
Semi-automatic Identification and Representation of
Subsystem Variability in Simulink Models

Manar H. Alalfi, Eric J. Rapos, Andrew Stevenson, Matthew Stephan,
Thomas R. Dean and James R. Cordy
School of Computing, Queen’s University

Kingston, Ontario, Canada
{alalfi, eric, andrews, stephan, dean, cordy}@cs.queensu.ca

Abstract—This paper presents a semi-automated framework
for identifying and representing different kinds of variability in
Simulink models. Based on the observed variants found in similar
subsystem patterns inferred using Simone, a text-based model
clone detection tool, we propose a set of variability operators
for Simulink models. By applying these operators to six example
systems, we are able to represent the variability in their similar
subsystem patterns as a single subsystem template directly in
the Simulink environment. The product of our framework is a
single consolidated subsystem model capable of expressing the
observed variability across all instances of each inferred pattern.
The process of pattern inference and variability analysis is largely
automated and can be easily applied to other collections of
Simulink models.The framework is aimed at providing assistance
to engineers to identify, understand, and visualize patterns of
subsystems in a large model set. This understanding may help
in reducing maintenance effort and bug identification at an early
stage of the software development.

I. INTRODUCTION

Software variability management (SVM) is an important
area of research that gained a lot of interest in the last two
decades, especially for its vital role in developing reusable and
easily maintained software product line (SPL) assets [4]. SVM
is a complex, multifaceted problem that intersects with several
traditional software engineering topics, including configuration
management, run-time dynamism, domain specific languages,
model-driven engineering, and software architecture.

One facet of SVM is variability modeling, an enabling
technology for delivering a variety of related software systems
in a fast, consistent and comprehensive way. The key is
to build a common base from which to efficiently express
and manage variations. Variability modeling continues to gain
interest from industry, and variability support in modeling
tools, including Mathworks’ Simulink and IBM’s Rhapsody, is
one of the most desirable features. Several industrial standards,
such as SysUML and AUTOSAR, are actively working to
create extensions that help to express variability.

Understanding variability in existing systems and variation
points in their artifacts is the first and most important step
towards enabling variability modeling. Many methods have
been proposed for analyzing variability from a requirements
point of view, as well as connecting that to the implementation
[9], [15]. However, there remains a need for techniques that
analyze existing system requirements and implementations for
commonality and variability in an automated way.

In this paper we present a framework for identifying
variability candidates from existing software intensive systems
modeled using one of the most popular modeling languages

for hybrid hardware/software systems, Simulink [17]. Our
framework uses an efficient model clone detection technique
to automatically identify subsystem variants from a large pool
of existing Simulink models. It then classifies those variants
according to a set of proposed variability operators.

The framework is aimed at providing tool support to auto-
matically represent the recovered subsystem variability directly
in the Simulink environment, and thus provide assistance to
engineers to identify, understand, and visualize patterns of
subsystems in a large model set. This understanding may help
in reducing maintenance efforts and enhancing bug identifica-
tion at an early stage of software development, both on the
model level and before model semantics are transformed into
actual code. Furthermore, the creation of Variability Models
allows for maximum reuse of these well-maintained models,
allowing developers to simply insert a Variability Model and
select the active variants they desire. We demonstrate our
framework on six systems from Mathworks Demo set, and
provide initial empirical evidence on the soundness of our
proposed variability operators. We describe the stages of our
framework using a running example.

The main contributions of this paper are as follows:

• A semi-automated framework for the identifica-
tion and representation of subsystem variability in
Simulink models.

• A set of variability operators for Simulink that have
been empirically inferred from the analysis of six
Simulink systems representing a range of applications.

In the following sections we provide a detailed description
of the proposed framework and our early experience with it.

II. VARIABILITY IDENTIFICATION USING SIMONE

To determine an appropriate set of Simulink subsystem
variability operators, we used the set of models in six diverse
Simulink systems of the Mathworks Simulink demonstration
set as a starting point. These systems include models for a
range of applications in industrial, automotive, aerospace and
other domains, and are intended to demonstrate the range of
ways to represent model features in these applications using
Simulink. They include a range of model versions and variants
for each application, and represent a rich source of examples
of Simulink model variation.

To begin, we first required some indication of which
subsystems in the models of each system were similar enough
to be considered variants of each other. For this we used the
Simone submodel clone detector [1]. Simone is a text-based



TABLE I. SIMONE CLONE DETECTION RESULTS AT A DIFFERENCE
THRESHOLD OF 20%

System Name # Subsystems # Clone Pairs # Clone Classes
Automotive 357 189 24
Aerospace 188 62 15
Industrial 16 4 2
Features 935 85 25
General 146 11 7
Others 28 6 4

TABLE II. OBSERVED INSTANCES OF THE IDENTIFIED VARIABILITY
OPERATORS

System Block Input/Output Function Layout Subsystem Name
Automotive 10 6 1 3 8
Aerospace 5 17 2 4 13
Industrial 5 2 0 0 0
Features 22 22 17 2 4
General 5 3 1 1 1
Others 14 24 4 3 5
Total 61 74 25 13 31

model clone detection technique that uses a normalized text
representation of graphical models to efficiently identify near-
miss subsystem clones, that is, those that are similar up to a
given threshold of difference. In this experiment, up to 20%
different. Simone is based on the NICAD code clone detector
[1], extended to handle graphical models.

To identify and categorize subsystem variations, we applied
Simone to the set of models in each of the six Simulink
demonstration systems. From each set of models. We had
Simone generate a database of near-miss subsystem clone
pairs, representing pairs of model subsystems which are largely
similar but may vary up to 20% in components, connections,
inputs, outputs or other attributes.

Simone automatically groups these clone pairs into “clone
classes”, which are sets of subsystems that are nearly similar to
one another. It uses the efficient exemplar-based algorithm of
NICAD to achieve this clustering, choosing a particular cloned
subsystem and then gathering all those other cloned subsys-
tems that are similar to it within the difference threshold. By
beginning with the largest exemplars, it automatically identifies
the most inclusive set of variants of each cloned subsystem.
This text-based similarity algorithm effectively avoids the sub-
graph isomorphism problem, which is NP-complete, and the
scalability of our approach rests largely on this proven scalable
clustering method [7].

In practice the clone classes resulting from this analysis can
be used by Simulink model engineers to understand variations
in their systems directly from the examples in each class. In
our previous work we have integrated the results of Simone
directly into the Simulink IDE using a Simulink plugin called
SimNav [6] to directly present similar subsystems in the
Simulink model editor.

Table I presents the initial clustering results provided by
Simone for the set of models in each of the six Simulink
demonstration systems. Each subsystem in each clone class
has at least 80% common elements with others in the class. A
particular element of each clone class is chosen by our frame-
work as an exemplar, from which the others are considered to
be variants. We then classified the nature of these variants to
derive the variability operators presented in the next section.

For each of the six systems, we determined the number
of instances of each type of variability, and ensured that all

Fig. 1. Block Variability

Fig. 2. Input/Output Variability

observed variations could be covered by the set of variability
operators. The results of this categorization can be found in
Table II. From this, we conclude that on this set of systems
the most common types of variability are Block Variability
and Input/Output Variability, with the others occurring less
frequently. There were no instances of variability that did not
fall into one of these five categories.

III. VARIABILITY OPERATORS

Through manual inspection of the Simone results for the
six systems using SimNav, and investigating the variants in
each Simone reported clone class, we identified the following
types of variability in similar Simulink subsystems:

Block Variability: Changes at the block level, such as
added or removed blocks, or one block replaced with another.
An example of this type of variability is shown in Figure 1
(circled in red).



Fig. 3. Function Variability

Input/Output Variability: Changes in the number of
input/output ports for a specific block. This type of variability
is shown in Figure 2 (circled in red).

Function Variability: Changes to the contained function
of a specific block or set of blocks, such as constant values,
data parameters, or the entire function. This type of variability
is shown in Figure 3 (different functions and constants in many
blocks - all circled in red).

Layout Variability: Changes to the layout information
of the model elements, such as block position. This type of
variability is shown in Figure 4 (note the mirroring of parts of
the model).

Subsystem Name Variability: Changes to the names of
similar subsystems. This type of variability is shown in Figure
5 (circled in red).

IV. TAGGING SUBSYSTEM VARIABILITY

To model the variability across the instances of a given
subsystem pattern, we must first determine the common com-
ponents of the subsystem across all of the instances in the
clone class. Once we determine the commonalities between all
instances, the remaining components represent the variations
we wish to model using the variability operators.

In this paper, we explored an approach for the initial tag-
ging of variation using graph matching algorithms to determine
identical sub-graphs, and we are currently experimenting with
another approach using diff and #ifdef on the normalized
textual representation of the models, however, we have not
included details of the second approach due to pages limits.

An approach to discover and tag variability across Simulink
subsystem clones is to treat the subsystems as directed graphs
and apply subgraph matching techniques. In this approach,
Simulink blocks represent graph nodes and the connections

Fig. 4. Layout Variability

Fig. 5. Subsystem Name Variability

between blocks represent directed graph edges. This graph-
based abstraction makes it immune to changes in layout, which
is beneficial for finding a set of common blocks between
clones, but does not help to discover layout-based variability.

The first step in this approach is to discover a set of
common blocks between the subsystem clones. The goal is to
map a subset of blocks in clone 1 to a subset of blocks in clone
2. Our current implementation does this for only two clones,
but we are currently extending it to clone classes of any size.
This mapping is accomplished by first mapping a single block
from clone 1 to clone 2 known as the root, then recursively
matching each root’s neighbours as well as possible.



Fig. 6. Common blocks computed by the graph matching algorithm. The root
block (red) is determined, then neighbouring blocks are recursively included
first by strong match (blue) then by weak match (yellow).

This algorithm incorporates two types of block matches:
strong match (block type and name must both match), and
weak match (block type must match but name can differ). The
root blocks are chosen by selecting the strongly matched block
pair (one from each clone) with the most connections. Since
only one connected subgraph is produced from this algorithm,
more connections on the root block increases the chances of a
larger resulting subgraph. As block matching grows outward
from the root blocks, strong matches are prioritized over weak
matches to help disambiguate potential match candidates. It
is possible for strong matches to exist in the clones that are
not found by this algorithm, for example, if they are separated
from the root block by an unmatchable region.

The end result is a connected subgraph G1 from clone 1
and a connected subgraph G2 from clone 2, where each node in
G1 is mapped to a corresponding node in G2. These subgraphs
represent the set of common blocks between the two clones,
as shown in Figure 6.

Once the common set of blocks is established, the remain-
ing blocks in each clone represent the elements of variation.
In a merged subsystem file, the common blocks and their
connections remain untagged, but the other blocks can be
tagged with their clone variant. This can be accomplished
by simply adding a new Simulink parameter such as “Variant
clone1” to each appropriate variant block. When extending this
algorithm to find variation in three or more clones, a tag will
specify each clone where the block exists.

V. REPRESENTING VARIABILITY

Once the variability has been tagged in all instances in a
clone class, we must produce a single subsystem file capable
of serving for all the instances of that clone class. To do this,

we make use of the Simulink Variant Subsystem Block, a built-
in feature designed to offer developers the choice between a
number of different options for a particular subsystem.

A Variant Subsystem Block can contain any number of
different subsystems, as long as they all have the same number
of inports. The contained subsystems represent alternatives for
the variant subsystem, and only one of them may be active
at any given time. The active subsystem is determined by
a logical expression, often making use of a Simulink mode
variable. While, on the face of it, the Variant Subsystem Block
seems limited in its expressiveness, being restricted to replace-
ment of entire subsystems, in our work we have leveraged this
feature to represent not the subsystem alternatives of the model
itself, but rather our variability operators as Variant Subsystem
Blocks, allowing us to expose the individual points of variation
explicitly in the Simulink environment.

Through observation of the studied systems, it is evident
that each subsystem pattern may require more than one type of
variability, and as such, more than one variability operator may
need to be applied. Rather than defining combinations of op-
erators as their own unique operator, we have determined that
applying any individual operators in succession is sufficient in
representing the variability. For example, in an instance where
there exists both function variability and block variability, each
is handled individually following their respective process.

VI. RELATED WORK

Model variability is a richly researched area. There have
been a number of techniques developed for many different
domains [8]. Typically, variability is looked at from a man-
agement perspective [4], in that it is an essential property of
projects that needs to managed. There have also been steps
taken to semi-automatically extract variability in code-based
projects [11] and model-based projects [14] in order to manage
it. The difference between our work and the latter is we use
model clone detection, via Simone, as the starting point for
finding variability among, and grouping into classes/patterns,
sets of models. In contrast, they compare systems recursively
by mapping similar components of the same type based on
different criteria; like name similarity, number of identical
parameter values, connections, and more; in order to get a
weighted similarity sum between zero to one. Similar to our
two presented approaches for tagging variability, they identify
variation points using a graph-based approach.

Albeit a relatively new sub-area, there is some exist-
ing work on variability in Simulink models. Weiland and
Manhart [18] argue the necessity for modeling variability in
Simulink. They introduce a classification of approaches that
can be employed to represent Simulink variability: Model
elements for model adaptation, conditional model elements,
and model elements for data variability. In our paper, we utilize
the first of these in order to realize variability among Simulink
clones. Wille et al. [19] use architecture design languages
(ADL) and metrics pertaining to components’ names, func-
tions, inports and outports to explicate variability into family
models. Their work differs from ours in that they parse and
convert non-hierarchical Simulink models to an XML ADL
format and represent variation as Pure::variants. By contrast,
we use direct clone detection on the Simulink source, and
represent variation directly in editable Simulink models.



An example Simulink-specific approach to encoding vari-
ability is accomplished by Haber et al. [9], who note that
functional-modeling approaches for representing Simulink
variability are often complex and do not scale well to larger
systems. Thus, they propose Delta Simulink, which is a first-
class language that includes single step operations like add, re-
move, modify, and replace. While it is an operational approach,
it is also graphical in that users can illustrate their deltas. Our
work differs in that it focuses specifically on clones and is
situated entirely within the Simulink environment. Steiner et
al. [15] manage Simulink variability by using and contrasting
Pure::variants, which has a Simulink connector that uses “point
of change” information; and Hephaestus, which has a graphical
interface that allows developers to select system elements to be
used to generate specific product line instances. Their approach
uses conditional model elements in order to represent Simulink
variability, which, as we discussed previously, would not be
ideal for Simulink clone variants.

Managing clones in product lines involves cases where
systems using product lines or feature models have exact
duplicates or similar segments of a related product line. Rubin
et al. [12], [13] provide a framework for handling such systems
that includes abstract operators that allow engineers to reason
and manage clones detected in these systems. Our work differs
in that it is explicitly focused on Simulink models and has
more of a declarative representation of the variability that can
be used within the Simulink environment.

We represent our clone variability using the built-in
Simulink “Model Variants” blocks. In contrast, Basit and Daj-
suren [2] used a constraint language in order to model variabil-
ity among Simulink clones with the purpose of allowing clone
management that is entirely separate from the models. While
we also keep clone management separate from the Simulink
models themselves, we attempt to leave the management in the
native Matlab Simulink domain using SimNav as we believe
this is a much more natural environment for the engineers.

While variability involves looking at how systems differ
at a somewhat larger scale, model mutations focus on step-
wise changes to a model in order to perform various types of
analysis. Recently, we proposed and validated a taxonomy of
Simulink model mutations [16] for the purposes of injecting
various types of Simulink model clones. There is also work
on Simulink model mutations that describe mutation instances
that explicitly try to mutate a model’s run-time properties [3],
[10], [20]. While this mutation analysis work was helpful in
guiding how we viewed Simulink variability, we essentially
were focused on a higher and more-feature-oriented level.

VII. CONCLUSION

Based on the six example systems of the Simulink Demon-
stration set, we have identified five variability operators for
Simulink Models. These five operators encompass all of the
different types of variability observed from the initial analysis
of similar subsystem variance provided by Simone, a text-
based model clone detector. We have presented a method for
tagging variability across a set of similar Simulink models
based on graph matching, and we are currently experimenting
with another one based on text differencing. Both of these
processes have been automated for pairs of similar subsystems,
and we are currently extending them to N-way differencing.

So far the identification of variant subsystems, as Simone
subsystem clone classes, and the differencing of pairs of
similar subsystems has been fully automated. Based on the
textual representation of a set of instance subsystems, we are
working on the final step of fully automating the representation
of variability based on the Variant Subsystem Block repre-
sentation of our variability operators using a TXL[5] source
transformation to build a variance model.

REFERENCES

[1] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson.
Models are code too: Near-miss clone detection for Simulink models.
In ICSM’12 - 28th Int. Conf. on Softw. Maint., pages 295–304, 2012.

[2] H. A. Basit and Y. Dajsuren. Handling clone mutations in Simulink
models with VCL. In IWSC’14 - 8th Int. Works. on Softw. Clones,
pages 1–8, 2014.

[3] N. T. Binh et al. Mutation operators for Simulink models. In KSE’12
- 4th Int. Conf. on Knowledge and Systems Eng., pages 54–59, 2012.

[4] R. Capilla, J. Bosch, and K.-C. Kang. Systems and Software Variability
Management. Springer, 2013.

[5] J. R. Cordy. The TXL source transformation language. Sci. Comput.
Program., 61(3):190–210, August 2006.

[6] J. R. Cordy. Submodel pattern extraction for Simulink models. In
SPLC’13 - 17th Int. Conf. on Softw. Product Lines, pages 7–10, 2013.

[7] J. R. Cordy and C. K. Roy. Tuning research tools for scalability and
performance: The NICAD experience. Sci. Comput. Program., 79:158–
171, 2014.

[8] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski.
Cool features and tough decisions: a comparison of variability modeling
approaches. In VaMoS’12 - 6th Int. Works. on Variability Modelling of
Software-Intensive Systems, pages 173–182, 2012.

[9] A. Haber, C. Kolassa, P. Manhart, P. M. S. Nazari, B. Rumpe, and
I. Schaefer. First-class variability modeling in Matlab/Simulink. In
VaMoS’13 - 7th Int. Works. on Variability Modelling of Software-
intensive Systems, pages 11–18, 2013.

[10] N. He, P. Rümmer, and D. Kroening. Test-case generation for embedded
Simulink via formal concept analysis. In DAC’11 - 48th Design
Automation Conf., pages 224–229, 2011.

[11] C. Kastner, A. Dreiling, and K. Ostermann. Variability mining:
Consistent semiautomatic detection of product-line features. IEEE
Trans. Softw. Eng., 40(2), 2013.

[12] J. Rubin and M. Chechik. A framework for managing cloned product
variants. In ICSE’13 - 35th Int. Conf. on Softw. Eng., pages 1233–1236,
2013.

[13] J. Rubin, K. Czarnecki, and M. Chechik. Managing cloned variants:
a framework and experience. In SPLC’13 - 17th Int. Conf. on Softw.
Product Lines, pages 101–110, 2013.

[14] U. Ryssel, J. Ploennigs, and K. Kabitzsch. Automatic variation-point
identification in function-block-based models. In GPCE’10 - 9th Int.
Conf. on Generative Prog. and Component Eng., pages 23–32, 2010.

[15] E. Steiner, P. Masiero, and R. Bonifácio. Managing SPL variabilities
in UAV Simulink models with Pure:variants and Hephaestus. CLEI
Electronic Journal, 16(1):1–7, 2013.

[16] M. Stephan, M. Alalfi, and J. R. Cordy. Towards a taxonomy for
Simulink model mutations. In Mutation’14 - 9th ICST Int. Works. on
Mutation Analysis, pages 206–215., 2014.

[17] The Mathworks Inc. Simulink version 8.
http://http://www.mathworks.com/products/simulink/, 2014.

[18] J. Weiland and P. Manhart. A classification of modeling variability in
Simulink. In VaMoS’14 - 8th Int. Works. on Variability Modelling of
Software-Intensive Systems, pages 1–7, 2014.

[19] D. Wille, S. Holthusen, S. Schulze, and I. Schaefer. Interface variability
in family model mining. In SPLC’13 - 17th Int. Conf. on Softw. Product
Lines, co-located workshops, pages 44–51, 2013.

[20] Y. Zhan and J. Clark. Search-based mutation testing for Simulink
models. In GECCO’05 - Genetic and Evolutionary Computation Conf.,
pages 1061–1068, 2005.


