Automating Discovery of Software Tuning Parameters

Nevon Brake, James R. Cordy

Queen’s University
Kingston, Ontario, Canada

{brake, cordy}@cs.queensu.ca

ABSTRACT

Software Tuning Panels for Autonomic Control (STAC) is a
project to assist in the integration of existing software into
autonomic frameworks. It works by identifying tuning pa-
rameters and rearchitecting to expose them as a separate
control panel module. The project poses three distinct re-
search challenges: automating the identification of tuning
parameters, rearchitecting to centralize and expose them,
and combining these two capabilities to facilitate the inte-
gration of existing software into autonomic frameworks. Our
previous work focused on the second problem, automating
the rearchitecture to expose and isolate tuning parameters.
In this paper we concentrate on the first problem, automat-
ing the identification of tuning parameters. We begin with
an empirical study of documented tuning parameters in a
number of open source applications. From our observations
of these known tuning parameters, we create a catalogue of
different kinds and organize them into a taxonomy. Finally,
we characterize a member of the taxonomy as a source code
pattern that is used to find similar tuning parameters. We
report our experience in applying this methodology in the
context of a large, open source JavaTMsystem.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—software con-
figuration management; D.2.7 [Software Engineering]: Dis-

tribution, Maintenance, and Enhancement—restructuring,
reverese engineering and reengineering; D.2.11 [Software
Engineering]: Software Architectures; D.2.5 [Software
Engineering]: Testing and Debugging—monitors

General Terms

Design, Management, Measurement

Keywords

autonomic computing, design recovery, rearchitecture, static
analysis, tuning parameter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SEAMS’08, May 12-13, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-037-1/08/05 ...$5.00.

Elizabeth Dancy, Marin Litoiu,
Valentina Popescu
IBM Canada
_ Markham, Ontario, Canada_
{lizdancy, marin, popescu}@ca.ibm.com

1. INTRODUCTION

Increased automation is essential to mitigate the complex-
ity of managing software systems. Fundamental to achiev-
ing self-managing behavior is the ability to tune parameters
that influence factors like performance and security. Tra-
ditionally, tuning is performed by human experts who have
extensive knowledge of parameter names and value effects.
However, manual tuning is costly and only contributes to
the software maintenace problem. Software Tuning Panels
for Autonomic Control (STAC) assists in the transition to
more autonomic control by automatically identifying tuning
parameters and rearchitecting software to isolate and expose
them for monitoring and control by autonomic frameworks.

In our previous work [6] we describe an automated rearchi-
tecture of legacy software to expose tuning parameters and
isolate them to a separate monitoring and tuning module. In
this paper we attack the related problem of automating the
identification of tuning parameters using software analysis
and pattern matching techniques. For this work we define a
“tuning parameter” as a scalar field or property of a struc-
tured field in source code that measures or affects metrics
like performance. A subset of these parameters are “tun-
able”, meaning they are modifiable. The others, while not
modifiable, are needed for making decisions about tuning.
This definition simplifies the problem while still capturing
the majority of practical tuning parameters in existing ap-
plications. We begin by analyzing the documented tuning
parameters of a number of large open source systems to clas-
sify the kinds and characteristics of tuning parameters. We
characterize each kind of tuning parameter as a pattern cap-
turing the context and relationships with other parts of the
code that distinguish it as a tuning parameter. We then
demonstrate how both known and unknown tuning param-
eters can be identified in the code using static analysis and
pattern matching techniques.

The paper is organized as follows. We begin with a brief
overview of the STAC project and software analysis using
design recovery. In Section 3 we present the approach taken
to gather and analyze existing tuning parameters and how
they are classified for pattern discovery. Section 4 demon-
strates how the approach is applied to an open source Java
application. We review related work in Section 5, and con-
clude with future work in Section 6.

2. BACKGROUND

The STAC project [6] was started in 2005 with the goal
of automatically rearchitecting existing software for auto-
nomic control by isolating and exposing their tuning pa-

rameters. This can be problematic as the tuning parame-
ters are often scattered and sometimes hidden throughout
source code. STAC works to overcome these issues by iso-
lating tuning parameters into a single separate module. The
result is maintainable, semantically equivalent software that
provides localized access to tuning parameters.

Our previous work using a STAC prototype to isolate tun-
ing parameters has shown promising results. Unfortunately,
the prototype requires manual placement of markup around
variable declarations of tuning parameters. This markup
indicates which variables STAC should isolate. Manually
searching for these variables and adding markup, even for
a small application, can be tedious and error-prone. An
automated identification mechanism is required to take full
advantage of the STAC rearchitecture.

Design recovery [3] is a software static analysis method for
analyzing source code by extracting an entity-relationship
(ER) model of the entities (e.g., variables, methods, classes,
etc.) and relationships (e.g., calls, comparisons, assignments,
etc.) between the entities to form a software graph that can
then be explored using relational algebra and graph pattern
matching to discover deeper relationships. In this work we
explore the application of design recovery to the problem of
tuning parameter identification.

3. APPROACH

We study the documented tuning parameters in exist-
ing applications to understand how they are manifested in
source code. The result is a taxonomy of different kinds.
The tuning parameters are classified based on observed pat-
terns in their use across multiple applications and applica-
tion domains. These patterns, or idioms, are somewhat anal-
ogous to the design patterns [9] often employed in object-
oriented software design. While design patterns address
functional design issues, tuning parameter patterns address
non-functional issues such as how to maintain a record of
performance over time. The patterns are formalized and it-
eratively refined so that the necessary information can be
automatically extracted from the source code and the pat-
terns automatically detected.

3.1 Empirical Study

Thus far we have studied four applications (Table 1) that
were chosen based on the following criteria:

1. Must be open source, so that we can study and report
on source code patterns;

2. Must be implemented in the Java programming lan-
guage, to be consistent with the STAC prototype;

3. Should be server-oriented, so that tuning parameters
are realistic and relevant;

4. Should have industrial relevance, so that our results
can have practical impact.

We focus on open source Java systems so that our results
can be reported and easily attached to the STAC rearchi-
tecture prototype, and server software, as opposed to client
software, since tuning is more established and important in
the server context.

Tuning Parameter

Behavioural Statistical Temporal

Numerical

Average Minimum)
Duration Timeout

Period

Toggle Maximum

Enumerable
Capacity
Counter Threshold

Monotonic Non-monotonic Lower bound

. Decreasing Upper bound
Increasing

Figure 1: Tuning parameter classification by source
code patterns of use.

The user documentation is consulted for each application
as it commonly contains a performance tuning or manage-
ment section. However, this section may only provide guide-
lines without mentioning the actual tuning parameters. This
means falling back to the configuration section, where a list
of parameters and their descriptions is often provided. This
kind of search finds one type of tuning parameter—those that
are used to influence the behaviour of the application. An-
other equally important type are those that provide obser-
vations about the application. It is impossible to know what
to tune if you are not aware of how the application is per-
forming. Fortunately, three of the applications in the study
support Java Management Extensions (JMX) [18]. This sup-
port provides a set of standardized components that enable
querying and modifying system properties. The properties
specified by these components include many of the latter
kind of tuning parameter.

3.2 C(lassification

Once a catalogue of tuning parameters is compiled from
the documentation and JMX components of each applica-
tion, the tuning parameters have to be mapped to corre-
sponding fields in the source code. The mapping process
involves a syntactical search of the source code for field
declaration names that match the tuning parameter names.
There are three possible outcomes for the search result:

e Exactly one matching declaration is found;
e More than one matching declaration is found;

e No matching declarations are found.

For the applications in this study, the first case is the most
common and requires only a brief manual inspection to val-
idate the match. The second case occurs less frequently
than the first, but is more prevalent than the third. The
additional matches in this case are often caused by data
transfer classes, instances of which are data transfer objects.
Data transfer objects act as containers in object-oriented
languages like Java to transfer data either as a single argu-
ment to a method invocation or as a return value from a
method invocation. The data transfer class declares a set of
fields whose names are similar to the names of those fields
for which the data is being transferred. More specifically,

Name Version Type Open Source License | Lines of Code
Apache Tomcat 6.0.10 Web /Servlet Apache 2.0 125,366
Apache Derby 10.2.2.0 Database Apache 2.0 469,811
Jetty 6.1.3 Web/Servlet Apache 2.0 35,723
Oracle Berkeley DB Java Edition 3.2.23 Database OSI Approved 67,842

Table 1: Overview of the applications in the study.

for these cases, the value of the tuning parameter is being
copied to a data transfer object to be passed to some other
component such as a log manager. These matches are spuri-
ous and contribute nothing to the classification. Additional
matches also result when tuning parameters with the same
names exist for more than one component. These are not
spurious and represent separate instances of a tuning pa-
rameter that happen to be identified by the same name.
However, as with the first case, these can be easily validated
through manual inspection. The final case is the most diffi-
cult since either the parameter no longer exists, it has been
named differently in the source code, or it has been imple-
mented indirectly using a hashed key/value pair. The latter
case is confirmed by weakening the search to be lexical. The
former cases are indistinguishable without additional clues
and a more in-depth validation.

Having established a mapping between the tuning param-
eters and field declarations, all references to the identified
fields are traced. These references are necessary to answer
the question of how tuning parameters are used within the
source code, or more to the point, whether patterns emerge
that can be used to identify them. By observing the data
transfers and comparisons involving the fields some similar-
ities and differences become apparent. These differentiating
characteristics are used to classify the different kinds of tun-
ing parameters into a taxonomy (Figure 1):

Enumerable - Controls the behavior of the system through
some finite set of states (e.g., thread priorities, algo-
rithm selection).

Toggle - Enables or disables a behavior of the system (e.g.,
caching allowed).

Capacity - Limits how large (i.e., memory footprint) a re-
source can grow (e.g., buffer limits).

Counter - Measures how many times an event or action
has occurred using discrete, constant increments (e.g.,
number of active connections).

Size - Measures how large a resource has grown (e.g., buffer
usage).

Threshold - Limits the number of times an event or action
can occur (e.g., prevent new connections).

Average - Measures the statistical average of some numer-
ical or temporal parameter.

Maximum - Measures the statistical maximum of some
numerical or temporal parameter.

Minimum - Measures the statistical minimum of some nu-
merical or temporal parameter.

Duration - Measures the length of time some action or
event has been occurring (e.g., system uptime)

Period - Controls the frequency with which an action or
event is triggered (e.g., garbage collection).

Timeout - Limits the length of time an action has to com-
plete before it will be interrupted (e.g., reading bytes
from a network connection).

3.3 Design Model

In order to recognize usage patterns of tuning parameters,
we need to know where and how data are transferred, and
how data are compared. Traditional data-flow analyses can
solve the where, but not the how. We instead use a static,
reference-based analysis that is flow-insensitive, similar to
that used by [7, 12]. With this type of analysis we are con-
cerned with data transfers through assignments and method
invocations. For assignments we are also interested in the
particular operators used. Additionally, we need to deter-
mine which entities are compared to one another and using
what operators.

Using observations made during the tuning parameter clas-
sification we construct a design model with which to reason
about the relevant source code entities and their relation-
ships (Figure 2). Source code entities are depicted as classes
within an inheritance hierarchy, with relationships between
them depicted as associations, or association classes. The
source code entities are:

Expression - An Expression entity is an abstraction rep-
resenting those entities that can be evaluated in some
context, such as a field access or method invocation.
Expressions can be subscripts of other expressions, can
be compared to other expressions, can be returned by
method invocations, can be actual parameters to a
method invocation, and can appear on the right-hand
side of assignments.

Variable - A Variable entity is an abstraction for variables
such as fields of a class or interface, or local variables of
a method. Variables can be all the things Expressions
can be, and can also appear on the left-hand side of
assignments.

Field - A Field entity represents a member variable of a
class or interface whose scope does not extend beyond
the class or interface in which it was declared. Fields
can be all things Variables can be, and are also asso-
ciated with the Type that declares them.

LocalVariable - A LocalVariable entity represents a vari-
able whose scope does not extend beyond the method
in which it was declared. Local variables can be all
things Variables can be, and can also be formal pa-
rameters of method declarations.

Method - A Method entity represents a method of a class
or interface. Methods can be all things Expressions
can be, and can also override other methods.

isSubscriptOf isComparedTo IsActualParameterOf

«abstract»
Expression

returns

«abstract»
Variable

«entity» |1 isFieldOf «entity» «entity» 0..1] «entity»
Type Field LocalVariable Method

IsFormalParameterOf
+ position : Integer

overrides

Figure 2: A model relating source code entities to
one another to facilitate reasoning about data trans-
fers and comparisons.

Type - A Type entity represents a class or interface.

Because our design model is similar to the reference-flow
model used in design recovery [7], it can be populated using
design recovery techniques on the source code to produce an
instance graph representing the relationships between all of
these entities in the program.

3.4 Design Recovery

In the design recovery step, the source code is parsed to
generate a set of abstract syntax trees, one for each compila-
tion unit. The abstract syntax trees are then traversed one-
by-one to extract the data represented in the design model.
For example, whenever a field declaration is encountered
during the traversal, the association isFieldOf is generated
between the field and the declaring type. Similarly, when-
ever a method declaration is encountered, the association is-
FormalParameterOf is generated between each of the formal
parameters and their positions, and the declaring method.
The extracted relationships are binary in nature and can
therefore be thought of as directed graphs where the source
code entities are nodes and the relationships are edges. Us-
ing this graph representation makes the relationships easier
to visualize and facilitates both pattern building and match-
ing.

Using the extracted information as-is to reason about the
source code is difficult because of the indirection induced by
the object-oriented paradigm. While analyzing data trans-
fers through assignments is somewhat straightforward, the
situation is sufficiently complicated when dealing with method
invocations that pass parameters that may themselves be
method invocations. All the while, each of these methods
may be overridden by subclasses, and so on. Instead we
make inferences about the information to generate more di-
rect relationships. For example, from an assignment that has
a method invocation on the right-hand side we can infer a
direct assignment to the expression returned by the method.
If the method is overridden, we also infer assignments to the
expressions returned by the subclasses’ methods. Each of
these inferences generates new edges in our graph represen-
tation.

The result of the design recovery step is a complete graph

<?xml version="1.0"7>
<mbeans-descriptors>
<mbean name="StandardManager"
description="Standard implementation of..."
domain="Catalina"
group="Manager"
type="org.apache.catalina.session.StandardManager">

<attribute name="sessionCounter"
description="Total number of sessions created..."
type="int" />

<attribute name="sessionMaxAliveTime"
description="Longest time an expired session..."
type="int" />

<operation name="listSessionIds"
description="Return the list of active session..."
impact="ACTION"
returnType="java.lang.String" />

</mbean>
</mbeans-descriptors>

Figure 3: Excerpt from mbeans-descriptors.eml in
the package org.apache.catalina.session

representing the transitive flow of data references through
the software. The inference step localizes relationships such
that all interactions for each individual variable or field are
directly attached to its entity node.

3.5 Patterns

The design graph representation provides a high-level view
of the variables and fields of the system and how they are
used. Because inference has localized all relationships, we
can encode the pattern of use representing each kind of tun-
ing parameter as a local subgraph pattern centered on the
variable or field entity itself. For example, a field represent-
ing a Maximum parameter might have a subgraph pattern
that requires assignments to a field to be guarded by com-
parisons for greater than or equal to.

By observing the subgraphs surrounding known parame-
ters, we can infer and tune subgraph patterns representing
each kind of tuning parameter. These subgraph patterns can
then be used to identify new tuning parameters by searching
program design graphs for instances of each pattern. In the
remainder of the paper, we demonstrate this entire process,
using Apache Tomcat as an example.

4. AN EXAMPLE: STATISTICAL MAXIMA
IN APACHE TOMCAT

To demonstrate, we apply the methodology to Apache
Tomcat [1], a web container implemented in Java that in-
cludes a standalone HTTP server. Apache Tomcat is used
in production by hundreds of thousands of websites [13] and
serves as the reference implementation for the JavaServer
Pages (JSP) [17] and Java Servlet [19] technologies.

For its management infrastructure, Apache Tomcat in-
cludes an extensive set of JMX [18] components, or man-
aged beans. Managed beans are Java objects that define
management interfaces as a set of attributes and operations
that follow well-known naming conventions and design pat-
terns. While the application documentation does not explic-
itly mention each of the managed beans and their capabil-
ities, there are files named mbeans-descriptors.zml in some

package org.apache.catalina.session;

public abstract class ManagerBase implements Manager,
MBeanRegistration {

/%%
* The longest time (in seconds) that an expired session
* had been alive.
*/

protected int sessionMaxAliveTime;

// Number of sessions created by this manager
protected int sessionCounter=0;

Figure 4: Fields that correspond to the managed
bean attributes

of the Java source packages. These files provide detailed de-
scriptions of the managed beans along with their attributes
and operations. For example, Figure 3 is an excerpt from
the descriptor for a managed bean named StandardManager.

Recall that we have restricted our definition of tuning pa-
rameters to scalar fields and scalar properties of structured
fields. These correspond to the scalar attributes of the man-
aged bean. Continuing with the StandardManager example,
we can map the managed bean attributes to fields in the
source code. There is a class named StandardManager that
corresponds to the managed bean; however, the fields cor-
responding to the attributes are actually inherited from the
parent class, ManagerBase (Figure 4). The following discus-
sion, therefore, refers to ManagerBase. All references to the
fields must be traced to determine a classification for each
of the tuning parameters. We shall consider one of the fields
from the example, sessionMaxAliveTime.

4.1 Building a Pattern

Based solely on its name, the field sessionMaxAliveTime
might be an upper bound on the length of time a client
session is permitted to exist. However, as indicated by the
developer’s comment, the field is actually a statistical max-
imum taken over the lengths of all expired sessions. While
such natural language descriptions are undoubtedly helpful
to a human, it is difficult to automate this kind of reasoning
for all cases. Instead, we can use characteristics of the data
transfers and comparisons involving the field to determine
how the tuning parameter should be classified.

There are two references to the field in the class Manager-
Base (Figure 5). One is an accessor method for retrieving
the value of the field, and the other is a mutator for chang-
ing the value of the field. Following the chain of references
from these methods leads us to the class StandardSession
(Figure 6) where both the accessor method and the mutator
method are referenced indirectly through the interface Man-
ager, which is implemented by ManagerBase. By observing
the relationship between the accessor and the mutator es-
tablished by the conditional statement, it becomes apparent
that the mutator is only ever invoked if the current value
of the field sessionMaxAliveTime has been exceeded by the
value of the local variable timeAlive. This is precisely the
semantics of a statistical maximum algorithm.

This example illustrates the process of manually classi-
fying a single known tuning parameter. In practice, we
use the knowledge gained through classifying many param-

public abstract class ManagerBase implements Manager,
MBeanRegistration {

public int getSessionMaxAliveTime() {
return sessionMaxAliveTime;

}

public void setSessionMaxAliveTime (
int sessionMaxAliveTime) {
this.sessionMaxAliveTime = sessionMaxAliveTime;

}

Figure 5: References to the field sessionMaxAliveTime
in the class ManagerBase

package org.apache.catalina.session;

public class StandardSession
implements HttpSession, Session, Serializable {

protected transient Manager manager = null;
public void expire(boolean notify) {

long timeNow = System.currentTimeMillis();
int timeAlive = (int) ((timeNow - creationTime)/1000);
synchronized (manager) {
if (timeAlive > manager.getSessionMaxAliveTime()) {
manager .setSessionMaxAliveTime (timeAlive) ;

}

Figure 6: References to the accessor and mutator
methods of the class ManagerBase in the class Stan-
dardSession

eters to automatically discover previously unknown tuning
parameters. We use a formal description of the relation-
ships between the field, and its data transfers and compar-
isons. These relationships can then be automatically ex-
tracted from the source code and analyzed for the pattern.

Our formal description is taken from the design model
described in Section 3.3. The source code is parsed into ab-
stract syntax trees that are traversed to extract instances of
the relationships defined in the design model. These rela-
tionship instances form a directed graph, where the nodes
are source code entities (e.g., variables, types) and the edges
are the relationships (e.g., assignment, inheritance) between
the entities (Figure 7):

(1.1) The field sessionMaxAliveTime is declared by the class
ManagerBase;

(1.2) The field sessionMaxAliveTime is assigned the value
of a local variable of the same name by the method
setSessionMaxAliveTime() (i.e., mutator method);

(1.3) The local variable sessionMaxAliveTime is a formal
parameter of the method setSessionMaxAliveTime ()
at position 0 (i.e., the first parameter);

(1.4) The formal parameter at position 0 of the method
setSessionMaxAliveTime() in the class ManagerBase
overrides the formal parameter at position 0 of a method
with the same name declared by the Manager interface;

Manager.getSessionMaxAliveTime () <+— overrides (1.7) — ManagerBase.getSessionMaxAliveTime ()

isComparedGreaterThanOrEqualTo (1.6)

StandardSession.expire () .timeAlive

isActualParameterOf (1.5)

Manager.setSessionMaxAliveTime (),

ManagerBase

el

returns (1.7) isFieldOf (1.1

ManagerBase.sessionMaxAliveTime

isAssignedValueOf (1.2)

ManagerBase.setSessionMaxAliveTime () .sessionMaxAliveTime

isFormalParameterOf (1.3)

0 <t+— overrides (1.4) — ManagerBase.setSessionMaxAliveTime (), 0

Figure 7: Graph of relationships for the field sessionMaxAliveTime. Nodes in the graph use the qualified name
of the entity, so the field sessionMaxAliveTime is denoted ManagerBase.sessionMaxAliveTime.

(1.5) The value of the local variable timeAlive is passed as a
parameter to the method setSessionMaxAliveTime ()
of the interface Manager by the method expire() in
the class StandardSession;

(1.6) The value of the local variable timeAlive is compared
to the return value of the method getSessionMax-
AliveTimeQ);

(1.7) The method getSessionMaxAliveTime () in the class
ManagerBase overrides a method of the same name in
the interface Manager;

(1.8) The method getSessionMaxAliveTime() of the class
ManagerBase returns the value of the field session-
MaxAliveTime (i.e., accessor method).

Unfortunately, the object-oriented paradigm induces nu-
merous levels of indirection. This makes it difficult to de-
tect the statistical maximum relationship between the field
sessionMaxAliveTime and the local variable timeAlive. To
simplify the task of detecting the pattern, the graph is strength-
ened using relationships inferred through relational algebra
(Figure 8):

(2.1) The method getSessionMaxAliveTime() of the inter-
face Manager could return the value of the field ses-
sionMaxAliveTime since the class ManagerBase has over-
ridden the method;

(2.2) The value of the local variable timeAlive could be
compared to the value of the field sessionMaxAlive-
Time since it is compared to the return value of the
method getSessionMaxAliveTime() which, according
to the previous inference, returns the value of the field;

(2.3) The local variable timeAlive could be an actual pa-
rameter of the method setSessionMaxAliveTime() of
the class ManagerBase since it is an actual parameter
of the interface method overridden by ManagerBase;

(2.4) The local variable sessionMaxAliveTime could be as-
signed the value of the local variable timeAlive since
sessionMaxAliveTime is a formal parameter to which,

according to the previous inference, the value of timeAlive

could be an actual parameter;

(2.5) The field sessionMaxAliveTime could be assigned the
value of the local variable timeAlive since it is as-
signed the value of the local variable sessionMaxAlive-
Time which, according to the previous inference, could
be assigned the value of timeAlive.

The strengthened graph now has direct relationships be-
tween the field sessionMaxAliveTime and the local variable
timeAlive. By observing that the field is only ever assigned
a value (2.5) to which it has been compared as being greater
than or equal to (2.2), the statistical maximum pattern has
been explicated. However, another formalism is still needed
to phrase such an observation so that the pattern detection
process can also be automated. The problem is isomorphic
to finding subgraphs that: must contain certain edges, may
contain certain edges, or must not contain certain edges.
These kinds of graph queries can be represented in the vi-
sual query language GraphLog [5]. Intuitively, the query
resembles the subgraphs of interest. Nodes in the query
serve as variables to which nodes in the graph are bound
based on whether their edges match the corresponding edge
constraints in the query.

The statistical maximum query (Figure 9) consists of three
constraints:

(1) The field F must be declared by some type T;
(2) The field F must be assigned some expression E;
(3) The expression E must be compared to the field F;

This query results in T being bound to ManagerBase,
F being bound to ManagerBase.sessionMaxAliveTime, and
E being bound to StandardSession.expire() .timeAlive.
The thicker edge in the query represents a new relationship
between F and E that establishes F as the statistical max-
imum of E. Querying the graph of the entire application
results in similar bindings for all other subgraphs matching
this one. Each suitable binding for F represents a statistical
maximum tuning parameter.

4.2 Using the Pattern

Now that the statistical maximum pattern has been con-
structed and validated against the tuning parameter on which

Manager.getSessionMaxAliveTime () <+— overrides (1.7) — ManagerBase.getSessionMaxAliveTime ()

StandardSession.expire () .timeAlive a

isActualParameterOf (1.5)

isAEﬁJalParameterOf (2.3)

... isAssignedValueOf (2.4)

ManagerBase

el

returns (1.7) isFieldOf (1.1

RN
> ManagerBase.sessionMaxAliveTime

isAssignedValueOf (1.2)

ManagerBase.setSessionMaxAliveTime () .sessionMaxAliveTime

isFormalParameterOf (1.3)

Manager.setSessionMaxAliveTime (), 0 <+— overrides (1.4) — ManagerBase.setSessionMaxAliveTime (), O

Figure 8: Graph of relationships with edges generated by inference. New edges are denoted with dashed

lines and labeled in bold typeface.

it was based, it is time to automatically discover other, previ-
ously unknown instances of the pattern. Applying the query
to the graphs extracted from the Tomcat source code yields
numerous results. Many of these are already documented
in the managed bean descriptors. But there are also some
that are undocumented. An example of one such parameter
is deadMaxTime in the class RequestGroupInfo (Figure 10).

Each time a request processor is removed by the method
removeRequestProcessor, the field deadMaxTime is updated
with the maximum time the request processor took to pro-
cess a request. But only if that particular request processor
took longer than any of its predecessors. In other words,
the field deadMaxTime is the statistical maximum over all re-
quests processed by all request processors in that particular
group. It should be noted that the conditional expression in
this example is written differently from that of the example
in the previous section. The syntax used here has the field
on the left-hand side of a less-than operator as opposed to
the right-hand side of a greater-than operator. These syn-
tactical variances do not affect the pattern since they are
made to be semantically equivalent by the analysis before
the query is applied.

In this paper we only have room for a short demonstration
of how our method works with one particular pattern. In
practice we have inferred and applied patterns for a num-
ber of kinds of tuning parameters in our taxonomy, and we
are in the process of applying these patterns to find tuning
parameters in several other open source software systems in
addition to the four used to create the taxonomy.

S. RELATED WORK

The purpose of our work is to find and expose potential
tuning parameters for monitoring and autonomic control.
To the best of our knowledge, software tuning parameter
identification has not been previously studied.

Our prototype implementation uses Eclipse’s JDT rep-
resentation [8] and custom code to implement our design
graphs and pattern matching. While convenient for work-
ing with the applications in the study, our prototype might
not scale well, nor does it handle languages other than Java.
A production implementation of our technique might use

isComparedGreaterThanOrEqualTo

isFieldOf

isStatisticalMaximumOf

<

isAssignedValueOf

Figure 9: A GraphLog query for the statistical max-
imum pattern.

more mature tools of the software design recovery commu-
nity such as Rigi [16] to extract and infer model graphs for
multiple languages, and CrocoPat [2] or Grok [10] to im-
plement pattern matching on them. Other techniques from
the design recovery community might also be applicable to
the discovery problem. One can imagine for example cast-
ing tuning parameter discovery as a concept location [15] or
aspect mining [4] problem.

The results of our work can be used with management
frameworks such as JMX [18], ATMA [11], or WSDM [14]
to implement autonomic controllers. A JMX (Java Manage-
ment Extensions) specification defines an architecture, de-
sign patterns, API, and services for management and moni-
toring of applications written in Java. New tuning parame-
ters discovered by our process can be encoded as JMX man-
aged beans. Once rearchitected by STAC, tuning parame-
ters could also be easily attached to ATMA or WSDM-based

control frameworks.

6. CONCLUSION

We have explored the problem of how to automate the
discovery of software tuning parameters and motivated our
work in the context of a broader autonomic project, Software
Tuning Panels for Autonomic Control. We provided results
from our empirical study of documented tuning parameters

package org.apache.coyote;
public class RequestGroupInfo {
private long deadMaxTime = O;

public synchronized void removeRequestProcessor(
RequestInfo rp) {
if(rp !'= null) {
if (deadMaxTime < rp.getMaxTime())
deadMaxTime = rp.getMaxTime();

Figure 10: Declaration and references for the field
deadMaxTime in the class RequestGroupInfo

and described how they were classified into a taxonomy. In
addition, we characterized a known tuning parameter as a
source code pattern and showed how it could be used to find
other, undocumented tuning parameters. This was demon-
strated using an example from an industrially relevant, open
source application, Apache Tomcat.

We are presently in the process of evaluating the effective-
ness of the approach more formally using three applications
not previously studied: a web server, a database server and a
messaging framework. This evaluation will measure the ac-
curacy of the technique when applied to application domains
that are both similar and different from those on which it
was trained.

In the future we plan to refine the tuning parameter taxon-
omy based on expert feedback and study of a broader range
of application domains. We also plan to study an orthogonal
tuning parameter classification scheme based on the kinds
of resources the tuning parameters influence. Finally, we
hope to integrate with management frameworks based on
standards such as WSDM.

7. ACKNOWLEDGMENTS

This work was supported by the IBM Toronto Centre for
Advanced Studies (CAS), the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), and the On-
tario Graduate Scholarship (OGS) program.

8. TRADEMARKS

IBM and alphaWorks are registered trademarks of In-
ternational Business Machines Corporation in the United
States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both.

Other company, product, or service names may be trade-
marks or service marks of others.

3]

[4]

[5]

[7]

8]

[9]

(10]
(11]

(12]

(13]
(14]

(15]

(16]

(17]

(18]

(19]

REFERENCES

Apache Software Foundation. Apache Tomcat
Documentation, Version 6.0, 2006.

D. Beyer. Relational programming with CrocoPat. In
International Conference on Software Engineering,
pages 807-810, 2006.

T. J. Biggerstaff. Design recovery for maintenance and
reuse. IEEE Computer, 22(7):36-49, 1989.

M. Ceccato, M. Marin, K. Mens, L. Moonen,

P. Tonella, and T. Tourwé. A qualitative comparison
of three aspect mining techniques. In International
Workshop on Program Comprehension (IWPC), pages
13-22, 2005.

M. P. Consens and A. O. Mendelzon. GraphLog: a
visual formalism for real life recursion. In 9th ACM
Symposium on Principles of Database Systems
(PODS), pages 404-416, 1990.

E. Dancy and J. R. Cordy. STAC: Software tuning
panels for autonomic control. In CASCON’06, 16th
IBM Centre for Advanced Studies International
Conference on Computer Science and Software
Engineering, pages 146-160, 2006.

T. R. Dean, J. R. Cordy, K. A. Schneider, and A. J.
Malton. Using design recovery techniques to transform
legacy systems. In International Conference on
Software Maintenance (ICSM), pages 622-631, 2001.
Eclipse Foundation. Eclipse Java Development Tools
(JDT) Subproject, 2008.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

R. Holt. Binary relational algebra applied to software
architecture, 1996.

IBM AlphaWorks. IBM Autonomic Task Manager for
Admianistrators (ATMA), 2005.

K. Kawabe, A. Matsuo, S. Uehara, and A. Ogawa.
Variable classification technique and application to the
Year 2000 problem. In 2nd Euromicro Conference on
Software Maintenance and Reengineering, pages
44-51, 1998.

Netcraft. Netcraft Web Server Survey, December 2007.
OASIS. Web Services Distributed Management:
Management of Web Services (WSDM-MOWS),
version 1.1, August 2006.

D. Poshyvanyk and A. Marcus. Combining formal
concept analysis with information retrieval for concept
location in source code. In International Conference
on Program Comprehension, pages 37—48, 2007.

M.-A. D. Storey, K. Wong, and H. A. Miiller. Rigi: A
visualization environment for reverse engineering. In
International Conference on Software Engineering,
pages 606-607, 1997.

Sun Microsystems, Inc. JavaServer Pages Technology -
Documentation, version 2.0, 2004.

Sun Microsystems, Inc. Java Management Extensions
(JMX) Specification, version 1.4, November 2006.

Sun Microsystems, Inc. JSR-000154 Java Servlet 2.5
Specification, 2006.

