
Robust Multilingual Parsing Using Island Grammars

Nikita Synytskyy, James R. Cordy, Thomas R. Dean
School of Computing, Queen’s University

Kingston, Ontario, Canada K7L 3N6
nikita@mondenet.com, cordy@cs.queensu.ca, thomas.dean@ece.queensu.ca

Abstract

Any attempt at automated software analysis or modifica-
tion must be preceded by a comprehension step, i.e. pars-
ing. This task, while often considered straightforward, can
in fact be made very challenging depending on the source
code in question. Files that make up web applications serve
as an example of such difficult-to-parse artifacts, for two
reasons. Firstly, these files routinely contain several pro-
gramming languages at once, sometimes with widely vary-
ing syntaxes, and intermingled at the statement level. Sec-
ondly, the code routinely contains syntax errors. Under-
standing such files calls for a robust parser that can handle
multiple languages simultaneously.

An approach to creating such a parser, based on the con-
cept of island grammars, is presented here. Island gram-
mars have been used in the past for robust parsing and
lightweight analysis of software. Some of the features of
these grammars make them uniquely fit for parsing multiple
languages simultaneously.

1 Introduction

Automated analysis of software is impossible without
automated understanding of software. The process of un-
derstanding usually involves some form of parsing of soft-
ware artifacts—most often source code. Parsing is well-
understood and thus is often considered to be a “simple”
process; actual analysis of the code is where the greatest
difficulties seem to lie.

Nevertheless, the initial understanding step in software
analysis can present some interesting challenges. This pa-
per focuses on two common stumbling blocks for parsing—
multilingual code, and code with syntax errors in it. Either
of these characteristics makes parsing more difficult; they
can also occur in documents together, thus creating a rather
serious obstacle to parsing.

Multilingual documents. Multilingual code occurs fre-
quently in software projects. Several languages (Java,

Cobol) provide for embedding of SQL statements right in
the language, and referring to results of SQL statement ex-
ecution later in the program. Source code files containing
such constructs are essentially written in several languages,
although one language (e.g. Java in case of JDBC) usually
dominates, in terms of both line count and the percentage
of functionality implemented. Another common example
of programs written in several languages are C/C++ source
files. The preprocessor instructions, when taken together,
comprise a very flexible and expressive language of their
own, and are integral to achieving the final functionality of
the program. In this case, again, the C/C++ code tends to
dominate on a line-count basis.

Documents that make up web applications are perhaps
the ultimate example of language mixing. Dynamic web
pages contain mixtures of markup languages (HTML), and
“true” programming languages, meant for execution rather
than rendering. Unlike in most other language-mixing
schemes, the languages in web documents are closely
intertwined—as later examples will show, statements of
one language can appear in statements in another language.
Moreover, it is difficult to say with confidence which lan-
guage is predominant, in line count or functionality.

For the purposes of reverse engineering, it is better to
analyze all the languages in a multilingual document to-
gether, rather than separately. A great deal of information
is contained not only in the languages themselves, but also
in the ways in which they are nested, intertwined and used
together. None of this information can be ignored in soft-
ware analysis[1]. Having data about all the languages in the
same parse tree also enables us to perform cross-language
analysis and transformations on the code.

Robust Parsing. There are many situations in software
engineering where incoming source code must be processed
even though it contains errors or other unexpected content.
Robustness allows parsing to get around a variety of obsta-
cles. Two of these obstacles are syntax errors and language
dialects. Browsers and compilers accept variations of the
language that are not described in the manuals and web site
designers will take advantage of anything the browser or

compiler will give them. In addition, web pages can and do
contain errors. Browsers ignore unrecognized HTML tags
and are very liberal about requirements for nesting of tags or
use of close tags (i.e. omitting </p> or tags is typi-
cally not an error). These observations are not new [2, 3, 4],
but add an extra constraint when building a grammar that
will accept multiple languages.

Approach. In this paper we present an approach to
simultaneously parsing multiple languages into the same
parse tree, and doing it in a robust way. The approach relies
on island grammars, as introduced by van Deursen[5] and
Moonen[2], and originally developed in the speech under-
standing community[6]. Island grammars have been used
in the past for lightweight and/or robust analysis and data
extraction[3]. This paper demonstrates that that many of the
the properties that make island grammars suitable for robust
parsing and lightweight analysis also make them useful for
parsing multiple languages. Moreover, the switch to mul-
tiple languages does not diminish the ability to do robust
parsing.

Island grammars readily adapt to multilingual parsing
because they are very good at extracting multiple, and po-
tentially very dissimilar, features from the input documents
that are parser-unfriendly, i.e. contain errors or uninterest-
ing input. By having an island (or several islands) devoted
to each language that can be expected in the parse, separate
languages can be extracted from the input without mix-ups.
Any input that is not matched by any of the islands is either
uninteresting to the grammar or malformed, and is treated
as catch-all water.

The islands can be arbitrarily complex, and therefore im-
pose no restrictions on the languages that can be parsed.
Separate islands are coupled rather loosely, so changes to
one language do not affect changes in another language. Is-
land grammars provide for nesting of islands within islands,
which in turn enables processing of languages that are arbi-
trarily nested within each other.

We demonstrate this approach by presenting a gram-
mar which is able to robustly parse documents that make
up dynamic web sites conforming to Microsoft’s Active
Server Pages (ASP) standard. These pages contain three
languages—HTML, often the main source of malformed or
uninteresting code, and Visual Basic and JavaScript, used to
implement server-side and client-side functionality, respec-
tively.

2 Parsing Multilingual Code

The presence of more than one language in a document
complicates parsing in several ways. The most basic chal-
lenge is to determine where the code in one language ends,
and code in another language begins. Robust parsing makes
this task even harder, since valid code in one language is er-

roneous code in another language. The parser has to be able
to distinguish between code that is valid in at least one of
the languages, and code that is invalid in any of them, and
treat each code section accordingly. Most of the time, how-
ever, multilingual code contains delimiters or other clues
that simplify language detection. The details of understand-
ing multilingual code, however often prove difficult to get
right.

Tokenization. Lexical rules can vary significantly be-
tween languages that are co-located in the same file. Since
the input stream is split into tokens before the parsing
proper begins, it is difficult to match tokenization rules used
to the language that is currently being tokenized. If a parser
is being developed for a fixed and known combination of
languages, it is possible to hard-code the switch of tok-
enization rules, but solving the problem in general is con-
siderably harder. This presents a considerable obstacle to
parsing—if the input stream was split into tokens incor-
rectly, further stages of the parse will most likely fail, or
give incorrect results.

Whitespace sensitivity. Another problem closely re-
lated to the issue of tokenization is the handling of whites-
pace. The amount of meaning assigned to whitespace dif-
fers greatly among different languages. Some popular lan-
guages, like C/C++, HTML and Java, completely ignore
whitespace, and assign no meaning to it. In other languages
whitespace has some syntactic meaning—Visual Basic for
example, relies on new lines to detect ends of statements.
Finally, some languages depend heavily on space to con-
vey syntactic meaning—one example is Python, which uses
indentation to determine nesting.

When two or more languages with different levels of
whitespace sensitivity are parsed together, the differences
in whitespace treatment must somehow be reconciled. Per-
forming a simple whitespace-insensitive parse is not an
option, because removing whitespace from whitespace-
sensitive code would disrupt it to the point of destroying
its meaning. On the other hand, performing a whitespace-
sensitive parse is not an option either, because the meaning
attached to whitespace propagates across all languages in
the parse, and adds erroneous information to code written
in whitespace-insensitive languages.

Comments. Different commenting conventions used by
various languages present yet another obstacle to handling
multilingual code. The differences between commenting
conventions are quite drastic, and what is a comment marker
in one language is often a valid identifier in others. Visual
Basic for example uses the keyword rem or a single quote to
denote the start of its comments. In most other languages,
however, rem can be an identifier, whereas single quote is
most frequently used to delimit character strings, not com-
ments.

When unilingual source code files are processed for

<html>
<script>
function capitalize() {

//capitalize the string
temp= new String (theForm.textbox.value)
theForm.textbox.value =

temp.toUpperCase()
}
</script>
Welcome to our sample ASP page!
<%

txtValue = Request.Form("textbox")
if (txtValue <> "") then

rem we have submissions, so
rem display the value of txtValue

%>
<table border=1>

<tr>
<td>

You typed in: <% =txtValue %>
</td>

</tr>
</table>

<%
else
’display the form for collecting data

%>
<form action="sample.asp" name=theForm>

onSubmit="capitalize()">
<input type="text" name="textbox"

value="Type Something Here">

<input type="submit" value="Submit">

</form>
<%

end if
%>
</html>

Figure 1. A sample of multilingual ASP code.

compilation or interpretation, the comments are usually re-
moved by lexical matching before parsing proper begins.
This approach is not as straightforward, or as fitting, when
multilingual documents are parsed for reverse engineering
purposes. First of all, lexical matching would have to some-
how detect language boundaries, and match different com-
ment patterns depending on which language is currently be-
ing processed. Second, for reverse engineering purposes it
is beneficial to leave the comments intact, because they can
hold important information about the code[7].

3 Web Analysis Grammar

As a proof of concept—and a showcase—for our pars-
ing approach, we have developed a multilingual gram-
mar for parsing web documents conforming to Microsoft’s
ASP specification. ASP allows for mixing of of client-
and server-side languages together in the same file, and is
thus similar to other technologies for developing dynamic
web pages, such as Java Server Pages (JSP), ColdFusion,
and others. ASP pages usually contain a mix of three
languages—Visual Basic(VB), which is ASP’s server side
language of choice, and HTML and JavaScript, which are
intended for client-side rendering or execution. A simple
example of such a page is given in Figure 1.

Sample Target. The example in Figure 1 is a simplified
version of many ASP pages that accept input from a user,
perform initial client-side processing, and then perform an
action based on the input. The code in Figure 1 displays an
input form, expecting a single string of input from the user.
After the “Submit” button is pressed, but before the data is
sent over to the server, a JavaScript function converts the
string to uppercase. Finally, the server-side code performs
an action on the string—in this case, simply echoing it to
the user. The page follows a popular ASP design pattern,
submitting its input to itself. The way the page looks is de-
termined by server-side code—if no submission is detected,
the input form is displayed; otherwise, the code performs
data processing and displays the result.

This small example presents almost all of the pars-
ing challenges discussed above. Some of the languages
are whitespace-sensitive (Visual Basic) while others are
not (HTML and JavaScript). Commenting conventions
vary considerably between these languages. HTML con-
tains syntactically unpredictable constructs that require
robustness—text encountered inside tables and forms, and
elsewhere in the document can be arbitrary. Furthermore,
we will not be processing all HTML tags; our interest is
limited to HTML tags that define structure and behavior of
the document, namely tables, forms, links and client-side
scripts. Other tags, such as the
 tags encountered in-
side the form, are uninteresting from our point of view, and
should be ignored, but preserved in the code for possible
further analysis.

The additional level of complexity presented by ASP
pages is language intertwining. For example, the if state-
ment in the document is separated into three separate parts
by “snippets” of HTML—the table and the form. The chal-
lenge in this case is to recognize that pieces of the if state-
ment, even though stranded in their own VB snippets, are
not in fact malformed, but make up a single, congruous
statement.

The Goals. To parse multilingual, and potentially mal-
formed, code as presented in Figure 1, we must construct a

define program
[repeat html_document_element]

end define

% Input is split into islands and water.
define html_document_element

[interesting_element]
| [uninteresting_element]

end define

define uninteresting_element
% Only basic structure is
% recovered in water elements.

[html_tag_unknown]
| [ampersand_symbol]
| [html_tag_parameter]
| [token_or_key] % catch-all option

end define

% Islands are split into languages
define interesting_element

[asp_code_block] % Visual Basic
| [html_script_tag] % JavaScript
| [html_block] % HTML

end define

Figure 2. TXL definition of a robust multilin-
gual island grammar core.

grammar that is able to perform the following tasks. First
of all, it must be able to differentiate between the three
languages involved in the parse. This is comparatively
easy—VB code is always contained between <% %> de-
limiters, and JavaScript is found predominantly in bodies
of <script> tags. Anything outside these delimiters can
be assumed to be HTML. Second, it must be able to han-
dle intertwined code; the split-up if statement described in
the paragraph above, for example, must be recognized as a
single VB statement. Finally, it must be robust enough to
selectively analyze HTML; this means being able to ignore
uninteresting and malformed tags as well as text without
breaking the parse, and were possible detect “interesting”
tags despite minor syntactic errors they might have.

3.1 Grammar Core

Through creative use of island grammars, we are able to
achieve all our goals. The main strength of island gram-
mars is the ability to separate the text to be parsed in two
general categories—interesting islands, and uninteresting
water. Definitions making up both categories can then be
enhanced and refined to achieve desired parsing results.

Figure 2 shows definitions that make up the core of the
grammar, presented in TXL’s[8] grammar definition syn-

tax, which is very close to BNF-style definitions. The core
is made up of just a few high-level non-terminal definitions
that give a bird’s eye view of how the grammar is struc-
tured. These definitions set up the foundations for separat-
ing islands from water, and identify three kinds of islands
the grammar is interested in, namely code in Visual Basic,
JavaScript, and HTML.

The target non-terminal program shows that all docu-
ments parsed are expected to be a sequences of zero or more
productions of type html_document_element. The def-
initions of html_document_element and one of its chil-
dren, the uninteresting_element that makes this gram-
mar an island grammar. Html_document_element can be
either one of interesting_element (i.e. an island) or
uninteresting_element (i.e. water). TXL prioritizes
productions in the order they are listed in the definition, so
the priority of interesting islands is higher than that of wa-
ter. Because of this, the TXL parser will always attempt
to parse the input as an island. The water productions will
only be resorted to if the input matches none of the island
definitions included in the grammar.

Water Definitions. Water, the production of last re-
sort, has some structure of its own. Of particular interest
is the last, catch-all production; it is the presence of this
production in water definition that gives the grammar its ro-
bustness. The catch-all token_or_key nonterminal, as its
name suggests, matches any one token or key. Thus, it can
match absolutely any single input lexeme. In case a particu-
lar part of the input cannot be matched by any of the island
definitions, or any of the higher-priority water productions,
it is matched to the token_or_key non-terminal, thus pre-
venting the parse from breaking, and consuming one to-
ken/key of the input. The parse then resumes starting from
the following token. Because token_or_key matches ab-
solutely any input, it also has the lowest priority of any non-
terminal in the grammar—it is the production of very last
resort.

Other non-terminals that make up the definition of
unintersting_element are there because they repre-
sent elements that, while uninteresting at present, are fre-
quently present in HTML code and have easily identifi-
able structure that is worthwhile to recover. Since our
grammar is currently interested in tables, forms, links and
scripts, all tags not related to these HTML constructs are
considered uninteresting and are treated as water. The
html_tag_unknown and html_tag_parameter produc-
tions match HTML tags and parameters that are not at
present interesting to the grammar and not included in is-
land definitions. The ampersand_symbol is designed to
match HTML-encoded characters, which provide a way
to include in HTML characters that have special mean-
ing. The < and > signs, for example, if included in an
HTML page, would be internally specified as < and

define html_table_tag
<table [repeat html_any_tag_parameter]>]
[repeat html_table_content]
[opt html_table_tag_closing]

end define

define html_table_content
[html_legitimate_table_content]
| [html_bad_table_content]

end define

define html_bad_table_content
[not html_table_tag_stop]

[html_document_element]
end define

define html_table_tag_stop
</table
| <table
| [html_table_tag]

end define

define html_table_tag_closing
</table>

end define

define html_legitimate_table_content
[html_tr_tag]
| [html_tfoot_tag]
| [html_thead_tag]
| [html_tbody_tag]

end define

Figure 3. Island grammar definition of the
HTML table tag.

>, respectively, and would both be matched by the
ampersand_symbol water nonterminal.

Island Definitions. The grammar core does not con-
tain many specifics about islands—island definitions make
up the bulk of the grammar and are discussed later in the
paper. In the core, islands are established as a class of
high-priority productions different from water. Further-
more, the core shows that there are three types of islands—
asp_code_block islands, corresponding to passages of
Visual Basic code, html_script_tag islands, which con-
tain JavaScript code, and finally html_block islands, cor-
responding to HTML tags that the grammar finds interest-
ing.

3.2 HTML Islands

Of all the languages involved in the parse, HTML
presents the most challenges. First of all, HTML is not

nearly as structured as other programming languages—
arbitrary text can appear in many places in HTML, and the
grammar has to take it into account. Even were it not so,
the grammar is only interested in a small subset of HTML
tags (chiefly tables and forms); all others have to be effec-
tively ignored. The parse of HTML by necessity has to be
robust. Furthermore, HTML is prone to containing syntac-
tical errors in the mark-up; reasons for this are discussed by
P. Brereton et. al.[9].

It is important to note that there are two degrees to
the “badness” of HTML, i.e. all syntax errors encoun-
tered can be classified into two major categories. The
“mild” errors are those that violate HTML syntax, but have
no impact on the rendering of HTML by the browsers.
An example of such an error would be markup like
<i>bold italic</i>, which violates HTML
syntax by closing the tag before the <i> one. The
vast majority of the browsers, however, would successfully
render the text inside the tags as bold italic, conveying the
original intent despite the error. Severe errors are errors that
make correct rendering of HTML by the browsers impossi-
ble. Trying to nest a table directly in another table is one
example:

<table>
<table>
.......
</table>

</table>

In this case, most browsers will be unable to discern the
original intent—that the tables were meant to be nested.
Most browsers will in fact consider the first table closed
when they encounter the second one, so the tables will be
consequent rather than nested.

In our efforts to parse HTML, we try to follow the behav-
ior of browsers as much as possible. We consider structures
with mild errors valid even though they are technically not.
On the other hand, we don’t attempt to detect structures with
severe errors in them even if it is possible to do so—if we
stray from the browsers’ interpretation of HTML meaning,
we would necessarily get erroneous results.

To achieve all these goals, the grammar again relies on
its island structure. Figure 3 shows an island grammar def-
inition of the HTML <table> tag. The definition has been
slightly shortened for presentation purposes, but retains all
the crucial features that enable robust parsing of <table>
tags. Other tag definitions in the grammar largely conform
to a similar pattern.

Unsurprisingly, the definition of a table tag to a certain
extent mirrors the definitions presented above in the dis-
cussion of core grammar definitions since both are island-
based. The table tag is defined as an entity that starts with
the character sequence <table>, has parameters, and con-
tains zero or more entities of type html_table_content.

The closing tag for the table is treated is optional, because
an omitted closing tag is a very common problem in HTML
markup. As shown below, the grammar does not rely on
closing tags exclusively to determine where the table tag
really ends.

As usual in island grammars, the content of the ta-
ble tags is split into two categories—legitimate content,
such as rows and table header/footer definitions, and
“bad” content. Bad content can be arbitrary, because it
can only be found in a table that is syntactically mal-
formed. Therefore, html_bad_table_content is de-
fined as html_document_element, which, as core def-
initions in Figure 2 show, can potentially match any in-
put at all. Because legitimate content is given higher pri-
ority than the bad one, the grammar tries to evaluate ev-
erything found inside a table tag as legitimate content be-
fore resorting to treating is as “bad” content. However, be-
cause the content is found inside a table rather than at the
top level of the document, the definition imposes certain
restrictions—namely, that the document element cannot be
of type html_table_tag_stop.

There are some HTML elements that can never be found
inside a table. For example, another complete table can not
be found directly inside another table—tables can be nested
by placing one of them in the cell of the other, but not di-
rectly. Similarly, strings <table> and </table> can not
occur in a table tag, because they would instantly either end
the table, or start a new one. It is these items that are de-
fined as html_table_tag_stop, and therefore effectively
prohibited inside tables. If one of these is found inside a
table during a parse, the parser will come to the conclusion
that the table tag has already ended (and this was not de-
tected previously perhaps the closing tag is missing or mis-
spelled). Since the grammar relies on this information as
well as on the closing </table> tags to understand where
the table truly ends, that malformed tables with their closing
tags missing and with malformed content inside them.

The grammar handles most other tags in a similar way.
The approach described above enables us to achieve two
important goals in HTML parsing. First, we do not have to
rely on the oft-forgotten closing tags to determine where a
tag truly ends; this enables us to detect tags even when their
structure is incomplete. Second, and related achievement,
is to be able to handle unexpected tag content—content that
according to HTML syntax does not belong inside a tag.
The second goal is achieved by effectively giving each in-
teresting HTML tag a miniature island grammar of its own.

3.3 VB and JavaScript Islands

Visual Basic. While only a few select tags were pro-
cessed in HTML, Visual Basic is interpreted in its entirety.
This is a lot easier to achieve in VB than in HTML, since

the grammar can expect Visual Basic to be well-formed.
While browsers are quite lax in what HTML they accept
and render, servers that execute VB code are as strict as any
compiler, making robustness in processing VB code itself
largely unnecessary.

One of the most interesting and challenging aspects in
handling VB code in the context of ASP pages is the is-
sue of code intermingling. Just as VB code can be inserted
into HTML, so HTML can be inserted into VB code; what’s
more, the insertions can be arbitrarily nested. The nesting
lets the code be very agile and flexible, but it also makes it
difficult to parse. Figure 1 gives an example of such nesting,
where passages of HTML are embedded into the middle of
a VB if statement; the statement is used to decide which
passage to show.

Even though the if statement is split into parts by
HTML pieces, it must be treated as a single entity—a VB
statement. It is, at least semantically, a parent node of the
passages splitting it up. The question arises, then, what kind
of entity these passages are.

The meaning of the HTML nested in VB code is equiv-
alent to that of a print statement—it instructs the server to
print the HTML in question to the output stream going to
the browser. This is true for all static text in an ASP page—
it evaluates to itself, and is equivalent to a print statement
with itself as the argument. It is therefore possible to con-
vert all HTML found in examples above to print statements,
and thus simplify the parsing in the process considerably.

Such simplification, however, will severely reduce the
amount of design information that can be extracted from the
code. All structure of HTML that is found inside the Visual
Basic statements will be lost, because they will be reduced
to ordinary text strings—parameters of the print methods.
The distinction between items that are generated by the Vi-
sual Basic and printed, and static items that were included
as HTML, will be lost as well.

To allow for nested HTML and Visual Basic code with-
out having to destroy the structure of either, the grammar al-
lows HTML passages—so-called “snippets”—to appear in-
side Visual Basic code as a special Visual Basic statement.
These snippets start with a “%>” marker and end with a “<%”
marker, and can contain arbitrary HTML inside. This ap-
proach preserves all information that has been contained in
the code—the language the code was written in, the nesting
structure, and whether it was static or dynamic.

The snippets are restricted to appear only in sub-scopes,
meaning they are only recognized inside constructs like
loops, decision statements, and subroutines. If HTML snip-
pets were allowed as elements at the top-most Visual Basic
scope, the information on multiple Visual Basic passages
will be lost, because HTML code is the only thing that can
separate two VB passages. Without prohibition of snip-
pets at the top level, the parse would detect at most one

define if_statement
if [expn] then

[sub_scope]
else

[sub_scope]
end if

end define

define sub_scope
[repeat sub_scope_content]

end define

define asp_sub_scope_content
[asp_legitimate_element]
| [asp_html_snippet]

end define

define asp_html_snippet
%>

[repeat snippet_content]
<%

end define

define snippet_content
[html_only_interesting_element]
| [not asp_delimiter]

[uninteresting_element]
end define

Figure 4. Grammar definitions for inclusion of
HTML snippets in sub-scopes.

Visual Basic passage, going from the very first <% sign to
the very last %> sign, interpreting any and all HTML found
in-between as being embedded in the amalgamated Visual
Basic passage.

Grammar definitions relevant to handling language inter-
mingling appear in Figure 4. HTML snippets are described
in the nonterminal asp_html_snippet. These snippets
start with the closing ASP delimiter (%>), end with an open-
ing asp delimiter (<%) and contain inside, as the defini-
tion for the nonterminal snippet_content shows, a se-
quence of HTML elements—either islands or water. The
only restriction placed on the content of HTML snippets is
that they can’t contain ASP delimiters—to avoid the risk of
missing one and parsing Visual Basic code as HTML. For
reasons discussed above, HTML snippets are only allowed
to appear in sub-scopes, which in turn only appear inside
loops, decision statements, or subroutines. Figure 4 shows
the if statement definition as an example.

JavaScript. When compared to HTML or Visual Basic,
JavaScript presents relatively few challenges for parsing.
The need for robustness is rather relaxed, because while
several competing, and partially overlapping, implementa-

tions of JavaScript exist, the differences lie mostly in areas
of functionality, not syntax.

JavaScript code is expected only inside HTML
<script> tags. In keeping with the island parsing ap-
proach, inside these tags, the grammar expects to find ei-
ther JavaScript code, or simple text. As usual, an attempt
to parse input is code is made before falling back to the
plain text option. The plain text option is nevertheless
necessary, because HTML comments are often inserted in-
side JavaScript tags, either to provide comments or to hide
JavaScript form browsers that are not JavaScript compliant.

4 Preprocessing

Despite the extensibility and flexibility that island gram-
mars afford, the differences between languages involved are
too great to easily resolve during parsing. The two obstacles
to easy multilingual parsing that require lexical preprocess-
ing to remove are comment formats and whitespace sensi-
tivity.

Comments. The standard way of dealing with com-
ments is to identify and remove them from the code be-
fore the parsing actually begins. The parser relies on pre-
defined comment markers to identify and remove the com-
ments. This scheme works well when only one language is
in use; when two or more are parsed together, however, this
approach fails, because what is a comment in one language
is not a comment in the other. Therefore, if the comment
markers of all languages are simultaneously provided to the
parser as means for deciding what parts of input to ignore,
there is a real possibility that some code pieces will be erro-
neously classified as comments and ignored. The standard
way of dealing with comments is therefore not an option.

Our solution is to modify the standard approach—we
rely on comment markers to find and remove comments be-
fore the parse, and assume that the comment markers stay
the same across different languages. The assumption clearly
does not hold in real life, so a lexical preprocessor performs
a code transformation to force all languages to a single com-
menting convention.

There are three commenting conventions to address—
HTML, Visual Basic, and JavaScript. The target com-
menting convention is as follows: anything that is con-
tained inside the <comment> ... </comment> tags is
considered a comment. The <comment> tag is actually
a valid way to denote comments in HTML, but is not
widely used. To coerce the code to this convention, all the
code is scanned for comments, and any comments found
are enclosed in the <comment> markers. The search is
context-sensitive, so VB-style comments are only converted
when found between the ASP code delimiters <% ... %>,
JavaScript comments—only inside <script> tags, and
HTML comments—everywhere else.

<html>
<script>

function capitalize() {
//capitalize the string
temp= new String (theForm.textbox.value)
theForm.textbox.value =

temp.toUpperCase()
}
</script>
Welcome to our sample ASP page!
<%

txtValue = Request.Form("textbox")
if (txtValue <> "") then
rem we have submissions, so
rem display the value of txtValue

%>
<table border=1>

<tr>
<td>

You typed in: <% =txtValue %>
</td>

</tr>
</table>

<%
else
’display the form for collecting data

%>
<form action="sample.asp" name=theForm>

onSubmit="capitalize()">
<input type="text" name="textbox"

value="Type Something Here">

<input type="submit" value="Submit">

</form>
<%

end if
%>
</html>

Unknown tag

Unknown token or key sequence

Unknown token or key sequence

JS statement

VB statement

JS statement

Input tag

Input tag

Unknown tag

S
cr

ip
t

ta
g

V
is

u
al

 B
as

ic
 i

sl
an

d

H
T

M
L

S
n

ip
p

et
H

T
M

L
S

n
ip

p
et

T
ab

le
 t

ag
F

o
rm

 t
ag

R
o

w
 t

ag

C
el

l
T

ag

V
is

u
al

 B
as

ic
st

at
em

en
t

i
f

JS
 f

u
n

ct
io

n

Figure 5. Multilingual parse of an ASP web page.

Whitespace. To reconcile differences between Visual
Basic, which is whitespace-sensitive, and other languages
in the parse, which are not, we perform a whitespace-
insensitive parse, and inject additional information into the
code to replace the information lost by ignoring the whites-
pace. VB relies on carriage return characters to separate its
statements. Since information about locations of carriage
returns is destroyed during a whitespace-insensitive parse,
we insert a special new-line marker (˜˜NL˜MARKER˜˜) at
the end of every line. The grammar than can then rely on
these markers, rather than on carriage returns to determine
where statements begin and end.

5 Parsing Results

Figure 5 shows the results of parsing the original ex-
ample text presented in Figure 1. The grammar was able
to successfully process all the languages in the code, and
coped with unstructured or uninteresting input well. It is
not feasible to show a full parse tree, because parse trees
for even relatively small examples, like the one shown, are
too large to be visualized. Rather, the figure presents a se-
lective, high-level view of the parse tree, and highlights the
structure detected in the document by our island grammar.

Unstructured and uninteresting content. A number
of items in the input were either of no interest, or did not
have any structure, and had to be processed as water pro-
ductions. These are the opening and closing <html> tags,
the
 tags inside the form, and all text content, such
as the phrases “Welcome to our ASP page!” and “You
typed in:”. The structure that was available in these
items was recovered—the <html> and
 tags were rec-
ognized as generic HTML tags. With the help of the pro-
ductions of last resort, text that has no discernible structure
was classified as sequences of tokens.

Visual Basic. The grammar correctly identified the sole
VB island in the code. The island contains two VB state-
ments, of which the second one—the split if statement—is
of particular interest. The if statement is identified as a sin-
gle entity, containing in its then and else parts two HTML
snippets, which are treated by the grammar as a special kind
of VB statement. Inside the snippets, all HTML structure is
preserved.

JavaScript. JavaScript code located in the <script>

tag was detected successfully and parsed correctly. The
grammar purposely does not look for JavaScript located in
tag attributes, such as the function call in the onSubmit pa-
rameter of the <form> tag. These calls are instead classified
as text strings. JavaScript code can occur only in a fixed set
of HTML tag parameters (of which onSubmit is a mem-
ber), if the need to analyze such code arises, the strings can
be located and re-parsed as needed.

HTML. HTML is without a doubt the primary challenge

to parsing in this example, and the grammar was able to
handle HTML code well. It detected items of interest (form
and table tags) in an input stream contaminated with un-
structured and uninteresting items. Moreover, the grammar
is robust enough to permit these “water” items inside the is-
lands, an important trait when processing HTML tags like
tables and forms, which are designed to hold other (and not
necessarily interesting) items.

6 Related Work

Partial parsing for lightweight fact extraction has been
proposed by M. Collard et. al.[13], who used XML tools to
extract static information from C++ programs. A. Cox and
C. Clarke[14] have proposed using iterative lexical analy-
sis to process code that is syntactically malformed and thus
difficult to parse.

A considerable amount of work has also been done in
analyzing multilingual web documents. In particular, C.
Boldyreff and R Kewish[10] have used an error-tolerant
HTML parser for analysis and detection of clones in web
pages. F. Ricca, P. Tonella and I. Baxter[11] have proposed
a way to modify web pages and sites by rewrite rules, which
search for specific patterns in web site code and substitute
them for more desirable ones. A. Hassan and R. Holt[12]
have proposed a framework for migrating web applications
between different server-side languages using a series of
transformation.

7 Conclusion

Parsing is the basic step necessary to enable automated
comprehension, analysis and transformation of source code.
Because they contain both multiple intermingled program-
ming languages and frequent minor syntax errors, dynamic
web pages pose a particular problem for parsers. In this
paper we have described a method for extending the idea
of island grammars to achieve robust multilingual parsing
of mixed language programs, and have demonstrated how
this idea can be used to simultaneously parse the multiple
languages used in ASP dynamic web pages. The technique
generalizes well and can be as easily applied to JSP and
other dynamic web content paradigms.

References

[1] R. C. Holt, M. W. Godfrey, A. J. Malton, “The
Build/Comprehend Pipelines”, Proceedings of the
Second ASERC Workshop on Software Architecture,
February 2003.

[2] Leon Moonen, “Generating Robust Parsers Using
Island Grammars”, Proceedings of Eighth Working
Conference On Reverse Engineering. October 2001.

[3] Leon Moonen, “Lightweight Impact Analysis Using
Island Grammars”, Proceedings of Tenth International
Workshop On Program Comprehension. June 2002.

[4] T. R. Dean, J. R. Cordy, K. A. Schneider, A. J. Mal-
ton “Using Design Recovery Techniques to Transform
Legacy Systems”, Proceedings of IEEE International
Conference on Software Maintenance (ICSM’01),
November 2001.

[5] A. van Deursen, T. Kuipers, “Building Documentation
Generators”, Proceedings of International Conference
on Software Maintenance, August-September 1999.

[6] John A. Carrol, An Island Parsing Interpreter For The
Full Augmented Transition Network Formalism, Pro-
ceedings of First Conference of the European Chapter
of the Association for Computer Linguistics, Septem-
ber 1983.

[7] M. L. Van De Vanter, “The Documentary Structure of
Source Code”, Information and Software Technology,
October 2002, Volume 44, Issue 13, pp. 767–782.

[8] Cordy, J.R., Carmichael, I.H. and Halliay, R., “The
TXL Programming Language - Version 10”, Queen’s
University at Kingston and Legasys Corporation,
Kingston, January 2000 (65 pp).

[9] Pearl Brereton, David Budgen and Geoff Hamilton,
“Hypertext: The Next Maintenance Mountain”, IEEE
Computer, Vol. 31, No. 12. pp 49-55, 1998.

[10] Cornelia Boldyreff, Richard Kewish, “Reverse Engi-
neering To Achieve Maintainable WWW Sites”, Pro-
ceedings of Eighth Working Conference on Reverse
Engineering, October 2001.

[11] Filippo Ricca, Paolo Tonella, Ira D. Baxter, “Restruc-
turing Web Applications Via Transformation Rules”,
Proceedings of IEEE Workshop on Source Code Anal-
ysis and Manipulation, November 2001.

[12] Ahmed E. Hassand and Richard C. Holt, “Migrat-
ing Web Applications”, Proceedings of the Second
ASERC Workshop on Software Architecture, Febru-
ary 2003.

[13] M. L. Collard, H. H. Kagdi, J. I. Maletic, “An XML-
Based Lightweight C++ Fact Extractor”, Proceedings
of the Eleventh International Workshop on Program
Comprehension, May 2003.

[14] A. Cox, C. Clarke, “Syntactic Approximation Us-
ing Iterative Lexical Analysis”, Proceedings of the
Eleventh International Workshop on Program Com-
prehension, May 2003.

