
Automating Coverage Metrics For Dynamic Web Applications

Manar H. Alalfi James R. Cordy Thomas R. Dean

School of Computing, Queen’s University, Kingston, Canada
{alalfi, cordy, dean}@cs.queensu.ca

Abstract—Building comprehensive test suites for web ap-
plications poses new challenges in software testing. Coverage
criteria used for traditional systems to assess the quality
of test cases are simply not sufficient for complex dynamic
applications. As a result, faults in web applications can often
be traced to insufficient testing coverage of the complex
interactions between the components. This paper presents a
new set of coverage criteria for web applications, based on
page access, use of server variables, and interactions with the
database. Following an instrumentation transformation to in-
sert dynamic tracking of these aspects, a static analysis is used
to automatically create a coverage database by extracting and
executing only the instrumentation statements of the program.
The database is then updated dynamically during execution
by the instrumentation calls themselves. We demonstrate the
usefulness of our coverage criteria and the precision of our
approach on the analysis of the popular internet bulletin board
system PhpBB 2.0.

Keywords-Testing; Reverse Engineering; Maintenance and
Enhancement; Web Applications.

I. INTRODUCTION

Testing is one of the most essential yet complex activi-
ties in web application development and maintenance. The
dynamic distributed structure of web applications poses new
challenges to building comprehensive test suites. Users inter-
act with application pages, providing various inputs that are
used to instantiate the server environment variables. These
variables are then used to interact with the database back-
end, retrieving information used to dynamically construct
new client pages to be sent back to the users.

Database interaction is the most critical part of this cycle,
and often requires extensive testing. For this reason, several
approaches have been proposed to assess the correctness
of database interactions in standard database systems, for
example Cabal and Tuya [2] and Wilmor and Embury [14].

Coverage metrics have been proposed on different levels
of granularity for SQL statements either as an isolated
component or as an embedded component in the whole
system. However, most of these approaches either do not
provide automation for coverage assessment, or do not
consider other kinds of interactions. Our approach is spe-
cialized for web applications, handling similar issues to
those tailored for conventional database applications while
at the same time addressing the new challenges related to
the distributed and dynamic structure of web applications.
We have implemented our approach in an extendable and
precise tool.

The contributions of this paper are:
• A set of coverage criteria for the testing of dynamic web

applications. This can be used to assess thoroughness
and the adequacy of test suites applied on different
levels, such as the page access level, the server envi-
ronment variable level, and the database level, as well
as interactions between the levels.

• An extendable, automated approach and tool to instru-
ment, collect and analyze the coverage information. The
tool also statically extracts and analyzes the embedded
SQL subsystem from dynamic web applications.

Web Application Testing

Our tool, called DWASTIC (Dynamic Web ApplicationS
Testing Instrumentation Coverage), can be used to support
many kinds of testing activities for web applications. It
focuses the testing efforts on the vulnerable parts of the
code, which are most likely the source of web application
faults and attacks such as SQL injection. It also provides
a direct way to identify the parts of the code that are not
covered by test cases.

DWASTIC is an essential part of a framework aimed
at testing the conformance of dynamic web applications
with role-based access control security policies [1]. In the
framework, a role-based access control (RBAC) security
model is recovered from the dynamic web application using
a combination of static and dynamic analysis techniques.
This paper explains how DWASTIC is used to augment the
dynamic analysis with instrumentation for code coverage.
This helps to decrease the number of false positives due to
an analysis that yields a model that only partially covers the
code (leading to verification of properties that may in fact
not hold).

The rest of this paper is structured as follows. Section II
presents our proposed coverage metrics. Section III presents
the details of our approach, and Section IV presents an
example that demonstrates our method on a real system.
Section V relates our efforts to previous work. Finally,
Section VI outlines our conclusions and plans for future
work.

II. WEB APPLICATION COVERAGE METRICS

In this section we propose three test coverage dimensions
that are specifically tailored to web applications: web ap-
plication pages, server environment variables and database

PHP
Grammar

InstrumentationGrammar

TXL
Program

PHP
Grammar

ExtractionGrammar

TXL
Program

Initial Coverage
Database

Instrumentation Slice
of PHP Application

Instrumented PHP
Application

PHP Web
Application

Instrumentation
Rules

Grammar
Overrides

Extraction
Rules

Grammar
Overrides

PHP
Program

Update
Coverage
Database

TXL

Instrument
SQL Aspect

Extract & Add
DB Wrapper

Coverage
DB

Execute
Instrumentation

Slice

Program
TXL PHP

Execute Instrumented
Application

PHP

Figure 1. DWASTIC Tool Architecture

interactions. These are not meant to replace traditional code
coverage metrics, rather to augment them with specific
coverage measures for the client and database interaction
aspects of dynamic web applications as well. Our criteria
subsume the criteria proposed for database systems [14],
[2] and include new measures that are specialized for web
applications. The concern in web application testing is
whether the application as a whole behaves as specified,
and this cannot be determined without thorough testing of
all three levels of interaction.

While the coverage criteria we propose can be used to
support many different testing activities, our specific aim is
to provide a completeness measure for extracting an access
control security model from a web application under test.
This requires that we ensure coverage of all client pages
that can be generated from the application, all database
interactions applied on application entities, and all user
inputs passed to server pages or SQL statements that can
influence the dynamically constructed client pages. In the
following subsections we elaborate on our proposed criteria
and how they can serve our aim.

A. Page Access Coverage

Page coverage measures the adequacy of test cases for
ensuring that all server pages are executed at least once and
are running properly. The measure can be expressed as:

Page Coverage = #ofcov.Pages
total#applicationpages

The equation measures the ratio of executed server pages
to the total number of the application server pages.

B. SQL Statement Coverage

SQL statement coverage measures the adequacy of test
cases to insure that all possible SQL statements, including
dynamically constructed ones, are tested at least once.
These statements are different from those which per-
form API calls to issue commands to the database, such
as mysql_query($SQL_Statment, db_connect_id) in
PHP. Using the terminology introduced by the database

community, these API calls are called database interaction
points. Coverage based on database interaction points is
not sufficient, as each specific database interaction point
can issue multiple forms of dynamically constructed SQL
statement.

Our SQL statement coverage measure is done both on the
level of the whole web application and on the level of each
individual server page. The measure based on the application
level can be expressed as:

SQL_Stm Coverage = #ofcov.SQL Stm
total#ofapplicationSQL Stms

The measure on the page level can be expressed as:

Page_SQL_Stm Coverage= #ofcov.SQL StmsinaPage
total#ofSQL Stmsinthepage

C. Server Environment Variable Coverage

Server environment variables are variables returned by
HTTP forms on generated pages using GET or POST. Server
environment variable coverage measures the adequacy of
test cases to insure the coverage of all server environment
variables at the level of the web application, the individual
server page level, and the SQL statement level. The measure
based on the application level can be expressed as:

Server_Env_Var Cov. = #ofpopulatedServer Env V ar
total#oftheapplicationServer Env V ar

The measure for the page level can be expressed as:

Page_Server_Env_Var Cov. = #ofcov.Server Env V arincov.Pages
total#ofServer Env V arinapage

And the measure for the SQL statement level can be
expressed as:

SQL_Server_Env_Var Cov. = #ofcov.SQL StmwithServer Env V ar
total#ofSQL StmwithServer Env V ar

In each case the metric measures the ratio of the number
of server environment variables covered to the total number
of variables used at the different levels.

III. CONSTRUCTING THE COVERAGE DATABASE

Figure 1 shows the architecture of our approach. An
instrumentation transformation is used to analyze the source
code of the application, identifying and globally marking

Server Pages

Page_Ins_ID
Page_ID
«PK» Page_Name
«PK» Page_Param
«PK» Prev_PageID
Page_Acc_TS

Http Variables

«PK» HttpVar_ID
HttpVar_Name
HttpVar_Value
Assigned_Var
HttpVar_Type
HttpVar_Acc_Time
«FK» Page_Ins_ID

Sessions

«PK» Session_ID
Session_IP
Session_ST
Session_ET
«FK» Page_Ins_ID

Database Interactions

«PK» SqlStm_ID
Sql_Source
Sql_Instance
SqlType
EntityName
SQL_Parts
SqlTransTime
«FK» Page_Ins_ID

Cookies

«PK» Cookie_ID
Cookie_Name
Cookie_Value
Cookie_Path
Cookie_Domain
Cookie_Expire_T
Cookie_HttpOnly
Cookie_Secure
«FK» Page_Ins_ID

Dynamic Analsis View

Page_ID
Page_Name
Page_Param
HttpVar_Name
HttpVar_Value
HttpVar_Type
Assigned_Var
Sql_Stm
Sql_Source
EntityName
Php_param
SqlTransTime
Page_Ins_ID

AllSQL_Sources

«FK» SqlStm_ID
«FK» Page_Ins_ID
SQL_Source
SQL_Parts
Covered

AllHttpVars

«FK» HttpVar_ID
HttpVar_Name
HttpVar_Value
HttpVar_Type
«FK» Page_Ins_ID
Covered

AllPhpPages

«FK» Page_Ins_ID
Page_Name
Covered

1
- server pages

*
- cookies

1- server pages

*- http variables

1
- server pages

*

- DB interactions

1 - server pages

*

view

*

- sessions

1

1

- allphppages

*

- server pages

1- http variables

*

- dynamic analsis view

1

- allhttpvars

1- http variables

1

- DB Interactions

*

- dynamic analsis view *

- database interactions

1

- allsql_sources

1
- cookies

*

- dynamic analsis view

Figure 2. Dynamic Analysis database model

instances of the coverage criteria and inserting appropriate
calls to an instrumentation coverage library developed in
PHP. These instrumentation calls will update the coverage
database as the program is executed (Figure 1).

In order to insure that we have an accurate table of all
of the instances to be covered, the initial coverage database
itself is automatically derived from the instrumented appli-
cation. This is done by slicing the instrumentation state-
ments from the instrumented PHP code into a separate PHP
program augmented with database calls (Figure 1). As the
augmented slice is executed, the program builds the initial
coverage database by adding a coverage table entry to a
global array as each instrumentation statement in the slice
is executed. During insertion, another transformation also
analyzes the type of the SQL statement to identify and insert
its components into the database. The resulting arrays then
become the initial coverage tables in the database.

This slicing method is necessary in order to capture all
instances of SQL statements that will be dynamically con-
structed from string fragments, concatenations and function
calls before being passed to the database interface. If we
were not to handle these cases, a large fraction of the
SQL database interactions would be missed, invalidating our
database interaction coverage metrics, and it would not be
possible to accurately attach server environment variables to
the SQL statements that use them, invalidating our server
environment variable coverage metrics. The construction of
the SQL SELECT statement from fragments in a dynamic
page from PhpBB 2.0 shown in Figure 4 is a typical
example.

PageIndex PageName Covered
324 C:WAMPWWWPHPBB2search.php 0
365 C:WAMPWWWPHPBB2viewforum.php 0
388 C:WAMPWWWPHPBB2viewonline.php 0
391 C:WAMPWWWPHPBB2viewtopic.php 0
421 C:WAMPWWWPHPBB2adminadmin_board.php 0
450 C:WAMPWWWPHPBB2adminadmin_disallow.php 0

Table I
Example AllPhpPages coverage database table, tracking page coverage

HttpIndex PageIndex Assigned_Var HttpName HttpType Covered

376 365 $forum_id f GET 0

377 365 $forum_id f POST 0

378 365 $forum_id forum GET 0

379 365 $start start GET 0

381 365 $mark_read mark POST 0

380 365 $mark_read mark GET 0

382 365 $tracking_forums _f COOKIE 0

383 365 $tracking_topics _t COOKIE 0

384 365 $tracking_topics _t COOKIE 0

385 365 $tracking_forums _f COOKIE 0

387 365 $topic_days topicdays POST 0

386 365 $topic_days topicdays GET 0

Table II
Example AllHttpVars coverage database table, tracking server

environment variable coverage

The complete schema for our dynamic analysis database,
including the coverage database, is shown in Table 2. It is
comprised of eight tables and one view. Three of the tables,
AllPHPPages, AllHttpVars and AllSQL_Sources, are
constructed to hold coverage information and are initialized
statically by our approach. During execution of the web
application, these tables are updated at each instrumentation
call to track coverage of page access, server environment
variable access, and database SQL statement forms respec-
tively. Tables I, II and III show examples of these coverage
tables as initialized by our static instrumentation slice.

The Server Pages table (Figure 2) is used to keep
track of access to individual pages, and is associated with
the AllPHPPages table, which contains information about
all of the application pages, while the other tables contain
information about the HTTP variables, environment vari-
ables, cookies and database statements associated with each
page, linked using the Page_Ins_ID field. We combine the
information from the various tables into a single unified trace
view in the Dynamic Analysis view. The AllHttpVars

table is associated with the HttpVars table and holds cov-
erage information related to server environment variables.
The AllSQL_Sources is associated with the Database

Interactions table and holds coverage information re-
lated to database interactions.

A. Instrumenting Web and SQL Aspects

We automatically analyze and add source code instrumen-
tation to web application source using TXL [4], a program-
ming language designed for manipulating and experimenting
with programming language notations and features. TXL
is a powerful source transformation system that has been

SQL_index PageIndex SQL_Source Covered
366 365 SELECT * FROM phpbb_forums WHERE forum_id = $forum_id 0

367 365 SELECT MAX(post_time) AS last_post FROM phpbb_posts WHERE forum_id = $forum_id 0

372 365 SELECT g.group_id, g.group_name FROM phpbb_auth_access aa, phpbb_user_group ug, phpbb_groups g
WHERE aa.forum_id = $forum_id AND aa.auth_mod = 1 AND g.group_single_user = 0 AND g.group_type <>
2 AND ug.group_id = aa.group_id AND g.group_id = aa.group_id GROUP BY g.group_id, g.group_name
ORDER BY g.group_id

0

373 365 SELECT COUNT(t.topic_id) AS forum_topics FROM phpbb_topics t, phpbb_posts p WHERE t.forum_id =
$forum_id AND p.post_id = t.topic_last_post_id AND p.post_time >= $min_topic_time

0

374 365 SELECT t.*, u.username, u.user_id, u2.username as user2, u2.user_id as id2, p.post_time, p.post_username
FROM phpbb_topics t, phpbb_users u, phpbb_posts p, phpbb_users u2 WHERE t.forum_id = $forum_id AND
t.topic_poster = u.user_id AND p.post_id = t.topic_last_post_id AND p.poster_id = u2.user_id AND
t.topic_type = 2 ORDER BY t.topic_last_post_id DESC

0

Table III
Example AllSqlsources coverage database table, tracking SQL statement coverage

used in industrial applications involving millions of lines of
source code. The TXL processor takes as input a context-
free grammar for the language to be manipulated, parses
the source program into a parse tree, and then recursively
applies a set of transformation rules, beginning with a main
rule, until there are no remaining matches in the parse
tree. The transformation is completed by unparsing the
transformed tree to the new target source program. While
our process is presently targeted at PHP and MySQL, this
lightweight TXL-based process is adaptable in plug-and-
play fashion to deal with other database engines and server
page scripting languages such as JSP or ASP. Documents
that include a mixture of languages and technologies can be
handled using island grammars [8][11], where the interesting
elements, PHP code in our case, are considered islands, and
uninteresting elements, HTML code and other text in our
case, are considered water. Using island grammars simplifies
the parsing process as interesting elements can be identified
and analyzed without parsing the whole document.

The instrumenting transformation process is used to serve
two major purposes. The first is to globally mark, for further
static extraction and processing, coverage information on the
level of page access, server environment variable access and
database interactions, and the second is to insert appropriate
calls to an instrumentation coverage library developed in
PHP to dynamically update the coverage database as the
application under test is executed. The following subsections
provide the details of this process.

1) Instrumenting Page Access: In DWASTIC, application
sources are processed statically, one page a time. A set of
rooted transformation rules is applied on each page to mark,
extract and analyze coverage information. When a page is
sent to DWASTIC for processing, the TXL main rule imports
the page’s full path name and generates a unique page
identifier in the TXL global variable uniqePageid, which
will be used for any further analysis associated with this
page. The transformation rule instrumentPage (Figure 3)
is then called to add dynamic instrumentation at the top of
the page. instrumentPage constructs a block of statements
in the PageIns variable, which includes adding a new entry

rule instrumentPage InputFile [stringlit]

 % Get global unique page id generated by the main rule
 import uniqePageid [id]

 % Transform the entire page exactly once
 replace $ [Document]

 PHPO [PHPOpenTag]
 TopS [TopStatement*]
 PHPC [PHPCloseTag]

 % Insert page instrumentation and coverage code
 by
 PHPO
 ‘{
 'global $Sql_index;
 'global $PhpFileName;
 'global $PhpFileIndex;
 'global $Http_Source;
 '$GLOBALS'['"PhpFileName"']'[uniqePageid'] = InputFile;
 '$GLOBALS '["PhpFileIndex"']= uniqePageid;
 ‘include_once(''sensfuncDBJan92009.php'');
 'IsCovered '('$GLOBALS '['"PhpFileIndex"']');
 ‘}
 TopS
 PHPC
end rule

Figure 3. The TXL instrumentPage rule adds page coverage instrumen-
tation to the top of each processed page

to the PHP global array $GLOBALS["PhpFileName"] to
represent the current processed page name and unique ID.
A call to the coverage function IsCovered is added to track
the page access at run time and to update the entry for this
page ID in the coverage database. Other statements added
to the PageIns block are used to assist in globally defining
other PHP arrays associated with other coverage informa-
tion related to database interactions and server environment
variables, as well as a call to our PHP instrumentation
coverage library sensfuncDBJan92009.php. The first few
lines of Figure 4 show the result of adding page coverage
instrumentation to the search.php page.

2) Instrumenting Server Environment Variables: Each
page is also transformed by a specialized TXL rule to iden-
tify server environment variables, replacing them with an in-
strumentation function which collects the server environment
variable’s names, values, and the PHP variables which re-
ceive the values. This information is passed as parameters to
the instrumentation function HttpVar_track(). The server
environment variables are also added to the PHP user defined
global array $GLOBAL["Http_Source"] and passed as a

<?php
{

 global $Sql_index;
 global $PhpFileName;
 global $PhpFileIndex;
 global $Http_Source;
 $GLOBALS ["PhpFileName"] [324] = "C:\WAMP\WWW\PHPBB2\search.php";
 $GLOBALS ["PhpFileIndex"] = 324;
 include_once ('sensfuncDBJan92009.php');
 IsCovered ($GLOBALS ["PhpFileIndex"]);
 }

. . .

$search_id = (isset ($HTTP_GET_VARS ['search_id'])) ? HttpVar_track ('O_CVar_$search_id', 'search_id',
 $HTTP_GET_VARS ['search_id'], $GLOBALS ["Http_Source"] [350] = array ('search_id', "GET",
 324, '$search_id'), 350, GET) : '';

. . .

for ($i = 0; $i < count ($search_id_chunks); $i ++)
{

{
 $where_sql = ($search_author == '' && $auth_sql == '') ? 'post_id IN ('.implode (', ', $search_id_chunks [$i]).')'
 :'p.post_id IN ('.implode (', ', $search_id_chunks [$i]).')';

$GLOBALS ["SqlParts"]['where_sql'] = ((('($search_author == \'\' && '.$GLOBALS ["SqlParts"]['auth_sql'].' == \'\''))) ?
 ('post_id IN (').('implode (String, $search_id_chunks[$i])').(')')
 : ('p.post_id IN (').('implode (String, $search_id_chunks [$i])').(')'));

}
 {

 $select_sql = ($search_author == '' && $auth_sql == '') ? 'post_id' : 'p.post_id';
 $GLOBALS ["SqlParts"]['select_sql'] =((('($search_author == \'\' && '.$GLOBALS ["SqlParts"]['auth_sql'].' == \'\'')))?
 ('post_id') : ('p.post_id'));

}
 {
 $from_sql = ($search_author == '' && $auth_sql == '') ? POSTS_TABLE : POSTS_TABLE.' p';
 $GLOBALS ["SqlParts"]['from_sql'] = ((('($search_author == \'\' && '.$GLOBALS ["SqlParts"]['auth_sql'].' == \'\''))) ?
 (POSTS_TABLE) : (POSTS_TABLE).(' p'));

}
 if ($search_time)

{
 {
 $where_sql.= ($search_author == '' && $auth_sql == '') ? " AND post_time >= $search_time " :
 " AND p.post_time >= $search_time";

$GLOBALS ["SqlParts"]['where_sql'].= ((('($search_author == \'\' && '.$GLOBALS ["SqlParts"]['auth_sql'].'
 == \'\''))) ? (' AND post_time >= $search_time ') : (' AND p.post_time >= $search_time'));

}
 }
$sql = "SELECT ".$select_sql." FROM $from_sql WHERE $where_sql";
$GLOBALS ["Sql_Source"][334][0] = (('SELECT ').((''.$GLOBALS["SqlParts"]['select_sql'].'')).(('
 FROM '.$GLOBALS["SqlParts"]['from_sql'].('
 WHERE '.$GLOBALS["SqlParts"]['where_sql'].''))));
$GLOBALS ["Sql_Source"][334][1] = 324;
$GLOBALS ["Sql_index"] = 334;
}

. . .

if (! ($result = $db -> sql_query ($sql))){

 message_die (GENERAL_ERROR, 'Could not obtain post ids', '', __LINE__, __FILE__, $sql); }

. . .

?>

Figure 4. Coverage instrumentation added by DWASTIC to the search.php dynamic page of the PhpBB 2.0 application.

Sections in boldface have been added by our instrumenting transformation to
instrument coverage for pages, server environment variables and SQL statements.

function sql_query ($query = "", $transaction = FALSE){
 . . .
 $this->query_result=mysql_query($query, $this->db_connect_id);
 Transformed into

 $this -> query_result = mysql_query_track($query, $this -> db_connect_id,
 $GLOBALS["Sql_Source"][$GLOBALS ["Sql_index"]], $GLOBALS ["Sql_index"]);
. . .}

Figure 5. DWASTIC instrumentation for the database interaction points of the mysql4.php function of PhpBB 2.0

parameter to the same function as well. When the application
under test is executed and the HttpVar_track() function
is called, the server environment variable access information
is inserted in the HttpVar table, and the coverage count

for the accessed variable is updated in the AllHttpVar

coverage table. The $search_id assignment statement in
Figure 4 shows an example in which $Http_GET_Vars

[’search_id’] has been identified, instrumented, and

% Begin with PHP grammar

include "php.grm"

% Override to isolate coverage instrumentation parts

redefine Expr
 [CoverageAspect]
 |...

end redefine

% Custom grammar to identify coverage instrumentation parts

define CoverageAspect
'$GLOBALS'['"Sql_Source"']'[[Expr?] '] '['0'] '= [SqlPartExpr]';
|'$GLOBALS'['"Sql_Source"']'[[Expr?] '] '['1'] '= [Expr]';
|'$GLOBALS'['"Sql_Source"'] '[[Expr?] ']'['0'] '.= [SqlPartExpr]';
|'$GLOBALS'['"PhpFileName"'] '[[Expr?] '] '= [Expr]';
|'$GLOBALS'['"Http_Source"'] '[[Expr?] '] '= [Expr][NL]

end define

% Allow for output of coverage aspect only

redefine program
...

|[CoverageAspect*]
end redefine

% Transform instrumented PHP program to its coverage aspect

function main
replace * [program]
 P [program]

% Use TXL grammatical type extraction to gather aspect fragments

Construct CoverageInstrumentationAspect [CoverageAspect*]
 _ [^ P]

by

 CoverageInstrumentationAspect
end function

Figure 6. TXL program to identify and extract the coverage aspect of an instrumented PHP program

added to the $GLOBAL ["Http_Source"] coverage array.
3) Instrumenting SQL Statement Sources: Identifying,

extracting, and analyzing the dynamically constructed SQL
statements in the context of the overall web system is not a
trivial process, and often requires a great deal of complicated
analysis using robust parsing, pattern matching, and control
and data flow analysis. SQL statements are often constructed
inter-procedurally, using a combination of string concate-
nation statements and host language statements that work
together to construct the text of the SQL statement. These
combinations are not only constant strings, but also include
SQL statement fragments and host application variables.

In our approach, the most complex set of transfor-
mation rules is used to handle this task, and is mainly
composed of three parts: The first part is to identify
the beginning of dynamically constructed SQL statements.
We do that by distinguishing string literals that be-
gin with the SQL keywords Select, Insert, Update,

Delete, Create, Alter and Drop using a separate TXL
token class, and then use the parser to recognize concate-
nations built from these strings. Our transformation targets
assignment statements that use these strings to build larger
strings. Prior to the transformations, the code is normalized,
replacing string expressions in other statements with a
temporary PHP variable and inserting an assignment before
the statement.

Once an assignment is found that uses one of the SQL
keyword strings, other assignments using the same PHP
variable are also checked and instrumented. Each identified
statement is followed by a newly constructed assignment

statement that updates the SQL substrings in the correspond-
ing entry of a PHP global array specifically created by our
transformation approach to hold a copy of the dynamically
constructed SQL source strings. Our transformation process
generates a unique identifier for each newly identified SQL
statement, which is used as the index for the newly con-
structed string in the global array.

In the second part, while constructing the SQL statement
source from string fragments and concatenation statements,
special care is given to the kind of the concatenated frag-
ment, so that we can retain the original PHP variable names
rather than their run-time values in the SQL statement text.
This retains in our database the link between dynamically
generated SQL statements and the variables they use. Our
approach distinguishes four SQL fragment types: PHP con-
stant variables, PHP variables, string expressions, and SQL
fragment variables. The final SQL statement is constructed
by single quoting all fragment types other than constant
variables and SQL fragments, which are kept unquoted for
later substitution in the execution phase (Section III-C).

The third part identifies and instruments the application’s
database interaction points. At those points, the database
interface call statement mysql_query() is replaced with
a call to our instrumenting function mysql_query_track

() as shown in Figure 5. The instrumenting function call
takes both of the two versions of the SQL statement, the
uninstantiated source statement collected in the previous
step and available globally at this point, and the instan-
tiated execution instance of the statement, both of which

<?php
. . .

$GLOBALS["PhpFileName"][467] = "C:\WAMP\WWW\PHPBB2\admin\admin_forums.php";
$GLOBALS["Http_Source"][512] = array ('mode', "POST", 467, '$mode');
$GLOBALS["Http_Source"][511] = array ('mode', "GET", 467, '$mode');
 . . .

$GLOBALS["SqlParts"]['table'] = ((FORUMS_TABLE));
$GLOBALS["Sql_Source"][471][0] = ((('SELECT * FROM '
 . $GLOBALS["SqlParts"]['table'])));
$GLOBALS["Sql_Source"][471][1] = 467;
$GLOBALS["Sql_Source"][471][0] .= ((' WHERE $catfield = $cat'));
$GLOBALS["Sql_Source"][471][0] .= ((' ORDER BY $orderfield ASC'));
$GLOBALS["Sql_Source"][472][0] = ((('UPDATE ' . $GLOBALS["SqlParts"]['table'] .
 ' SET $orderfield = $i WHERE $idfield = ')).
 ('$row [$idfield]'));
$GLOBALS["Sql_Source"][472][1] = 467;
$GLOBALS["Http_Source"][513] = array ('addforum', "POST", 467, '');
$GLOBALS["Http_Source"][514] = array (POST_FORUM_URL, "GET", 467, '$forum_id');
$GLOBALS["Sql_Source"][473][0] = (('SELECT * FROM ').(PRUNE_TABLE).
 (' WHERE forum_id = $forum_id'));
$GLOBALS["Sql_Source"][473][1] = 467;
 . . .

BuildAllPHPPagesTable ($GLOBALS ["PhpFileName"]);
BuildAllHttpTable ($GLOBALS ["Http_Source"], $GLOBALS ["$PhpFileIndex"]);
BuildAllSQLSourcesTable ($GLOBALS ["Sql_Source"]);

?>

 Figure 7. Part of the extracted instrumentation slice for PhpBB 2.0 augmented with database insertion code

are stored in our instrumentation database table Database

Interactions. The instrumenting function then updates
the coverage database by incrementing the coverage count of
the executed SQL source statement in the ALLSQL_Sources
coverage table. Finally, it executes the original database
interaction statement. Figure 4 shows examples of database
statement source fragments identified, instrumented, and
added to the $GLOBAL["SqlParts"] coverage array.

Our methodology can capture, instrument, and correlate
SQL source statements and the database interaction points
even when they are spread over separate source files. There
is no need to combine the source files into a single process-
ing unit, since the relation is done using global arrays.

B. Extracting the Instrumentation Slice

Once the web application has been instrumented for
page access, server environment variables and databases
interactions as described above, the DWASTIC tool extracts
the instrumentation slice from the application based on
the grammatical patterns defined in Figure 6. The five
CoverageAspect patterns identify three kinds of assignment
statements: instrumentation statements generated for col-
lecting SQL statement sources from their fragments using
assignments and concatenation statements (the first three
patterns), instrumentation statements tracking page access
(the fourth pattern), and instrumentation statements tracking
server environment variables (the fifth pattern).

Based on these grammatical patterns, the main trans-
formation rule of Figure 6 extracts all instances of these
instrumentation statements from the application source code,
and groups them into a single new file. This file is then
automatically transformed into a PHP program by enclosing

it in PHP opening and closing tags, including a reference
to the application constants, and inserting call statements to
PHP functions that insert the coverage information collected
in the global arrays into the coverage database to form the
initial coverage tables. An elided view of the generated slice
as a PHP program is shown in Figure 7.

C. Executing and Analyzing the Instrumentation slice
The extracted instrumentation slice PHP program con-

structed in the previous step uses three global arrays, one
for SQL statement sources, one for server environment
variables, and one for page access. When the slice program
is executed, it populates the global arrays with one instance
of every generated SQL source statement, every server
environment variable access, and every page access that is
instrumented in the application. This effectively builds the
coverage tables for each, which are then inserted as the
initial tables of the coverage database described in Figure 2.
The generated SQL statement sources are analyzed during
insertion to identify the basic query components, and to find
any server environment variables and application variables
embedded in the statement. These details are added to the
database as well.

IV. AN EXAMPLE APPLICATION

We have assessed our approach by analyzing two produc-
tion dynamic web applications, PhpBB 2.0, with millions of
installations the world’s most popular internet forum system,
and Moodle, a popular open source course management
system. To automate the collection of usage traces, we have
used WATIR (Web Application Testing In Ruby) [5] [13],
a scriptable library to drive web browsers by clicking links,
pressing buttons, and filling in forms.

3 825 SELECT *
 FROM phpbb_users
 WHERE user_id = 2 AND
user_id <> ‐1

SELECT *
 FROM phpbb_users
 WHERE ((is_integer ($user)) ? "user_id = $user" :
"username = ".str_replace (String, String, $user)."")
AND user_id <> ‐1

1244592451 76 115

Role SQL Statements Coverage Page Access Coverage Server Environment Variables Coverage
Anonymous
User

Covered Total % Covered Total % Covered Total %
41 440 9.3% 28 69 40.0% 21 374 5.6%

Admin 123 440 28 % 56 69 81 % 68 374 18.2 %

Role Page Name SQL Statements Coverage Server Environment Variables Coverage
Anonymous
User

 Covered Total % Covered Total %
Viewforum.php 5 7 71.42% 1 12 8.33%
Viewtopic.php 4 13 30.76% 1 16 6.25%

Admin

Viewforum.php 6 7 85.7% 5 12 41.6%
Viewtopic.php 6 13 46.2% 5 16 31.2%

Role Page Name Server Environment Variables Coverage in SQL Statements
Anonymous
User

 Covered Total %
Viewforum.php 5 7 71.42%
Viewtopic.php 3 12 25%

Admin Viewforum.php 6 7 85.7%
Viewtopic.php 5 12 41.6%

Table IV
Coverage metrics results for pages, server environment variables and SQL statements

at the application level for a sample test case

3 825 SELECT *
 FROM phpbb_users
 WHERE user_id = 2 AND
user_id <> ‐1

SELECT *
 FROM phpbb_users
 WHERE ((is_integer ($user)) ? "user_id = $user" :
"username = ".str_replace (String, String, $user)."")
AND user_id <> ‐1

1244592451 76 115

Role SQL Statements Coverage Page Access Coverage Server Environment Variables Coverage
Anonymous
User

Covered Total % Covered Total % Covered Total %
41 440 9.3% 28 69 40.0% 21 374 5.6%

Admin 123 440 28 % 56 69 81 % 68 374 18.2 %

Role Page Name SQL Statements Coverage Server Environment Variables Coverage
Anonymous
User

 Covered Total % Covered Total %
Viewforum.php 5 7 71.42% 1 12 8.33%
Viewtopic.php 4 13 30.76% 1 16 6.25%

Admin

Viewforum.php 6 7 85.7% 5 12 41.6%
Viewtopic.php 6 13 46.2% 5 16 31.2%

Role Page Name Server Environment Variables Coverage in SQL Statements
Anonymous
User

 Covered Total %
Viewforum.php 5 7 71.42%
Viewtopic.php 3 12 25%

Admin Viewforum.php 6 7 85.7%
Viewtopic.php 5 12 41.6%

Table V
Coverage metrics results for server environment variables and SQL statements at the

page level for a sample test case

Role SQL Statements Coverage Page Access Coverage Server Environment Variables Coverage
Anonymous
User

Covered Total % Covered Total % Covered Total %
41 440 9.3% 28 69 40.0% 21 374 5.6%

Admin 123 440 28 % 56 69 81 % 68 374 18.2 %

Role Page Name SQL Statements Coverage Server Environment Variables Coverage
Anonymous
User

 Covered Total % Covered Total %
Viewforum.php 5 7 71.42% 1 12 8.33%
Viewtopic.php 4 13 30.76% 1 16 6.25%

Admin

Viewforum.php 6 7 85.7% 5 12 41.6%
Viewtopic.php 6 13 46.2% 5 16 31.2%

Role Page Name Server Environment Variables Coverage in SQL Statements
Anonymous
User

 Covered Total %
Viewforum.php 5 7 71.42%
Viewtopic.php 3 12 25%

Admin Viewforum.php 6 7 85.7%
Viewtopic.php 5 12 41.6%

SQL Execution instance Extracted SQL Source Statement
SELECT *
 FROM phpbb_users
 WHERE user_id = 2 AND user_id <> ‐1

SELECT *
 FROM phpbb_users
 WHERE ((is_integer ($user)) ? "user_id = $user" :
 "username = ".str_replace (String, String, $user)."") AND user_id <> ‐1

Table VI
Coverage metrics results for pages and server environment variables at the SQL

statement level for a sample test case

Page Name Uninstrumen‐
ted  Exec. 
Time (sec.)

Instrumen‐
ted Exec. 
Time (sec.)

Performance 
degrada;on 
(percent)

h"p://localhost/phpBB2/index.php 2.172 3.11 30.2%

h"p://localhost/phpBB2/faq.php 1.328 1.328 0.0%

h"p://localhost/phpBB2/search.php 1 1.515 34.0%

h"p://localhost/phpBB2/memberlist.php 0.953 1.485 35.8%

h"p://localhost/phpBB2/groupcp.php 1.016 1.5 32.3%

h"p://localhost/phpBB2/profile.php?mode=register 2.14 3.156 32.2%

h"p://localhost/phpBB2/profile.php?mode=editprofile 2.031 3 32.3%

h"p://localhost/phpBB2/privmsg.php?folder=inbox 2 2.484 19.5%

h"p://localhost/phpBB2/login.php 2 2.984 33.0%

h"p://localhost/phpBB2/index.php 1.344 1.828 26.5%

h"p://localhost/phpBB2/search.php?search_id=unanswered 2.188 3.188 31.4%

h"p://localhost/phpBB2/index.php?c=1 1.328 1.796 26.1%

h"p://localhost/phpBB2/viewforum.php?f=1 1.453 2 27.4%

h"p://localhost/phpBB2/profile.php?mode=viewprofile&u=2 1.016 1.984 48.8%

h"p://localhost/phpBB2/viewtopic.php?p=10#10 1.031 1.985 48.1%

h"p://localhost/phpBB2/viewonline.php 0.953 1.484 35.8%

h"p://localhost/phpBB2/profile.php?mode=viewprofile&u=2 1.016 1.984 48.8%

Average: 31.9%

Table VII
Performance penalty of DWASTIC instrumentation on dynamic pages of PhpBB 2.0

We show here the detailed results for two specific test
cases: an anonymous user interacting with a PhpBB forum,
and an Admin user visit. These two test cases are simple
interactions using only the hyperlinks, not including the
population of forms. The complete results are too large to
include in this paper, but the example data in the initial
coverage databases shown in Tables I, II, and III refer to a
subset of the instrumentation points available to be covered
in these tests. Using the results from these two tests, we

calculate values for the metrics proposed in Section II-B.
Table IV shows the overall results for the Page Cov.,

the SQL_Stm Cov., and the Server_Env_Var Cov. met-
rics for each test. In the table, the Total is the total number
of instrumentation points in each of the categories. For
example, the anonymous user test covered 28 of the 69
total pages, while the admin user test covered 56 of the
69 total pages. Since the two example test cases do not in-
clude forms, neither all SQL statements nor all environment

variables are covered. We have manually confirmed that the
Total number for each coverage aspect extracted by our
approach is equal to the actual number of aspects in the
code.

Table V shows the results for the Page_Server_Env_

Var Cov. and the Page_SQL_Stm Cov. metrics for two
pages, Viewforum.php and Viewtopic.php. Even with-
out form filling, the Admin user covers more SQL statements
and more variables because he can access more links. Some
examples are the new topic and post reply links.

Table VI shows the results for the SQL_Server_

Env_Var Cov. metric for the same two pages. This metric
measures the number of SQL statements that reference
server environment variables. Comparing Table V and Table
VI, we find that the page Viewtopic.php has 12 out of 13
SQL statement that reference server variables. The admin
user test cases covers 5 of them. This measure is essential
for evaluating test cases for SQL statements that use user
input such as test cases for SQL injection.

Since the run-time instrumentation must update the cov-
erage database, it imposes a runtime penalty on the web
application. Table VII shows the runtime measure for 17
pages. The second column (Non Instrumented Exec Time)
indicates the time needed to execute the original, uninstru-
mented page. The third column (Instrumented Exec Time)
shows the time needed to execute the instrumented page.
The performance penalty of the instrumentation ranges from
non-existent (faq.php) up to about 50%. The average penalty
is 32%, which is acceptable for a testing environment.

V. RELATED WORK

Several approaches and coverage metrics have been pro-
posed to assess the quality of test cases aimed at ensuring
the correctness of database interactions in standard database
systems. For example, Suárez-Cabal and Tuya [2] propose a
coverage metric and a tool specialized for a subset of SQL
SELECT statements designed to help improve test suites to
detect faults at the level of SELECT statements in a database
application. A coverage tree is built from each SELECT
statement encoding the conditions specified by the where
and join clauses of the query. The approach is specifically
aimed at analyzing static SQL SELECT statements, while
ours handles all SQL statements, including dynamically
constructed ones.

Willmor and Embury [14] propose two test adequacy cri-
teria for database applications. The first criterion checks the
coverage of the structural aspects of the database application.
This includes aspects such as the different types of opera-
tions, transaction statements, and the entities represented in
the database. The other criterion is a define-use criterion,
which measures all of the possible database system opera-
tions’ define-use pairs. The coverage information collected
in our approach is sufficient to compute the coverage metrics
proposed by Willmor and Embury.

Halfond and Orso [7] propose a coverage criterion which
measures the coverage of all the possible SQL command
forms that can be issued at each database interaction point.
They describe the prototype tool DITTO which statically
analyzes the application source code, identifying database
interaction points and the string variables containing the
SQL commands. Java String Analysis (JVS) is used to
build a character-based NDFA for each string variable,
which is then converted into an SQL-level NDFA which
represents a static model of all the SQL queries that can
be generated. The construction of SQL static models is
adapted from the method of Gould et al. [6]. Their metric
compares the number of forms covered by the test cases
to the total number of forms possible at each interaction
point. Our approach constructs exact versions of the SQL
statement templates constructed between define-use paths for
a web application. It is easily extendable to web applications
implemented in any technology, while Halfond and Orso’s
is limited to Java applications and has limitations when
collecting SQL statement fragments from external sources.

Smith et al.[10] proposes two coverage metrics for SQL
injection vulnerability testing. The first metric measures the
percentage of database interaction points (API calls) that are
tested at least once to the total number of identified database
interaction points. The second coverage metric measures the
percentage of input variables tested at least once to the total
number of variables found in any target SQL statement.
The database interaction points and input variables are
counted manually, and the instrumentation process is also
done manually. While their first metric does not consider
all dynamically constructed SQL statements, our proposed
coverage criteria not only handle input variables used in SQL
statements on the application level, but also at the page
level, and our instrumentation is automated using source
transformations.

There are other approaches that are similar to ours in
identifying, extracting and analyzing database interactions.
Cleve and Hainaut [3] use aspect-based tracing to relate
and extract the basic components of prepared statements.
While the tracing approach used does not modify the source
code, it does not deal with the dynamically constructed SQL
statements using string concatenations scattered throughout
the code that our slicing resolves. Their approach is also yet
to be evaluated on a production system.

Brink et al. [12] propose a tool for assessing the quality
of database interactions in standard applications. They ex-
tract embedded SQL statements using control and dataflow
analysis. The identification of SQL string literals are done
using a standard Java program that tokenizes the source
program based on predefined SDF grammars. The purpose
is to extract the queries for quality assessment, while our
purpose is to determine the coverage of test cases.

Ngo and Tan [9] propose an automatic static technique
to extract database interaction points from web applications.

The approach first identifies all program paths that include
a database interaction and then slices them out as an inter-
action Control Flow Graph (ICFG). Each interaction path
is then symbolically executed, and all possible interaction
types are derived from the generated symbolic expression
using inference rules. In a case study the approach was able
to extract 80% of the database interactions. The complexity
of the extraction process is high, as it is composed of
five stages, and is affected by factors such as number of
interaction paths (i-paths), and the length and complexity
of each i-path. The authors also do not specify how to
handle SQL statements constructed from sequences of string
fragments and concatenations, which is handled by our
instrumentation slice technique.

VI. CONCLUSION

In this paper, an original approach to automate coverage
metrics for dynamic web applications has been proposed,
implemented and demonstrated in practice on a production
web application. First, we proposed a set of coverage criteria
specialized for web applications which takes into account the
complex and distributed structure of these applications. We
have demonstrated how a dynamic web application written in
PHP can be automatically instrumented using source trans-
formations, and that database SQL statements dynamically
constructed from string fragments can be handled using a
source slicing technique to identify and build a coverage
database. The proposed coverage criteria and the automatic
tool helps improve the quality of test cases and focusses
testing efforts on the application component interactions,
which are often the source of web applications vulnerabili-
ties. The approach is being used to provide a completeness
measure for extracting an access control security model from
web applications under test. The accuracy of the results is
both hand verified and robust since it is automatically back-
checked at run time.

As future work, we plan to extend the approach to handle
other web technologies and database engines and to evaluate
it on a wide range of applications of different sizes. We
also plan to use DWASTIC to support other testing activities
for web applications, such as SQL injection and cross-site
scripting analysis.

ACKNOWLEDGEMENTS

This work is supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] M. H. Alalfi, J. R. Cordy, and T. R. Dean. A Verification
Framework for Access Control in Dynamic Web Applications.
In Canadian Conf. on Computer Science and Software Eng.,
Montreal, Canada, May 2009, pp. 109-113.

[2] M. J. S. Cabal and J. Tuya. Using an SQL coverage measure-
ment for testing database applications. In 12th ACM SIGSOFT
Intl. Symp. on Foundations of Software Engineering, Newport
Beach, California, October-November 2004, pp. 253–262.

[3] A. Cleve and J.-L. Hainaut. Dynamic Analysis of SQL State-
ments for Data-Intensive Applications Reverse Engineering.
In 15th Working Conf. on Reverse Eng., Antwerp, Belgium,
October 2008, pp. 192–196.

[4] J. R. Cordy. The TXL Source Transformation Language.
Science of Computer Programming 61(3), August 2006, pp.
190–210.

[5] Canoo Engineering AG. Canoo WebTest,
http://webtest.canoo.com, accessed 20 August 2009.

[6] C. Gould, Z. Su, and P. T. Devanbu. Static checking of
dynamically generated queries in database applications. In
26th Intl. Conf. on Software Engineering, Edinburgh, UK,
May 2004, pp. 645–654.

[7] W. G. J. Halfond and A. Orso. Command-Form Coverage
for Testing Database Applications. In 21st Intl. Conf. on
Automated Software Engineering, Tokyo, Japan, Sept. 2006,
pp. 69–80.

[8] L. Moonen. Generating robust parsers using island grammars.
In 8th Working Conf. on Reverse Eng., Stuttgart, Germany,
October 2001, pp. 13–22.

[9] M. N. Ngo and H. B. K. Tan. Applying static analysis for
automated extraction of database interactions in web appli-
cations. Information & Software Technology 50(3), February
2008, pp. 160–175.

[10] B. Smith, Y. Shin, and L. Williams. Proposing SQL statement
coverage metrics. In 4th Intl. Workshop on Software Engi-
neering for Secure Systems, Leipzig, Germany, May 2008,
pp. 49–56.

[11] N. Synytskyy, J. R. Cordy, and T. R. Dean. Robust multi-
lingual parsing using island grammars. In CASCON 2003,
Toronto, October 2003, pp. 266–278.

[12] H. van den Brink, R. van der Leek, and J. Visser. Quality
Assessment for Embedded SQL. In 7th IEEE Intl. Working
Conf. on Source Code Analysis and Manipulation, Paris,
France, Sept. 2007, pp. 163–170.

[13] WatirCraft. WATIR, http://wtr.rubyforge.org, accessed 2
March 2009.

[14] D. Willmor and S. M. Embury. Exploring Test Adequacy
for Database Systems. In 3rd UK Software Testing Research
Workshop, York, UK, Sept. 2005, pp. 123–133.

