
1. Motivation

Finding Bugs in Concurrent Java Programs
A Comparison of Bug Detection Tools Using Mutation

2. Concurrent Testing vs. Model Checking

3. Experimental Mutation Analysis

4. Mutation Operators for Concurrent Java

SE
TU

P 
PH

A
SE

EX
EC

U
TI

O
N

 P
H

A
SE

Select Original Source Code      Select Quality Artifacts (e.g. Tests, Properties)

Generate Mutants for Original Source & Mutants

Run Analysis with Original Source & Mutants

Generate and View Mutation Analysis Results

Project Profile

Create Project

Mutation 
Tool 

Profiles

Analysis 
Tool 

Profiles

Compiler 
Profiles

Create Tool Profiles

1

Compile Original Source & Mutants (Optional)

4

3

2

5

6

7. References

Use mutation to empirically assess testing, static analysis, model checking, and 
dynamic analysis [5,6]

ExMAn (Experimental Mutation Analysis) Framework [1,4]
A realization of our experimental mutation analysis approach
A reusable implementation for building different customized mutation analysis tools 
for comparing different quality assurance techniques

Jeremy S. Bradbury, James R. Cordy, Juergen Dingel ● Queen’s University ● Kingston, Ontario, Canada
{bradbury, cordy, dingel}@cs.queensu.ca

[1] ExMAn Framework website (http://www.cs.queensu.ca/~bradbury/exman/)

[2] ConMAn Operators website (http://www.cs.queensu.ca/~bradbury/conman/)

[3] "Mutation Operators for Concurrent Java (J2SE 5.0)", J.S. Bradbury, J.R. Cordy, 
and J. Dingel, In Proc. of the 2nd Workshop on Mutation Analysis (Mutation 2006), 
Nov. 2006, 10 pp. (to appear)

[4] "ExMAn: A Generic and Customizable Framework for Experimental Mutation
Analysis", J.S. Bradbury, J.R. Cordy, and J. Dingel, In Proc. of the 2nd Workshop on 
Mutation Analysis (Mutation 2006), Nov. 2006, 6 pp. (to appear)

[5] "Using Mutation for the Assessment and Optimization of Tests and Properties", 
J.S. Bradbury, Doctoral Symposium being held in conjunction with the International 
Symposium on Software Testing and Analysis (ISSTA 2006), Jul. 2006, 4 pp. 

[6] "An Empirical Framework for Comparing Effectiveness of Testing and 
Property-Based Formal Analysis", J.S. Bradbury, J.R. Cordy, and J. Dingel, In 
Proc. of the 6th International ACM SIGPLAN-SIGSOFT Workshop on Program 
Analysis for Software Tools and Engineering (PASTE 2005), pages 2–5, Sept. 2005. 

An increase in the need for concurrent software development 
Concurrent software offers a new set of challenges not present in sequential code

For example: deadlock and race conditions
A concurrency bug may only occur in a very small number of execution interleavings 
making it extremely difficult to detect prior to deployment
Reasoning about all possible interleavings in a program and ensuring interleavings 
do not contain bugs is non-trivial

Concurrent testing of Java with the IBM tool ConTest 
Inserts random delays at synchronization points 
Generates different interleavings each time a program is run

Model checking of Java with Java PathFinder or Bandera/Bogor
Exhaustively searches the entire state space of a model (i.e., all interleavings)
Allows for the analysis of assertions and deadlock detection

ExMAn is customized to compare testing with ConTest and model checking with 
Java PathFinder or Bandera/Bogor
The ConMAn plug-in is used with ExMAn to generate the faulty program versions
Our current experiment uses a set of 7 programs from a benchmark of concurrent 
Java applications maintained at the IBM Haifa Labs

ConMAn (Concurrency Mutation Analysis) operators for Java (J2SE 5.0) [2,3]
24 ConMAn operators based on real concurrency bug patterns
Implemented in TXL – a source transformation language
The classes of operators include: modifying critical regions, keywords, concurrency 
method calls, parameters of concurrency method calls, and switching concurrency 
objects
An example of a Shrink Critical Region (SKCR) mutation:

Research Goal: to empirically assess different bug detection tools 
using seeded faults created via experimental mutation analysis.

6. Comparing Testing and Model Checking

Original Code:
<statement n1>
synchronized (this) {

/ / critical region
<statement c1>
<statement c2>
<statement c3>

}
<statement n2>

An example of a Remove Static Keyword (RSTK) mutation:

Original Code:
public static synchronized void bMethod() { … } 

RSTK Mutant:
public synchronized void bMethod() { … } 

SKCR Code:
<statement n1>
//critical region
<statement c1>
synchronized (this) {

<statement c2>
}
<statement c3>
<statement n2>

Figure 1: Experimental mutation analysis
for comparing testing and model checking

Figure 2: The ExMAn process

5. ExMAn Framework


