

! Inference of data transfers and comparisons

through method invocation and type hierarchy

(Fig. 4) and pattern matching (Fig. 5):

isActualParameterOf = isActualParameterOf ∪
 (isActualParameterOf ! (overrides-1))! (1.1)

isAssignedValueOf = isAssignedValueOf ∪
 (isFormalParameterOf !! isActualParameterOf-1) (1.2)

isAssignedValueOf = isAssignedValueOf ! (1.3)

returns = (returns ((∪ overrides-1) ! ! returns))! (1.4)

isComparedGreaterThanOrEqualTo =

 isComparedGreaterThanOrEqualTo ∪
 (isComparedGreaterThanOrEqualTo ! returns) (1.5)

Figure 4. Inferences using relational algebra

create new edges in the graph

Figure 5. Graph pattern for statistical maximum

represented in GraphLog [4]

! Model refined iteratively based on the

demands of each usage pattern
! Relationships are sub-typed to provide

stronger semantics

Figure 2. Entity-Relationship model

Implementing the model
! Limited to binary relationships only
! Each relationship class is represented as a set

of 2-tuples
! Tuples are defined recursively to support

composite entities and relationship attribution

STAC: Automatically Identifying Software Tuning Parameters

Nevon Brake

James R. Cordy
School of Computing, Queen’s University

Kingston, Ontario, Canada

Software Tuning Panels for Autonomic

Control (STAC)
! Automatically re-architects legacy source

code for autonomic control
! Source transformation rules written in TXL

generate a control panel to centralize access to

and modification of tuning parameters
! XML mark-up is inserted manually to identify

tuning parameter declarations

What are tuning parameters?
! Scalar fields and scalar properties of

structured fields
! Explicit declarations in source code
! Used to influence or observe the behaviour of

the system
! Related to metrics such as performance and

security

Where are tuning parameters?
! Tuning parameters are not always

documented, intentionally and unintentionally
! Variable names provide clues but can be

misleading or ambiguous
! Not always explicit (e.g., cache hit rate, tree

depth)

Objective
! Automate tuning parameter identification and

mark-up using patterns of use

CASCON 2007, Richmond Hill, Ontario, Canada (October 2007). This work is supported by an IBM CAS Fellowship and by the Natural Sciences and

Engineering Research Council of Canada.

VII. Future Work

References

I. Introduction

[1] E. Dancy and J.R. Cordy, "STAC: Software Tuning Panels For Autonomic
Control," CASCON '06, Toronto, October 2006, pp. 146-160.

[2] A.J. Malton, K.A. Schneider, J.R. Cordy, T.R. Dean, D. Cousineau and J.
Reynolds, "Processing Software Source Text in Automated Design
Recovery and Transformation," IWPC '01, Toronto, May 2001, pp. 127-
134.

[3] R.C. Holt, "Binary Relational Algebra Applied to Software Architecture,"
Technical Report 345, Computer Science Research Institute, University of
Toronto, March 1996.

[4] M.P. Consens and A.O. Mendelzon, "GraphLog: A Visual Formalism for
Real Life Recursion," PODS '90, Nashville, April 1990, pp. 404–416.

III. E-R Model

II. Case Studies

Creating a taxonomy
! Studied four server-oriented applications

implemented in Java:
! Apache Tomcat/Jetty (Web/Servlet)
! Apache Derby/Berkeley DB Java Edition

(Database)
! Catalogued tuning parameters from manuals,

source comments, JMX
! Classified according to usage patterns (Fig. 1)

Figure 1. Tuning parameter classification

Building the model
! Need to know where and how data are

transferred and how data are compared
! Entities abstracted from the Eclipse JDT

program model to represent:
! Types
! Fields
! Local variables
!Methods

! Relationships represent data transfers and

data comparisons between entities (Fig. 2)

IV. Fact Extraction

Abstract Syntax Trees
! Eclipse JDT parser used to generate AST for

each compilation unit
! Nodes of AST visited to extract instances of

relationships between entities
! Extracted relationships form a directed graph

of tuples (Fig. 3)
! Graph patterns used to identify tuning

parameters

Figure 3. Facts extracted from several classes

in Apache Tomcat

Elizabeth Dancy

Marin Litoiu

Valentina Popescu
IBM, Toronto Lab

Markham, Ontario, Canada

V. Graph Manipulation

Manipulating the facts
! Operations on binary relationships used to

manipulate facts
! Isolated facts from each compilation unit are

combined to elicit program understanding
! Inferences create new edges in the graph
! Graph patterns require, allow or disallow

particular edges from particular nodes along a

path to identify tuning parameters

Example - Statistical Maximum
! Statistical maximums are characterized by an

expression being assigned to a variable only

when the value of that expression would not

cause the value of the variable to decrease

! Integration with management frameworks

based on standards such as Web Services

Distributed Management (WSDM)
! Refine taxonomy based on expert feedback

and study of other application domains
! Orthogonal tuning parameter classification

based on resource stereotypes

VI. Conclusions

! Tuning parameters can be automatically

identified by matching patterns of use from the

taxonomy
! Fact extraction and graph manipulation can be

used to get existing relationships from source

code and infer new ones
! Patterns identify tuning parameters while also

providing clues about related expressions

