
Analysis and Clustering of Model Clones:
An Automotive Industrial Experience

Manar H. Alalfi, James R. Cordy, Thomas R. Dean
School of Computing, Queen’s University, Kingston, Canada

Email: {alalfi, cordy, dean}@cs.queensu.ca

Abstract—In this paper we present our early experience
analyzing subsystem similarity in industrial automotive models.
We apply our model clone detection tool, SIMONE, to identify
identical and near-miss Simulink subsystem clones and cluster
them into classes based on clone size and similarity threshold.
We then analyze clone detection results using graph visualizations
generated by the SIMGraph, a SIMONE extension, to identify
subsystem patterns. SIMGraph provides us and our industrial
partners with new interesting and useful insights that improves
our understanding of the analyzed models and suggests better
ways to maintain them.

I. INTRODUCTION

In todays automotive industry, models are widely used to
generate production software code. A modern automobile may
have 100 million lines or more of production software source
code on board, and up to 80% of the code deployed on
up to 100 embedded control units can be generated from
models specified using domain-specific formalisms such as
Matlab/Simulink [1]. The size and complexity of software in
the embedded domain, especially in the automotive software
systems, is expanding rapidly, while the innovation cycle
length is decreasing with high cost pressure and large numbers
of product-line variants. Consequently, software development
in this domain has adopted a highly reuse-oriented approach,
where general purpose domain specific libraries with elements
such as PID-controllers are being reused in the manufacture
of many new software components. Dealing with this com-
plexity and the high frequency of software reusability requires
sophisticated software tools to manage the massive amounts
of information used by engineers in software development
projects.

This rapid growth has led to challenges that are already well
known from classic programming languages. In particular,
the presence of copied program elements or “clones”, which
can affect productivity and software maintenance, is also
manifested in models. Thus the identification of common or
similar elements in different parts of the software is important
to the model-based development process.

To address this need, we have developed a method and
toolset called SIMONE [2] that uses clone detection for the
analysis and formalization of subsystem similarity in industrial
models. In this paper we present our first experience in the
analysis and pattern extraction of subsystem patterns in a set
of production Simulink automotive models, using visualization
techniques to provide insight. Our method is intended to assist

reuse in model development in a number of ways: standards
and consistency analysis or enforcement in model mainte-
nance; failure and change propagation in model maintenance;
and verification and test optimization in model testing. We
envisage this work as a fundamental enabler for the future
of higher level modeling, model transformations and meta-
modeling frameworks, customized to specific domains.

II. APPROACH

This paper describes our first experience in applying our
analysis method in an empirical study of an set of actual
production models from our industrial partners at General
Motors, using pattern mining and clone detection technologies
to discover a catalog of repeated subsystem patterns. We
have automated much of this first step using subsystem clone
classes from our tool SIMONE, a near-miss clone detector
for Simulink models [2], from which we derive a first ap-
proximation of the pattern set. Our plan is to organize these
discovered patterns into a taxonomy with the goal of covering
all of the subsystem patterns in the models. In this paper
we introduce SIMGraph, a graph visualization extension for
SIMONE results, which helps us to visualize and understand
Simulink subsystem clones and patterns in a more intuitive and
understandable way. In the following sections we will discuss
in more detail the phases of our analysis, and our case study
analyzing a set of industrial automotive Simulink models.

III. CLONE IDENTIFICATION

Our analysis consists of three phases. In the first, “discov-
ery” phase of our analysis, our primary goal is the discovery
and identification of common subsystem patterns in an exam-
ple production model set obtained from our industrial partners
at General Motors.

For that purpose, we have used our previously-developed
method for leveraging text-based code clone detectors to find
near-miss clones in graphical models, and have demonstrated
SIMONE [2], an implementation for Simulink models based
on the NICAD clone detector [3]. In that work, we outlined
the challenges of using a parser- and text-based method on
graphical models, described our solutions using filtering and
sorting of the textual representation, and compared our results
to a state-of-the-art graph-based method, showing that our
near-miss detection can find meaningful subsystem clones that
graph-based methods can miss. Our approach generalizes to

978-1-4799-3752-3/14 c© 2014 IEEE CSMR-WCRE 2014, Antwerp, Belgium
Industry Track

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

375

GM Fuel System Models
Subsystem similarity overview

FAFR models
(red)

FCBR models
(green)

FDBR models
(blue)

Large
subsystems

Midsize
subsystem

Small
subsystems

Many subsystems unique -
not similar to any others

in these models

Fig. 1. Subsystem Similarity in Fuel System Models

other modeling languages, including UML-based ones, with
only customization of the filtering and sorting algorithms.

IV. SUBSYSTEM CLONE CLUSTERING

In the second, “clustering” phase, we aim to organize and
generalize the identified concrete subsystem clone classes into
a formal taxonomy of generic patterns that can cover the
models of the example model set. SIMONE generates an initial
clustering of similar subsystems into model patterns based
on the NICAD algorithm for clustering near-miss clones into
“clone classes”, using a dynamic clustering based on the size
and percentage difference between identified subsystem clone
pairs. In this clustering, a database of clone pairs ordered
by size is generated after which the clustering is formed
without any post processing. Clone classes are then formed
by selecting the largest remaining clone as an “exemplar” or
distinguished representative of its clone class, and gathering
all clone pairs within a given difference threshold (30% in this
experiment) into the cluster.

V. SUBSYSTEM CLONE VISUALIZATION

The NICAD clone detector generates clone reports in two
textual formats, XML and HTML. It generates two kinds of
reports, one that presents cloned subsystems as pairs, and
another that presents them as clusters (“clone classes”) as
described above. While these textual reports are useful for
analyzing small similarities in source code, they are not the
right format for understanding large-scale similarity in graphi-
cal models. Thus we have developed SIMGraph, an extension
to SIMONE, which presents clone results as graphs. We used
source transformation technology to transform SIMONE’s
NICAD textual reports into graph files that can be imported by
Gephi [4], an open-source tool for visualizing and analyzing
large network graphs of complex systems. Gephi has many
interesting features, including the ability to present dynamic
and hierarchical graphs, as well as interactive filtering and
clustering features.

GM Fuel System Models
Remove unique subsystems Connecting lines represent subsystem similarity -

thick lines, 90-100% similar
thin lines, 70-80% similar

Fig. 2. Subsystem Similarity with Unique Subsystems Removed

A. Subsystem Clone Representation

To create a more intuitive representation of SIMONE results
we generated graphs using the following mappings:

• Subsystem Model: Each model is represented by a colour,
and its subsystems are coloured to indicate the model they
belong to.

• Subsystem Size: Each subsystem of a model is repre-
sented by a circle whose size is proportional to the size
of the subsystem, larger subsystems represented by larger
circles.

• Subsystem Similarity: Subsystem clones are represented
by a line joining the subsystem circles, the thickness
of which represents the level of similarity between
them, ranging from 90-100% (thickest lines) to 70-80%
(thinnest).

B. Levels of Clone Abstraction

We generated two types of Gephi graphs to represent the
results at two levels of abstraction:

• Subsystem Clone Pairs: Subsystem clone results as lines
connecting similar subsystems (Figures 1 and 2).

• Subsystem Clone Clusters: Subsystem clone results
grouped into categories based on clustering and catego-
rization algorithms (Figures 3 and 4).

VI. CASE STUDY

In this section we present our analysis of a production
industrial system obtained from our industrial partners at GM,
the Fuel System Simulink models. Applying SIMONE without
any normalization other than sorting and filtering to these
models extracted 1,091 subsystems from which it identified
245 subsystem clones, initially categorized into 35 clusters.
We refined these results and clustering by running SIMONE
using a blind renaming normalization, which yields model
clones that are similar in structure, ignoring name differences
in embedded model elements. The number of clones identified

376

GM Fuel System Models
Rearrange to cluster similar subsystems Clusters reveal groups

of similar subsystems -
called “clone classes”

FCBR Determine
Closed Loop Fuel
Pump Duty Cycle
(2 similar copies)

FCBR Controller
Scheduling

(2 similar copies,
75% similar copy

in FAFR)

FAFR RAM Diagnostic
(several similar copies,
ROM Diagnostic, FFPM
Controller Watchdog
Diagnostic, FDBR Fuel

Senor High Diagnostic, ...)

Identical copies of
GMPT Operating
System Tasks in

FAFR, FCBR, FDBR

FCBR Fuel
Pressure Device
Control Request,

75% similar to
FCBR Fuel Pump
Device Control

Request

Fig. 3. Subsystem Clone Pairs Clustered by Similarity

with similarity 70%-100% then increases to 1,147 clones
clustered into 30 clone classes.

Using SIMGraph, we generated a graph to represent sub-
system clone results, which intuitively presents the level of
similarity between the identified subsystem clones as well as
subsystem sizes. The analyzed Fuel System consists of three
main models, FAFR, FCBR and FDBR. When generating
the graph, we set the colour attribute to be different for
each of these models, thus subsystems of FAFR are coloured
in red, FCBR in green, and FDBR in blue. Subsystems of
these models are represented as circles, where the circle size
corresponds to the subsystem size (lines of text in the internal
Simulink representation of the subsystem).

Figure 1 shows the resulting graph. Subsystems that have a
similarity relation are connected, and unique subsystems are
not connected. Figure 2 shows the graph after we filter out
these unique subsystems, since they are not of interest from
a clone detection prospective. For example, the large green
subsystems on the right of Figure 1 disappear in Figure 2 since
they are unique. We can also observe the level of similarity
between subsystem clone pairs, represented by the thickness
of the lines connecting them. The thicker the connecting line
the more similar the subsystem pairs are.

While Figures 1 and 2 show the cloning relation at the
level of subsystem clone pairs, a more interesting view, the
clustering view, better reveals the similarity between groups of
subsystems (Figures 3 and 4). Figure 3 is a layout of the graph
of Figure 2 clustered using the Fruchterman Rheingold clus-
tering algorithm to better reveal groups of similar subsystems.
Figure 4 on the other hand shows the NICAD clone classes,
a closure of the clone pair relations into cliques representing
repeated subsystem patterns. This better reveals the relative
size and distribution of subsystem clone classes.

GM Fuel System Models
Infer common subsystem patterns

Patterns characterize
common repeated
similar subsystem

paradigms

Large groups of
small to mid-sized
similar subsystems

across models

Small groups of
relatively large

similar subsystems
both within and
across models

Small differences
could be worrisome
- in this case Input
Cct Diagnostics in

FAFR, FCBR

Anonymous subsystems
handled - here Fuel Pump
Duty Cycle subsystems

in FCBR similar to
unnamed subsystems in

FDBR

Fig. 4. NICAD Clone Classes: Closure into Subsystem Patterns

VII. ANALYSIS INSIGHTS

SIMgraph arranges that the names and file paths of the sub-
systems are stored as attributes of the nodes of the generated
graphs. Thus the identities of the subsystems and models can
be explored in Gephi simply by clicking on the nodes of the
graph. Using this technique, we can gain deeper insight about
what we are seeing.

• Inferring common subsystem patterns: The NICAD clus-
tering shown in Figure 4 provides us with an initial
insight about model pattern characterization, since similar
subsystems have been partitioned into separate categories,
with a distinguished element serving as the exemplar
of the group. These categories will form the basis of
our pattern formalization in building a subsystem pattern
taxonomy for the GM models.

• Identifying similarities across models: Visualization the
clone relationships helps us to identify not only similar
subsystems within models, but also across models. This is
made possible using the colouring scheme to distinguish
the different models. For example, on the left of Figure 3
we can see that there are two similar copies of Determine
Closed Loop Fuel Pump Duty Cycle in the FCBR model,
since the two circles have the same green colour. On the
right of the same Figure we can see three medium-sized
circles of different colours connected to each other by a
thick line, which reveals that there are identical copies of
a medium sized subsystem, the GMPT Operating System
Tasks, used in all three models, FAFR, FCBR and FDBR.

• Handling anonymous subsystems: This an important
feature of SIMONE, by which anonymous (unnamed)
Simulink subsystems are identified and grouped with
other similar subsystems. This allows engineers to iden-
tify these subsystems as instances of other known named
subsystems, and possibly name or refactor them to docu-
ment the relation. For example, on the right of Figure 4 an
anonymous subsystem in the FDBR model is identified

377

as similar to the Fuel Pump Duty Cycle subsystems of
FCBR.

• Identifying potential maintenance problems: The graph
visualization can also help engineers identify potential
maintenance problems. For example, similar subsystems
with the same name across models connected by a thin
line indicate that even though the subsystems have the
same name they are only 70% similar. The bottom left
of Figure 4 shows an example on this case, where the
thin connections between the Cct Diagnostics subsystems
of FAFR and FCBR indicate that they are not nearly a
similar as might be expected.

VIII. PROPOSED USAGE SCENARIOS

Potential general usage scenarios for our subsystem pattern
analysis include: the automated discovery of common idioms,
both global to the company and local to a project or do-
main, model optimization, potential bug discovery (inconsis-
tent changes to instances of a pattern), functional and security
compliance analysis, modeling standards enforcement, model
library creation and reuse, and reuse of implementation and
deployment processes and alternatives.

At a meeting to present our tools and results to GM engi-
neers, they showed a keen interest in our approach, and they
found the visual presentation useful as a first-level overview
of the results our tools uncovered. While not intended for
everyday model clone management (our SimNav interface [5]
serves that purpose), team leaders found this overview useful
in assessing the overall situation in a system. The meeting also
helped our GM industrial partners to identify a more specific
list of applications tailored to their own goals:

• Refining / adjusting / changing modeling guidelines to
either prohibit common problem constructs, or encourage
other constructs.

• Identifying new candidate constructs for addition to the
GM block library. The block library not only provides
primitives (native Simulink blocks), but also common
subsystem constructs for easy re-use (e.g., basic first
order lag filters).

• A set of common model patterns provides designers with
a choice of alternatives. These alternatives can be ex-
plored by designers to identify which take best advantage
of MATLAB’s optimizations.

IX. RELATED WORK IN CLONE PATTERN VISUALIZATION

Dang al el. [6] report their experience at Microsoft re-
search using their XIAO code clone detection approach in
a real development setting. Like us, the authors present the
importance of presenting clone results to the engineers in
an understandable and intuitive way, as well as the need for
near-miss clone detection techniques with sorting and filtering
capabilities, which will help engineers to identify clones of
interest and eliminate any irrelevant clones.

Ader and Kim [7] argue the importance of using graphs to
help understand code clone results in the context of parameters
and relationships, such as relation degree, size, and colour.
They have developed their tool SoftGUESS for that purpose.

Yoshimura and Mibe [8] present their experience in visualiz-
ing code clones in an industrial setting, analyzing an enterprise
business application at Hitachi. The authors emphasized the
importance of tool support for large-scale systems and a
suitable visualization of clone results to help stakeholders
understand their systems.

All of the above approaches present support for using visu-
alization to understand code clones, while our tool, SIMGraph,
is specifically aimed at near-miss model clones.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an initial analysis of production
automotive models using our SIMONE model clone detection
tool and its SIMGraph visualization extension. We presented
a case study and some insights resulting from it, identifying
potential usage scenarios with the help of the initial feedback
received from our industrial partners. As future work, we plan
to refine the initial clustering observed by our tools and to use
pattern matching techniques adapted from source code analysis
research to encode the taxonomy elements and organize them
into a partitioning engine. The pattern set will then be back-
validated by applying it to the analysis of the original example
model set, and then applied to a larger set of industrial models
to test completeness.

ACKNOWLEDGEMENTS

This work is supported by NSERC as part of the NECSIS
Automotive Partnership with General Motors, IBM Canada
and Malina Software Corp.

REFERENCES

[1] M. Jungmann, R. Otterbach, and M. Beine, “Development of
safety-critical software using automatic code generation,” in SAE
World Congress, 2004.

[2] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and
A. Stevenson, “Models are code too: Near-miss clone detection
for simulink models,” in ICSM, 2012, pp. 295–304.

[3] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code
normalization,” in ICPC, 2008, pp. 172–181.

[4] B. Hauptmann, V. Bauer, and M. Junker, “Using edge bundle
views for clone visualization,” in IWSC, 2012, pp. 86–87.

[5] J. R. Cordy, “Submodel pattern extraction for Simulink models,”
pp. 7–10, 2013.

[6] Y. Dang, S. Ge, R. Huang, and D. Zhang, “Code clone detection
experience at microsoft,” in IWSC, 2011, pp. 63–64.

[7] E. Adar and M. Kim, “Softguess: Visualization and exploration
of code clones in context,” in ICSE, 2007, pp. 762–766.

[8] K. Yoshimura and R. Mibe, “Visualizing code clone outbreak:
An industrial case study,” in IWSC, 2012, pp. 96–97.

378

