
WAFA: Fine-grained Dynamic Analysis of Web Applications

Manar H. Alalfi James R. Cordy Thomas R. Dean

School of Computing, Queen’s University, Kingston, Canada
{alalfi, cordy, dean}@cs.queensu.ca

Abstract
Database interactions are a vital source of information

in the analysis of highly dynamic systems such as web ap-
plications. Most web application security vulnerabilities,
such as SQL injection and broken access control, can be
traced to problems in database interactions. which are im-
plemented as a set of embedded or constructed SQL state-
ments. The identification and analysis of these embedded
statements as an integral component of the host application
requires complex analysis including robust parsing, pattern
matching, control flow and data flow analysis.

In this paper, we propose an approach to this problem
using source transformation technology. A rich model of
fine-grained information is extracted from dynamic web ap-
plications, allowing us to reason not only about the SQL
embedded system, but also about page access, server envi-
ronment variables, cookies and session management func-
tions. We evaluate our system on the popular bulletin board
web application PhpBB, a PHP / MySQL-based dynamic
web application.

1 Introduction

Web applications are one of many kinds of systems with
multiple components that dynamically interact to deliver a
specific business process. Sophisticated static and dynamic
analysis is needed when reverse engineering web applica-
tions to extract all relevant information from the various
components, and to correlate the extracted information to
model the actual application behavior.

Several approaches for reverse engineering web applica-
tions have been proposed, most of which have focused on
extracting the structural levels of the application, such as
pages, frames, forms, and hyperlinks [13, 16]. Others have
addressed particular aspects of application behavior such as
interaction with the browser [9], and still others have aimed
at extracting a higher level abstract behavioral model which
describes the basic application elements, but does not com-
bine the results or extract the details of database interaction
[11, 5, 10].

Most current dynamic web application business
processes depend on the support of a database back end.
A great deal of information is stored in the database,
including critical knowledge such as session management
and access permissions. Dynamically identifying and
extracting database interactions alone can be misleading, as
they do not reflect the actual intended behavior of the ap-
plication business process as a whole. Analyzing database
interactions in the context of the entire web application
may clarify aspects of the business process hidden behind
the web application presentation level. Since many web
application vulnerabilities rely on modifying the database
interaction statements at runtime, there is a need to analyze
not only the values of the SQL statements constructed at
runtime, but also the original source of the host language
statements used to construct the SQL statements.

Database interactions are often implemented in web ap-
plications using a combination of string concatenation ex-
pressions and host language statements that work together
to construct an SQL statement. These expressions and state-
ments are composed of constant strings and application
variables. Identifying, extracting, and analyzing these dy-
namically constructed statements in the context of the over-
all system is not a trivial process.

In this paper we propose an approach to analyze dynamic
web applications, extracting a fine-grained model aimed
at understanding the interaction between the web applica-
tion and the database. Our approach is different from other
methods in the following aspects:

• An automated instrumentation methodology that han-
dles mixed languages, and can be easily extended to
other technologies and host languages.

• Extraction of a model that relates information about
pages, server environment variables, database interac-
tions and host language source statements. This model
is stored in a database to facilitate accessibility and fu-
ture analysis.

• Extraction of a web application’s embedded SQL com-
ponents, which is comprised of the source of the orig-
inal SQL statements, and the corresponding execution

PHP Grammar &
Transformation Rules

Instrumented PHP
Application

Browser
Session

Transformation Rules

Dynamic PHP
Web Application

Instrumenting
Transformation

I t ti

Test cases

Web Crawling (A)
Instrumenting

Function Library

Filtering

Tool

SQL & PHP

Analysis (B)

SQL Trace
Database

SQL Statement
Analysis

Grammars & SQL
Transformation Rules (C)

Figure 1. WAFA Architecture

instances. The SQL components also include both sta-
tic host application variables and dynamic server envi-
ronment variables.

This work takes place in the context of a larger project
on web application security, specifically the analysis of role
based access control [1]. In the class of web applications we
are analyzing, user roles and access permissions are stored
in the application database with the other application data.
Providing the context of the database interactions allows us
to better analyze these interactions and recover the details
of user roles and permissions. In previous work [2] we
recovered sequence diagrams for test sessions at the page
level. We have used the work described in this paper to
extend the recovered sequence diagrams to include interac-
tions with the database. The extended sequence diagrams
are then used as part of a model-based analysis of access
control.

Another possible application of our approach is the
analysis of SQL injection attacks in a way similar to Hal-
fond and Orso [12]. Differences between the structure of
the runtime query and the source version of the query indi-
cate input that may have changed the meaning of the query.

2 Approach

Figure 1 shows the architecture of our approach, called
WAFA (Web Application Fine-grained Analysis). An in-
strumentation transformation is used to analyze the source
code of the application, inserting appropriate calls to an in-
strumentation library written in PHP, Figure 1(A). The in-
strumented application is deployed in a testing environment,
where a web crawling tool uses predefined test cases to ex-
ercise the web application. Since test case design and cov-
erage are important issues, they are discussed in detail in
another recently submitted paper [4]. We focus our discus-
sion here on recovering the interaction behavior between the
web application components.

As the tests run, Figure 1(B), the instrumentation library
inserts information about each query into a separate instru-
mentation database. A source transformation is performed
on each SQL statement at runtime to analyze its structure.
This structural information is inserted in the database along
with the query, Figure 1(C).

The schema for our database is shown in Figure 2. It
is comprised of five tables and one view. The Server
Pages table is used to keep track of access to individ-
ual pages, while the other four tables contain information
about the HTTP variables, environment variables, cookies
and database statements associated with each page, linked
using the Page Ins ID field. We combine the informa-
tion from the various tables into a single unified trace view
in the Dynamic Analysis view. The following section
elaborates the approach in more detail.

3 Instrumentation Methodology
We automatically analyze and add source code instru-

mentation to web application source using TXL [8], a pro-
gramming language designed for manipulating and exper-
imenting with programming language notations and fea-
tures. TXL is a powerful source transformation system that
has been used in industrial applications involving millions
of lines of source code. The TXL processor takes as input
a context-free grammar for the language to be manipulated,
parses the source program into a parse tree, and then recur-
sively applies a set of transformation rules, beginning with
a main rule, until there are no remaining matches in the
parse tree. The transformation is completed by unparsing
the transformed tree to the new target source program.

Our implementation presently instruments web applica-
tions written in PHP(3,4,5) and MySQL(5.x). However, our
TXL-based approach is easily adapted to deal with other
scripting languages and database engines. Documents that
include a mixture of languages and technologies are easily
handled by employing island grammars [17]. In our im-
plementation, the islands are PHP code, while the HTML

Server Pages

Page_Ins_ID

Page_ID

«PK» Page_Name

«PK» Page_Param

«PK» Prev_PageID

Page_Acc_TS

Http Variables

«PK» HttpVar_ID

HttpVar_Name

HttpVar_Value

Assigned_Var

HttpVar_Type

HttpVar_Acc_Time

«FK» Page_Ins_ID

Sessions

«PK» Session_ID

Session_IP

Session_ST

Session_ET

«FK» Page_Ins_ID

Database Interactions

«PK» SqlStm_ID

Sql_Source

Sql_Instance

SqlType

EntityName

SQL_Parts

SqlTransTime

«FK» Page_Ins_ID

Cookies

«PK» Cookie_ID

Cookie_Name

Cookie_Value

Cookie_Path

Cookie_Domain

Cookie_Expire_T

Cookie_HttpOnly

Cookie_Secure

«FK» Page_Ins_ID

Dynamic Analsis View

Page_ID

Page_Name

Page_Param

HttpVar_Name

HttpVar_Value

HttpVar_Type

Assigned_Var

Sql_Stm

Sql_Source

EntityName

Php_param

SqlTransTime

Page_Ins_ID

1

- server pages

*

- cookies

1
- server pages

*

- http variables

1
- server pages

*
- DB interactions

1 - server pages

*
- dynamic analsis view

*

- sessions
1

- server pages

1

- http variables

*

- dynamic analsis view

1

- DB Interactions

*

- dynamic analsis view

1

- cookies

*
- dynamic analsis view

Figure 2. The WAFA Dynamic Analysis database model

source and document text are considered water. Island
grammars simplify the transformation as interesting ele-
ments can be identified and analyzed without parsing the
entire document.

3.1 Instrumenting and Collecting Page
Information

In our process, page access is tracked by querying the
server execution environment information created by the
web server when the user interacts with the web applica-
tion. Pages are instrumented by inserting an instrumenting
function call at the head of each PHP dynamic page that
performs this query to retrieve the page URL address along
with any parameters passed to the page as well as the page
access time, and inserts a trace element of this information
in the page access table of our instrumenting database.

As part of the insertion of each page access trace ele-
ment in the database, an analysis is performed to insure that
the inserted trace element is unique. We recognize unique
trace elements as those that lead to the generation of a new
client page, or that generate a previously visited client page
using a different path. Each server page can generate one
or more client pages depending on the parameters passed to
the page. We consider a generated client page to be the same
if the same server page is re-executed without any parame-
ters, or with the same parameters. In such cases we do not
insert the new page into the database unless a different path
is followed in its generation. Our database is constructed to
reject any insertion that violates these conditions.

3.2 Instrumenting and Collecting Server
Information

In PHP, predefined global variables contain informa-
tion about a script’s environment, such as the client’s web
browser, the HTTP host, and the HTTP connection. All

those variables along with any function that manipulates
them are instrumented. When the application is executed, a
trace element on each piece of information will be inserted
in a database for later analysis.

In particular, four types of HTTP variables are identified
and instrumented, namely, the GET, POST, COOKIE,
and SESSION variables. References to these variables
are replaced with a call to the instrumenting function
HttpVar track(), which takes as parameters the HTTP
variable name, value, type, name of the PHP variable to
which the HTTP variable is assigned(if any), and the page
number in which the variable is located. After adding the
information to our database, the function returns the value
of the HTTP variable so as to preserve the semantics of
the code. An example of this instrumentation is shown in
Figure 3. In the Figure, references to the HTTP parameter
mode are logged in the database along with the fact that it
is assigned to the PHP variable $mode.

3.3 Cookies and session management
functions

In the HTTP Protocol, state is preserved between consec-
utive requests using cookies, a small identifier that is stored
in the client browser and sent back to the server on each
subsequent request. This identifier is used by the web appli-
cation to store and retrieve data specific to that session. The
predefined global variables $HTTP COOKIE VAR is used
to access the cookies, and this variable is instrumented as
described in the previous section. In addition, we instru-
ment changes to the cookie by adding a call to our instru-
mentation function, cookie track(), after each call to
the PHP function setcookie(). Our function takes the
same parameters and stores them in the Cookie table of
our instrumentation database. An example of this trans-
formation is shown in Figure 4. The line in bold is added

<?php
...
if (!empty($HTTP_POST_VARS['mode']) || !empty($HTTP_GET_VARS['mode']))
 $mode = (!empty($HTTP_POST_VARS['mode'])) ?
$HTTP_POST_VARS['mode'] : $HTTP_GET_VARS['mode'];

 Transformed into . . .

if (!empty($HTTP_POST_VARS['mode']) || !empty($HTTP_GET_VARS['mode']))
 $mode = (! empty ($HTTP_POST_VARS ['mode'])) ?
HttpVar_track ('$mode', 'mode', $HTTP_POST_VARS ['mode'],186,192, POST):
HttpVar_track ('$mode', 'mode', $HTTP_GET_VARS ['mode'],186,191, GET);
...
?>

Figure 3. Results of instrumenting server environment variables in a snippet of code in PhbBB 2.0 application

Each HTTP reference variable is identified and transformed into an instrumenting function call which is passed the variable name,
assigned variable name, variable value, unique ids for the variable name and the page name, and the variable type. The instrumenting
function returns the variable value as its return value.

<?php
. . .
if ($userdata ['session_logged_in']){
setcookie ($board_config ['cookie_name'].'_f_all', time (), 0,

$board_config ['cookie_path'], $board_config ['cookie_domain'],
$board_config ['cookie_secure']);

 New instrumentation function added . . .

cookie_track ($board_config ['cookie_name'].'_f_all', time (), 0,

 $board_config ['cookie_path'], $board_config ['cookie_domain'],
 $board_config ['cookie_secure']);}

. . .
?>

 Figure 4. Result of instrumenting cookie management functions in a snippet of code in the PhbBB 2.0 application

Each cookie management function is identified and an additional instrumenting function call that captures all cookie management
function parameters is added

to the contents of the if statement directly after the call to
setcookie(). If cookies have been disabled, then ses-
sion information is encoded into URLs using PHP utility
routines. We instrument the calls to these functions in a
similar manner.

3.4 Instrumenting and Collecting Data-
base Interactions

The most complex set of transformations is used to iden-
tify and instrument the interactions with the database. We
break the transformation into four parts. The first is to iden-
tify dynamically constructed SQL statements. Once they
are identified, then we can insert code to construct a string
value that contains the same SQL statement, but with the
names of the application variables that are used instead of
the variables. Together the two strings are inserted into the
instrumentation database. An analysis of each of the SQL
statements is done to identify the type of the statement, and
the key elements present in the statement. This information
is added to the database entry for the statement.

3.4.1 Identifying Dynamically Constructed SQL State-
ments

Our approach uses a separate lexical token class
(SQLCommandString) to distinguish string literals
that begin with the SQL keywords Select, Insert,
Update, Delete, Create, Alter and Drop
from other strings in the PHP source text. This allows us
to use the parser to recognize concatenation expressions
built from these strings (Figure 5). The transformation then
targets assignment statements that use these strings to build
larger strings. Once an assignment is found that uses one
of these SQL keyword strings, other assignments using the
same PHP variable are also checked and instrumented. The
code is normalized prior to the transformations, moving
string expressions to separate assignment statements and
replacing them with a temporary PHP variable.

3.4.2 Constructing SQL Statement Sources

As the SQL assignment statements identified in the previ-
ous section are encountered, our transformation inserts ad-
ditional assignments into the code to accumulate the source
representation of the SQL statement as shown in bold in

% SqlCommandString is any string or character literal

% beginning with an SQL query verb

tokens

 SqlCommandString "'SELECT #'*'"
 | "'INSERT #'*'"
 | "'DELETE #'*'"
 | "'UPDATE #'*'"
 | "\"SELECT #\"*\""
 | "\"INSERT #\"*\""
 | "\"DELETE #\"*\""
 | "\"UPDATE #\"*\""
 % and any others needed

end tokens

% SqlExpr is any string concatenation expression

% that begins with one of the above magic words

define SqlExpr
 [SqlCommandString] [CatAddExpr*]
end define

Figure 5. PHP grammar extension to recognize guest pat-
terns (SQL statements)

Figure 6. The SQL command that is constructed by the code
in the Figure is the string:

”INSERT INTO phpbb themes(themes id, template name,
style name) VALUES(’8’, ’test’, ’test style’);”

At the same time, the assignment statements inserted by
our instrumentation construct a second string:

”INSERT INTO phpbb themes($db fields[$i], $db fields[$i],
$db fields[$i]) VALUES ($db values[$i], $db values[$i],
$db values[$i]);”

Just before the SQL command string is sent to the
database, both strings are inserted into the instrumenta-
tion database. This gives us a runtime snapshot that con-
tains not only the values used in the actual SQL query,
but also the PHP variables from which the query was con-
structed. Figure 8 shows the TXL transformation rule
instrumentQueriesSource that identifies an assign-
ment containing an SQL Command String and adds the in-
strumentation assignments.

The instrumented SQL statement is constructed in
the TXL variable SQLE Source. The parts of the
SQL expression are passed as a parameter to the
collectparameters function which processes them
one part a time. It classifies each SQL part it receives into
one of three categories:

1. Constant variables. Constant variables are the same
for all SQL statement instances, so the function con-
catenates them to the result without quotes , adding
the actual values at run time. The first assignment
shown in Figure 6 references the constant variable,
THEMES TABLE. This variable, which contains the
name of the table, is concatenated without quotes in
the instrumentation assignment on the next line, shown
in bold. Note that at this point in time, the assign-

<?php
...
{
$sql = "INSERT INTO ".THEMES_TABLE." (";
$GLOBALS ["Sql_Source"] [594] [0] = 'INSERT INTO '.THEMES_TABLE.' (';
$GLOBALS ["Sql_Source"] [594] [1] = 516;
$GLOBALS ["Sql_index"] = 594;
}
for ($i = 0; $i < count ($db_fields); $i ++)
{
 {
 $sql.= $db_fields [$i];
 $GLOBALS ["Sql_Source"] [594] [0].= '$db_fields [$i]';
 }
 if ($i != (count ($db_fields) - 1))
 {
 {
 $sql.= ", ";
 $GLOBALS ["Sql_Source"] [594] [0].= ', ';
 }
 }
}
{
 $sql.= ") VALUES (";
 $GLOBALS ["Sql_Source"] [594] [0].= ''.') VALUES (';
}
for ($i = 0; $i < count ($db_values); $i ++)
{
 {
 $sql.= "'".$db_values [$i]."'";
 $GLOBALS ["Sql_Source"] [594] [0].= '$db_values [$i]';
 }
 if ($i != (count ($db_values) - 1))
 {
 {
 $sql.= ", ";
 $GLOBALS ["Sql_Source"] [594] [0].= ', ';
 }
 }
}
{
 $sql.= ")";
 $GLOBALS ["Sql_Source"] [594] [0].= ')';
}

...

?>

 Figure 6. Instrumented snippet of code for PhpBB2.0 ap-
plication - 1

Sections in boldface have been added by our instrumenting trans-
formation. This example demonstrates how the dynamic SQL state-
ment is constructed from its fragments using forward flow analysis.

ment statements have yet to be generated. The func-
tion is constructing the expressions that will occur on
the right hand side of the instrumentation assignment
statements.

2. PHP variables. These variables are bound to dif-
ferent values at run time, generating different ver-
sions of the SQL statement. The function concate-
nates a quoted version of the variables to the re-
sult, protecting the variable from runtime substitu-
tion. In Figure 6, the assignments of the PHP vari-
ables, $db fields[$i] and $db values[$i], are quoted
when concatenated to the instrumentation variable
$GLOBAL["Sql source"][549][0].
In some situations, an SQL statement is constructed
in fragments using multiple PHP variables before as-
sembling the final SQL statement. Currently, we are
using naming conventions (ending in sql) to iden-
tify the part variables, which are collected in a TXL
global variable. Once identified, we instrument each

<?php

...
{
 $join_sql_table = (! $post_id) ? '' : ", ".POSTS_TABLE." p, ".POSTS_TABLE." p2 ";
 $GLOBALS ["SqlParts"] ['join_sql_table'] = (((! $post_id)) ? ('') : (', ').(POSTS_TABLE).(' p, ').(POSTS_TABLE).(' p2 '));
}
{
 $join_sql = (! $post_id) ? "t.topic_id = $topic_id" : "p.post_id = $post_id AND t.topic_id = p.topic_id AND
 p2.topic_id = p.topic_id AND p2.post_id <= $post_id";
 $GLOBALS ["SqlParts"] ['join_sql'] = (((! $post_id)) ? ('t.topic_id = $topic_id') : ('p.post_id = $post_id AND
 t.topic_id = p.topic_id AND p2.topic_id = p.topic_id AND p2.post_id <= $post_id'));
}
{
 $count_sql = (! $post_id) ? '' : ", COUNT(p2.post_id) AS prev_posts";
 $GLOBALS ["SqlParts"] ['count_sql'] = (((! $post_id)) ? ('') : (', COUNT(p2.post_id) AS prev_posts'));
}
{
 $order_sql = (! $post_id) ? '' : "GROUP BY p.post_id, t.topic_id ORDER BY p.post_id ASC";
 $GLOBALS ["SqlParts"] ['order_sql'] = (((! $post_id)) ? ('') : ('GROUP BY p.post_id, t.topic_id ORDER BY p.post_id ASC'));
}
{
 $sql = "SELECT t.topic_id, t.topic_title, t.topic_status, t.topic_replies, t.topic_last_post_id, f.forum_name,
 f.forum_status,f.forum_id, ".$count_sql."FROM ".TOPICS_TABLE." t, ".FORUMS_TABLE. " f".$join_sql_table.
 " WHERE $join_sql AND f.forum_id = t.forum_id $order_sql";
 $GLOBALS ["Sql_Source"] [394] [0] = (('SELECT t.topic_id, t.topic_title, t.topic_status, t.topic_replies,
 t.topic_last_post_id, f.forum_name, f.forum_status, f.forum_id,).((''.$GLOBALS ["SqlParts"] ['count_sql'].'')).
 ('FROM ').(TOPICS_TABLE).(' t, ').(FORUMS_TABLE).(' f').((''.$GLOBALS ["SqlParts"] ['join_sql_table'].'')).
 (('WHERE '.$GLOBALS ["SqlParts"] ['join_sql'].('AND f.forum_id = t.forum_id'.$GLOBALS ["SqlParts"] ['order_sql'].''))));
 $GLOBALS ["Sql_Source"] [394] [1] = 391;
 $GLOBALS ["Sql_index"] = 394;
}

...
?>

!
!

!

!

!

!

Figure 7. Instrumented snippet of code for PhpBB2.0 application - 2

Sections in boldface have been added by our instrumenting transformation. This example shows how the dynamic SQL statement is
expanded from its fragments using backward flow analysis

of the variables in a similar manner. In Figure 7, the
SQL statement assigned to $sql is constructed from
parts contained in the $count sql, $join sql table,
$join sql, and $order sql variables. The Figure
shows how each of the part variables are instrumented
and collected in the global array SqlParts. The fi-
nal assembly of the SQL statement is shown at the
bottom of the Figure. The instrumentation string is
constructed by concatenating the parts that were pre-
viously stored in the SqlParts array.

3. String expressions. In PHP, string expressions can have
two forms: double quoted and single quoted strings.
The difference between the two forms is that embed-
ded PHP variables will be substituted in double quoted
strings but not in single quoted strings. Thus the
collectparameters function transforms double
quoted strings into single quoted ones to protect em-
bedded variables, unless the variables are recognized
as SQL fragment variables. In Figure 7 the string liter-
als in the SQL fragment assigned to the PHP variable,
$join sql have been changed to single quotes when as-
signed to the instrumentation array.

Once the expressions have been collected, a unique iden-
tifier for the SQL statement is generated. The TXL rule
in Figure 8 generates the assignment statements to collect
the SQL instrumentation strings in the PHP global array
Sql Source using the unique identifier. The unique iden-
tifier for the page (uniquePageid) is also stored in the

array so that it can be stored in the database to link the SQL
statement to the page from which it was generated.

The TXL rule instrumSqlStmParts is called on the
remaining source code to search for and mark any concate-
nation statement that may contribute to the construction of
the SQL statement identified in the rule. It takes as para-
meters the PHP variable from the left hand side of the as-
signment, and the statement’s unique identifier. Figure 6
shows how the SQL statement with the unique id 594 is
constructed from it’s fragments that are scattered in condi-
tional statements and loops.

3.4.3 Binding SQL Statement Source with its Runtime
Instances

In the previous subsection, we identified and globally in-
strumented SQL statement construction. We now identify
and instrument the actual SQL execution points, combin-
ing the instantiated SQL statements with the SQL state-
ment source. The TXL rule instrumentSQL, shown in
Figure 9, identifies calls to the mysql query PHP func-
tion and replaces them with the instrumentation function
mysql query track(). This function takes as parame-
ters the the original function’s SQL statement Q and data-
base connection R, as well as two additional instrumenta-
tion parameters: the SQL statement source, from the global
array "Sql Source" (mapped by the SQL statement
unique identifier in the global variable "Sql index"),
and the SQL statement’s unique identifier.

rule instrumentQueriesSource

 % Get the page ID for the page containing the SQL query source construction

 import uniqePageid [id]

 % Find the first statement of any SQL query source construction

 replace [TopStatement*]

 OCV [ObjectCVar] AsOp [AssignOp] SqlE [SqlExpr] ;

 Rest [TopStatement*]

 . . .

 % Collect and expand SQL statement source

 construct SQLE_Source [Expr]

 SqlE [collectparameters]

 % Create a unique id for the constructed SQL statement source

 construct uniqeid [id]

 _ [!]

 % Replace the statement with an instrumented version

 by

 {

 % Original statement

 OCV AsOp SqlE;

 % Added instrumentation statements

 '$GLOBALS '["Sql_Source" '] '[uniqeid '] '[0 '] = SQLE_Source ;

 '$GLOBALS '["Sql_Source" '] '[uniqeid '] '[1 '] = uniqePageid ;

 '$GLOBALS '["Sql_index" '] = uniqeid ;

 }

 % And instrument any following SQL query source construction fragments

 Rest [instrumSqlStmParts OCV uniqeid]

end rule

Figure 8. The instrumentQueriesSource transformation rule

The instrumentQueriesSource rule captures each SQL statement and transforms it into its source by collecting the statement
fragments and manipulating them to keep any embedded variable unsubstituted

rule instrumentSQL

 replace [Expr]

 'mysql_query (Q [Expr], R [Expr])

 by

 'mysql_query_track ('mysql_query, Q, R,

 '$GLOBALS '["Sql_Source" '] '['$GLOBALS '["Sql_index" '] '],

 '$GLOBALS '["Sql_index" '])

end rule

Figure 9. The instrumentSQL transformation rule

The instrumentSQL rule captures each SQL execution statement and transforms it into a call to an instrumenting function that
combines the globally constructed SQL statement source with it’s execution instance

3.4.4 Analyzing SQL Statement Sources

During runtime execution of the instrumented
PHP application, the instrumentation function
mysql query track() is called to insert trace el-
ements into the Database Interaction database
table. This function invokes a TXL program that parses the
SQL source statement, identifying the statement type, the
application variables and the database tables used in the
statement. It also identifies any PHP variables embedded in
the SQL statement and associates them with the syntactic
part in which they are used. For example, the program will
identify whether a PHP variable is used in a WHERE clause
or an ORDER BY clause. The results of this analysis are
also stored in the Database Interaction table so
that PHP variables can be directly linked to the run-time
values and database interactions they control.

4 Evaluation
We have evaluated our approach by analyzing several

production dynamic web applications, two of which are Ph-
pBB 2.0 (a popular internet forum system), and Moodle (a
popular open source course management system). We use
Web Application Testing In Ruby (WATIR) [6, 19], a library
used to script web browsers, to help automate the collection
of usage traces.

Tables 1, 2, and 3 show a subset of the results of one test
case (visits to Page ID 15 and 17) for an anonymous user
interacting with a PhpBB forum. The tables also show some
of the HTTP variables and database interactions generated
by the visits. Based on the Page ID values, these three
tables are joined into a single view for ease of analysis.

In the tables we can see that the viewforum page,
with Page ID 15, passes values to the HTTP Get vari-

!

Page_ID Page_Name Page_Param Prev
_ID

Page
Type

Page_Acc_Ts

15 http://phpBB2/viewforum.php ?f=1&sid=01e7ff1f13225be3cb129f8 14 PHP 1239318861

17 http://phpBB2/viewtopic.php ?t=1&sid=01e7ff1f13225be3cb129f8 16 PHP 1239318876

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Table 1. Sample trace elements for the Server Pages database table

Var_ID Page
ID

HttpVar Name HttpVar Value HttpVar
Type

Assigned
Var

HttpVar_Acc
Time

34 15 f 1 GET $forum_id 1239318862

35 15 phpbb2mysql_data a:2:{s:11:"autologinid";s:0:"";s:6:"userid";i:-1;} COOKIE $sessiondata 1239318863
36 15 phpbb2mysql_sid 01e7ff1f13225be3cb12b89857d3f9f8 COOKIE $session_id 1239318863
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Table 2. Sample trace elements for the Http Variables database table

Traces related to PageID 15, viewforum.php

SqlStm
_ID

Page
ID

Sql_Instance EntityName SqlTransTime Sql_Source Sql_Parts

2787 15 SELECT * FROM
phpbb_config

phpbb_config 1239318862 SELECT * FROM
phpbb_config

SelectStm
SelectExpr *

2788 15 SELECT * FROM
phpbb_forums
WHERE forum_id
 = 1

phpbb_forums 1239318863 SELECT * FROM
phpbb_forums
WHERE forum_id
= $forum_id

SelectStm
WHERECLAUSEVAR$forum_id
WhereExpr forum_id = $forum_id
SelectExpr *

2789 15 SELECT * FROM
phpbb_themes
WHERE
themes_id = 1

phpbb_themes 1239318864 SELECT * FROM
phpbb_themes
WHERE
themes_id = 1

SelectStm
WhereExpr themes_id = 0
SelectExpr *

2813 17 UPDATE
phpbb_topics SET
topic_views =
topic_views + 1
WHERE topic_id
 = 1

phpbb_topics 1239318882 UPDATE
phpbb_topics SET
topic_views =
topic_views + 1
WHERE topic_id
= $topic_id

UpdateStm
WHERECLAUSEVAR$topic_id
WhereExpr topic_id = $topic_id SetList
topic_views = topic_views + 1

!

Table 3. Sample trace elements for the Database Interactions database table

Traces related to PageIDs 15 and 17, viewforum.php and viewtopic.php

able f and the HTTP Cookies variable sid. Table 2,
HTTP Variables, shows that the f Get variable is assigned
to the $forum id PHP variable, and sid is assigned to
the $session id PHP variable. Table 3, Database Interac-
tions, shows some of the SQL statements generated from
this interaction. We can see that SQLStm ID 2788 uses the
PHP variable $forum id to retrieve the forum information,
while the other database interactions shown for this page
visit do not depend on user inputs to perform their transac-
tions. The Database Interactions table columns are popu-
lated as a result of the execution of the instrumented appli-
cation except the two columns, EntityName and SQl Parts,
which come from analysis of the SQL source statements
using TXL. The column EntityName shows the name of
database tables that the SQL statements are performed on.
Column Php Parts shows three pieces of information, the

SQL statement type (SelectStm, UpdateStm, and so
on), the embedded PHP variable and its syntactic location
within the SQL statement (such as the WHERE clause), and
the statement’s WHERE and SELECT expressions. This ex-
ample illustrates the key benefit of our approach, linking the
runtime instance of the query to the elements used to assem-
ble it including PHP variables and HTTP request variables.

Table 4 shows some statistics for the test scenario of an
anonymous user visiting a PhpBB forum. It shows the num-
ber and type of SQL statements executed during this inter-
action, the number of SQL statements that depend on user
inputs, the location of the embedded PHP variables in the
SQL statement, and the number and the type of the HTTP
variables used in the interaction. Table 4 shows the total
number of pages visited during this interaction as well as
the number of filtered client pages stored and analyzed by

!

Total!lines!of!code!! ~100k! ! !
PHP!pages! 72! ! !
HTML!Pages! 15! ! !
Templates!&!formatting!
files!

109! ! !

Database!tables! 30! ! !
!

Filtered!client!pages! Utility!pages!visited Client!pages!generated All!visited!pages
20! 180! 50! 230!

!

! No.!of!SQL!statements SQL!statements!Use!!
of!HTTP!Variables!

No.!of!Http!Variables!

Statement!\Variable!type! SEL! INS! DEL! UPD! Where!clause Others ALL! POST! GET COOKIE
All!traces! 115! 0! 0! 1! 14! 3! 51! 0! 15! 35!
Index.php! 22! 0! 0! 0! 2! 0! 8! 0! 0! 8!
viewtopic.php! 9! 0! 0! 1! 3! 1! 3! 0! 1! 2!
viewforum.php! 11! 0! 0! 0! 6! 1! 3! 0! 1! 2!
!

Table!4!shows!statistics!for!the!scenario!of!Anynmouse!user!visiting!the!PhpBB!forum.!!It!shows!the!number!and!the!
type!of!SQL!statement!executed!during!this!interaction,!the!number!of!Sql!statement!that!depends!on!user!inputs,!the!
location!of!the!embedded!PHP!variable!in!the!SQL!statement,!and!the!number!and!the!type!of!the!Http!variable!used!
during!this!interaction.!This!statistics!is!done!also!for!three!php!pages.!Table5,!shows!the!total!number!of!pages!visited!
during!this!interaction!as!well!as!the!number!of!filtered!client!pages!that!is!stored!and!analyesd!by!our!prototyping!
tool.!!

!

!

!

!

!

!

!

!

!

!

!

!

Page
_ID

Page_Name Page_Param Prev
_ID

Page
Type

Page_Acc_Ts

Table 4. Trace statistics for anonymous user interactions with a PhpBB 2.0 forum

our tool. In the work described in this paper, both the SQL
query source and the runtime SQL instances are collected at
run time. In a new experiment we have shown how the SQL
source statements can be extracted statically by slicing the
instrumentation aspect of an instrumented PHP application
into a separate PHP program. When executed offline, this
program inserts the original SQL statement sources into the
database. The runtime SQL commands are then collected
dynamically when the application is executed and related to
the original SQL statement sources as described in section
3.4.4. The dynamic approach of this paper adds an average
overhead of approximately 70%, while the static optimiza-
tion reduces the average overhead to 30%.

5 Related Work

Several techniques have been proposed to support un-
derstanding and analysis of web applications using reverse
engineering. A detailed study of the state of the art in this
field can be found in our recent survey [3]. To the best of
our knowledge this is the first approach that dynamically an-
alyzes database interactions in combination with other web
application basic elements of information, such as pages,
server environment variables, application variables and ses-
sion and cookie management functions. The combined in-
formation gained from all of those sources provides a strong
infrastructure that can serve many analysis tasks requiring
precise fined-grained information, such as web application
security analysis.

The problems of identifying and analyzing database in-
teractions have been previously studied for standard sys-
tems. For instance, Cleve and Hainaut [7] use aspect-based
tracing to relate and extract the basic components of the dy-
namic SQL query. This includes the basic dynamic query,
the variable parts of the query, the query result, in addi-
tion to some environment variable such as the class and the
line number in which the query called. The authors pro-
vide three kinds of post analysis of the trace elements af-
ter the program is executed which include constant/variable
identification, value-based dependency analysis and static
statement restructuring. However their approach works
only with prepared statements and does not handle the case
where the SQL statement is constructed in string variables

and passed as a string to the database API. Their approach
is also yet to be evaluated on a production system.

Brink et al. [18] propose a tool for assessing the qual-
ity of database interactions in standard applications. They
first extracted embedded SQL statements using control and
dataflow analysis. The identification of SQL string literals
are done using a standard Java program that tokenizes the
source program based on predefined SDF grammars. Then
they collected the identified parts in a query object which
includes information about the reconstructed query, its loca-
tion, and name and type of variables required for the recon-
structed query. A post analysis is done over the extracted
queries for quality assessment purposes. This analysis is
done for PL/SQL, COBOL, Visual basic, and Java. The au-
thors’ aim is to extract the queries for quality assessment,
while our aim is to reverse engineer a web application to
gain a rich infrastructure that can support different kind of
analysis including quality assessment of database interac-
tions. While the identification of SQL queries in this work
is similar to ours, using source transformation technology
we combine the process of parsing, pattern matching and
flow analysis into a single coherent step, yielding a faster
and more flexible analysis with more accurate results.

Ngo and Tan [15] propose an automatic static technique
to extract database interaction points from web applications.
The approach first identifies all program paths that include
a database interaction and slice them out as an interaction
Control flow Graph (ICFG), then each interaction path is
symbolically executed, and all possible interaction types
are derived from the generated symbolic expression using
inference rules. Evaluating the approach on a case study,
the approach is able to extract 80% of the database interac-
tions. The complexity of the extraction process is high as it
is composed of 5 stages, and is affected by factors such as
number of the interaction paths (i-paths), and the length and
complexity of each ipath. The authors also do not specify
how to handle SQL statements constructed from sequences
of string concatenations. Table 5 summarizes and compares
related work.

!

While!the!tracing!approach!they!used!do!not!modify!the!analyzed!source!code!,!it!is!customized!for!!data!
intensive!Java!applications,!and!do!not!deal!with!the!!case!of!constructing!SQL!statement!form!sequence!
of!string!concatenations!scattered!in!different!places!in!the!code,!and!do!not!evaluate!their!approach!in!
a!production!system.!

!

The!authors!focus!on!the!analysis!of!dynamically!generated!SQL!queries!and!particularly!on!the!
embedded!SQL!dynamic!queries!in!Java!programming!language.!!The!authors!apply!aspect"based!tracing!
to!dynamically!extract!specific!information!related!to!such!queries!and!insert!them!into!log!files!for!
further!analysis.!!

!

Approach! Static\!
Dynamic!
Analysis!

Host!language!
\Application!

Extendable! Client!
Application!
Source!code!

Parsing!tech.!

Instrumenting!
transformation!!(WAFA)!!

S\D! PHP!\Web!
Applications!

Yes! Syntactic!
modification!!

Island!grammar!

Tracing!Aspects!![7]! D! Java! No! No!modification! !

Symbolic!execution!and!
inference!rules!![15]!

S! PHP\Web!
Applications!

Yes! No!modification! Independent!
parsers!

Control!and!flow!
analysis![18]!

S! PL/SQL,!COBOL,!
Visual!Basic!

Yes! No!modification! JJForester(Parser)
ANTLR(tokenizer)!

!

!

!

!

Applying!static!analysis!for!automated!extraction!of!database!interactions!in!web!applications:!!

(Ask!about!complexity)!

The!authors!propose!an!automatic!static!technique!to!extract!database!interaction!points!form!web!
applications.!The!approach!first!identifies!all!program!paths!that!includes!a!database!interaction!and!
slice!them!out!as!an!interactions!Control!flow!Graph!(ICFG),!then!each!interaction!path!is!symbolically!
executed,!and!all!possible!interaction!types!are!derived!from!the!generated!symbolic!expression!using!
inference!rules.!Evaluating!the!approach!on!a!case!study,!the!approach!is!able!to!extract!80%!of!the!
database!interactions.!

The!complexity!of!the!extraction!process!is!high!as!it!is!composed!of!5!stages:!

Table 5. Related work comparisons

6 Future Work and Conclusions
We have presented WAFA, an automated reverse engi-

neering approach to recover fine-grained interaction behav-
ior of dynamic web applications. To the best of our knowl-
edge, our approach is the first one to extract the web appli-
cation’s embedded SQL subsystem, which includes both the
original SQL statement source as well as corresponding ex-
ecution instances, and an analysis to attach it to both static
host application variables and dynamic server environment
variables.

We are currently expanding the set of test cases for Ph-
pBB and Moodle, and plan to extend our evaluation to other
PHP-based applications. Our approach is primarily aimed
at server side code, since we have been working with tra-
ditional PHP-based web applications. AJAX requests can
also be, and in many cases are, implemented in PHP. When
used with AJAX, our technique can be used to directly link
HTTP request variables to the database interactions of the
AJAX request. This may help in analysis of AJAX applica-
tions as well as traditional applications.

References

[1] M. H. Alalfi, J. R. Cordy, and T. R. Dean. A Verifica-
tion Framework for Access Control in Dynamic Web Ap-
plications. In C3S2E, Canadian Conference on Computer
Science and Software Engineering, Montral, ACM Interna-
tional Conference Proceeding Series, pages 109–113, 2009.

[2] M. H. Alalfi, J. R. Cordy, and T. R. Dean. Automated
Reverse Engineering of UML Sequence Diagrams for Dy-
namic Web Applications. In IEEE International Conference
on Software Testing Verification and Validation Workshop,
pages 295–302, Denver, USA, 2009.

[3] M. H. Alalfi, J. R. Cordy, and T. R. Dean. Modeling meth-
ods for web application verification and testing: State of the
art. Software Testing, Verification and Reliability, 2009 (in
press).

[4] M. H. Alalfi, J. R. Cordy, and T. R. Dean. DWASTIC: Au-
tomating Coverage Metrics for Dynamic Web Applications.
In SAC, The 2009 ACM Symposium on Applied Computing,
Switzerland, (submitted).

[5] G. Antoniol, M. Di Penta, and M. Zazzara. Understand-
ing Web Applications through Dynamic Analysis. In IWPC
2004, 12th International Workshop on Program Comprehen-
sion, pages 120–131, 2004.

[6] Canoo Engineering. Canoo WebTest,
http://webtest.canoo.com, accessed 30 April 2009.

[7] A. Cleve and J.-L. Hainaut. Dynamic Analysis of SQL State-
ments for Data-Intensive Applications Reverse Engineering.
In WCRE 2008, 15th Working Conference on Reverse Engi-
neering, pages 192–196, October 2008.

[8] J. R. Cordy. The TXL source transformation language. Sci-
ence of Computer Programming, 61(3):190–210, 2006.

[9] G. A. Di Lucca and M. Di Penta. Considering Browser In-
teraction in Web Application Testing. In WSE 2003, 5th In-
ternational Workshop on Web Site Evolution, pages 74–81.
IEEE Computer Society, 2003.

[10] G. A. Di Lucca and M. Di Penta. Integrating Static and Dy-
namic Analysis to improve the Comprehension of Existing
Web Applications. In WSE 2005, 7th IEEE International
Workshop on Web Site Evolution, pages 87–94, 2005.

[11] G. A. Di Lucca, M. Di Penta, A. R. Fasolino, and P. Tramon-
tana. Supporting Web Application Evolution by Dynamic
Analysis. In IWPSE 2005, 8th International Workshop on
Principles of Software Evolution, pages 175–186, 2005.

[12] W. G. J. Halfond and A. Orso. Preventing SQL injec-
tion attacks using AMNESIA. In ICSE 2006, 28th Inter-
national Conference on Software Engineering, Shanghai,
China, May 20-28, pages 795–798, 2006.

[13] G. A. D. Lucca, A. R. Fasolino, and P. Tramontana. Re-
verse engineering Web applications: the WARE approach.
Journal of Software Maintenance, 16(1-2):71–101, 2004.

[14] L. Moonen. Lightweight Impact Analysis using Island
Grammars. In IWPC 2002, 10th International Workshop on
Program Comprehension, pages 219–228, June 2002.

[15] M. N. Ngo and H. B. K. Tan. Applying static analysis for au-
tomated extraction of database interactions in web applica-
tions. Information & Software Technology, 50(3):160–175,
2008.

[16] F. Ricca and P. Tonella. Analysis and Testing of Web Ap-
plications. In ICSE 2001, 23rd International Conference on
Software Engineering, pages 25–34, 2001.

[17] N. Synytskyy, J. R. Cordy, and T. R. Dean. Robust multi-
lingual parsing using island grammars. In CASCON 2003,
Conference of the Centre for Advanced Studies on Collabo-
rative Research, pages 266–278, October 2003.

[18] H. van den Brink, R. van der Leek, and J. Visser. Quality
Assessment for Embedded SQL. In SCAM 2007, 7th IEEE
International Working Conference on Source Code Analysis
and Manipulation, pages 163–170, 2007.

[19] WatirCraft. WATIR, http://wtr.rubyforge.org, accessed 30
April 2009.

