
1. Motivation

Finding Bugs in Concurrent Java Programs
A Comparison of Bug Detection Tools Using Mutation

2. Concurrent Testing vs. Model Checking

3. Experimental Mutation Analysis

4. Mutation Operators for Concurrent Java
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7. References

Use mutation to empirically assess testing, static analysis, model checking, and 
dynamic analysis [5,6]

ExMAn (Experimental Mutation Analysis) Framework [1,4]
A realization of our experimental mutation analysis approach
A reusable implementation for building different customized mutation analysis tools 
for comparing different quality assurance techniques
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An increase in the need for concurrent software development 
Concurrent software offers a new set of challenges not present in sequential code

For example: deadlock and race conditions
A concurrency bug may only occur in a very small number of execution interleavings 
making it extremely difficult to detect prior to deployment
Reasoning about all possible interleavings in a program and ensuring interleavings 
do not contain bugs is non-trivial

Concurrent testing of Java with the IBM tool ConTest 
Inserts random delays at synchronization points 
Generates different interleavings each time a program is run

Model checking of Java with Java PathFinder or Bandera/Bogor
Exhaustively searches the entire state space of a model (i.e., all interleavings)
Allows for the analysis of assertions and deadlock detection

ExMAn is customized to compare testing with ConTest and model checking with 
Java PathFinder or Bandera/Bogor
The ConMAn plug-in is used with ExMAn to generate the faulty program versions
Our current experiment uses a set of 7 programs from a benchmark of concurrent 
Java applications maintained at the IBM Haifa Labs

ConMAn (Concurrency Mutation Analysis) operators for Java (J2SE 5.0) [2,3]
24 ConMAn operators based on real concurrency bug patterns
Implemented in TXL – a source transformation language
The classes of operators include: modifying critical regions, keywords, concurrency 
method calls, parameters of concurrency method calls, and switching concurrency 
objects
An example of a Shrink Critical Region (SKCR) mutation:

Research Goal: to empirically assess different bug detection tools 
using seeded faults created via experimental mutation analysis.

6. Comparing Testing and Model Checking

Original Code:
<statement n1>
synchronized (this) {

/ / critical region
<statement c1>
<statement c2>
<statement c3>

}
<statement n2>

An example of a Remove Static Keyword (RSTK) mutation:

Original Code:
public static synchronized void bMethod() { … } 

RSTK Mutant:
public synchronized void bMethod() { … } 

SKCR Code:
<statement n1>
//critical region
<statement c1>
synchronized (this) {

<statement c2>
}
<statement c3>
<statement n2>

Figure 1: Experimental mutation analysis
for comparing testing and model checking

Figure 2: The ExMAn process

5. ExMAn Framework


