
ExMAn: A Generic and Customizable Framework
for Experimental Mutation Analysis1

Jeremy S. Bradbury, James R. Cordy, Juergen Dingel
School of Computing, Queen’s University

Kingston, Ontario, Canada
{bradbury, cordy, dingel}@cs.queensu.ca

Abstract

Current mutation analysis tools are primarily used to
compare different test suites and are tied to a particular
programming language. In this paper we present the Ex-
MAn experimental mutation analysis framework – ExMAn
is automated, general and flexible and allows for the com-
parison of different quality assurance techniques such as
testing, model checking, and static analysis. The goal of Ex-
MAn is to allow for automatic mutation analysis that can be
reproduced by other researchers. After describing ExMAn,
we present a scenario of using ExMAn to compare testing
with static analysis of temporal logic properties. We also
provide both the benefits and the current limitations of us-
ing our framework.

1. Introduction

Mutation [10, 7] has been used in the testing community
for over 25 years and is traditionally used to evaluate the
effectiveness of test suites. Moreover, mutation provides a
comparitive technique for assessing and improving multiple
test suites. A number of empirical studies (e.g., [1, 9]) have
relied on using mutation as part of the experimental process.

Although mutation as a comparative technique has been
used primarily within the testing community, it does have
application in the broader area of quality assurance and bug
detection techniques. Our work is based on the idea that
mutation can be used to assess testing (e.g., random test-
ing, concurrent testing with tools such as IBM’s ConTest),
static analysis (e.g., FindBugs, Jlint, PathInspector), model
checking (e.g., Java PathFinder, Bandera/Bogor), and dy-
namic analysis. For example, previously we proposed us-
ing mutation to compare sequential testing with property
based static analysis using Path Inspector and to compare

1This work is supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

concurrent testing using ConTest with model checking [3].
The goal of comparing different techniques using mutation
is to better understand any complementary relationship that
might exist and to use the assessment to design improved
hybrid techniques to detect bugs. A combined approach to
verifying concurrent Java recently used manual mutants to
develop a hybrid analysis approach using code inspection,
static analysis (FindBugs, Jlint), dynamic analysis and test-
ing [11].

We propose a generalized approach to experimental mu-
tation analysis (see Figure 1) in which all of the compo-
nents and artifacts can be interchanged with other compo-
nents and artifacts. This generalized approach can be used
to compare any number of quality assurance tools that use
any kind of quality artifacts. For example, to compare se-
quential testing with static analysis that uses temporal logic
properties. The only restriction is that all tools compared
must be able to be applied to the same original source which
can be any program language or even an executable mod-
elling language.

Implementing a generalized experimental mutation anal-
ysis approach to empirically assess different quality assur-
ance techniques is a challenging problem. A mutation ap-
proach that supports the comparison of different quality
techniques would have to provide a high degree of automa-

Quality
Assurance
Technique/

Tool 2

Quality
Assurance
Technique/

Tool 1

Mutant Generator

PropertiesPropertiesQuality
Artifacts

PropertiesPropertiesQuality
Artifacts

Mutant Analysis Results Generator

Original
Source

Mutant
Source

Figure 1. Generalized Mutation Analysis

Quality Artifact
Selectors

Tool 1

Tool n

LEGEND
BUILT-IN COMPONENT

EXTERNAL TOOL COMPONENT
OR PLUGIN COMPONENT

QA Tool
1

Compiler
(Optional)

Mutant
Viewer

ExMAn

Mutant
Generator

QA Tool
n

Results
Generator &

Viewer

Hybrid Artifact
Set Generator

Source
Viewer

Artifact
Generator 1
(Optional)

Artifact
Generator n
(Optional)

Plugin Interface Script Generator &
Executor

Script Generator &
Executor

Compiler
Viewer

(Optional)

QA Tool
Viewers

Tool 1

Tool n

Figure 2. ExMAn Architecture
The architecture consists of built-in components (appear inside dark grey box) and external tool components and plugin components (appear outside of
grey box at top of diagram). The built-in components in the light grey box provide the ExMAn user interface and allow for control of the external tool
components via the Script Generator & Executor. The plugin components are accessed using a plugin interface. Arrows in the diagram represent the

typically control flow path between components.

tion and customizability. The high degree of automation is
required to execute the mutation analysis process and is es-
sential to allow for experimental results to be reproduced.
Automation can be achieved through automatically gener-
ated scripts to handle the generation of mutants, the mutant
analysis, and the generation of results such as mutant score.
Customizability is necessary because the approach has to
be language and quality artifact independent. On the one
hand, language independence means that pluggable muta-
tion generators and compilers are ideal. On the other hand
quality artifact independence means the approach should
support the comparison of different pluggable quality assur-
ance tools that use artifacts including test cases, assertions,
temporal logic properties, and more. In the absence of such
a framework, running a wide variety of experiments would
mean a considerable duplication of effort.

We have developed the ExMAn (EXperimental Muta-
tion ANalysis) framework as a realization of our general-
ized approach. That is, ExMAn is a reusable implemen-
tation for building different customized mutation analysis
tools for comparing different quality assurance techniques.

In Section 2 we will provide an overview of existing mu-
tation analysis tools that have influenced the design and im-
plementation of ExMAn. In Section 3 we will provide a de-
scription of ExMAn’s architecture as well as the functional-
ity of the ExMAn framework. In Section 4 we will provide

a scenario of using ExMAn for comparing different quality
assurance techniques. We will present our conclusions and
future work in Section 5.

2. Background

There are several mutation tool including Mothra [6, 8],
Proteum [5], and MuJava [13, 12] that our work builds
upon. The Mothra tool is a mutation tool for Fortran pro-
grams that allows for the application of method level mu-
tation operators (e.g. relational operator replacement). The
Proteum tool is a mutation analysis tool for C programs.
MuJava is the most recent mutation tool and was designed
for use with Java and includes a subset of the method-level
operators available in Mothra as well as a set of class muta-
tion operators to handle object oriented issues such as poly-
morphism and inheritance (e.g. mutate the public key-
word into protected). The difference between ExMAn
and these tools is that although each is highly automated
they were designed to apply mutation analysis to testing.
Thus, each is program language dependent and assumes
only test cases as quality artifacts. Despite this limitation,
all of these tools are excellent for applying mutation analy-
sis to testing and we have learned from their design in build-
ing ExMAn as a flexible alternative.

3. Overview of ExMAn

3.1. Architecture

The ExMAn architecture is composed of three kinds of
components: built-in components, plugin components, and
external tool components. The built-in components are gen-
eral components that are used in all types of experiments
(see Figure 2). We will discuss most of the general com-
ponents in our description of the ExMAn process in Sec-
tion 3.2. However, we will discuss one important built-in
component, the Script Generator & Executor, now. This
built-in component provides the interface to the external
tool components such as a mutant generator. This compo-
nent builds and executes scripts when requested by built-in
viewer components. Scripts are customized for particular
tools based on tool profiles that contain information on the
interface of the tool (preferable command line) and a project
file that contains information on where input and output are
stored. We chose to use a script-based interface for the
external tool components because the script interface was
more flexible then other interfaces such as a plugin inter-
face and because existing tools are not required to conform
to a specific interface.

While the built-in components are general and are used
in all mutation analysis experiments, the external compo-
nents can be replaced, or their usage modified, from one
experiment to the next. There are three types of external
tool components:

• Mutant generator. We can use existing mutant gen-
erators such as the Andrews and Zhang C mutant gen-
erator tool [2]. We have also designed several custom
mutation tools for C and Java using a source transfor-
mation langage, TXL [4].

• Compiler. If we are using a testing approach that
requires compiled code we can use standard external
compilers such as gcc or javac.

• Quality Assurance Techniques & Tools. We can
run the mutation analysis on a variety of quality as-
surance tools including model checkers, static analy-
sis tools, concurrent testing tools, and standard testing
techniques.

In addition to the external tool component, there is also
one type of plugin component that can be adapted from one
experiment to the next:

• Artifact Generator. We can develop optional cus-
tomized plugins to generate data for each quality as-
surance technique in a given experiment. For example,
a plugin for testing would produce test cases while a
plugin for model checking or static analysis might pro-
duce assertions or temporal logic properties.

Figure 4. ExMAn Tool Profile Creator Dialog

Figure 5. ExMAn Create/Edit Project Dialog

We have implemented a plugin interface for artifact genera-
tors instead of using the script interface because many of the
quality assurance tools we are interested in comparing do
not have existing artifact generation capabilities. Therefore,
we have to create custom generation components instead of
using existing external tools. In the future we plan to also
provide an alternative script interface for artifact generators
to allow us to integrate ExMAn with existing test generation
tools.

3.2. Process Description

Mutation analysis in ExMAn requires a setup phase and
an execution phase. The setup phase is required because
of the generic and customizable nature of the framework
(see Figure 3(a)). Since ExMAn is not tied to any lan-
guage, or analysis tools, profiles have to be created for
using ExMAn with specific compilers, mutant generators
and analysis tools (see Figure 4). A profile contains de-
tails on the command-line usage and purpose of the tool.
For example to compare concurrent testing using ConTest
and model checking using Java PathFinder we would have

Project Profile

Create Project

Mutation
Tool

Profiles

Analysis
Tool

Profiles

Compiler
Profiles

Create Tool Profiles

(a) Setup phase

Select Original Source Code Select Quality Artifacts (e.g. Tests, Properties)

Generate Mutants for Original Source & Mutants

Run Analysis with Original Source & Mutants

Generate and View Mutation Analysis Results

1

Compile Original Source & Mutants (Optional)

4

3

2

5

6

(b) Execution phase

Figure 3. ExMAn Process

to ensure that ExMAn has defined profiles for a Java com-
piler, a Java mutant generator (e.g. MuJava) and profiles
for executing tests in ConTest as well as model checking
with Java PathFinder. ExMAn has preinstalled profiles for
standard compilers (gcc, javac), mutant generators, and
quality assurance approaches (sequential testing, ConTest,
Java PathFinder, Bandera/Bogor, Path Inspector). However
these tools have to be installed separately and the profiles
might have to be edited to include the correct installation
paths.

Once tool profiles have been created, a project for a par-
ticular experimental mutation analysis has to be defined (see
Figure 5). The project includes information such as the
project name and purpose, the compiler (optional), mutant
generator, a finite set of quality assurance analysis tools be-
ing compared using mutation, and the paths to all input and
output artifacts (e.g., test case input and output directories,
mutant directory). When reproducing results a previously
created project can be used and the setup phase can be by-
passed.

The execution phase occurs once ExMAn has been cus-
tomized for a particular experimental mutation analysis.
The execution phase consists of the following steps (see
Figure 3(b)):

1. Original Source Code Selection: select the program or
model source to be used in the mutation analysis. A
generic language-independent Source Viewer displays
the source but does not do any language specific pre-
processing to ensure the source is syntactically correct.

2. Mutant generation: the mutant generator specified in
the project is used to generate a set of mutants for the
original source code. The Mutant Viewer reports the
progress of the mutant generation.

3. Compile Original Source Code & Mutants: an op-
tional step that occurs only if at least one of the qual-
ity assurance tools involves dynamic analysis or test-
ing. The progress of the compilation is reported in the
Compile Viewer.

4. Select Quality Artifacts: for each quality assurance
analysis tool being analyzed using mutation a set of
quality artifacts is selected. For example, with model
checking a set of assertions can be selected from an
assertion pool. The assertion pool can be generated by
an optional Artifact Generator plugin or we can use an
existing assertion pool. The selection of quality arti-
facts can be conducted randomly or by hand using a
Quality Artifact Selector & Viewer. For example we
could randomly select 20 assertions from an assertion
pool or select them by hand. Each quality artifact can
also be viewed in a dialog interface.

5. Run Analysis with Original Source Code & Mutants:
Quality Analysis Tool Viewers call automatically gen-
erated scripts which allow all of the quality assurance

tools to be run automatically. For each tool’s set of
quality artifacts, we first evaluate each artifact using
the original source to determine the expected outputs.
Next we evaluate the artifacts for all of the mutant ver-
sions of the original program. During this step all of
the tool analysis results and analysis execution times of
each artifact with each program version are recorded
and the progress is reported. Quality Analysis Tool
Viewers also provide an interface to customize the run-
ning of the analysis by placing limits on the size of out-
put and the amount of CPU time. For example, a mu-
tant might cause the original program to go into an in-
finite loop and never terminate which would be a prob-
lem if we are evaluating a test suite. Fortunately, the
user can account for this by placing relative or absolute
limits on the resources used by the mutant programs. If
relative limits are used then the resources used by the
original program are recorded and the resources used
by each mutant are monitored and the mutant is ter-
minated once it exceeds a relative threshold (e.g. 60
seconds of CPU time more then the original program).

6. Collection and Display of Results: results using all
of the quality assurance tools are displayed in tabular
form in the Results Generator & Viewer. The data pre-
sented includes the quality artifact vs. mutant raw data,
the mutant score and analysis time for each quality ar-
tifact and the ease to kill each mutant (i.e. the number
of quality artifacts that kill each mutant). We also can
generate hybrid sets of quality artifacts from all quality
assurance tools that have undergone mutation analysis
using the Hybrid Artifact Set Generator. For instance,
if different artifacts are used with different tools we
report the combined set of quality artifacts that will
achieve the highest mutant score. Additionally, we can
generate the hybrid set of artifacts that achieve a cer-
tain mutant score (e.g. 95%) and has the lowest execu-
tion cost or smallest set of quality artifacts.

4. ExMAn in Practice

We will now outline a scenario that demonstrate Ex-
MAn’s flexibility and the novel application of mutation
analysis that is possible using our framework. The sce-
nario does not provide a statistical comparison of quality
assurance techniques. Instead, the scenario demonstrates
customizing ExMAn for experimental mutation analysis re-
search.

Consider a scenario where we compare sequential testing
and static analysis. In this scenario we can use the following
external components and plugins with ExMAn:

• Mutant generator. The Andrews and Zhang C mutant
generator tool [2].

• Compiler. gcc.
• Quality Assurance Techniques & Tools.

– Technique 1: Sequential testing.
– Technique 2: Static Analysis using Path Inspec-

tor (a tool that allows for the analysis of temporal
logic properties).

• Artifact Generator. We could compare a test suite
selected randomly from an already existing test pool
with a set of properties that are selected randomly from
a generated pool of temporal properties. Our property
generator plugin for Path Inspector first extracts possi-
ble property variables from the program and then com-
poses variables using temporal logic property patterns.

Using ExMAn with the above customization we could
determine the mutant score of each analysis technique and
produce the hybrid set that has the highest mutant score.
The hybrid set may contain both tests and properties or
could potential contain only tests or only properties.

We could also reconfigure ExMAn to compare analy-
sis using hand created properties with Path Inspector versus
properties created using our property generator plugin.

5. Conclusion

ExMAn is a generic and flexible framework that allows
for the automatic comparison of different quality assurance
techniques and the development of hybrid quality assurance
approaches. The flexibility of ExMAn occurs because of
the separation of the built-in components that can be used
in any mutation analysis from the external tool components
that place restrictions on the mutation analysis. By using
a script invocation interface to access the mutant generator,
compiler and quality assurance techniques under analysis
we allow them to be easily interchanged with no modifica-
tions to the original tools. We have demonstrated the cus-
tomization of ExMAn using one example and are currently
planning empirical assessments of testing, static analysis,
and formal analysis.

Although ExMAn is a generalized and customizable way
to conduct mutation analysis it does have limitations and we
have identified several areas of future work:

• Add some facility to semi-automatically or automati-
cally identify equivalent mutants.

• Add ability to automatically specify patterns for the
creation of mutation operators.

• Expand the artifact selection to allow for the selection
of multiple quality artifact sets for each type and thus
allow for statistical analysis.

We are interested in improving the functionality and flex-
ibility of the ExMAn framework and hope to address the
above limitations in the near future.

6. Availability

We are currently using ExMAn to conduct several em-
pirical studies regarding the bug detection abilities of testing
vs. property-based analysis for both sequential and concur-
rent systems. Once we have completed these experiments
and evaluated the usability and effectiveness of ExMAn we
plan to publicly release ExMAn in January 2007.

References

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In Proc. of ICSE
2005, pages 402–411, 2005.

[2] J. H. Andrews and Y. Zhang. General test result checking
with log file analysis. IEEE Trans. Softw. Eng., 29(7):634–
648, 2003.

[3] J. S. Bradbury, J. R. Cordy, and J. Dingel. An empiri-
cal framework for comparing effectiveness of testing and
property-based formal analysis. In Proc. of PASTE 2005,
pages 2–5, Sept. 2005.

[4] J. Cordy, T. Dean, A. Malton, and K. Schneider. Source
transformation in software engineering using the TXL
transformation system. Journal of Info. and Soft. Tech.,
44(13):827–837, 2002.

[5] M. Delamaro and J. Maldonado. Proteum–a tool for the as-
sessment of test adequacy for c programs. In Proc. of Conf.
on Performability in Computing Sys. (PCS 96), pages 79–95,
Jul. 1996.

[6] R. DeMillo, D. Guindi, K. King, W. McCracken, and A. Of-
futt. An extended overview of the mothra software testing
environment. In Proc. of Work. on Software Testing, Verifi-
cation, and Analysis, pages 142–151, Jul. 1988.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
for test data selection: help for the practicing programmer.
IEEE Computer, 11(4):34–41, Apr. 1978.

[8] R. A. DeMillo and A. J. Offutt. Constraint-based automatic
test data generation. IEEE Trans. Softw. Eng., 17(9):900–
910, 1991.

[9] H. Do and G. Rothermel. A controlled experiment assess-
ing test case prioritization techniques via mutation faults. In
Proc. of ICSM 2005, pages 411–420. IEEE Computer Soci-
ety, 2005.

[10] R. Hamlet. Testing programs with the aid of a compiler.
IEEE Trans. on Soft. Eng., 3(4), Jul. 1977.

[11] B. Long, R. Duke, D. Goldson, P. A. Strooper, and L. Wild-
man. Mutation-based exploration of a method for verifying
concurrent Java components. In Proc. of PADTAD 2004,
Apr. 2004.

[12] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava : An automated
class mutation system. Journal of Soft. Testing, Verification
and Reliability, 15(2):97–133, Jun. 2005.

[13] J. Offutt, Y.-S. Ma, and Y.-R. Kwon. An experimental mu-
tation system for Java. In Proc. of the Work. on Empirical
Research in Soft. Testing (WERST’2004), 2004.

