
An Approach to Clone Detection in
Behavioural Models

Elizabeth P. Antony Manar H. Alalfi James R. Cordy

School of Computing, Queen’s University, Kingston, Canada
{antony, alalfi, cordy}@cs.queensu.ca

Abstract—In this paper we present an approach for identi-

fying near-miss interaction clones in reverse-engineered UML

behavioural models. Our goal is to identify patterns of interaction

(“conversations”) that can be used to characterize and abstract

the run-time behaviour of web applications and other interactive

systems. In order to leverage robust near-miss code clone tech-

nology, our approach is text-based, working on the level of XMI,

the standard interchange serialization for UML. Behavioural

model clone detection presents several challenges - first, it is not

clear how to break a continuous stream of interaction between

lifelines into meaningful conversational units. Second, unlike

programming languages, the XMI text representation for UML is

highly non-local, using attributes to reference information in the

model file remotely. In this work we use a set of contextualizing

source transformations on the XMI text representation to reveal

the hidden hierarchical structure of the model and granularize

behavioural interactions into conversational units. Then we adapt

NiCad, a near-miss code clone detection tool, to help us identify

conversational clones in reverse-engineered behavioural models.

I. INTRODUCTION

UML behavioural models, or sequence diagrams, can be
used to represent the complex dynamic interactions of inter-
active systems such as web applications. Using "lifelines" to
represent concurrent processes such as the user, the browser,
the server, the backend database and various threads within
them, sequence diagrams document behaviour as sequences
of interactions between the lifelines using events, messages,
and other communications. Sequence diagrams can be used
in forward engineering to specify intended behaviour, or in
reverse engineering to observe and document actual behaviour.

In our previous work in web application security analy-
sis using role-based access control [1, 2], we have reverse
engineered the run-time behaviour of web applications to
UML sequence diagrams that describe the entire history of
interactions in a web application session. Using an automated
test harness based on WATIR [3] to exercise the application
in various different roles, we were able to document the
behaviour of the application for users in those roles and
compare it to the behaviour of other roles.

Given the complexity of production interactive web appli-
cations, such reverse engineered sequence diagrams are often
very large, and hence difficult to analyze by hand. In par-
ticular, the identification of repeated sequences of behaviour
(conversations) between components is simply impractical to
do manually.

In this paper, we propose an automated approach to
analysing such models to identify repeated patterns of similar
interactions in them using the near-miss code clone detector
NiCad [4]. Clone detection is applied to a contextualized
text representation of the models that compares self-contained
hierarchical text descriptions of interaction sequences using
source transformations of the XMI interchange representation
of the UML behavioural model.

In our initial experiments, we have been able to identify a
significant number of duplicated conversations with varying
degrees of similarity in an initial set of sequence diagram
models reverse engineered from the dynamic behaviour of
the PhpBB web application exercised in various user roles.
Clone detection in behavioural models has many applications.
For example, clones in reverse engineered behavioural models
from web applications can be used to find worrisome patterns
such as security violations.

II. BACKGROUND

UML sequence diagrams (SDs) are 2-Dimensional graphical
models used to represent the interaction between various ob-
jects or actors in a system, encoding the order in which events
and message interactions between the actors occur. They are
mainly used to model the behaviour of web applications
and other interactive applications where the sequencing of
interactions over time needs to be specified.

Figure 1 shows an example highlighting the main elements
in a basic sequence diagram. These include Lifelines, Mes-
sages, Behavior Execution Specification (BES), Message Oc-
currence Specification (MOS), Events, Classes. Other elements
such as Events, Classes, Properties etc. are not shown in the
figure for readability.

Sequence diagrams can be represented in text using XMI
representation, the XML-based standard interchange format
used for exchanging models between various modelling tools
[5]. Interactions in a sequence diagram are represented in XMI
format as "fragments", as shown in Figure 4. Every element of
a sequence diagram has an XMI Id identified by "xmi:id" and
a set of attributes that shows the relationship of this element
with the others. In Figure 4, the attribute values have been
renamed to aid comprehension.

Sequence diagram model-clone detection entails discover-
ing similar or identical sequences of behavioural interaction
("conversations"). Unlike source code, which is represented

978-1-4799-2931-3/13 c� 2013 IEEE WCRE 2013, Koblenz, Germany
ERA Track

Accepted for publication by IEEE. c� 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

472

!
!

!

"#$%&#'%(!

)%((*+%!,--.//%'-%!
01%-#$#-*2#3'!4),05!

6%7*8#3/!9:%-.2#3'!
01%-#$#-*2#3'!46905!

!9:%-.2#3'!
,--.//%'-%!
01%-#$#-*2#3'!49,05!

)%((*+%(!

Fig. 1. Elements of a basic sequence diagram

as linear text, models are typically represented visually, as
box-and-arrow diagrams. Model clones can thus be thought
of as similar sub graphs of these diagrams. Figure 2 shows an
example of a potential SD model clone.

III. APPROACH

Our approach (Figure 3) consists of three stages. The first
stage transforms the XMI sequence diagram serialization into
a contextualized form in which we localize references to reveal
the hidden structure of the textual SD representation. This
transformation identifies self-contained units of behavioural
interaction that we will use later as the fragments for clone
comparison. The second stage normalizes the resulting con-
textualized units to remove irrelevant elements and rename
irrelevant naming differences to make the process of clone
identification more accurate. The final stage uses a stan-
dard code clone detector to automatically identify cloned
behavioural interactions from the large set of contextualized
and normalized interaction units. In the following subsections
we discuss each of the above stages in more detail using a
running example.

A. Clone Detection Analysis
Identifying cloned behavioural interactions in a large scale

reverse-engineered SDs poses significant issues of scale. For
that reason, we have adapted a highly scalable code clone de-
tection technique, NiCad [4], to work on behavioural models.

In previous work we have used NiCad to identify near-
miss sub-system clones in Simulink models [6]. As a code
clone detector, NiCad was mainly designed to identify clones
in languages with a well defined nesting structure. Unlike
Simulink models, the XMI serialization of UML sequence
diagrams does not have an explicit nesting structure, thus
one of the main challenges in adapting it to this task was
understanding how to reverse engineer the hidden nested
structural representation of interaction conversations from the
flat representation of the original XMI SD serialization. This

!

!

!

!

!

!

"#$%&$'()!
*)#&%+!

! Fig. 2. Example of potential clones

is the purpose of the contextualization stage that we discuss
in Subsection III-B below.

A second challenge was the identification of the right level
of granularity for comparison. In SD conversations, granularity
at the message level is very small and would lead to huge
number of clones that would not be useful and probably
irrelevant for most applications. On the other hand, comparing
the entire conversation of a whole lifeline would likely reveal
very few clones and would miss many interesting sub similar
conversation. Thus we decided to break conversations into
smaller windows at the sub-conversation level. This led us
to choose SD Behavioural Execution Specifications (BESs) as
the best units for comparison. BESs have identified start and
finish points that correspond roughly to the start and end of the
sub-conversations happening on specific lifeline. The example
clone pair shown in Figure 2 are sub-conversation clones at
the BES level of granularity.

B. Transformation and Contextualization
In the flat structure of the XMI sequence diagram repre-

sentation (Figure 4), there is little locality, and fragments and
elements of sub-conversations are spread across the text. XML
attributes and the order of elements are used to reference
and implicitly group related elements. Behaviour Execution
Specifications (BESs), for example, reference the lifeline they
are part of using the covered attribute, and the sequence
of messages and events of the conversation using the start
and finish attributes, and these elements in turn refer to
their parts in similar fashion. In order to restructure this
scattered representation for comparison purposes, we need to
recursively gather the referenced and related elements of the
BES conversations together and organize them explicitly into
the structures they represent.

We have used TXL [7] source transformations to implement
this restructuring. TXL is a structural transformation system,
thus the first step was to define a general grammar for parsing
the original XMI representation of the sequence diagrams.

473

XMI File
Representation

(Sequence Diagram)

Transformation/
Contextualization

(Using TXL)
Normalization

Clone Detection
/ Analysis

(Using NiCad)

Fig. 3. Steps of our approach

<packagedElement xmi:type="uml:Collaboration" xmi:id="Collaboration1Id" name="Collaboration1">
<ownedBehavior xmi:type="uml:Interaction" xmi:id="INT1Id" name="Interaction1">

<ownedConnector xmi:type="uml:Connector" xmi:id="OC3Id">
<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End1Id" role="PROPl2Id"/>
<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End2Id" role="PROPl3Id"/>

</ownedConnector>
<lifeline xmi:type="uml:Lifeline" xmi:id="LFLNl1Id" name="l1" represents="PROPl1Id" coveredBy="MOS1Id"/>
<lifeline xmi:type="uml:Lifeline" xmi:id="LFLNl2Id" name="l2" represents="PROPl2Id" coveredBy="MOS2Id BES1Id EOS3Id MOS3Id MOS4Id BES2Id EOS1Id MOS5Id"/>
<lifeline xmi:type="uml:Lifeline" xmi:id="LFLNl3Id" name="l3" represents="PROPl3Id" coveredBy="MOS6Id BES3Id EOS2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS1Id" covered="LFLNl1Id" event="SOE1Id" message="MSG1Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS2Id" covered="LFLNl2Id" event="ROE1Id" message="MSG1Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES1Id" covered="LFLNl2Id" start="MOS2Id" finish="EOS3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS3Id" covered="LFLNl2Id" event="SOE2Id" message="MSG2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS4Id" covered="LFLNl2Id" event="ROE2Id" message="MSG2Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES2Id" covered="LFLNl2Id" start="MOS4Id" finish="EOS1Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS1Id" covered="LFLNl2Id" event="EE1Id" execution="BES2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS5Id" covered="LFLNl2Id" event="SOE3Id" message="MSG3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS6Id" covered="LFLNl3Id" event="ROE3Id" message="MSG3Id"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES3Id" covered="LFLNl3Id" start="MOS6Id" finish="EOS2Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS2Id" covered="LFLNl3Id" event="EE1Id" execution="BES3Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS3Id" covered="LFLNl2Id" event="EE1Id" execution="BES1Id"/>
<message xmi:type="uml:Message" xmi:id="MSG1Id" name="Msg1" messageSort="asynchCall" receiveEvent="MOS2Id" sendEvent="MOS1Id" connector="OC1Id"/>
<message xmi:type="uml:Message" xmi:id="MSG2Id" name="Msg2" messageSort="asynchCall" receiveEvent="MOS4Id" sendEvent="MOS3Id" connector="OC2Id"/>
<message xmi:type="uml:Message" xmi:id="MSG3Id" name="Msg3" messageSort="asynchCall" receiveEvent="MOS6Id" sendEvent="MOS5Id" connector="OC3Id"/>

</ownedBehavior>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl2Id" name="l2" type="CLSSL2Id"/>
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl3Id" name="l3" type="CLSSL3Id"/>

</packagedElement>
<packagedElement xmi:type="uml:Class" xmi:id="CLSSL3Id" name="L3">
<ownedOperation xmi:type="uml:Operation" xmi:id="CLSSL3OO1Id" name="Msg3"/>

</packagedElement>
<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SOE2Id" name="SendOperationEvent2" operation="CLSSL2OO2Id"/>
<packagedElement xmi:type="uml:ReceiveOperationEvent" xmi:id="ROE2Id" name="ReceiveOperationEvent2" operation="CLSSL2OO2Id"/>
<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SOE3Id" name="SendOperationEvent3" operation="CLSSL3OO1Id"/>
<packagedElement xmi:type="uml:ReceiveOperationEvent" xmi:id="ROE3Id" name="ReceiveOperationEvent3" operation="CLSSL3OO1Id"/>

Fig. 4. Step I: Identification of BES fragments in the XMI representation (The example is only a snapshot of the larger SD model)

Next, a set of source transformation rules were created to iden-
tify, consolidate and contextualize BES specifications into self-
contained hierarchical units representing the sub-conversations
to compare. The restructuring process consists of 3 steps:

1) Identify: This step identifies all the Behaviour Execu-
tion Specification elements in the model representation and
restructures them into units identified by <BES>...</BES> tags.
In the example of Figure 4, three BES elements have been
identified. Figure 5 shows the result of tagging and applying
the consolidation of the next subsection to the identified BESs.

2) Consolidate: Once the tag container for the BES is
created, we gather and nest all of the BES’s conversation
elements into the container. Each BES element has a start and
finish attribute, the ids of which specify the elements of the
flat representation that begin and end the BES’s conversation.
Because message, behaviour and event occurrences are totally
ordered in the XMI representation, this step primarily involves
moving the adjacent elements of the conversation before and
after the BES inside the <BES> tag to consolidate the whole
conversation (Figure 5).

3) Contextualize: Consolidated BES conversations con-
sist of embedded BESs, Message Occurrence Specifications
(MOSs) and Execution Occurrence Specifications (EOSs) de-
scribing the conversation’s interactions with other lifelines.
Similarly to BESs themselves, these use their XML attributes
to link to the elements such as messages, types and other
lifelines that describe their meaning. For example, in Figure
5, the third embedded BES unit (highlighted in orange), has
two MOS and one EOS fragment.

To contextualize a consolidated BES, each MOS and EOS
fragment in the BES is converted to a container tag, and the
elements referred to by the attributes of the fragment are then
inlined into the container. In this way, the BES becomes an
independent self-contained unit with no dependence on its
context. For example, MOS fragments have covered, event
and message attributes, as shown in Figure 6. These attributes
represent the covered lifeline, event and message of this
particular Message Occurrence Specification.

Contextualization proceeds recursively. For example, to
inline the covered attribute of the second MOS in the third em-
bedded BES example of Figure 5, the <lifeline> element with
id LFNI3Id referred to by the attribute is located and copied
into the container tag of the MOS. From the inlined <lifeline>
element, the ownedAttribute element with xmi:id="PROPl3Id"
referred to by the lifeline’s represents attribute is then inlined
to include the property/object of the class that the lifeline
covers. For the event attribute of the MOS, which speci-
fies whether the message occurrence is a send or receive
event, we inline the corresponding <packagedElement> with
xmi:id="ROE3Id", and from its operation attribute, the corre-
sponding <ownedOperation> element is then inlined. Finally,
the message attribute of the MOS references the corresponding
message element, the send and receive MOS’s of the message
along with the <ownedConnector> element referred to by its
connector attribute, which represents the end points of the
message where they connect to the lifelines.

The EOS fragment of the example BES is converted to
a container tag and contextualized by recursively inlining

474

<BES start="MOS2Id" finish="EOS3Id">
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES1Id" covered="LFLNl2Id" start="MOS2Id" finish="EOS3Id">
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS1Id" covered="LFLNl1Id" event="SOE1Id" message="MSG1Id"/>

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS2Id" covered="LFLNl2Id" event="ROE1Id" message="MSG1Id"/>
<BES start="MOS4Id" finish="EOS1Id">

<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES2Id" covered="LFLNl2Id" start="MOS4Id" finish="EOS1Id">
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS3Id" covered="LFLNl2Id" event="SOE2Id" message="MSG2Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS4Id" covered="LFLNl2Id" event="ROE2Id" message="MSG2Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS1Id" covered="LFLNl2Id" event="EE1Id" execution="BES2Id"/>

</fragment>
</BES>
<BES start="MOS6Id" finish="EOS2Id">

<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES3Id" covered="LFLNl3Id" start="MOS6Id" finish="EOS2Id">
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS5Id" covered="LFLNl2Id" event="SOE3Id" message="MSG3Id"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS6Id" covered="LFLNl3Id" event="ROE3Id" message="MSG3Id"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS2Id" covered="LFLNl3Id" event="EE1Id" execution="BES3Id"/>

</fragment>
</BES>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS3Id" covered="LFLNl2Id" event="EE1Id" execution="BES1Id"/>

</fragment>
</BES>

Fig. 5. Step II: Consolidation of BES conversation elements.

<BES start="MOS6Id" finish="EOS2Id">
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BES3Id" covered="LFLNl3Id" start="MOS6Id" finish="EOS2Id">

...
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS6Id" covered="LFLNl3Id" event="ROE3Id" message="MSG3Id">

<lifeline xmi:type="uml:Lifeline" xmi:id="LFLNl3Id" name="l3" represents="PROPl3Id" coveredBy="">
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl3Id" name="l3" type="CLSSL3Id">
</ownedAttribute>

</lifeline>
<packagedElement xmi:type="uml:ReceiveOperationEvent" xmi:id="ROE3Id" name="ReceiveOperationEvent3" operation="CLSSL3OO1Id">

<ownedOperation xmi:type="uml:Operation" xmi:id="CLSSL3OO1Id" name="Msg3">
</ownedOperation>

</packagedElement>
<message xmi:type="uml:Message" xmi:id="MSG3Id" name="Msg3" messageSort="asynchCall" receiveEvent="MOS6Id" sendEvent="MOS5Id" connector="OC3Id">

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS6Id" covered="LFLNl3Id" event="ROE3Id" message="MSG3Id">
</fragment>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MOS5Id" covered="LFLNl2Id" event="SOE3Id" message="MSG3Id">

<lifeline xmi:type="uml:Lifeline" xmi:id="LFLNl2Id" name="l2" represents="PROPl2Id" coveredBy="">
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl2Id" name="l2" type="CLSSL2Id">
</ownedAttribute>

</lifeline>
<packagedElement xmi:type="uml:SendOperationEvent" xmi:id="SOE3Id" name="SendOperationEvent3" operation="CLSSL3OO1Id">
</packagedElement>

</fragment>
<ownedConnector xmi:type="uml:Connector" xmi:id="OC3Id">

<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End1Id" role="PROPl2Id"/>
<end xmi:type="uml:ConnectorEnd" xmi:id="OC3End2Id" role="PROPl3Id"/>

</ownedConnector>
</message>

</fragment>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="EOS2Id" covered="LFLNl3Id" event="EE1Id" execution="BES3Id">

<lifeline xmi:type="uml:Lifeline" xmi:id="LFLNl3Id" name="l3" represents="PROPl3Id" coveredBy="">
<ownedAttribute xmi:type="uml:Property" xmi:id="PROPl3Id" name="l3" type="CLSSL3Id">
</ownedAttribute>

</lifeline>
<packagedElement xmi:type="uml:ExecutionEvent" xmi:id="EE1Id" name="ExecutionEvent1">
</packagedElement>

</fragment>
</fragment>

</BES>

Fig. 6. Step III: Contextualization of embedded elements and attributes

the elements referred to by its covered, event and execution
attributes in a similar fashion, yielding the completely contex-
tualized BES shown in Figure 6 for the example.

Larger SDs may contain any number of MOS, EOS, embed-
ded BESs and other fragments, all of which are contextualized
by inlining in the same way. Each element is restructured
to include the elements referenced by its attributes. Inlining
the elements of each BES in this way creates a set of self-
contained interaction units for comparison in clone detection.

C. Normalization

Thus far in our work we have done little normalization of
BESs. In order to improve the precision and recall of our
clone results, we are implementing a filtering transformation
to remove irrelevant elements from the comparison.

Code clone detection techniques can be categorized accord-
ing to the types of clones they can identify, and in [6] we have
adopted a corresponding categorization for model clone types.
Type 1 (exact) model clones are identical model fragments,

ignoring variations in visual presentation, layout, and format-
ting. Type 2 (renamed) model clones are structurally identical
model fragments, ignoring variations in labels, values, types,
and the variations from Type 1. Type 3 (near-miss) model
clones are model fragments with further modifications such as
small additions or removals of messages in the conversation,
in addition to the variations from Type 1 and 2 clones.

In order to identify Type 2 (renamed) behavioural clones,
a blind or consistent renaming of elements will be necessary.
Thus far, we detect all BES near-miss exact clones (Type 3-1),
but only some near-miss renamed clones (Type 3-2).

IV. EARLY EVALUATION

Currently, we have evaluated our approach on a set of
reverse-engineered models from execution traces of interac-
tions in web applications such as PhPBB. These sequence
diagram models capture the interactions of different users
in different roles while exercising the applications from a
browser. Thus far, we have applied our approach on four

475

TABLE I
EARLY RESULTS USING BES CLONE DETECTION

Model # Lines #BES Difference
Threshold

#Clone
Pairs

#Clone
 Classes

1 752 30 35% 18 6

2 5376 223 35% 1260 12

3 9504 142 35% 407 16

4 53861 314 35% 3330 22

models of various sizes and are currently experimenting with
larger models to test the scalability of our approach.

Because NiCad is a parser-based technique, precision is not
an issue [8]. Recall can be improved using additional filtering
and normalization steps [6], which is our next priority. Table
I shows our early results for a number of web application
sequence models, giving the number of extracted conversations
(BESs), the number of cloned conversations identified (clone
pairs), and the number of groups into which these pairs can be
clustered (clone classes). The near-miss difference threshold
allows for slight variances in similar conversations.

V. RELATED WORK

Liu et al. [9] have used suffix trees to identify clones in
sequence diagrams. Like us, they use BES interactions as the
basic elements of comparison, however, they encode elements
as arrays and used the longest common prefix to check for
duplicates. Duplicate fragments were refactored if they were
considered a bad smell.

Tree comparison has been used by Rattan et al. [10] for
finding duplicates in class diagrams from the XMI representa-
tion using the DOM’s API and XML parsing. Rubin et al. [11]
work with both structural and behavioural models, specifically
class and statechart diagrams with the intent of refactoring
models into product lines.

Störrle [12, 13, 14] talks about challenges and possibilities
in clone detection in all types of UML models. His work
is based on earlier work on model querying, where he used
Prolog to represent model elements as facts and models as a
set of facts, then encode Prolog rules to find clones using a
similarity measure of model elements to identify clones.

Of these techniques, only [9] and [12] handle UML 2.0 se-
quence diagrams, and only [9] also targets conversations. Our
work is based on identifying similar patterns in sequences of
message interactions using BES in SDs. With contextualization
and consolidation steps, the BES units created are complete
sequences of interactions and the clones reported are thus
extractable as entire conversations. Our work also differs from
others in its goal of characterizing and identifying patterns of
potential security violations in web applications.

None of the other methods have been tested on large models,
and only exact (Type 1) clones are handled. By contrast
our work uses a similar approach to the one developed in
[6] to detect near-miss clones in Simulink models in order
to find near-miss (Type 3) clones in SDs. The additional
distinction in this work is that UML models in general,

and behavioural models specifically, require consolidation and
contextualization to localize the representation for comparison.

VI. CONCLUSION
In this paper we propose an approach to identify near-

miss cloned conversations in behavioural models using con-
solidation and contextualization of the XMI interchange rep-
resentation of UML sequence diagram models to identify and
compare interaction sequences for clones.

In our initial experiments, our approach has efficiently
detected Type 3-1 (exact near-miss) conversation clones in four
sequence diagrams of various sizes reverse-engineered from
monitored interactions with web applications. In our next step
we will analyze the clones reported to distinguish which are
important and which are not. Depending on the analysis, a set
of normalizations may need to be applied to further refine the
results to only include the most significant clones.

Currently, the results we obtain from the clone detector are
presented in NiCad’s default XML and HTML text formats.
We plan to trace the clones back to the original diagrams and
visualize them in the model. We believe that our approach
can be applied to other kinds of UML and behavioural model
representations.

ACKNOWLEDGEMENTS
This work is supported in part by NSERC, as part of the

NECSIS Automotive Partnership, and by the Ontario Research
Fund through a Research Excellence grant.

REFERENCES
[1] M. H. Alalfi, J. R. Cordy, and T. R. Dean, “Automated Reverse

Engineering of UML Sequence Diagrams for Dynamic Web
Applications,” in ICSTW, 2009, pp. 295–302.

[2] ——, “WAFA: Fine-grained Dynamic Analysis of Web Appli-
cations,” in WSE, 2009, pp. 41–50.

[3] WatirCraft, “WATIR,” last access March 2009. [Online].
Available: http://wtr.rubyforge.org

[4] J. R. Cordy and C. K. Roy, “The NiCad clone detector,” in
ICPC, 2011, pp. 219–220.

[5] “XMI,” http://www.omg.org/spec/XMI/.
[6] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and

A. Stevenson, “Models are code too: Near-miss clone detection
for Simulink models,” in ICSM, 2012, pp. 295–304.

[7] J. R. Cordy, “The TXL source transformation language,” Sci.
Comput. Program., vol. 61, no. 3, pp. 190–210, 2006.

[8] C. K. Roy and J. R. Cordy, “A Mutation/Injection-Based
Automatic Framework for Evaluating Code Clone Detection
Tools,” in Mutation, 2009, pp. 157–166.

[9] H. Liu, Z. Ma, L. Zhang, and W. Shao, “Detecting Duplications
in Sequence Diagrams Based on Suffix Trees,” in APSEC, 2006,
pp. 269–276.

[10] D. Rattan, R. Bhatia, and M. Singh, “Model clone detection
based on tree comparison,” in INDICON, 2012.

[11] J. Rubin and M. Chechik, “Combining Related Products into
Product Lines,” in FASE, 2012, pp. 285–300.

[12] H. Störrle, “Towards clone detection in UML domain models,”
Softw. and Syst. Modeling, vol. 12, no. 2, pp. 307–329, 2013.

[13] ——, “VMQL: A generic visual model query language,” in
VL/HCC, 2009, pp. 199–206.

[14] H. Störrle, “Towards clone detection in UML domain models,”
in ECSA, 2010, pp. 285–293.

476

