Finding Bugs 1n Concurrent Java Programs

A Comparison of Bug Detection Tools Using Mutation ’
Jeremy S. Bradbury, James R. Cordy, Juergen Dingel ¢ Queen’s University e Kingston, Ontario, Canada ue nS

: UNIVERSITY
{bradbury, cordy, dingel}@cs.queensu.ca
1. Motivation 9. EXMAN Framework
= An increase in the need for concurrent software development = ExMAnN (Experimental Mutation Analysis) Framework [1,4]
= Concurrent software offers a new set of challenges not present in sequential code = A realization of our experimental mutation analysis approach
For example: deadlock and race conditions = A reusable implementation for building different customized mutation analysis tools
= A concurrency bug may only occur in a very small number of execution interleavings for comparing different quality assurance techniques
making it extremely difficult to detect prior to deployment u
= Reasoning about all possible interleavings in a program and ensuring interleavings Mﬁg;,n I I I > z
do not contain bugs is non-trivial N e R — =
Research Goal: to empirically assess different bug detection tools
using seeded faults created via experimental mutation analysis.
2. Concurrent Testing vs. Model Checking
= Concurrent testing of Java with the IBM tool ConTest
= Inserts random delays at synchronization points
= (Generates different interleavings each time a program is run 4
= Model checking of Java with Java PathFinder or Bandera/Bogor g
= Exhaustively searches the entire state space of a model (i.e., all interleavings) 5
= Allows for the analysis of assertions and deadlock detection i
3. Experimental Mutation Analysis
= Use mutation to empirically assess testing, static analysis, model checking, and
dynamic analysis [5,6]
/ # \ § OComéiIe Original Source & Mutants (Optional) - | 0 Ge;e;#te and View Mutation Analysis Results”
(M entore J Figure 2: The ExXMAnR process
o
Concurren | utan Forma_l m m n
[}H H{ } 6. Comparing Testing and Model Checking
v v
(L Mutstlon Anelysi Resuls Gererstor) = ExMAN is customized to compare testing with ConTest and model checking with
Figure 1: Experimental mutation analysis Java PathFinder or Bandera/Bogor
for comparing testing and model checking = The ConMAnN plug-in is used with ExXMAN to generate the faulty program versions
= Our current experiment uses a set of 7 programs from a benchmark of concurrent
4 Mutation Operators for Concurrent Java Java applications maintained at the IBM Haifa Labs
= ConMAnN (Concurrency Mutation Analysis) operators for Java (J2SE 5.0) [2,3] 7. References
= 24 ConMAnN operators based on real concurrency bug patterns
" Implemented in TXL —a source transformation language 1] EXMAN Framework website (http://www.cs.queensu.ca/~bradbury/exman/)

"= The classes of operators include: modifying critical regions, keywords, concurrency

method calls, parameters of concurrency method calls, and switching concurrency 2] ConMAN Operators website (http://www.cs.queensu.ca/~bradbury/conman/)

objects 3] "Mutation Operators for Concurrent Java (J2SE 5.0)", J.S. Bradbury, J.R. Cordy,
= An example of a Shrink Critical Region (SKCR) mutation: and J. Dingel, In Proc. of the 2" Workshop on Mutation Analysis (Mutation 2006),
. Nov. 2006, 10 pp. (to appear)
Original Code: SKCR Code:
<statement n1> <statement n1> [4] "ExMAnN: A Generic and Customizable Framework for Experimental Mutation
synchronized (this) { [[critical region Analysis"”, J.S. Bradbury, J.R. Cordy, and J. Dingel, In Proc. of the 2"d Workshop on
/ | critical region <statement c1> Mutation Analysis (Mutation 2006), Nov. 2006, 6 pp. (to appear)
< 1> hroni hi
<2t::gm§2: g2> sy:scta:g'r%lgre]td C(2t>|s) { [5] "Using Mutation for the Assessment and Optimization of Tests and Properties”,
<statement c3>) J.S. Bradbury, Doctoral Symposium being held in conjunction with the International
! <statement c3> Symposium on Software Testing and Analysis (ISSTA 2006), Jul. 2006, 4 pp.
<statement n2> <statement n2> [6] "An Empirical Framework for Comparing Effectiveness of Testing and
Property-Based Formal Analysis”, J.S. Bradbury, J.R. Cordy, and J. Dingel, In
= An example of a Remove Static Keyword (RSTK) mutation: Proc. of the 6% International ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE 2005), pages 2-5, Sept. 2005.
Original Code:

public static synchronized void bMethod() { ... }

NSERC
CRSNG

RSTK Mutant:
public synchronized void bMethod() { ... }

