlining the elements of each BES in this way creates a set of self-contained in-
teraction units for comparison in clone detection. Our process of contextualization
is very similar to the work of Martin et al. [16] in identifying contextual clones in
WSDL documents; where the <operation> elements of a WSDL document are con-
textualized by inlining each operation description element into Web Service Cells, or
WSCells. Similarly to WSDL documents, the contextualization stage is necessary to
consolidate all the conversation elements into self-contained units from the XMI rep-
resentation of SDs. While in general all elements referenced by element attributes are
inlined, in order to avoid repetition of information and unbounded recursion, some
attributes must not be inlined during contextualization:

1. type: The type attribute of the <ownedAttribute> element is not expanded as it
would inline the entire element’s class. We are only interested in the name of
the class and its operations in the conversation. Operations are inlined from the
operation attribute of MOS fragments.

2. connector: Similarly, the connector attribute of <message> elements is not con-
textualized, because the end attribute of the <ownedAttribute> element inlined
from a <lifeline> element already inlines it as end point of the MOS.

3. execution: The execution attribute of an Execution Occurrence Specification (EOS)
refers to the BES element that it is part of. Inlining this link would simply dupli-
cate the information.

Clone Detection in Sequence Diagrams 15

<source file="SDModels/AnonSeq..." startline="3341" endline="3404">
<BES start="34505RHttp" finish="EventOccHttp56">

<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BehivExecHttp56" covered="0L"
start="3450..." finish ="Event... ">

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="34505RHttp" covered="0L"
event="ReciveOpHttp56" message="Mess..56">

...
</fragment>

</fragment>
</BES>

</source>

<source file="SDModels/AnonSeq..." startline="3573" endline="3648">
<BES start="34505R" finish="EventOcc56">

<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BehivExec56"
covered="phpbb_forumsphpbb_topics" start="34505R" finish="EventOcc56">

<fragment xmi:type="uml:MessageOccurrenceSpecition" xmi:id="34505Rback" covered="0L"
event="Reciveback56" message="Messback56">

...
</fragment>

</fragment>
</BES>

</source>
...

Fig. 12 Example potential clones extracted by NICAD

Every consolidated, contextualized BES conversation element in the XMI textual representation of the
model is extracted as a potential clone to be compared. Potential clones are wrapped in <source> tags
that track their original location in the XMI model files so that clones can be related back to their original
models and BES elements.

3.2 Extraction and Clone Comparison

The NICAD clone detector works by parsing a source program and extracting all of
the code fragments of a particular granularity (potential clones) to be compared for
similarity. NICAD comes packaged with number of extractor modules for a num-
ber of standard programming languages at different granularities such as classes,
functions and blocks. NICAD uses a plug-in architecture [10] which allows for easy
addition of new languages and granularities by supplying a TXL [9] grammar and
fragment extractor for the new language.

3.2.1 Extraction

In order to use NICAD to find SD conversation clones, we used a generic XMI el-
ement grammar to parse the consolidated and contextualized XMI textual form of
the SD models, and specified our contextualized <BES> elements as the fragments to
serve as potential clones. The XMI grammar simply defines the generic form of XMI
elements. This unconstrained definition yields a rough parse of the contextualized
XMI text sufficient for our purposes.

To make a NICAD extractor for contextualized BES conversation fragments, we
simply specialize the generic XMI grammar to recognize <BES> elements specially,
and tell NICAD to use bes_fragment as the unit of granularity for clone detection.

An example of the extracted potential clones is shown in Figure 12. Each ex-
tracted potential clone (pc) is wrapped in <source> tags with the original file name,
starting line (line number where the text representation of the BES unit begins in the

16 M. H. Alalfi, E. P. Antony, J. R. Cordy

XMI model file) and ending line (line number where the text representation of the
BES unit ends) as attributes.

3.2.2 Clone Comparison

The extracted conversation potential clones are compared by NICAD line by line
using an optimized longest common subsequence (LCS) algorithm up to a specified
near-miss difference threshold. The threshold specifies an upper limit on the fraction
of lines in potential clones that can differ in order for them to be considered near-miss
clones. For example, a difference threshold of 20% would allow for up to two lines
in ten to be different in conversation clones.

An example of a near-miss conversation clone pair reported by NICAD in a re-
verse engineered SD model is shown in Figure 13. The near-miss conversation clones
in the example are identical except for the message that initiates the conversation.
These clones are exact near-miss (clone Type 3) clones, that is, there are identical in
every respect except for a small number of individual differences (in this case, one).

3.3 Normalization

While near-miss identical clones are interesting, they are rare in the XMI representa-
tion of SD models. This is because the XMI textual representation is constrained to
use unique names for each element in the model, in order to facilitate graphical ren-
dering in the user interface. These unique names cause multiple instances of visually
identical to be very different in their XMI textual representation - different enough
that their textual similarity does not fall within the small difference thresholds needed
to accurately detect conversation clones.

When faced with these artificial differences in representation, there are two choices
for a clone detector: either raise the difference threshold to a higher number, allowing
for example 50% of XMI text lines to be different, or stay with a small difference
threshold, finding very few clones. In the first case, the resulting precision will be
very low, reporting many false positives, because very little similarity is required. In
the second case, the resulting recall with be very low, missing many visually similar
conversation clones because the XMI textual representation has different naming.

The solution to this problem is normalization, the removal of artificial differences
from the comparison of potential clones. In this section we highlight the normaliza-
tion steps used in our method and their effect on enhancing results. Our normalization
has been specifically refined to improve precision from the perspective of our applica-
tion of clone detection to detecting security access violations as detailed in Section 4.
The normalization step can be tailored to the SD models; thus for other applications
it may be different depending on the information we are interested to compare.

3.3.1 Reducing Redundancy

To address this issue, we apply two kinds of normalization: removal of redundant el-
ements, which tend to multiply the effect of small differences, and “blind” renaming,

Clone Detection in Sequence Diagrams 17

Fig. 13 BES conversation clone pair reported by NICAD visualized in Rational Software Architect

which removes differences between element names. Both normalizations are imple-
mented as TXL source transformation plugins to the NICAD clone detector, which
allows for normalization of the extracted potential clones (in our case the contextual-
ized BES conversations) before clone comparison. The first normalizing transforma-
tion simply removes redundant elements in the contextualized potential clones, such

18 M. H. Alalfi, E. P. Antony, J. R. Cordy

rule blindRenameAttributes
% Attributes that should not be blind renamed
construct RelevantIds [id*]

’name ’type ’role

replace $ [attribute]
XMIColon [xmi_colon] TagId [id] = TagAttr [attribute_value]

% Guard to make sure it is not one of the relevant ones
deconstruct not * [id] RelevantIds

TagId

by
XMIColon TagId = "BR"

end rule

Fig. 14 TXL Rule to Blind Rename Irrelevant XMI Element Attributes

as the <operation> element referred to by the event attribute of a <packagedElement>
with xmi:type=“ReceiveOperationEvent”, which is always the same as the <oper-
ation> element referenced by the corresponding xmi:type=“SendOperationEvent”,
and thus is redundant.

3.3.2 Blind Renaming

The second normalizing transformation implements “blind” renaming of element
names in the extracted contextualized potential clones. The general strategy of blind
renaming is to replace all identifiers in the potential clones with the same identifier,
for example “X”.

The generic blind renaming algorithm that is packaged with NICAD is context-
independent and does this for all identifiers in a potential clone. For this reason, it
can not be used for Sequence Diagram (SD) models, because it does not distinguish
between element names (XMI ids) and other identifiers, such as element types. These
can only be distinguished by their context in the XMI structure, and thus it was nec-
essary to craft a custom context-dependent blind renaming plugin for SD models.

The context-dependent blind renaming transformation for SD models is imple-
mented in TXL using a technique called agile parsing [11], in which the generic
XMI grammar is specialized to distinguish the forms we are interested in renaming
from those that should not be renamed. For example, in our approach, the TXL gram-
mar “overrides” is used to distinguish XMI elements whose attributes that should be
blind renamed from those that should not. Within the distinguished contexts, blind re-
naming is applied to all XMI attribute identifiers, except those that carry relevant dis-
tinguishing information, such as the type of the XMI element, the role of the lifelines
involved in an operation, or the name of the class of a message, event or operation.

Figure 14 shows the TXL source transformation rule that does the actual renam-
ing for most contexts. All attributes except xmi:type, xmi:role and xmi:name are re-
named to the identifier “BR” by the rule. In some special contexts, the xmi:name
attribute must also be renamed. Figure 15 shows the effect of blind renaming on a
small section of an extracted contextualized BES conversation.

Clone Detection in Sequence Diagrams 19

(a) Before blind renaming

<source file="SDModelsDec2T10BR/AnonWthAdmnLnks/AnonWithAdminLinks.sd" startline="13198" endline="13443"
pcid="73">

<BES start="52045R" finish="ownedOp1252">
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BehivExec1252" covered="phpbb_forums..."

start="52054R" finish="ownedOp1252">
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="52054S" covered="0L" event="SendOp1282"

message="Mess1282">
...
<eventTag event="SendOp1252">

<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SendOp1252" name="SendOperationEvent1252"
operation="ownedOp1252">

<operationTag operation="ownedOp1252">
<ownedOperation xmi:type="uml:Operation" xmi:id="ownedOp1252"

name="Select(search,t . topic_id IN ($search_results) ... ">
<ownedRule xmi:type="uml:Constraint" xmi:id="52045" name="Select" constrainedElement="

ownedOp1252">
<specification xmi:type="uml:OpaqueExpression" xmi:id="Const52045"

name="t . topic_id IN ($search_results) and t .topic_poster ... " />
</ownedRule>
<ownedParameter xmi:type="uml:Parameter" xmi:id="AcID52045" name="342"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="PN52045" name="324"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="AcTS52045" name="1262771841"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="AcFromList52045"

name="phpbb_topics t, phpbb_forums f/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="AcRt52045"‘

name="t.*, f . forum_id, f .forum_name, ..."/>
</ownedOperation>

</operationTag>
</packagedElement>

</eventTag>
...

</fragment>
</fragment>

</BES>
</source>

(b) After blind renaming

<source file="SDModelsDec2T10BR/AnonWthAdmnLnks/AnonWithAdminLinks.sd" startline="13198" endline="13443"
pcid="73">

<BES start="BR" finish="BR">
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BR" covered="phpbb_forumsphpbb_posts..." start=

"BR" finish="BR">
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="BR" covered="BR" event="BR" message="BR">

...
<eventTag event="BR">

<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="BR" name="SendOperationEvent1252"
operation="BR">

<operationTag operation="BR">
<ownedOperation xmi:type="uml:Operation" xmi:id="BR" name="Select(search,t . topic_id IN ($

search_results) ...">
<ownedRule xmi:type="uml:Constraint" xmi:id="BR" name="Select" constrainedElement="BR">

<specification xmi:type="uml:OpaqueExpression" xmi:id="BR" name="t . topic_id IN ($
search_results) and t .topic_poster ..." />

</ownedRule>
<ownedParameter xmi:type="uml:Parameter" xmi:id="BR" name="342"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="BR" name="324"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="BR" name="BR"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="BR" name="phpbb_topics t, phpbb_forums f"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id= "BR" name="t.*, f.forum_id, f.forum_name, ..."/>

</ownedOperation>
</operationTag>

</packagedElement>
</eventTag>
...

</fragment>
</fragment>

</BES>
</source>

Fig. 15 Example blind renaming XMI attributes in a small section of a contextualized BES conversation

20 M. H. Alalfi, E. P. Antony, J. R. Cordy

4 A Case Study in SD Clone Detection

In this section, we use an application of SD clone detection to address the following
research questions and to evaluate the precision and recall of our method.
RQ1: Is our approach capable of detecting patterns of similar conversations in SDs?

RQ2: To what extent does the normalization stage of our approach enhance accuracy
of the results?

RQ3: Can the approach be useful in real world applications, and how does it perform
regarding precision and recall?

In this section, we first describe the SD models used in the experiment, and ad-
dress the first research question by applying our approach to these models without
any normalization. We then address the second research question by comparing the
results of our SD clone detection on these models with and without normalization.
Finally, we address the third research question by using our SD clone detection tech-
nique to detect access control violations that appear as patterns in a set of reverse
engineered sequence diagrams from a vulnerable web application with forced brows-
ing, and comparing the results to an existing heavyweight security analysis approach.
The results of the experiment are promising, using lightweight SD clone detection to
find potential security risks with 100% recall and 86% precision when compared to
the previous heavyweight model-checking approach.

4.1 Clone Detection in SD Models

In this section, we discuss the results obtained from basic clone detection on the re-
verse engineered SD models. We first provide results without normalization, followed
by a careful analysis of results after normalization. Near-miss clone detectors use a
similarity threshold to specify how close two fragments need to be to be considered
clones. In NICAD, this is specified using a “difference threshold", the percentage
of total lines that may differ in a clone pair. Selection of an appropriate difference
threshold depends on the application, and must be tuned empirically. In the next sec-
tion we demonstrate, using a brief example, both the need for normalization and the
selection and appropriate difference threshold for SD models.

4.1.1 Design-recovered SD Models

Our approach differs from existing techniques in its ability to handle very large,
reverse-engineered sequence diagrams efficiently. The SD models we use here were
obtained from previous work by Alalfi et al. [2, 3] on automatically recovering SD
behavioural models from dynamic web applications, in particular from multiple ex-
ecution scenarios of the popular web forum application phpBB 2.0 in different user
roles. We worked with seven such recovered models of various sizes ranging from
752 to 469,356 XMI lines.

For each user role, there are two sets of reverse engineered SD models. In each
case, the models differ in size depending on the extent of web application coverage

Clone Detection in Sequence Diagrams 21

during visits to the forum in each user role. For the anonymous user role, we have two
sets of reverse engineered SD models, AnonSD1 and AnonSD2. Both models repre-
sent the interactions of an anonymous user visiting the phpBB forum. They differ in
size according to the extent of coverage.

For the registered user role, we again have two sets of reverse engineered SD
models, RegSD1 and RegSD2. These models represent the interaction sequences of
a registered user accessing the forum.

Next, we have two sets of models representing execution traces of an anonymous
user with forced browsing (that is, an anonymous user attempting to directly access
links only intended for an administrator), ForcedAnonSD1 and ForcedAnonSD2.

Finally, the last model represents an administrator user’s role, showing the inter-
action traces of an administrator exploring the phpBB forum (AdminSD).

Each model is preprocessed as detailed in Section 3.1.3 to a contextualized repre-
sentation, and the resulting file is given the extension .sd. The contextualized model
is then input to the NICAD clone detector and the results are reported in both HTML
and XML formats along with a log. By default in NICAD, these formats have reports
generated displaying the various clones pairs in the model along with start and end
line numbers of the clones in the contextualized representation. NICAD reports both
clone pairs (with and without original source), and clone classes (groups of mutually-
similar clone pairs within the difference threshold). Clones grouped in classes are also
reported both with and without original XMI source text, and with a class identifier
(“classid”) assigned to each class. For our analysis we used the NICAD clone pairs
reports, both with and without source. The reader is referred to the work by Roy et
al. [20] for further details on how clone pairs are created and grouped into classes by
NICAD.

4.1.2 Initial Results Before Normalization

In the first research question, we ask RQ1: Is our approach capable of detecting
patterns of similar conversations in SDs? To address this, in the first part of our ex-
periment we worked with reverse engineered SD Models without any normalization.
This resulted in a large number of clones, due to the artificial similarity of a large
amount of redundant information in the XMI representation, mainly in the coveredBy
attribute of <lifeline> elements and the connector attribute of <message> ele-
ments. Without normalization to anonymize the coveredBy attribute and eliminate
the redundant elements referred to by the connector and type attributes, the size of
contextualized conversational units is extremely large, and the process is very ex-
pensive in terms of memory and CPU time. But more importantly, these raw results
yielded large numbers of clones of little interest and very low accuracy, so we do not
show them here.

To avoid the problems with redundancy yielding artificially similar clones, we
next experimented with removing redundancy in the BES conversational units as de-
scribed in Section 3.3.1.

Table 1 shows the initial results using NICAD to find BES conversation clones in
our seven example models using a difference threshold of 35%. The first column indi-
cates the different reverse engineered SD models used in the experiment. The second

22 M. H. Alalfi, E. P. Antony, J. R. Cordy

Table 1 Unnormalized clone detection results at a difference threshold of 35%

Model Information Without Normlization
Model Name # Lines # BES # Clone Pairs # Clone Classes

AnonSD1 751 30 18 7
RegSD1 5375 223 1311 14

ForcedAnon SD1 9501 142 407 27
AdminSD 469356 513 9918 44
AnonSD2 53860 314 3330 27
RegSD2 455686 954 51334 42

ForcedAnon SD2 37915 1232 75947 51

column indicates the size of the original XMI representation of the SD model (be-
fore contextualization) in number of XMI lines. The third column reports the number
of Behavioural Execution Specifications (BESs) extracted as conversational units in
each model. The fourth column reports the number of conversational clone pairs de-
tected in the model. NICAD reports two potential clones as a clone pair if the pair
differs by at most the percentage of lines specified in the difference threshold. For
example, at a difference threshold of 10%, if two conversational units of 100 lines
each have at least 90 lines in common (i.e., differ by at most 10 lines), then they will
be reported as clones. The fifth column reports the number of clone classes the clones
are grouped into, based on the similarity of the clones as specified by the threshold
value.

While we experimented with many difference thresholds, using redundancy re-
duction alone we were only able to expose any interesting similarities at higher
thresholds, hence the use of a 35% difference threshold.

Most of the clones generated using redundancy reduction alone are meaning-
ful. However, many of them are undesired clone pairs. For instance, we noticed that
some “Select” operations of the web application were being paired with “Update”
operations in the conversation clones. For example, in the ForcedAnonSD1 model,
representing the Anonymous User accessing administrator links, we noted that BES
unit with Potential Clone identifier (pcid) 136, containing the AcId 393, which is the
“Select” operation gets paired with pcid 142, containing AcId 404 which is an “Up-
date” operation (Figure 16). While this is expected at the larger threshold, it is a false
positive from the perspective of finding access violations (Section 4). Thus it was
deemed necessary to normalize the contextualized representation of BES conversa-
tional units before comparison, to allow us to use lower difference thresholds and
more precise matching of relevant elements.

4.1.3 Results After Normalization

In the second research question, we ask RQ2: To what extent does the normaliza-
tion stage of our approach enhance accuracy of the results? To answer this ques-
tion, we compared the results of clone detection on the the reverse engineered SD
models with and without normalization. The steps of our normalization are detailed
in Section 3.3. In brief, normalization involves eliminating irrelevant differences
by selectively “blind renaming” most attribute values, and by filtering out irrele-

Clone Detection in Sequence Diagrams 23

Table 2 Clone detection results after normalization at a difference threshold of 10%

Model Information Without Normalization With Normalization
Model Name # Lines # BES # Cl. Pairs # Cl. Classes # Cl. Pairs # Cl. Classes

AnonSD1 751 30 0 0 14 8
RegSD1 5375 223 0 0 1116 14

ForcedAnon SD1 9501 142 0 0 298 19
AdminSD 469356 513 0 0 9584 27
AnonSD2 53860 314 0 0 3156 24
RegSD2 455686 954 0 0 39770 29

ForcedAnon SD2 37915 1232 0 0 60455 27

Fig. 16 An Example of a false positive.

vant elements and repeated information. For example, operation elements associ-
ated with xmi:type="uml:ReceiveOperationEvent" elements are redundant, since
the same operation element will be associated with the corresponding xmi:type=
"uml:SendOperationEvent". Renaming and filtering to remove redundancy and irrel-
evant differences allows our potential clone comparisons to be more focussed and
precise.

Table 2 shows the new BES conversation clone detection results after normaliza-
tion, using a difference threshold of 10%. We can also see that, without normalization,
no clones are reported at 10%, due to the irrelevant differences.

Compared to the results at 35% shown in Table 1, the combination of normal-
ization and the low difference threshold of 10% eliminated false positive clone pairs
such as those shown in Figure 16, and additionally removed the large number of irrel-
evant very small clones reported at 35%. As expected at a low difference threshold of
10%, many fewer near miss clone pairs are reported overall, reflecting a more precise
analysis.

Analysis of the results after normalization revealed that all reported clone pairs
were paired based on the main action performed, and with a similarity percentage of
(96 - 100)%. The action performed is represented as part of the operation elements in
the contextualized representation. With these more accurate results, we were ready to
apply our clone detection to finding access violations.

24 M. H. Alalfi, E. P. Antony, J. R. Cordy

Table 3 Approach Performance Analysis (in CPU seconds)

Model Information Performance Analysis per Stage Total Time

Model Name XMI
Lines

Contex-
tualize

Extract Rename Clones
10%

Clones
35%
(-BR)

All stages
@ 10%

All stages
@ 35%

AnonSD1 751 0.1 0.0 0.1 0.1 0.1 0.4 0.4
RegSD1 5375 4.9 0.4 0.6 1.0 1.3 6.9 7.2

ForcedAnon SD1 9501 4.7 0.2 0.3 0.3 0.4 5.6 5.7
AdminSD 469356 2000.6 2.5 2.7 39.2 60.7 2045.0 2066.5
AnonSD2 53860 62.3 0.6 0.7 2.5 3.7 66.2 67.3
RegSD2 455686 1492.3 1.8 2.1 23.6 35.1 1519.8 1531.3

ForcedAnon SD2 37915 76.1 0.9 1.1 5.5 7.8 83.6 85.9

4.1.4 Performance Analysis

We conducted our experiments on a 2.3 GHz Intel Core i7 Macintosh Mini with
16 Gb of memory running OSX 10.11.3 El Capitan. Our approach performed very
well, analyzing large models of almost half a million lines of XMI model code in
about 34 minutes. Table 3 provides detailed information about performance analysis
for each stage of our approach. The actual clone analysis after the contextualization
stage takes a total of less than 1.1 minutes for the largest model, which suggests that
more optimization for the contextualization stage will help enhance performance of
the approach.

4.2 Detecting Access Control Vulnerabilities Using Cross-Clone Detection

The third research question asks RQ3: Can the approach be useful in real world
applications, and how does it perform regarding precision and recall? To answer
this question, in the third part of our experiment, we applied our approach to the
problem of detecting suspicious conversations in SDs recovered from a vulnerable
web application. We compared the results using our SD clone detection approach to
uncover potential security violations to the published results from a state of the art
model-checking technique. In the following, we detail the problem to be addressed,
the application of SD clone detection to it, and the results as compared with an ex-
isting heavyweight model-checking approach. In summary, our lightweight clone
detector-based approach achieved 100% recall and 86% precision when compared
to the model-checking approach.

4.2.1 Motivation

Web applications are subject to many security risks. The Open Web Application Secu-
rity Project (OWASP) lists access control, injection, authentication and session man-
agement attacks to be among the top 10 security risks [18]. Most web applications
implement some sort of authentication or authorization mechanism to limit access to
resources or functions. Such limitations are normally specified using access control
policies set up by the administrator of the web application. Authentication determines

Clone Detection in Sequence Diagrams 25

a user’s privileges by verifying that he/she is who he/she claims to be. The most com-
mon method of authentication is password-based, but device-based authentication
(using physical cards or keys), and biometrics-based authentication is also possible.

Once a user is authenticated, access control policies determine which resources
and functions of the application he/she can use based on his/her role (e.g., administra-
tor, registered user, guest, and so on). However, there are cases where these security
mechanisms can fail. Many web applications implement the access control by hiding
links from the user, depending on their privilege level [25]. This kind of vulnerability
is also known as forced browsing. This obscurity-based strategy is highly vulnera-
ble to security breaches, because attackers may be able to simply bypass the access
control mechanisms by guessing or inferring these hidden links and accessing them
directly to get to unauthorized pages.

Authorization by user role is known as Role-Based Access Control (RBAC). The
idea is that privileges are associated with particular roles, such as administrator, reg-
istered user or guest, and access to resources is governed by that role. When a user
logs in in a particular role, they inherit the privileges associated with that role. An
example of a web application using RBAC is the popular open source internet bul-
letin board system phpBB. Like most dynamic web applications, phpBB interacts
extensively with a database back-end. Both user information and privileged, session-
critical information such as roles and access permissions are stored in the database.
Like many web applications, phpBB has three main user roles, administrator, regis-
tered user, and guest, and access to restricted pages is implemented in part by hiding
links to such pages from the user’s role. This property makes phpBB vulnerable to
many forms of security attacks.

In previous work by Alalfi et al., we have reverse engineered the execution traces
of various user roles of phpBB and other web applications into UML 2.1 Sequence
Diagrams in XMI representation using the PHP2XMI framework [2], and then on
to role-based SecureUML security models by joining them with ER models of the
application database and structure [5]. The SecureUML security model is then trans-
formed into a Prolog model, which is used to check that the model conforms to the
specified access control security properties [4]. Using this process, we were able to
identify a list of unauthorized SQL access actions which represent an anonymous
user attempting to access the administrator’s privileged links.

In this work, we use the same set of recovered SD models and use lightweight
SD cross-clone detection to see if we are able to identify the same list of access vi-
olations based on the action performed. Each model represents the execution traces
of a different user with the appropriate control roles. In the cross-cloning experiment
detailed in the next section, we have used three design-recovered sequence diagram
models. The first model (AnonUser) represents the execution traces of an anonymous
user. The second model (AdminUser) represents the execution sequences of an ad-
ministrator, and the third model (ForcedAnon) represents the execution sequences of
an anonymous user attempting to follow the links that only administrators can access
when navigating the same phpBB bulletin board.

In the next few sections, we explain the application of the NICAD cross-clone
detector on the recovered SD models to identify the various cases of access violation

26 M. H. Alalfi, E. P. Antony, J. R. Cordy

45

Admin	 Role
SD	 Model

Anonymous	 Role
SD	 Model

Anon	 with	 Forced	 Admin	
Links	 SD	 Model

Cross-‐Clone
Detec;on

Cross-‐Clone
Detec;on

Conversa;ons	 in	 Common
Admin	 /	 Anon	 Forced	 Admin

Conversa;ons	 in	 Common	
Admin	 /	 Anon

Suspicious
Conversa;ons	 in

Anon	 Forced	 Admin

Fig. 17 Exposing Access Vulnerabilities Using Cross-Clone Detection

occurring in the interaction sequences or conversations in the models. We begin with
basic clone detection in SD models.

In this first application of our SD conversational clone detector, we aim at uncov-
ering potential access control vulnerabilities in the recovered SD behavioural mod-
els of users in different roles. Our approach uses cross-cloning (i.e., conversational
clones between rather than within models) to expose conversations that potentially
violate access control policies. In particular, by comparing the SD model of an ad-
ministrator to the SD model of an anonymous or registered user attempting to access
the same links using forced browsing, we hope to expose conversations involving
access to privileged information.

To implement cross-clone detection, we used the NICAD cross-clone detector
[10], which runs NICAD to identify clones between rather than within systems. In
our application, the cross-clone detector takes as input two recovered SD behavioural
models in XMI form. Using the BES conversation extraction and normalization pro-
cesses described in Section 3, the BES conversations in each model are identified,
extracted and normalized. The clone detection engine then searches for only those
clone pairs consisting of one BES conversation from the first model, and one from
the second. The result is a list of all of the near-miss conversation clones that the two
models have in common.

Figure 17 shows how we use these cross-clone results between models to expose
potential access violations. Our purpose is to check whether an anonymous user can
access any unauthorized content by explicitly attempting to access links that only
the administrator can access while navigating the same forum (i.e., using “forced
browsing”).

We first run the BES conversation cross-clone detector between the AdminUser
model (the recovered model of an administrator interacting with the phpBB forum)
and the ForcedAnon model (the recovered model of an anonymous user interacting
with the phpBB forum, attempting to access all of the same urls as the administrator).

Clone Detection in Sequence Diagrams 27

The result of this cross-clone detection yields a list of all of the cloned instances of
administrator conversations that are in common with the anonymous user conversa-
tions using forced browsing, that is, a list of everything that the administrator can do
that the anonymous user can also do by attempting to follow the same links (Figure
17, bottom left).

Next, we run a second cross-clone detection in which the same AdminUser model
is compared with the Anon model (the recovered model of an anonymous user inter-
acting with the phpBB forum in its normal way, without forced browsing). The result
of this cross-clone detection is a list of all of the cloned instances of administrator
conversations that are in common with a normal anonymous user conversations, that
is, a list of everything the administrator can do that the normal, non-forcing anony-
mous user can also do (Figure 17, bottom middle).

We then take the difference in the sets of extracted clone pairs from the two cross-
clone detections based on the NICAD potential clone identifiers (pcids) of the cloned
conversations (Figure 17, bottom right). NICAD identifies each extracted potential
clone (in our case each BES conversation) using a unique potential clone identifier,
or pcid, which allows us to easily compare the cross-clone results. The resulting list
of remaining clone pairs represents the set of BES conversations that the ForcedAnon
model has in common with the AdminUser model, which are not in common with the
normal Anon model. In other words, the actions that the anonymous user was able to
do while pretending to be the administrator (using forced browsing) that he/she could
not do normally.

Naturally, this set of remaining clone pairs indicates potential access violations
that the anonymous user was able to force by trying administrator links. These clones
are then analyzed to see what database actions (SQL statements) are executed in
these conversations, and thus what privileged information may have been exposed
the anonymous user.

Figure 18 is a snapshot of an SD model cross-clone pair reported by NICAD,
showing the XMI source text of the cloned conversations. Common conversations in
both models (a clone pair) are enclosed within the < clone nlines=... similarity=...>
</clone > tags. Each clone in the pair is enclosed within <source> </source > tags.
The <source> </source > tags specify the file location of the model along with the
start and end line numbers of where this clone instance is located in the original
model file, and the potential clone Id (pcid).

In order to do the cross-clone set differencing, we used the NICAD-generated
XML reports of clone pairs (without the XMI source), as shown above. These reports
provide a list of all of the pcid pairs for the cross-clone pairs detected between each of
the (AdminUser x ForcedAnon) and the (AdminUser x Anon) model comparisons.
These lists were imported into an Excel spreadsheet and sorted to expose the Ad-
min conversations that are present in the (Admin x ForcedAnon) clone pairs but not
present in the (Admin x Anon) pairs. These suspicious ForcedAnon conversations
were then reported as potential access violations.

28 M. H. Alalfi, E. P. Antony, J. R. Cordy

<clone nlines="231" similarity ="91">
<source file="CrssMdl10Spt28/AdmnSqAnonUsingUNF2/AdmnSq/Admin.sd" startline="203106" endline="203351"
pcid="1220">

<BES start="48550R" finish="EventOcc179839">
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BehivExec179839" covered="

phpbb_forumsphpbb_postsphpbb_posts_textphpbb_topicsphpbb_users" start="48550R" finish="EventOcc179839">
...
<eventTag event="SendOp179839">

<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SendOp179839" name="
SendOperationEvent179839" operation="ownedOp179839">

<operationTag operation="ownedOp179839">
<ownedOperation xmi:type="uml:Operation" xmi:id="ownedOp179839" name="Select(posting,p . post_id = $

post_id and t . topic_id = p . topic_id and f . forum_id = p . forum_id and pt . post_id = p . post_id and
u . user_id = p . poster_id)" precondition="48550">

<ownedRule xmi:type="uml:Constraint" xmi:id="48550" name="Select" constrainedElement="
ownedOp179839">

...
</ownedRule>

<ownedParameter xmi:type="uml:Parameter" xmi:id="AcID48550" name="228"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="PN48550" name="225"/>
...

</operationTag>
</packagedElement>

</eventTag>
...

</fragment>
</BES>

</source>
<source file="CrssMdl10Spt28/AdmnSqAnonUsingUNF2/AnonUnF2/ForcedAnon.sd" startline="32572" endline="32817"
pcid="1692">

<BES start="52612R" finish="EventOcc9151">
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BehivExec9151" covered="

phpbb_forumsphpbb_postsphpbb_posts_textphpbb_topicsphpbb_users" start="52612R" finish="EventOcc9151">
...
<eventTag event="SendOp9151">

<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SendOp9151" name="SendOperationEvent9151"
operation="ownedOp9151">

<operationTag operation="ownedOp9151">
<ownedOperation xmi:type="uml:Operation" xmi:id="ownedOp9151" name="Select(posting,p . post_id = $

post_id and t . topic_id = p . topic_id and f . forum_id = p . forum_id and pt . post_id = p . post_id and
u . user_id = p . poster_id)" precondition="52612">

<ownedRule xmi:type="uml:Constraint" xmi:id="52612" name="Select" constrainedElement="
ownedOp9151">

...
<ownedParameter xmi:type="uml:Parameter" xmi:id="AcID52612" name="228"/>
<ownedParameter xmi:type="uml:Parameter" xmi:id="PN52612" name="225"/>
</ownedOperation>
...

</operationTag>
</packagedElement>
</eventTag>
...
</fragment>
</BES>
</source>
</clone>

Fig. 18 An SD Model Cross-Clone Pair Reported by NICAD (in XMI form)

4.2.2 Evaluation

In order to evaluate the accuracy of our lightweight security analysis using SD cross-
clone detection, we compared the results to the previously published security analysis
of the same models using heavyweight SecureUML model checking [4]. Each sus-
picious conversation clone was traced to its associated actions in the original web
application. Each action represents an SQL database access and is identified in the
model by an action id (AcId). By comparing the action ids of the suspicious con-
versation clones to those identified as potential security violations in the published

Clone Detection in Sequence Diagrams 29

Table 4 Cross-clone detection results after normalization at a difference threshold of 10%

Models Compared # Cross-clone Pairs # Cross-clone Classes Analysis time (s)
Admin x ForcedAnon 1154 31 62.1

Admin x Anon 3030 19 73.8
Set Difference (Suspicious Conv.) 62

SecureUML analysis, we are able to evaluate the accuracy of our cross-clone based
lightweight method.

Table 4 shows the results of the cross cloning experiment done using a difference
threshold of 10%. For the first cross-clone detection, comparing the Admin model
to the ForcedAnon model (Admin x ForcedAnon), the NICAD cross clone detector
reports 1154 conversation clone pairs. Based on the similarity of the clones, the re-
ported cross clone pairs are grouped into 31 clone classes. Similarly, the cross-clone
detection comparing the Admin model to the Anon model (Admin x Anon) reported
3030 clone pairs grouped into 19 clone classes. Differencing the clone pairs reported
in (Admin x ForcedAnon) with those in (Admin X Anon) yielded 62 suspicious con-
versations.

The 62 suspicious conversation clones were traced to their ActIds in the origi-
nal models, yielding a total of 14 action ids, each corresponding to a unique SQL
database access.

The original SecureUML model analysis reported by Alalfi et al. [4] identified
12 actions as access violations in the ForcedAnon model, all of which appeared in
our list of 14. Of the 62 suspicious pairs identified by the approach in this paper,
58 are instances of the 12 unauthorized database accesses identified in the previously
published security analysis, and 4 are instances of 2 other database accesses which are
benign (that is, they are false positives by comparison with the previously published
analysis).

Thus based on the standard definitions, our lightweight security analysis using
only SD clone detection on the recovered SD models yielded a recall of 12/12 or
100%, and a precision of 12/14 or 86% by comparison with the previously published
and validated SecureUML model checking analysis of Alalfi et al. [4]. This is a re-
markable result: the SecureUML analysis uses two more models and three more steps
to achieve essentially the same result that we obtain using simple cross-clone detec-
tion and set differencing.

4.3 Threats to validity

There are several possible threats to the validity of our results. The first is that we have
used a set of recovered sequence diagram models for our experimental validation. The
extent to which these models are representative will affect the applicability of the
results. The recovered sequence diagrams were derived from execution of a single
but production medium-sized web application. They span a set of several dynamic
pages visited by users in three different roles, and include some very large models,

30 M. H. Alalfi, E. P. Antony, J. R. Cordy

making them good candidates for the experiment. More sample models or recovered
models from other applications would generalize our results.

Second, our approach is widely tuneable, depending on the purpose of the clone
analysis. In this paper, we discussed one example application on which this approach
can provide accurate answers, with high precision and recall when compared to an in-
dependent heavyweight approach to the problem. While the case study used specific
values for the threshold, renaming, minimum and maximum number of lines per con-
versation parameters, different values of these parameters may be more appropriate
or provide better results for other kinds of applications.

Third, there are very limited available resources when it comes to finding model
repositories for similar experiments. The only tool for sequence diagrams that is com-
parable to ours is Störrle’s match tool [30], which handles only models built using
magicDraw and expects them in the mdxml format. The match tool is also designed
for target models built using a forward engineering approach. When we tried apply-
ing the tool on one of our large models after transforming it to the mdxml format,
the match tool was unable to digest the model. Thus for a lack of comparable tools to
compare our results to, we were forced to hand validate the correctness of our results.
However, our tool is based on the NiCad engine, which has been validated against all
existing tools designed for software clone detection in a recent comprehensive exper-
iment, which found that NiCad outperformed all other clone detection tools in both
precision and recall [31].

In addition to hand validating our results, we evaluated the precision and recall
of our approach using a specific application case study, detecting access control anti-
patterns. In that case study the approach gave promising results. More related exper-
iments are needed to generalize our findings.

5 Related work

Liu et al. [15] have used suffix trees to identify clones in sequence diagrams. Like us,
they use BES interactions as the basic elements of comparison, however, they encode
each sequence diagram into an array and then concatenate all the arrays into a Long
Array (LA). A suffix tree is then constructed for this LA. Their algorithm looks for
longest common prefix in the suffix tree to check for duplicates and also ensures that
the duplications detected are extractable. Duplicate fragments were refactored if they
were considered to be a bad smell.

Tree comparison has been used by Rattan et al. [19] for finding duplicates in class
diagrams from the XMI representation using the DOM’s API and XML parsing.

Rubin et al. [23, 24] work with both structural and behavioural models, specif-
ically class and statechart diagrams. They identify common, variable and optional
parts of the input model with the intent of re-factoring input model into product lines.

Störrle [28, 29] talks about the challenges and possibilities of clone detection in
all types of UML domain models. His work is based on an earlier work on model
matching and model querying [27]. He observes that UML models are loosely con-
nected graphs of heavy nodes, and implements a graph matching algorithm in Pro-
log, representing models as a set of facts, and using Prolog rules to find clones using

Clone Detection in Sequence Diagrams 31

various similarity heuristics . The clone detection algorithm and the evaluation of the
heuristics is implemented as the MQlone tool, a plugin in the MagicDraw UML CASE
tool that reports clones to the user.

Like us, Störrle handles near-miss (Type 3) clones, but using metrics on the graph
structure of the models rather than our approximate string matching. The distinguish-
ing characteristic of our work is the identification and extraction of separate "con-
versations". While Störrle works on entire models and derives his graphs from the
UML/UMI representation in the raw, we identify, normalize and separate sequence
diagram conversational units representing meaningful and complete interactions. His
method is general rather than tailored to sequence diagrams models and their mean-
ing.

Nejati et al. [17] use a match function to compare the input models using both
static (structural and textual attributes like element names) and behavioural (to iden-
tify element with similar dynamic behaviours) properties of the models to find cor-
respondence between model elements in hierarchical Echarts (a statechart dialect). A
merge operator is used to then merge the elements that are similar. For static match-
ing, a combination of typographic, linguistic and depth heuristics are considered to
find the similarity values between corresponding state names. For behavioural match-
ing, their algorithm iteratively computes the similarity degree for every pair of states
(s,t) of the input models by aggregating the similarity degrees between the immediate
neighbours of s and those of t. For this, their algorithm also compares the transition
labels between the states [17].

Overall similarity is obtained by taking the average of both the static and be-
havioural similarity values. A threshold value selected by the user is used to translate
the similarity value into a binary relation. All the state pairs whose similarity values is
greater than the threshold are included in the binary relation, and others are left out.
The state charts are merged based on the binary relation value after a set of sanity
checks. According to the authors,"[their] match and merge algorithms are scalable in
terms of high computational efficiency and space." Tool support (TReMer+) is also
provided, however, there are still practical limitations for visualizing larger models
among others. Their approach requires a domain expert to go over the correspondence
relation for more correctness before the merging.

Al-Batran et al. [1] identify a number of semantics-preserving transformations
that allow for detection of semantically equivalent Simulink clones. By performing
these transformations, model clone detection recall is increased: semantically simi-
lar model clone instances are returned in addition to the structurally similar clones
detected by other approaches. We may be able to incorporate their work into our ap-
proach by representing these transformations as textual source transformations and
applying them to our normalized NICAD SD model representations. .

Of these techniques, only Liu et al. and Störrle handle UML 2.0 sequence dia-
grams, and only Liu et al. also targets conversations. Our work is based on identifying
similar patterns in sequences of message interactions using BES in SDs. With contex-
tualization and consolidation steps, the BES units created are complete sequences of
interactions and the clones reported are thus extractable as entire conversations. Our
work also differs from others in its goal of characterizing and identifying patterns of
potential security violations in web applications.

32 M. H. Alalfi, E. P. Antony, J. R. Cordy

None of the other methods have been tested on large models, and with the ex-
ception of Störrle, only exact (Type 1) clones are handled. By contrast, our work
uses a similar approach to the one developed by Alalfi et al. [6] to detect near-miss
clones in Simulink models in order to find near-miss (Type 3) clones in SDs. The
additional distinction in this work is that UML models in general, and behavioural
models specifically, require consolidation and contextualization to localize the repre-
sentation for comparison. No other method enriches the precision of their similarity
detection using such localization.

The NICAD clone detector [10] has been successfully used in finding clones in
many source code languages. It is a hybrid text-based clone detector which requires
a specified granularity (a unit of comparison) which occurs naturally in most source
code languages. Examples of granularity in source code languages include functions,
blocks, statements, or even classes in object-oriented languages. For modelling lan-
guages such as Simulink, a new tool called Simone [6] has been based on NICAD to
identify near miss subsystem clones in Simulink models. Simone adapts and special-
izes NICAD to enable scalable and accurate clone detection in large scale Simulink
models.

In previous work, we surveyed the entire area of code-clone detection [21]. NICAD
was chosen as the code-clone technique to adapt as the basis of our approach because
of its parsing, normalizing, and text-comparing abilities and because it was specif-
ically designed to efficiently detect near-miss clones, something which had not yet
been accomplished in the model clone detection domain.

We have also surveyed work on model comparison techniques [26], which in-
cluded ConQAT and ModelCD. The majority of research in the area of model com-
parison is based on finding corresponding and differing model elements in a set or
sets of models and much of it is geared towards model versioning. Model clone detec-
tion, especially near-miss model clone detection, differs from this idea: Model clone
detection attempts to find a group of similar or related elements that have likely been
reproduced from one another rather than explicitly trying to identify what individual
elements are the same or are different. Thus, many of approaches in our survey are
not applicable for model clone detection. The only approaches that may be leveraged
are those that use similarity based metrics for comparison, such as EMFCompare [8],
which performs similarity comparison on structural system models. We leave clone
detection in that area as future work, as we are currently interested in SD behavioral
models only.

Gauthier et al. [13] use clone detection for identifying clusters of security sen-
sitive code in open source PHP web applications. With the assumption that syntac-
tically similar clones should have similar access control privileges. They hypothe-
size that clones that do not follow this assumption violate security privileges and
report them as “security discordant” clones. In our case, we use cross-clone detection
to identify patterns of conversations in the administrator model that contain actions
(SQL accesses) at the administrator level in anonymous user models given access to
administrator links with forced browsing.

Clone Detection in Sequence Diagrams 33

6 Conclusions and Future Work

In this paper we have presented a practical approach to identifying near-miss cloned
conversations in behavioural models, using consolidation and contextualization of
the XMI interchange representation of UML sequence diagram models to identify
and compare interaction sequences for clones.

In our experiments, our approach has efficiently detected Type 3 (exact near-miss)
conversation clones in seven sequence diagrams of various sizes reverse-engineered
from monitored interactions of web applications. Depending on the analysis, a set of
normalizations may need to be applied to further refine the results to only include the
most significant clones.

We have applied our approach on the problem of identifying access control secu-
rity vulnerability patterns in recovered models of interaction with web applications.
Our approach shows promising results with high precision and recall compared to a
state-of-the-art model-checking based method. All results were obtained in less than
1.1 minutes for sequence diagrams of up to half a million XMI lines with between 30
to 1232 conversations, exclusive of the time required for preprocessing (contextual-
ization), which required a maximum of about 33.3 minutes for the largest model. We
are presently working on enhancing the contextualization stage to further improve the
total performance.

Currently, the results we obtain from the clone detector are presented in NICAD’s
default XML and HTML text formats. We plan to trace the clones back to the original
diagrams and visualize them in the model. We believe that our approach can relatively
easily be extended to other kinds of UML and behavioural model representations.

We are interested in testing our approach on behavioural models other than SD,
such as statecharts, and to experimenting with a large variety of models of various
types, including those with more advanced features such as loops and components.
It will be interesting to test our approach on behavioural models designed using for-
ward engineering, with the aim of refactoring to improve design and maintenance
properties of the models.

Acknowledgments

This work is supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) as part of the NECSIS Automotive Partnership, and by
the Ontario Research Fund through a Research Excellence grant.

References

1. B. Al-Batran, B. Schätz, and B. Hummel. Semantic clone detection for model-
based development of embedded systems. Model Driven Eng. Languages and
Syst., 6981:258–272, 2011.

2. Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Automated reverse
engineering of UML sequence diagrams for dynamic web applications. In 1st
International Workshop on Web Testing, WebTest 2009, pages 287–294, 2009.

34 M. H. Alalfi, E. P. Antony, J. R. Cordy

3. Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. WAFA: Fine-grained
dynamic analysis of web applications. In 11th International Symposium on Web
Systems Evolution, WSE 2009, pages 41–50, 2009.

4. Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Automated verification
of role-based access control security models recovered from dynamic web appli-
cations. In 14th International Symposium on Web Systems Evolution, WSE 2012,
pages 1–10, 2012.

5. Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Recovering role-based
access control security models from dynamic web applications. In 12th Interna-
tional Conference on Web Engineering, ICWE 2012, pages 121–136, 2012.

6. Manar H. Alalfi, James R. Cordy, Thomas R. Dean, Matthew Stephan, and An-
drew Stevenson. Models are code too: Near-miss clone detection for Simulink
models. In 28th IEEE International Conference on Software Maintenance, ICSM
2012, pages 295–304, 2012.

7. Elizabeth P. Antony, Manar H. Alalfi, and James R. Cordy. An approach to
clone detection in behavioural models. In 20th Working Conference on Reverse
Engineering, WCRE 2013, Koblenz, Germany, October 14-17, 2013, pages 472–
476, 2013.

8. C. Brun and A. Pierantonio. Model differences in the Eclipse modelling frame-
work. The European Journal for the Informatics Professional, pages 29–34,
2008.

9. James R. Cordy. The TXL source transformation language. Science of Computer
Programming, 61(3):190–210, 2006.

10. James R. Cordy and Chanchal K. Roy. The NICAD clone detector. In 19th
IEEE International Conference on Program Comprehension, ICPC 2011, pages
219–220, 2011.

11. Thomas R Dean, James R Cordy, Andrew J Malton, and Kevin A Schneider.
Agile parsing in TXL. Automated Software Engineering, 10(4):311–336, 2003.

12. M.R. Farhadi, B.C.M. Fung, P. Charland, and M. Debbabi. BinClone: Detecting
code clones in malware. In 8th International Conference on Software Security
and Reliability, SERE 2014, pages 78–87, June 2014.

13. François Gauthier, Thierry Lavoie, and Ettore Merlo. Uncovering access con-
trol weaknesses and flaws with security-discordant software clones. In 29th An-
nual Computer Security Applications Conference, ACSAC 2013, pages 209–218,
2013.

14. Saruhan Karademir, Thomas Dean, and Sylvain Leblanc. Using clone detection
to find malware in Acrobat files. In 23rd Conference of the Center for Advanced
Studies on Collaborative Research, CASCON 2013, pages 70–80, 2013.

15. Hui Liu, Zhiyi Ma, Lu Zhang, and Weizhong Shao. Detecting duplications in se-
quence diagrams based on suffix trees. In 13th Asia-Pacific Software Engineering
Conference, APSEC 2006, pages 269–276, 2006.

16. Douglas Martin and James R. Cordy. Towards web services tagging by similarity
detection. In The Smart Internet, pages 216–233, 2010.

17. Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook, and
Pamela Zave. Matching and merging of statecharts specifications. In Interna-
tional Conference on Software Engineering, ICSE 2007, pages 54–64, 2007.

Clone Detection in Sequence Diagrams 35

18. OWASP. Forced browsing, https://www. owasp.org/index.php/Forced_browsing,
last access November 2013.

19. Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Model clone detection
based on tree comparison. In IEEE India Conference, INDICON 2012, pages
1041–1046, 2012.

20. C. K. Roy and J. R. Cordy. NICAD: Accurate detection of near-miss intentional
clones using flexible pretty-printing and code normalization. In 16th Int. Conf.
on Program Compreh., pages 172–181, 2008.

21. C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach. Sci. Comput. Pro-
gram., 74(7):470–495, 2009.

22. Chanchal Kumar Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming, 74(7):470–495, 2009.

23. Julia Rubin and Marsha Chechik. From products to product lines using model
matching and refactoring. In 2nd International Workshop on Model-Driven Soft-
ware Product Line Engineering, MAPLE 2010, pages 155–162, 2010.

24. Julia Rubin and Marsha Chechik. Combining related products into product lines.
In 15th International Conference on Fundamental Approaches to Software En-
gineering, FASE 2012, pages 285–300, 2012.

25. Rob Shapland. Forced browsing: Understanding and halting sim-
ple browser attacks, http://www.computerweekly.com/answer/Forced-browsing-
Understanding-and-halting-simple-browser-attacks, last access December 2013.

26. M. Stephan and J. R. Cordy. A survey of methods and applications of model
comparison. Technical Report 2011-582 Rev. 2, Queen’s Univ., 2011.

27. Harald Störrle. VMQL: A generic visual model query language. In IEEE Sympo-
sium on Visual Languages and Human-Centric Computing, VL/HCC 2009, pages
199–206, 2009.

28. Harald Störrle. Towards clone detection in UML domain models. In VIII Nordic
Workshop on Model-Driven Software Engineering, ECSA 2010 workshops, pages
285–293, 2010.

29. Harald Störrle. Towards clone detection in UML domain models. Software and
System Modeling, 12(2):307–329, 2013.

30. Harald Störrle. MACH 5 hypersonic, http://www2.compute.dtu.dk/ rvac/hyper-
sonic/, last access February 2015.

31. Jeffrey Svajlenko and Chanchal K. Roy. Evaluating clone detection tools with
bigclonebench. In 2015 IEEE International Conference on Software Mainte-
nance and Evolution, ICSME 2015, Bremen, Germany, September 29 - October
1, 2015, pages 131–140, 2015.

32. WatirCraft. Watir, http://watir.com, last access November 2014.

