
A Survey of Self-Management in Dynamic Software
Architecture Specifications ∗

Jeremy S. Bradburya, James R. Cordya†, Juergen Dingela, Michel Wermelingerb‡
aSchool of Computing, Queen’s University, Kingston, Ontario, Canada

bDepartamento de Informática, Universidade Nova de Lisboa, Caparica, Portugal

{bradbury, cordy, dingel}@cs.queensu.ca, mw@di.fct.unl.pt

ABSTRACT
As dynamic software architecture use becomes more widespread,
a variety of formal specification languages have been developed
to gain a better understanding of the foundations of this type of
software evolutionary change. In this paper we survey 14 formal
specification approaches based on graphs, process algebras, logic,
and other formalisms. Our survey will evaluate the ability of each
approach to specify self-managing systems as well as the ability to
address issues regarding expressiveness and scalability. Based on
the results of our survey we will provide recommendations on fu-
ture directions for improving the specification of dynamic software
architectures, specifically self-managed architectures.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—lan-
guages; D.2.9 [Software Engineering]: Management—software
configuration management; D.2.11 [Software Engineering]: Soft-
ware Architectures

Keywords
dynamic software architecture, architectural formalism, dynamism,
run-time evolution, specification, self-management

1. INTRODUCTION
Dynamic software architectures modify their architecture and

enact the modifications during the system’s execution [18]. This
behavior is most commonly known as run-time evolution or dy-
namism. Self-managing architectures are a specific type of dy-
namic software architectures. We define a system that enacts ar-
chitectural changes at run-time as having aself-managing architec-
ture if the system not only implements the change internally but

†Current address: ITC-IRST, Trento, Italy.
‡Current address: Computing Department, The Open University,
Milton Keynes, UK.∗This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSS’04 Oct 31-Nov 1, 2004 Newport Beach, CA, USA
Copyright 2004 ACM 1-58113-989-6/04/0010 ...$5.00.

also initiates, selects, and assesses the change itself without the
assistance of an external user. Programmed dynamism [10], self-
organising architectures [16, 12], self-repairing systems [23], and
self-adaptive software [21] are all examples of self-managing ar-
chitectures. Programmed dynamism is an early type of dynamism
in which a fixed change is conditionally triggered by the system.
The other examples listed support more advanced notions of self-
management in architectural reconfiguration.

Dynamic software architectures and specifically dynamic com-
ponents have been identified as “challenging in terms of correct-
ness, robustness, and efficiency” [24]. This is especially true for
self-managing architecture since systems that are self-managed have
to implement the initiation and selection of a change. Conversely,
user-managed architectures usually exhibit ad-hoc change [10] in
which the initiation and selection occur external to the software,
thus simplifying the development.

Formal specification is one way to support the development of
correct and robust dynamic software architectures. In this paper we
present a survey of 14 dynamic software architecture specification
approaches. Our goal is to focus on the ability of each approach
to specify self-managing architectures. First, we determine if each
specification approach supports our definition of a self-managing
architecture. Second, we evaluate each approach with respect to
the expressiveness of the approach in specifying different types
of change and different levels of change from a fixed selection
approach to an unconstrained approach. Third, we compare the
scalability of the approaches to specify decentralized management
schemes which are more likely in large-scale systems. After evalu-
ating all of the specification approaches we use the results to make
recommendations on how formal specification approaches for dy-
namic software systems in general, and self-managing in particular,
can be improved.

Related work to our survey includes several papers that have sur-
veyed Architecture Description Languages (ADLs) and provided
broad comparisons [6, 18]. The survey in [6] compared ADLs on
attributes related to scope of language, expressive power, tool ma-
turity, and others. The survey in [18] compared ADLs in terms
of their ability to model components, connectors and configuration
as well as tool support for such things as analysis and refinement.
Our work differs from previous work in that we consider only for-
mal specification approaches and provide a narrower comparison,
focusing on the ability of each approach to specify self-managing
architectures. The previous approaches have not focused on self-
managing architectures. In fact, only the survey in [18] even con-
siders run-time evolution in its evaluation.

In Section 2 we will provide an overview of formal specifica-
tion for dynamic software architecture including some details re-
garding the 14 specification approaches surveyed. In Section 3 we

Architectural Structure Architectural Element Behavior

Architectural
Style

System Architecture Components Connectors

Architectural
Reconfiguration

Le Métayer
approach

context-free
graph grammar

graph (formally defined as a
multiset)

nodes of a graph and a CSP like
behavior specification

edges of a graph

graph rewriting rules with
side conditions to refer to

the status of public
variables

Hirsch et al.
approach

context-free
graph grammar

hypergraph edges of a graph with CCS labels

nodes of a graph [point-to-point
communication (white nodes) and
broadcast communication (black

nodes)]

graph rewriting rules

Taentzer et
al. approach

-
distributed graph (network

graph)

local graph for each network graph
node and local transformations

between local graphs
edges of a graph graph rewriting rules

COMMUNITY - Categorical diagram
a program in COMMUNITY (a UNITY-

like language)
a star-shaped configuration of

programs

category theory using
double-pushout graph

transformation approach

G
ra

p
h

CHAM creation CHAM - molecule
links between two component

molecules
evolution CHAM reaction

rules

Dynamic
Wright

-
implicit graph representation
(components and connectors

are nodes)

ports (interface) + computation
(behavior)

roles (interface) + glue (behavior) CSP

Darwin - implicit graph representation
programming language + component

specification of comm. objects
support for simple bindings -calculus

LEDA - implicit graph representation
interface specification, composition

and attachment specification (if
composite)

attachments at top level
components

-calculus

P
ro

c
e
s
s
 A

lg
e
b

ra

PiLar - implicit graph representation
components with ports, instances of
other components and constraints

support for simple bindings CCS

Gerel - implicit graph representation
interface in Gerel language and

behavior in a programming language
defined by bind operation in
configuration components

first order logic

Aguirre-
Maibaum
approach

- implicit graph representation
class with attributes, actions

and read variables

association consisting of
participants and synchronization

connections

first order logic, temporal
logic

L
o

g
ic

ZCL -
implicit graph representation

(defined by set of state
schemas in Z)

state schema in Z
connection between ports of

components

operation schema in Z
(predicate logic and set

theory)

C2SADEL

only supports
the C2 arch.

style

implicit graph representation
(defined by Architecture

Description Language (ADL))

element with top and bottom
interface and behavior (defined by

Interface Definition Language (IDL))

element with top and bottom ports
and filtering mechanisms (defined

by ADL)

Architecture Modification
Language (AML)

O
th

e
r

RAPIDE - implicit graph representation
types language for component

interface (plus other sublanguages
for behavior)

broadcast connection rule (||>) or
pipe (=>)

where statement or
execution architecture

events

Table 1: Support for structure, behavior, and reconfiguration in formal specification approaches for dynamic software architectures

will evaluate the ability of each specification approach to support
self-management and address expressiveness and scalability. The
information presented in this section was gathered from published
research papers and our own experience using each approach. Fi-
nally, we conclude and discuss future work in Section 4.

2. FORMAL SPECIFICATION
Formal approaches to dynamic software architectures involve

the specification of the architectural structure of a system, the ar-
chitectural reconfiguration of a system, and usually the behavior
of a system. The formal approaches to specifying dynamic soft-
ware architectures that we consider are divided into four categories:
graph-based approaches, process algebra approaches, logic-based
approaches, and other approaches.

Graph-Based Approaches. A natural way to specify software

architectures and architectural styles is to use a graph grammar to
represent the style and a graph to represent a specific system’s ar-
chitecture. Furthermore, a natural way to specify reconfiguration
in a dynamic architecture is to use graph rewriting rules. We in-
clude the following graph-based approaches in our survey: the Le
Métayer approach [19, 20], the Hirsh et al. approach [13], the
Taentzer et al. approach [25],CU approach [28, 29], and
Chemical Abstract Machine (CHAM) approach [27].

Process Algebra Approaches. Process algebras are commonly
used to study concurrent systems. Processes in the concurrent sys-
tem are specified in an algebra and a calculus is used to verify the
specification. A variety of process algebras exist including the Cal-
culus of Communicating Systems (CCS), Communicating Sequen-
tial Processes (CSP), and theπ-calculus. We consider four pro-
cess algebra approaches in this paper: Dynamic Wright [2], Dar-

win [15], LEDA [5], and PiLar [7].
Logic-Based Approaches. Logic is also used as a formal ba-

sis for dynamic software architecture specification. Specific ap-
proaches include the Generic Reconfiguration Language (Gerel) [11],
the Aguirre-Maibaum approach [1], and ZCL [8] which uses the Z
specification language.

Other Approaches. Finally, other approaches exist that do not
have a reconfiguration semantics based on graph theory, process
algebra, or logic. Two approaches discussed in this paper are in
this category:2 [17, 22] and R [14, 26].

An overview of the above mentioned approaches can be found in
Table 1. A detailed survey using a running example and a compre-
hensive description of each approach is given in [4].

3. SUPPORT FOR SELF-MANAGEMENT
All dynamic architectural changes have four steps (see Figure 1):

initiation of change (➀), selection of architectural transformation
(➁), implementation of reconfiguration (➂), and assessment of ar-
chitecture after reconfiguration (➃).

We defined a self-managing architecture as an architecture in
which the entire change process occurs internally. We determine
which specification approaches support self-management by con-
sidering if the initiation of the change occurs internal to the soft-
ware. In all of the approaches, if the initiation occurs internally
then the selection and other steps of the change process can also
be specified internally. Internal initiation usually involves monitors
that provide the run-time information on which self-management
decisions are based. Monitors are not specified explicitly in the
surveyed approaches.

An example of an approach that supports internal initiation is
the Le Métayer approach which provides this support through side
conditions in the rewriting rules. For example, consider the rule
given in [20]

C(c), c.leave=true, CR(c,m), CA(m,c) → ∅

which removes a componentc and two connectorsCR andCA. The
side conditionc.leave=true in this rule refers to a public variable
leave in a componentc being true. The rewriting rule can only be
applied when this side condition is satisfied.

Of the 14 specification approaches surveyed, we evaluated each
approach to see if it supported internal initiation, external initiation

SELECTION

Constrained Selection

from pre-defined set

of configurations

Unconstrained

Selection

INITIATION

Internal

component

triggers change

(based on system

state, predefined

events,

environment, etc.)

IMPLEMENTATION

once dynamic change

has been completed

possible selection/

implementation loop in

composite operation

Pre-defined

Selection

ASSESSMENT

1 2 3 4

Figure 1: Change process in a self-managing architecture

The change process shown above has the same order of steps given
in [3]. However, it is also possible to vary this order, for example,
to conduct assessment during selection (➁) as well as before the
implementation of the change (➂).

Table 2: Change initiation support

(e.g. external user), or both. 11 of the approaches explicitly allowed
for internal initiation (see Table 2). In all of the tables in this paper
we distinguish between criteria that are supported by the specifica-
tion explicitly (�), supported externally by a tool or infrastructure
(�), not supported (�), support unknown (?), and not applicable (-).
We include the notion of a criterion being not applicable because
not every specification approach can be classified perfectly using
our criteria. We also include support unknown because despite our
best efforts we were occasionally unable to discern how all of the
approaches fit. For example, we were unable to determine the loca-
tion of the initiation of the change process in the Taentzer et al. ap-
proach. In Sections 3.1 and 3.2 we will only discuss the approaches
that explicitly support internal initiation since these are approaches
that satisfy our definition of self-management. Details regarding
the approaches that have been omitted can be found in [4].

3.1 Expressiveness
Our definition of a self-managing architecture includes systems

with very limited forms of self-management. However, in many
systems increased expressiveness is desirable. The ability of a sys-
tem to manage its own architecture is, in general, limited by the
types of changes it can make and the freedom to choose the ap-
propriate change. We will now survey the expressiveness provided
by different specification approaches in the context of these limita-
tions.

3.1.1 Types of Change
The types of change that a self-managing system can make are

limited at the architectural level by the reconfiguration operations
that are available. For example, if a system can only add connectors
but not components it is limited in the ways it addresses reconfigu-
ration needs. In the context of change type we consider the ability
of each approach to specify basic reconfiguration operations (the
addition and removal of components and connectors) and compos-
ite reconfiguration operations (see Table 3).

Our comparison shows that the majority of approaches support
all of the basic change operations. For exampleR has one
execution architecture event type for each of the basic operations:

Table 3: Reconfiguration operations support

CreateModule(...);
DeleteModule(module : Event);
CreatePathway(...);
DeletePathway(pathway : Event);

Approaches that did not support all of the basic operations in-
clude two of the process algebra approaches (Darwin, LEDA) that
do not allow for the removal of architectural elements. The limita-
tion in these approaches appears to be a result of high-level design
decisions, not limitations of the underlying formalism. For exam-
ple, Darwin was originally designed as a configuration language to
be used for distributed systems and the removal of components in
such a system can still occur at the programming language level.

In composite reconfiguration operations we consider not only the
ability to add or remove subsystems or groups of architectural el-
ements but also the constructs that can be used in specifying the
operation (e.g., sequencing, choice, and iteration). Almost all of
the approaches considered provide support for composite opera-
tions. However, only a few of the approaches provide full sup-
port for composite operation constructs such as sequencing, choice,
and iteration. The scripts used inCU and Gerel both pro-
vide these constructs. Consider, for example, a bank architecture
in which connectors link customers (c) to their accounts (a). The
following CU script uses iteration to replace allVIP con-
nectors (which allow overdrafts) bystandard connectors (which
do not) between a given account and the owners of the account.

script RestoreStandard
in a: Account
prv i: record(c:Customer; co:VIP)
for i in match {c:Customer: co:VIP | co(c,a)} loop

remove i.co;
create standard(i.c, a);

end loop
end script

3.1.2 Selection
The ability to select different changes also provides increased

expressiveness to self-managing systems. We distinguish between
three levels of selection that a specification approach may support:

1. Pre-defined Selection:Once a dynamic change has been ini-
tiated, a change operation is chosen based on a pre-defined
selection made prior to run-time.

2. Constrained Selection from a Pre-defined Set:Once a dy-
namic change has been initiated there is some choice in what
operation to use. For example, a set of operations may be
defined prior to run-time for a given situation or state. The
system, upon reaching the situation, will select the appropri-
ate change operation from the set.

3. Unconstrained Selection:Once dynamic change has been
initiated there is an unconstrained choice regarding the ap-
propriate change to make.

None of the approaches classified in this paper support uncon-
strained run-time selection, which provides the greatest level of
expressiveness (see Table 4). The selection in most approaches
is limited. Specifically, most approaches use a selection approach
where one reconfiguration is pre-defined for a given situation. The
exceptions include the graph rewriting approaches which allow for
random selection of a reconfiguration, namely when multiple left
hand sides of change rules match part of the current architecture.

An example of constrained selection from a pre-defined set in
which the selection is not based on a non-deterministic choice, can
be found in LEDA. Consider the following partial definition of a
client-server system (originally given in [5]):

component DynamicClientServer {
interface none;
composition

client: Client;
server[2]: Server;

attachments
client request(r)<>

if (server[1].n <= server[2].n)
then server[1].serve(r);
else server[2].serve(r);

}

Table 4: Selection support

Table 5: Management support

In the example one client and two servers exist. The client is
attached (<>) to one of the two servers based on the result of a
boolean condition.

3.2 Scalability
Due to the growing size and complexity of software systems

scalability is an important issue. The management of reconfigu-
ration in dynamic software architectures can be either centralized
in a specialized component or distributed across components. In
general, a decentralized or distributed approach is more likely to
scale. Currently, the management used in most of the specification
approaches is centralized, not distributed (see Table 5). This is pri-
marily because early types of dynamic architectural change such as
ad-hoc and programmed often had centralized management. Newer
definitions of change, as found in self-organising architectures, use
distributed management in order to account for scalability in large-
scale distributed systems [12].

Examples of centralized management can be found in Dynamic
Wright where reconfigurations are specified in a configuror and in
the Le Métayer approach where reconfiguration rewriting rules are
specified in a coordinator. An example of distributed management
can be found in the PiLar language. PiLar allows for multiple com-
ponents to have constraints which may specify reconfiguration.

Some of the approaches such as Gerel do not specify the man-
agement but instead allow for the management to be determined in
accompanying tools. In fact, one of the earliest approaches to dis-
tributed management was developed for approaches like Gerel [9].
In this approach a distributed management model was developed
that would allowed programmed changes to be managed concur-
rently in a cooperative management setting.

4. CONCLUSIONS AND FUTURE WORK
In this paper we evaluate the ability of current dynamic software

architectures specification approaches to represent self-managing
architectures. The paper surveys 14 approaches to dynamic archi-
tectural specification in this context. We should note that it is diffi-
cult to survey all of the 14 approaches in such a small space. Our
goal in this paper is two-fold. On the one hand, we want to pro-
vide all readers with a basic introduction to the challenges and is-
sues faced in specifying self-managing architectures. On the other

hand, for those readers who are familiar with the literature on soft-
ware architecture specification we provide details on the ability of
existing approaches to specify self-management. We are currently
working on a journal version of this paper that will include all of the
details about the approaches omitted from this paper due to space
constraints. The journal version will also include additional classi-
fication dimensions not discussed in this paper.

For each specification approach, we consider basic support for
self-management by evaluating the ability of the approach to spec-
ify systems in which a change is initiated internally. Additionally,
we evaluate each approach in terms of expressiveness (ability to
support multiple change types and selection approaches) and scal-
ability (ability to support distributed management).

Our survey shows that the area of dynamic software architec-
ture specification is well researched. There exist a lot of different
sometimes conflicting notations, concepts, and definitions. Most of
the approaches surveyed do reasonably well at answering questions
dealing with the implementation of the change, such as“Given sys-
tem x, what happens when change y occurs?”

However, a large number of the approaches support only lim-
ited forms of self-management. In the context of expressiveness,
the results of our survey are mixed. On the one hand, many of
the approaches support all of the basic operations as well as some
form of composite operations. On the other hand, many of the ap-
proaches do not allow for more expressive selection to be specified.
Selection is an important step in the dynamic architectural change
process and needs to be better specified to enable more meaning-
ful analysis. In the context of scalability many of the approaches
do not consider distributed management schemes thus limiting the
types and size of systems that can be specified.

To summarize, current approaches do a good job with specifying
basic support for self-managing architectures. However, the ap-
proaches need to be adapted and updated to address the current lim-
itations in terms of both expressiveness and scalability. An interest-
ing example of this kind of work is the recent extension of Darwin.
In [12], the traditional Darwin approach, surveyed in this paper,
is extended by specifying Darwin architectures using a constraint-
based approach in the Alloy modelling language. The extension is
expressive in the selection of appropriate changes, provides scal-
ability by supporting distributed management, and provides auto-
matic analysis using the Alloy constraint analyzer.

5. REFERENCES
[1] N. Aguirre and T. Maibaum. A temporal logic approach to

the specification of reconfigurable component-based
systems. InProc. of the17th Int. Conf. on Automated
Software Engineering (ASE 2002), pages 271–274, 2002.

[2] R. Allen, R. Douence, and D. Garlan. Specifying and
analyzing dynamic software architectures. InProc. of the1st

Int. Conf. on Fundamental Approaches to Software
Engineering (FASE’98), 1998.

[3] J. Andersson. Issues in dynamic software architectures. In
Proc. of the4th Int. Software Architecture Workshop
(ISAW-4), pages 111–114, 2000.

[4] J. S. Bradbury. Organizing definitions and formalisms for
dynamic software architectures. Technical Report 2004-477,
Queen’s University, 2004.

[5] C. Canal, E. Pimentel, and J. M. Troya. Specification and
refinement of dynamic software architectures. InProc. of the
Working IFIP Conf. on Software Architecture (WICSA’99),
pages 107–126. Kluwer, 1999.

[6] P. Clements. A survey of architecture description languages.
In Proc. of the8th Int. Work. on Software Specification and

Design (IWSSD’96), pages 16–25. IEEE Computer Society,
1996.

[7] C. E. Cuesta, P. de la Fuente, and M. Barrio-Solórzano.
Dynamic coordination architecture through the use of
reflection. InProc. of the ACM Symp. on Applied Computing
(SAC 2001), pages 134–140. ACM Press, 2001.

[8] V. C. C. de Paula.ZCL: A Formal Framework for Specifying
Dynamic Software Architectures. PhD thesis, Federal
University of Pernambuco, 1999.

[9] M. Endler. A model for distributed management of dynamic
changes. InProc. of the4th IFIP /IEEE Workshop on
Distributed Systems: Operations and Management
(DSOM’93), 1993.

[10] M. Endler. A language for implementing generic dynamic
reconfigurations of distributed programs. InProc. of the12th

Brazilian Symp. on Computer Networks (SBRC 12), pages
175–187, 1994.

[11] M. Endler and J. Wei. Programming generic dynamic
reconfigurations for distributed applications. InProc. of the
Int. Work. on Configurable Distributed Systems, pages
68–79. IEE, 1992.

[12] I. Georgiadis, J. Magee, and J. Kramer. Self-organising
software architectures for distributed systems. InProc. of the
1st Work. on Self-Healing Systems (WOSS’02), pages 33–38.
ACM Press, 2002.

[13] D. Hirsch, P. Inverardi, and U. Montanari. Graph grammars
and constraint solving for software architecture styles. In
Proc. of the3rd Int. Software Architecture Workshop
(ISAW-3), pages 69–72. ACM Press, 1998.

[14] D. C. Luckham, J. L. Kenney, L. M. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and analysis of system
architecture using Rapide.IEEE Trans. on Software
Engineering, 21(4):336–355, 1995.

[15] J. Magee and J. Kramer. Dynamic structure in software
architectures. InProc. of the4th ACM SIGSOFT Symp. on
Foundations of Software Engineering (FSE-4), pages 3–14.
ACM Press, 1996.

[16] J. Magee and J. Kramer. Self organising software
architectures. InJoint Proc. of the2nd Int. Software
Architecture Work. (ISAW-2) and Int. Work. on Multiple
Perspectives in Software Development (Viewpoints ’96) on
SIGSOFT ’96 Workshops, pages 35–38. ACM Press, 1996.

[17] N. Medvidovic. ADLs and dynamic architecture changes. In
Joint Proc. of the2nd Int. Software Architecture Work.
(ISAW-2) and Int. Work. on Multiple Perspectives in Software
Development (Viewpoints ’96) on SIGSOFT ’96 Workshops,
pages 24–27. ACM Press, 1996.

[18] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture description
languages.IEEE Trans. on Software Engineering,
26(1):70–93, 2000.

[19] D. L. Métayer. Software architecture styles as graph
grammars. InProc. of the4th ACM SIGSOFT Symp. on
Foundations of Software Engineering (FSE-4), pages 15–23.
ACM Press, 1996.

[20] D. L. Métayer. Describing software architecture styles using
graph grammars.IEEE Trans. Software Engineering,
24(7):521–533, 1998.

[21] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson,
N. Medvidovic, A. Quilici, D. Rosenblum, and A. Wolf. An
architecture-based approach to self-adaptive software.IEEE
Intelligent Systems, 14(3):54–62, 1999.

[22] P. Oreizy and R. N. Taylor. On the role of software
architectures in runtime system reconfiguration. InProc. of
the4th Int. Conf. on Configurable Distributed Systems
(ICCDS ’98), pages 61–70. IEEE Computer Society, 1998.

[23] B. Schmerl and D. Garlan. Exploiting architectural design
knowledge to support self-repairing systems. InProc. of the
14th Int. Conf. on Software Engineering and Knowledge
Engineering (SEKE 2002), pages 241–248. ACM Press,
2002.

[24] C. Szyperski. Component technology: what, where, and
how? InProc. of the25th Int. Conf. on Software Engineering
(ICSE 2003), pages 684–693. IEEE Computer Society, 2003.

[25] G. Taentzer, M. Goedicke, and T. Meyer. Dynamic change
management by distributed graph transformation: Towards
configurable distributed systems. InProc. of the6th Int.
Workshop on Theory and Application of Graph
Transformation (TAGT’98). LNCS 1764, Springer, 1998.

[26] J. Vera, L. Perrochon, and D. C. Luckham. Event-based
execution architectures for dynamic software systems. In
Proc. of the Working IFIP Conf. on Software Architecture
(WICSA’99), pages 303–318. Kluwer, 1999.

[27] M. Wermelinger. Towards a chemical model for software
architecture reconfiguration.IEE Proceedings - Software,
145(5):130–136, 1998.

[28] M. Wermelinger and J. L. Fiadeiro. Algebraic software
architecture reconfiguration. InProceedings of the7th

European Software Engineering Conference and7th ACM
SIGSOFT Symposium on Foundations of Software
Engineering (ESEC/FSE’99), pages 393–409. LNCS 1687,
Springer-Verlag, 1999.

[29] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A graph based
architectural (re)configuration language. InProc. of the8th

European Software Engineering Conference and9th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2001). Software Engineering Notes,
26(5):21-32, ACM, 2001.

	Text2: Proc. of the International Workshop on Self-Managed Systems (WOSS'04), Newport Beach, California, USA, October/November 2004.

